De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk

Terug naar zoekresultatenDeel deze publicatie

Open access

Rechten:

Open access

Rechten:

Samenvatting

This paper presents data-driven insights from a case study that was carried out in an University EV charging plaza where EV charging demand is met with the combination of the University campus grid and installed solar capacity. First, we assessed the plaza dependency on the grid for meeting EV charging demand and intake of excess solar energy using the available dataset. By modifying the plaza network to accommodate a small approx. 50 kWh battery storage can significantly reduce the grid dependency of the plaza by approx. 30% compared to the present situation and can also increase the green energy utility for EV charging by 10-20%. Having an battery storage could also help overcome the limitations due to the campus grid capacity during EV charging peak demand by means of scheduling algorithms. Second, we assessed the utility rate of the plaza which indicated that the average utility of charging infrastructure is about 30% which has an increasing trend over the analysed period. The low utility and EV charging peak demand may be the result of current EV user behavior where the average idle time during charging sessions is found to be approx. 90 minutes. Reduction in idle time by one third may increase the capacity and utility of plaza by two to two and half times the forecasted daily demand. By having the campus grid capacity and user information may further help with effect EV demand forecasting and scheduling.

Toon meer
OrganisatieHAN University of Applied Sciences
AfdelingAcademie Engineering en Automotive
Lectoraten
LectoraatBalanced Energy Systems
HAN Automotive Research
Jaar2023
TypeArtikel
TaalEngels

Op de HBO Kennisbank vind je publicaties van 26 hogescholen

De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk