Polder2C's: Lessons from a living lab approach to flood resilience building

V. Tsimopoulou¹, W. van de Lageweg¹, S.J.H. Rikkert², L. Wentholt³ ¹ Building with Nature Research group, HZ University of Applied Sciences ²Civil Engineering & Geosciences, Delft University of Technology ³ Foundation for Applied Water Research STOWA, Netherlands

Interreg

Polder2C's

2 Seas Mers Zeeën

V.Tsimopoulou@hz.nl

Introduction

Polder2C's is an Interreg-funded project that aims at flood resilience building through fieldwork in the Living Lab Hedwige-Prosperpolder (LLHPP). LLHPP consisted of a 3 Kmlong levee where various large-scale surveys, superstorm simulations and emergency response exercises took place in the winters period 2020-21 and 2021-22. The levee was recently removed to facilitate the expansion of an adjacent intertidal area.

Polder2C's objectives

Polder2C's context and work method

- 15 partners from 4 countries (UK, France, Belgium and the Netherlands) and a network of >30 observer organisations. 2 winters of experimentation in the living lab.
- No prescribed work method in the initial proposal. A work method developed organically during execution. Process constrained by parallel activities of the contractor of the de-poldering project.
- Exploratory fieldwork in the 1st year: process dominated by constraints in availability and effective use of resources

Fig 1. Aerial view of the living lab location with the 3-Km levee highlighted.

Selected 'success stories'

1. Levee guard trainings

- knowledge Exchange experiences of and professionals
- Validation of inspection app 'App2C'

among

- 1. Advance and share knowledge on the **design** and maintenance of levees.
- 2. Advance and share knowledge and experiences in **flood emergency response**.
- Develop a sound **knowledge infrastructure** that facilitates knowledge transfer across countries, generations and organisations.
- More systematic fieldwork in the 2nd yea informed by literature and experts' feedback dominant proce
- **Co-creation** with external parties in an ad-hoc fashion

e of resources.	gaining prominence in 2 ¹¹⁴ year	
	Critical literature review	
in the 2nd year,	Definition of knowledge gaps	
	\checkmark	
experts'	Research questions	
	Shortlist of knowledge gaps to fill in	
dominant process in 1 st year		
Availability of resources	Work plan	
Time, equipment, manpower,	\longrightarrow Test plan, Model validation	
access to predictive models	plan, Survey plan	

Fig 2. Work flow for the design and execution of LLHPP activities

2. Testing of innovative survey and monitoring techniques

- Development of a low-cost technique with smoke-bombs • to detect animal dens in the subsurface of a levee.
- Technique improved based on repetitive trials in the living • lab.
- Setting up for the first time Electric Resistivity Tomography monitoring of overflow experiments.
- Unique timeseries datasets from levee subsurface during overflow.

Fig 3. Pictures and graphical representation of levee inspections.

Fig 4. Subsequent trials of the smoke-bomb technique.

Fig 5. Impression of ERT monitoring installation (left) and indicative results (right).

3. Collecting evidence for investigation of unresolved technical questions

- Successful development of evidence-based knowledge agenda on the management of harmful animal activities on levees.
- First steps to document tacit knowledge and coordinate actions with • ecology experts.

Fig 6. (Left) Foxhole on the Hedwige levee after overflow testing, 23 November 2020. *Test conditions: 180 l/s* discharge, 1h 13 min overflow duration. (Right) Excavated grout of mole tunnel, indicating that damage of small rodents is larger than originally thought by civil engineering experts.

4. Breach-defender proof-of-concept

- Successful closure of an artificial breach with a military pontoon in the living lab.
- This required the construction of a pool surrounded by a new earthen levee in the Hedwige polder.

Fig 7. Breach-defender intervention scenarios

Fig 8. The Hedwige pool and the Breach-defender.

Drivers of success

Challenges and next steps

- Clustering of expertise and resources: the design and execution of most activities in the living lab required a constant effort to creatively combine resources and knowledge of partners and observers. This allowed for collective growth of parties involved.
 - Flexibility in the work plan: Since there was no prescribed work plan, partners \bullet could meaningfully seize opportunities that appeared in the course of the project, for new collaborations, courses of action and studies.
 - **Motivation and trust**: The planning and execution of exploratory activities lacksquarein the first year played a significant role in the development of trust among partners, which played a significant role in their motivation and effective collaboration.
 - **Accountability:** Activity leaders are held responsible for reporting and \bullet delivery of results.

- **Availability of the living lab**: All activities were conditioned by the planning of the contractor that executed the depoldering project. This posed multiple limitations, including the fact that the living-lab levee had to be demolished in the summer period of 2022.
- **Covid-19 restrictions**: Many activities were postponed, cancelled or \bullet delayed due to covid-19. Thanks to the flexible work plan and the extra time of 6 months that Interreg granted to the consortium, this problem was tackled in a satisfactory manner.
- **Documentation of activities** is a laborious and time-consuming process due to the complexity of activities.
- Availability of data for future studies: Only a fraction of collected data has been analyzed thoroughly so far. Finding a platform for their sustained, open-access availability is a top priority.