Analogical Reasoning in Biomimicry Design Education
Analogical Reasoning in Biomimicry Design Education
Samenvatting
“Teaching is both an art and a science” (Harrison & Coll, 2008 p.1). Good teaching excites students and cultivates their curiosity to learn more than they are asked. But what if students’ blank faces tell you that the teaching did not land, what can you do? Using an analogy or metaphor to explain the principle helps students visualize and comprehend the knowledge of difficult, abstract concepts by making it familiar. The National Academy of Engineers issued a report in 2008 emphasizing the need for design engineers to develop 21st century skills, such as ingenuity and creativity, and to create innovative products and markets. However, designers have a hard time ignoring evident constraints on their concepts during their design process. This is especially difficult for novice designers when attempting to use analogical reasoning (Osborn, 1963; Hey et al. 2008). Hey et al. explains how the multitude of design considerations is even more difficult for novice as compared to expert designers who are more able to focus on the important features of a problem. Kolodner (1997) iterates how novice designers have difficulty sifting through the mass of information they encounter. They need help with the transfer of knowledge that analogical reasoning requires. When students can clearly extract and articulate what they have learned, this helps them to internalize this. Biomimicry education teaches the clear extraction and articulation while learning to decipher and transfer function analogies from biology to design. This transfer can also improve reasoning when solving problems (Wu and Weng, 2013), reacting to the challenge in a more ‘out-of-the-box’ manner (Yang et al. 2015). However, not being able to fully understand this “conceptual leap between biology and design” in an accurate manner, is sited as a key obstacle of this field (Rowland, 2017; Rovalo and McCardle 2019, p. 1). Therefore, didactics on how to teach this analogical leap to overcome the hurdles is essential. There is insufficient research on the effectivity of biomimicry education in design to help establish ‘best practices’. This thesis offers advice to fill this pedagogical gap to find out how to overcome the obstacle of analogical reasoning for novice designers, while practicing biomimicry. The contribution to science is a not earlier tested methodology that leads to a clearer understanding of the translation of biological strategies and mechanisms found in scientific research. This translation from biology to design in visual and textual manner, is called the Abstracted Design Principle (ADP) and is introduced and explained in detail in chapters 4, 5 and 6 of this thesis. Together with the proposed instructions, we sketch the net-gain of positive mind-set for novice designers on their path to design for a sustainable future.
Organisatie | De Haagse Hogeschool |
Afdeling | Faculteit Technologie, Innovatie & Samenleving |
Lectoraat | Lectoraat Stedelijk Metabolisme |
Datum | 2022-10-08 |
Type | Proefschrift |
ISBN | 978-94-6366-446-2 |
Taal | Engels |