De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk

Terug naar zoekresultatenDeel deze publicatie

Improving soil organic carbon predictions from a Sentinel-2 soil composite by assessing surface conditions and uncertainties

Improving soil organic carbon predictions from a Sentinel-2 soil composite by assessing surface conditions and uncertainties

Samenvatting

Soil organic carbon (SOC) prediction from remote sensing is often hindered by disturbing factors at the soil surface, such as photosynthetic active and non–photosynthetic active vegetation, variation in soil moisture or surface roughness. With the increasing amount of freely available satellite data, recent studies have focused on stabilizing the soil reflectance by building reflectance composites using time series of images. Although composite imagery has demonstrated its potential in SOC prediction, it is still not well established if the resulting composite spectra mirror the reflectance fingerprint of the optimal conditions to predict topsoil properties (i.e. a smooth, dry and bare soil).

OrganisatieAeres Hogeschool
LectoraatDuurzaam Bodembeheer (Aeres)
Gepubliceerd inGeoderma Vol. 429, Pagina: 1166128
Jaar2023
TypeArtikel
ISSN1872-6259
DOI10.1016/j.geoderma.2022.116128
TaalEngels

Op de HBO Kennisbank vind je publicaties van 26 hogescholen

De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk