De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk

Terug naar zoekresultatenDeel deze publicatie

Samenvatting

Background: Activity trackers can potentially stimulate users to increase their physical activity behavior. The aim of this study was to examine the reliability and validity of ten consumer activity trackers for measuring step count in both laboratory and free-living conditions. Method: Healthy adult volunteers (n = 33) walked twice on a treadmill (4.8 km/h) for 30 min while wearing ten different activity trackers (i.e. Lumoback, Fitbit Flex, Jawbone Up, Nike+ Fuelband SE, Misfit Shine, Withings Pulse, Fitbit Zip, Omron HJ-203, Yamax Digiwalker SW-200 and Moves mobile application). In free-living conditions, 56 volunteers wore the same activity trackers for one working day. Test-retest reliability was analyzed with the Intraclass Correlation Coefficient (ICC). Validity was evaluated by comparing each tracker with the gold standard (Optogait system for laboratory and ActivPAL for free-living conditions), using paired samples t-tests, mean absolute percentage errors, correlations and Bland-Altman plots. Results: Test-retest analysis revealed high reliability for most trackers except for the Omron (ICC .14), Moves app (ICC .37) and Nike+ Fuelband (ICC .53). The mean absolute percentage errors of the trackers in laboratory and free-living conditions respectively, were: Lumoback (−0.2, −0.4), Fibit Flex (−5.7, 3.7), Jawbone Up (−1.0, 1.4), Nike+ Fuelband (−18, −24), Misfit Shine (0.2, 1.1), Withings Pulse (−0.5, −7.9), Fitbit Zip (−0.3, 1.2), Omron (2.5, −0.4), Digiwalker (−1.2, −5.9), and Moves app (9.6, −37.6). Bland-Altman plots demonstrated that the limits of agreement varied from 46 steps (Fitbit Zip) to 2422 steps (Nike+ Fuelband) in the laboratory condition, and 866 steps (Fitbit Zip) to 5150 steps (Moves app) in the free-living condition. Conclusion: The reliability and validity of most trackers for measuring step count is good. The Fitbit Zip is the most valid whereas the reliability and validity of the Nike+ Fuelband is low.

Toon meer
OrganisatieHanze
Gepubliceerd inBMC Sports Science, Medicine and Rehabilitation BioMed Central, Vol. 7, Uitgave: 24, Pagina's: 1-12
Jaar2015
TypeArtikel
DOI10.1186/s13102-015-0018-5
TaalEngels

Op de HBO Kennisbank vind je publicaties van 26 hogescholen

De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk