De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk

Terug naar zoekresultatenDeel deze publicatie

Classification of spontaneous speech of individuals with dementia based on automatic prosody analysis using support vector machines (SVM)

Open access

Classification of spontaneous speech of individuals with dementia based on automatic prosody analysis using support vector machines (SVM)

Open access

Samenvatting

Analysis of spontaneous speech is an important tool for clinical linguists to diagnose various types of neurodegenerative disease that affect the language processing areas. Prosody, fluency and voice quality may be affected in individuals with Parkinson's disease (PD, degradation of voice quality, unstable pitch), Alzheimer's disease (AD, monotonic pitch), and the non-fluent type of Primary Progressive Aphasia (PPA-NF, hesitant, non-fluent speech). In this study, the performance of a SVM classifier is evaluated that is trained on acoustic features only. The goal is to distinguish different types of brain damage based on recorded speech. Results show that the classifier can distinguish some dementia types (PPA-NF, AD), but not others (PD).

OrganisatieHogeschool Utrecht
AfdelingKenniscentrum Digital Business & Media
LectoraatArtificial Intelligence
Gepubliceerd inProceedings of the Thirty-Second International Florida Artificial Intelligence Research Society Conference AAAI Press, Vol. 32, Pagina's: 241-244
Jaar2019
TypeConferentiebijdrage
TaalEngels

Op de HBO Kennisbank vind je publicaties van 26 hogescholen

De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk