De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk

Terug naar zoekresultatenDeel deze publicatie

Sharing confidential data for algorithm development by multiple imputation

Open access

Sharing confidential data for algorithm development by multiple imputation

Open access

Samenvatting

The availability of real-life data sets is of crucial importance for algorithm and application development, as these often require insight into the specific properties of the data. Often, however, such data are not released because of their proprietary and confidential nature. We propose to solve this problem using the statistical technique of multiple imputation, which is used as a powerful method for generating realistic synthetic data sets. Additionally, it is shown how the generated records can be combined into networked data using clustering techniques.

OrganisatieHogeschool Rotterdam
LectoraatKenniscentrum Creating 010
Gepubliceerd inSSDBM Proceedings of the 25th International Conference on Scientific and Statistical Database Management ACM New York, New York, Vol. 2013
Datum2013-07-29
TypeArtikel
ISBN9781450319218
DOI10.1145/2484838.2484865
TaalEngels

Op de HBO Kennisbank vind je publicaties van 26 hogescholen

De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk