De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk

Terug naar zoekresultatenDeel deze publicatie

Compressing large amounts of netflow data using a pattern classification scheme

Open access

Compressing large amounts of netflow data using a pattern classification scheme

Open access

Samenvatting

The storage of large amounts of network data is a challenging problem, in particular if it still needs to be actively consulted as for example in the case of network forensics. Here we propose a method to compress NetFlow data while simultaneously adding domain knowledge. Our method is based on a pattern classification scheme by considering all flows from a single source IP address simultaneously. Each pattern can be described by at most 19 attributes that give a good statistical description of the original NetFlow data, while minimising information loss. We estimate that on average a factor of about 300 in storage space can be gained. The process is explained using a real world dataset from a large, high-speed, network, and a formal rationale is provided.

OrganisatieHogeschool Rotterdam
LectoraatKenniscentrum Creating 010
Gepubliceerd in2016 IEEE 2nd International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing (HPSC), and IEEE International Conference on Intelligent Data and Security (IDS) IEEE, New York, Pagina's: 364-370
Datum2016-04-10
TypeArtikel
DOI10.1109/BigDataSecurity-HPSC-IDS.2016.69
TaalEngels

Op de HBO Kennisbank vind je publicaties van 26 hogescholen

De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk