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Abstract 

This thesis project presents a novel approach for detecting corrosion using drone-based 

surveillance systems by modifying the YOLOv5 object detection model and deploying it to a 

VOXL 2 flight controller for real-time image processing. The central goal is to enhance the 

model's accuracy in detecting corrosion instances and make the developed solution easily 

replicable for future use within the company. 

 

The first part of the project involves the construction of a comprehensive dataset using 

drone-captured images of vapor pipes, further enriched with data augmentation techniques. 

Following this, the YOLOv5 model is modified by adding a Convolutional Block Attention 

Module (CBAM) to better capture the fine-grained details of corrosion. The modified model 

is then optimized through a rigorous training and evaluation process, resulting in 

significantly improved performance metrics, as evidenced by the comparative analysis with 

the original YOLOv5 model. 

 

The developed model is successfully deployed to the VOXL 2 flight controller, demonstrating 

its real-time corrosion detection capabilities in drone-captured images. Lastly, a toolkit is 

developed to facilitate the company's ability to train and adapt the model for future needs, 

ensuring the project's sustainability. 

 

Despite the project's success, certain limitations are identified, such as dataset diversity and 

real-world performance evaluation, providing a direction for future research. This work 

contributes to the field of corrosion detection methodologies, presenting a robust, efficient, 

and adaptable model. 
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1 Introduction 

This section provides background information for the research. 

 

1.1 Background 

Terra Inspectioneering is a company which started as RoNik Inspectioneering on May 13th, 

2016. Since then, Terra Inspectioneering is known for 

their inspections using aerial robots, also known as 

drones.  

Terra Inspectioneering specializes in conducting 

inspections in confined spaces, such as storage tanks, 

catering mainly to clients in the oil and gas sectors. 

However, the company also extends its services to 

companies operating in the food, beverage, power, and chemical sectors. The primary focus 

of Terra Inspectioneering's services is to measure the thickness of tank walls. To accomplish 

this, Terra Inspectioneering has developed and patented a drone-based technology for 

measuring wall thickness. In addition to wall thickness measurement, Terra Inspectioneering 

also offers visual and thermal inspections. The inspection data collected by the drone is 

stored on a cloud-based 3D model of the inspection object, which is accessible to the client. 

VOXL 2 (ModalAI, 2023) is an autonomous computing platform that has been developed by 

ModalAI. This platform boasts of a SWAP-optimized design that is powered by Qualcomm 

QRB5165, featuring eight cores that can operate at speeds of up to 3.091 GHz and 8GB 

LPDDR5. Additionally, the platform has an embedded Neural Processing Unit (NPU) that can 

deliver 15 tera operations per second (TOPS) AI. By integrating a single board computer, 

depth camera, flight controller, and cellular modem, VOXL 2 (ModalAI, 2023) enables the 

creation of fully autonomous, connected drones. The platform can also run advanced 

algorithms for tasks such as object detection, mapping, and localization. In summary, VOXL 2 

is a vital component of an autonomous drone architecture as it provides advanced 

processing capabilities and interfaces with the drone's various sensors and control systems. 

 

Figure 2. Overview of VOXL 2. Reprinted from MODALAI (ModalAI, 2023). 

VOXL 2 Features (ModalAI, 2023) 

• 16 grams, 70x36mm SWAP-optimized design. 

• Powered by Qualcomm® QRB5165: 8 cores up to 3.091 GHz, 8GB LPDDR5. 

• 15 TOPS AI-embedded Neural Processing Units. 

• Integrated flight controller on digital signal processor (DSP) with TDK® ICM-42688 

IMU and ICP-10111 Barometer. 

Figure 1. Company Terra 

Inspectioneering's Logo 
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• 5G, 4G/LTE, Wi-Fi, Microhard add-on connectivity. 

Software Features 

• PX4, ROS 1 / 2, Ubuntu 18.04, Open CV, MAVROS, MAVSDK. 

• Open-Source Linux kernel, cross-compilers. 

• Docker build environment for graphics processing unit (CPU), graphics processing 

unit (GPU) (OpenCL), and DSP (Hexagon SDK) heterogeneous computer vision and 

deep learning processing. 

 

1.2 Problem analysis 

The aerial robot from Terra-Inspectioneering needs a new function of framing the defects 

automatically on the inspecting area through inspection.  

From a bird’s eye view, the structure of an automatic detection system deployed on VOXL 2 

would involve several components working together. The VOXL 2 platform would serve as 

the central processing unit, receiving input from sensors such as cameras or a gyroscope. 

The onboard AI capabilities of VOXL 2 would then process this input in real-time to detect 

objects or events of interest. 

The object detection algorithms used depend on the requirements given by the client. In this 

project, the object detection algorithm is to detect defects such as corrosion in the 

inspecting area through inspection. A TensorFlow Lite model is trained based on the object 

detection algorithm. The trained model is then deployed to the VOXL 2 through the VOXL 

software development kit (SDK). And all the detection is processed by this model. 

Once a detection is made, the system could be configured to take various actions such as 

sending an alert or triggering a response. The system could also be connected to other 

devices or systems for further processing or analysis. 

The hardware part should be constructed first and then the development of the training 

model. To achieve this, it is essential to learn how to build a TensorFlow Lite model as well 

as deploy the model to the aerial robot.  

Hardware Theory of Operation 

1. Power 

The VOXL Power Module (MDK-M0041) is designed to accept 2S-6S batteries as 

input, directly channeling this to the VOXL ESC (MDK-M0117). Additionally, it can 

regulate the voltage down to 5VDC. 

The power module (M0041-J1) forms the output. The 5V/6A rated regulator feeds 

the VOXL2 (MDK-M0054) and delivers power monitoring information over I2C, 

which is channeled to voxl-px4 via DSP, not apps_proc. This is done through the 

power connector, designated as M0054-J4. 

2. Debug Connections 

After powering on, a user can connect to a Linux-based terminal via the USBC 

connector (M0054-J9) by employing the Android Debug Bridge (adb). 

3. Image Sensors 
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A tracking sensor (ov7521, VGA, black and white, 30FPS) along with a high-resolution 

sensor (imx214, 4K, 30FPS) are connected to the VOXL2 M0054-J7 utilizing the 

M0084 dual camera flex. 

4. Flight Controller 

Communication between the VOXL ESC (MDK-M0117) and voxl-px4 is facilitated 

over UART, with the connection established between M0117-J2 and M0054-J18. 

Figure 3 shows the detailed hardware block diagram of this project. Figure 4 shows the 

software block diagram covering the voxl-camera-server. 

Overall, the structure of an automatic detection system deployed on VOXL 2 would involve a 

combination of hardware and software components working together to achieve real-time 

detection and response. The following is the block diagram. 

 

 

Figure 3. Overview of the hardware of the system 
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Figure 4. Overview of the software of the system 

1.2.1 Goal and objectives 

The system contains two main objectives: The first is to develop an automatic defect 

detection function that can be implemented on VOXL 2. Currently the VOXL 2 platform will 

be provided by the company. The objectives include building a dataset for detecting 

corrosion and an object detection model. What’s more, it’s also necessary to optimize the 

system for speed and accuracy and ensuring that the system could be easily integrated into 

the client's existing workflow.  

In addition to the object detection model, the second objective of this project is to establish 

a comprehensive repository or tool that empowers the company to independently develop 

their own models in the future. This repository/tool serves as a foundational resource, 

allowing the company to create and train object detection models tailored to their specific 

requirements and domain expertise, even after the departure of the project developer. 

The deployment of such a system would yield multiple benefits for Terra Inspectioneering, 

including cost savings from the reduction of personnel required for aerial robot operation 

and increased market competitiveness.  

 

1.2.2 Current and desired situation 

The current challenge faced by Terra Inspectioneering is the need for manual inspection and 

defect detection. This is particularly common in inspection scenarios involving the surfaces 

of pipes and painted and unpainted tanks. See the figures below. 
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Figure 5. photo of pipe with corrosion 

While it may be relatively straightforward for an inspector to identify defects on the surface 

being inspected, in practical situations, the volume of information displayed on the monitor 

can be overwhelming. Fatigue and human error can lead to mistakes being made. Thus, it is 

imperative for Terra Inspectioneering to develop a new function for their aerial robot, 

enabling it to automatically identify the location of all defects. Upon completion of the 

inspection, it would be possible to mark all identified defects and transfer them to a figure 

format. The expected marked figure is shown as follows. 

 

Figure 6. Figure after the process of automatic framing defect function 

In the long term, the new function will not only increase the market competitiveness for 

Terra-Inspectioneering and reduce the workload of the inspectors but also reduce the 

workload for the person who is responsible for categorizing, which is important to show the 

data to clients. 

According to the analysis above, the following comes out with the main research question 

and sub-research question with the reference to the system engineering phase. 

 

1.2.3 Main research question 

What is the system design of an automatic framing defects function on the VOXL 2 platform? 

 

1.2.4 Sub-research question 

1. What system could proceed with training and developing of an object detection 

model? 

2. What is the sub-system design of this project? 
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3. What components are needed to build the subsystems? 

4. What are the procedures to integrate these subsystems and components? 

5. What are the test plans for system, subsystems, and components? 

 

1.3 Problem statement 

Terra Inspectioneering makes drones for confined space inspections. These drones contain 

measuring instruments and a camera. Terra Inspectioneering wants their aerial robot to 

have the function of automatically detecting the defects on the target surface. This needs to 

be developed using deep learning technology. 

 

1.3.1 Ideal situation 

Terra Inspectioneering should apply an automatic detecting defects function to their aerial 

robots to prevent missed inspections during the operation. 

 

1.3.2 Problem 

Currently, Terra Inspectioneering makes the inspection work manually using aerial robots. 

The drone operators need to visually inspect the surface for defects on the monitor. But in 

some cases, the drone operators may not be able to find the defects due to many reasons. 

By developing the function of automatic detection for their aerial robot. It would greatly 

increase the accuracy of the result of the inspection and reduce the workload for drone 

operators. 

 

1.4 Criteria 

This section primarily outlines the metrics that can serve as indicators of the performance of 

deep learning models. Further elaboration on these criteria is provided in section 2.6. 

    1. Accuracy 

2. Precision 

3. Recall 

4. F1-score 

5. mAP (mean Average Precision)
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2 Theoretical Framework 

This chapter mainly describes the theoretical framework of the research, including 

definitions and differences between machine learning and deep learning. 

 

2.1 Definition of machine learning 

The widely quoted definition of Machine learning by Tom Mitchell best explains machine 

learning in a nutshell. Here is what it says: “A computer program is said to learn from 

experience E with respect to some class of tasksT and performance measureP if its 

performance at tasks inT, as measured by P, improves with experience E.” (Shaikh, 2021)  

In conclusion, the more experience E that being input, the better the performance is. 

A typical example of machine learning is predicting weights based on the height of human 

beings. The following is the example data. 

 

 

Figure 7. Weights related to height. Reprinted from Analytics Vidhya. 

On the graph, the points represent the weights of females and males related to heights. The 

bunch of points is known, and the purpose of machine learning is to make a straight line to 

fit the sample points as much as possible, then this straight line is defined as learned by the 

machine. 

The second example of machine learning is a storm prediction system. 
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Figure 8. Storm Prediction. Reprinted from Analytics Vidhya. 

First, the computer read all the historical storm data and from this vast amount of data, the 

computer learns certain ‘patterns’ of what conditions lead to storms. 

For instance, the computer may be able to find out by studying historical data that when the 

temperature exceeds 40 degrees and the humidity is between 80 to 100, storms are prone 

to occur. The indicators such as ‘temperature’ and ‘humidity’ are the ‘features’ in machine 

learning, and these features are set manually. It is important to analyse which ‘features’ are 

important before making such a prediction system because the machine finds the 

corresponding pattern by analysing the data of these characteristics in the historical data. 

It is important to understand the above point because it is an essential difference from deep 

learning. 

 

2.2 Definition of deep learning 

“Deep learning is a particular kind of machine learning that achieves great power and 

flexibility by learning to represent the world as a nested hierarchy of concepts, with each 

concept defined in relation to simpler concepts, and more abstract representations 

computed in terms of less abstract ones.” (Gupta, 2022) 

The following is an example that shows how people distinguish objects at the cognitive level. 

 

Figure 9. Shape detection. Reprinted from Analytics Vidhya. 
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The purpose for shape detection is to distinguish the shapes above. The first thing that eyes 

do is to see if the shape has four sides. If so, further check whether the four sides are 

connected and whether they are equal in length and whether they are perpendicular to each 

other. If the above conditions are met, the shape can be considered as a square. 

The basic logic is to take a complex and abstract task and split it into simple and less abstract 

tasks (sides, angle, length, etc.). Deeping learning is doing this work to a large extent. 

The second example is object detection. The system must recognize the object by the given 

image. 

 
Figure 10. Feature visualization of convolutional net trained on ImageNet.  Adapted from ‘Visualizing and 

Understanding Convolutional Networks’ by D.Matthew and FergusRob, 2014, New York, NY: Dept. of Computer 

Science. 

For this car recognition example, according to the following steps: 

 1. First determine which sides and angles have the greatest relationship with identifying 

cars. 

 2. Build a hierarchical network based on the many small elements (edges, angles, etc.) 

found in the previous step, and find out various combinations between them. 

 3. After constructing the hierarchical network, it is possible to determine which 

combinations can identify cars. 

The hierarchical network shown above has four layers. The input is called raw data, which 

cannot be directly understood by the machine. Therefore, deep learning first finds all kinds 

of edges related to this car as much as possible. These edges are the low-level features, 

which is the first step written above. And the next step is to combine these low-level 

features (Mid-level features), which is the second step written above. The next step is to 

combine these low-level features. The last step is to combine all the mid-level features and 

that is called high-level features. The machine will learn how to identify a car by these 

abstract patterns, and this is called feature engineering. 
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2.3 Difference between machine learning and deep learning 

The two sections above describe a general understanding of the working principles of 

machine learning and deep learning. This section compares deep learning and machine 

learning by examining their key differences across several important aspects. 

2.3.1 Data dependency 

As the amount of data increases, the performance of the two is very different: 

 

 
Figure 11. Performance/Data of DL and ML. Reprinted from Analytics Vidhya. 

When the amount of data increases, the performance of deep learning also increases while 

the performance of traditional learning algorithms tends to be saturated (Garg, 2022). 

Therefore, when the database is small, using an older learning algorithm may be more 

appropriate. 

 

2.3.2 Hardware dependency 

Deep learning algorithms heavily depend on high-end hardware facilities, because the 

amount of calculation is too large. High-end hardware refers to computer components that 

are faster or better than what is typically purchased. High-end hardware is usually the most 

expensive and technically sophisticated. 

Deep learning algorithm involves a lot of matrix multiplication operations. Therefore, most 

of the deep learning algorithms require GPU to participate in the operation, because the 

GPU is specially designed for matrix operations. On the contrary, traditional machine 

learning algorithms can work on low-end machines. 

 

2.3.3 Feature engineering 

Feature engineering is mentioned in the previous section (2.2). When training a model, the 

machine needs to know which features are there. 
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In machine learning, almost all features need to be identified by industry experts, therefore 

the features are manually encoded. 

While deep learning algorithms try to learn high-level features from data. This is a very 

distinctive part of machine learning. Therefore, feature engineering is a tedious and labour-

intensive task. The emergence of deep learning has greatly reduced the cost of discovering 

features. 

 

2.3.4 Problem-Solving approach 

When solving a problem, traditional machine learning algorithms usually divide the problem 

into several pieces, solve them one by one, and then reassemble them. But deep learning is 

an end-to-end solution. It allows all the different parts of a process to be trained 

simultaneously instead of sequentially. This allows for the transformation of raw input data 

into a desired output without the need for intermediate processing steps. For instance, the 

following is an example of object detection. 

 

Figure 12. Overview of object detection. Reprinted from GagsHub. 

The task is to identify which objects are in a picture and point where they are. A typical 

machine-learning approach divides the problem into two steps, object detection, and object 

recognition. Firstly, the machine uses a bounding box detection algorithm like a grab cut, to 

skim through the image and find all the possible objects. Secondly, an object recognition 

algorithm such as support vector machine (SVM) with histogram of oriented gradients (HOG) 

to recognize relevant objects. 

While in deep learning, it will directly identify the corresponding object and at the same time 

mark the name of the corresponding object when given an image. For example, the You Only 

Look Once (YOLO) net can do real-time identification in a video. 
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Figure 13. A prediction of YOLO net. (Redmon, 2023) 

 

2.3.5 Execution time 

Deep learning takes a lot of time in training part because there are too many parameters 

needs to be learnt. Deeping learning algorithms like ResNet usually takes weeks for training, 

under normal circumstances, the longer the training time, the higher the performance of the 

model, but as the training time increases, the convergence speed of the loss will be greatly 

slowed down and it will take exponentially longer time to obtain higher performance. 

(Training time of deep learning models can vary depending on several factors such as the 

hardware used, the size of the dataset, and the specific architecture of the model) 

But machine learning algorithm can generally be trained in a few seconds at most a few 

hours. Although deep learning takes much longer time than machine learning. The 

advantage of deep learning is that once the model is trained, it runs very fast on the 

prediction task. 

 

2.3.6 Interpretability 

Last but not the least, deep learning is impossible to understand.  In a deep learning 

network, each layer represents a feature, and if there are too many layers, it’s not possible 

to know what features they represent at all, and the trained model can’t be used to explain 

the prediction task. For example, assume someone uses deep learning to give automated 

scoring to essays. The performance it gives in scoring is quite excellent and is near human 

performance. But it can’t give the reason why it has given that score. That is because the 

model is too complicated, and the internal rules are difficult to understand. 

On the other hand, machine learning algorithms like decision trees give clear rules as to why 

it chose what it chose so that it is particularly easy for researchers to interpret the reasoning 

behind it. 
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2.4 Machine Learning framework 

There are many machine learning frameworks in the market, some of the most popular 

frameworks include: 

1. TensorFlow: An end-to-end open-source machine learning platform developed by 

Google with a comprehensive and flexible ecosystem that can help researchers 

advance advanced machine learning technologies. 

2. PyTorch: A deep learning framework released by the Facebook team in January 

2017, which is currently more popular than Theano, Caffe, MXNet and other 

frameworks on GitHub. 

3. Keras: A high-level neural network API that can run on top of TensorFlow, CNTK or 

Theano. 

4. Caffe: A deep learning framework developed by the University of California, 

Berkeley for tasks such as image classification, segmentation, and object detection. 

5. MXNet: A deep learning framework developed by Amazon that supports multiple 

programming languages and platforms. 

The following table indicates the advantages and disadvantages of these frameworks. 

Table 1.Advantages and disadvantages for machine learning frameworks in the market 

Framework Advantages Disadvantages 
TensorFlow Flexibility and scalability, large community of developers Steep learning curve 

PyTorch Ease of use, dynamic computational graph, strong 
community of developers 

Limited pre-built models 

Keras Simplicity and ease of use, large number of pre-built 
models 

Limited flexibility 

Caffe Speed and efficiency, large number of pre-built models Limited flexibility 

MXNet Scalability and flexibility, large community of developers Steep learning curve 

 

 
Figure 14. Percentage of Repository by Framework of 2023. (O., 2023) 

According to the conducted research, TensorFlow is widely recognized as a framework 

extensively employed in the industry, while PyTorch primarily emphasizes its utility in 

research-oriented settings. Considering ModalAi's official endorsement of the tflite file as 

the recommended object detection model format, TensorFlow has been selected as the 

preferred framework for deployment in this project. 
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In Figure 17, the diagram presents the distribution of repositories categorized by framework 

usage in the year 2023. Notably, approximately 70% of the analyzed papers opted for 

PyTorch as their framework of choice. This statistical representation underscores the 

advantageous nature of utilizing PyTorch, particularly when it comes to making 

modifications to the models employed in this project. Therefore, PyTorch has been selected 

as the preferred framework for model building in this project. Figure 18 shows the decision 

tree, the machine learning model trained by PyTorch can be converted to TensorFlow using 

ONNX. 

 
Figure 15. Decision Tree of Machine Learning Project in Industry 

 

2.5 Related research results 

2.5.1 Rail failure risk assessment 

There is similar research which is about detecting the failure risk of rails using a deep 

learning technology. The rail risk assessment involves detecting the rail defects that can 

potentially result in rail break and derailment in extreme cases (Jamshidi, et al., 2017). The 

following figure is the flowchart of the proposed methodology. 
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Figure 16. Flowchart of the proposed methodology. (Jamshidi, et al., 2017) 

As is shown in this flowchart, the data is generated by a video camera. After gathering the 

database it’s processed by DCNN8 to get a trained model. Then step two is to implement the 

proposed framework and make the analysis for failure risk. 

 
Figure 17. The architecture of the proposed DCNN model. (Jamshidi, et al., 2017) 

In this structure, the input is one image which has a size of 375x275. It can be stored as a list 

like [b, h, w, c], and processing this input through 4 convolution layers and 2 fully connected 

networks it comes out with three outputs, corresponding to three categories: normal rail, 

seed squat, and squat. 

B: Batch, in this case, the number is 1. 

H: Height, it’s the height of the image. 

W: Width, it’s the height of the image. 

C: Channel, in this case, c can be ignored because it’s a greyscale image and only has one 

dimension of colour. 

In conclusion, by relying on the estimated failure risk, the infrastructure manager can act at 

the right time and the right place to prevent any unexpected consequences induced by rail 

breaks. 

According to this project and all the sections mentioned above, it is convincing that 

developing a function of automatic detection and applying it to VOXL 2 is possible.  
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2.5.2 YOLOv5 improvement 

The original Yolov5 model structure is normally not suitable for project requires single object 

category and with dataset that does not has enough data for train. Zhu in his paper (Zhu, 

Lyu, Wang, & Zhao, 2021) explains that applying object detection model to a drone-captured 

scenarios mainly has three problems:  

1. The object scale varies significantly because the flight altitude of drone changes greatly.  

2. The images captured by drones contain objects with high density, which bring in 

occlusion between objects. 

3. Drone-captured images always contain confusing geographic elements because of 

covering large area.  

The problems mentioned above make this project very challenging. Therefore, it is necessary 

to adjust the original of Yolov5 to have a better performance. 

 

Figure 18. The overview of working pipeline using TPH-YOLOv5. Compared to original version, the authors manly 

improve the head by applying Transformer Prediction Head (TPH). They also add one more head to better detect 

different scale objects. In addition, they employ bag of tricks like data augmentation, multi-scale testing, model 

ensemble and self-trained classifier to make TPH-YOLOv5 stronger (Zhu, Lyu, Wang, & Zhao, 2021).  

 

2.6 Criteria 

The quality of the results of machine learning and deep learning can be measured by 

different criteria depending on the type and goal of the task. The following are criteria for 

testing the performance of an object detection model (Zhu, Lyu, Wang, & Zhao, 2021). 

 

2.6.1 Accuracy 

The accuracy metric determines the proportion of correctly classified values, indicating its 

correctness rate. It is calculated as the sum of true positive (TP) and true negative (TN) 

values divided by the total number of values. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

True positive (TP): It is an outcome where the model correctly predicts the positive class. 

True negative (TN): It is an outcome where the model correctly predicts the negative class. 

False positive (FP): It is an outcome where the model incorrectly predicts the positive class. 

False negative (FN): It is an outcome where the model incorrectly predicts the negative class. 
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2.6.2 Precision 

Precision is a performance metric that evaluates the ability of a machine learning model to 

accurately classify positive values. It is calculated as the ratio of true positives to the total 

number of predicted positive values. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

2.6.3 Recall 

Recall is a metric that evaluates the model's ability to identify positive values correctly. It is 

calculated as the true positives divided by the total number of actual positive values. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

2.6.4 F1-score 

The F1 score is defined as the harmonic mean of Recall and Precision, and it is commonly 

used to evaluate the overall performance of a binary classification model, especially when 

both Precision and Recall are considered. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

2.6.5 mAP (mean Average Precision) 

mAP is a very popular metric in measuring the accuracy of object detectors like Faster R-

CNN, SSD, etc. If the model only has one class, then it could be considered as the same as F1-

score. 

 

2.7 Benefit-cost analysis 

This section discusses which machine learning algorithm (DL of ML) is the most beneficial. 

According to the analysis in the previous sections, deep learning can be an effective 

technique for defect detection. Deep learning models for object detection such as YOLO, 

Faster R-CNN and SSD are quite popular in the market. Based on a paper (Zhao, Zhao, Xu, & 

Wu, 2019), deep learning methods have significantly outperformed machine learning 

methods on several object detection benchmarks, such as PASCAL VOC, MS COCO, and 

ImageNet. For example, on the PASCAL VOC 2012 test set, the best machine learning 

method achieved a mean average precision (mAP) of 53.3%, while the best deep learning 

method achieved a mAP of 86.6%. On the MS COCO 2017 test-dev set, the best machine 

learning method achieved a mAP of 25.1%, while the best deep learning method achieved a 

mAP of 48.4%. On the ImageNet 2015 test set, the best machine learning method achieved a 

mAP of 33.3%, while the best deep learning method achieved a mAP of 56.4%. These results 

show that deep learning methods can achieve much higher accuracy and robustness than 

machine learning methods for object detection. 

MODALAI itself also has a development tool kit (SDK) for deep learning models which is 

friendly for the developer to customize their model. While if using the traditional machine 

learning algorithms, considering that the VOXL 2 doesn’t support the traditional machine 

learning algorithms natively. The developer needs to design an application programming 
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interface (API) for it, this poses a significant challenge for the developer of this project. If 

using deep learning technology, it’s also maintenance friendly for the company in the future 

to improve this function. 

Considering all these advantages and disadvantages, deep learning would be the one to 

realize the defect detection deep learning model.  
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3 Method 

The Vee model method is selected for this project. The Vee model is a widely recognized and 

accepted approach in the engineering field that consists of four main phases: System Design 

and System test, Sub-system Design and Sub-system test, Component Design and 

Component test. Each phase has well-defined objectives, activities, and deliverables that will 

ensure the successful implementation of the project (Blanchard & Fabrycky, 2011). The 

utilization of the Vee model will provide a systematic approach to the development process, 

facilitating the management of project risks, reducing uncertainties, and ensuring that the 

final product meets the specified requirements (Veenvliet, Broenink, & Bonnema, 2015).  

 

3.1 Reason for applying Vee model 

The Vee model is particularly well-suited for software design and testing. Its logical structure 

promotes thorough test coverage, and its step-by-step breakdown of the system into 

smaller components minimizes the risk of neglecting essential elements. As the focus of this 

project lies in the development of a machine learning algorithm for a drone-based 

monitoring system, the Vee model is apt for ensuring effective and efficient attainment of 

the objectives. 

 

3.2 Activities and deliverables 

Based on the analysis of previous problems, the deliverables can be summarized as follows. 

1. Training dataset for corrosion detection 

2. Modified YOLOv5 model architecture 

3. Model performance validation results 

4. Object detection package 

 

The focus of this phase lies in the design of the system at various levels and the subsequent 

formulation of corresponding test plans for their execution, in accordance with the 

framework of the Vee model. All sub-questions can be solved upon completion of the tasks 

within this phase. The V model encompasses two key phases: Design and integration. 

 

3.2.1 Design and Test plan 

The primary objective of the Design and Test Plan phase is to provide a detailed description 

of the system and develop corresponding test plans. 

 

3.2.1.1 System design 

In the system design phase, the comprehensive design of the system will be presented in the 

form of a system description, closely resembling the analysis of the existing situation. 

Following the completion of the system description, the system test plan will be developed 

and delivered. This phase marks the resolution of the initial sub-question, setting the 

foundation for further exploration and development. 
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3.2.1.2 Sub-system design 

To thoroughly analyse the system from diverse functional perspectives, a strategic approach 

involves dividing the entire system into multiple subsystems. Each of these subsystems is 

accompanied by a detailed description, providing insights into its specific characteristics and 

functionalities. Additionally, these subsystems are linked to their respective experiment 

plans, outlining the necessary steps to conduct experiments and gather valuable data. This 

phase of the analysis process aims to address the second sub-question, contributing to a 

comprehensive understanding of the system's complexity and dynamics. 

 

3.2.1.3 Component design 

Within a data analysis project, the focus lies on the components that encompass the 

programs employed to realize the specific functions related to data analysis. During the 

process of component design, an important aspect involves the utilization of digital twin 

technology to establish a mapping or connection between the desired functionalities and 

the corresponding code implemented within the program. Consequently, this phase of the 

project aims to solve the third sub-question, thus contributing to the overall advancement of 

the data analysis effort. 

 

3.2.2 Integration and Test executing 

This phase focuses on following the predefined test plans established during the preceding 

phase. Its primary objective is to combine the components or subsystems that successfully 

pass the tests, ensuring their seamless integration. By undertaking this step, the integration 

and test executing phase aims to determine the feasibility of the designed components, 

subsystems, or the entire system, addressing the relevant sub-question in the process. 

Consequently, upon completion of this phase, fourth sub-question can be solved. 

 

3.2.2.1 Component build phase 

During this phase, the construction of the dataset and training program will be made. In this 

phase, the objective is to test each version of dataset and training program that achieves 

assigned tasks based on the test plan. The test results will be recorded, and the most 

suitable dataset and training program are selected for further use. 

 

3.2.2.2 Subsystem integration 

The selected modules from the previous phase will be integrated into the subsystem, 

considering the analysis aspects of each metrics. The test plan for the subsystem in the 

design phase will be employed to assess if the assembled subsystem meets the design 

requirements and make necessary optimizations. 

 

3.2.2.3 System integration 

In a manner analogous to the subsystem integration phase, the individual subsystems are 

assembled into a comprehensive system, followed by testing and comparison with the 

expected outcome. Ultimately, the final delivery is attained through essential system 
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optimization. The integration of the entire system can be viewed as the evaluation of the 

object detection model. 
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4 Result 

This chapter systematically describes the results of this project based on the guidance of the 

Vee model. It will follow the order under system design, sub-system design, component 

design, components integration, sub-system integration and system design integration to 

present the outcomes of this project. 

 

4.1 List of requirements 

The list of requirements is listed as follows to give the reader a general idea of what this 

project is going to accomplish. 

 

Table 2. List of requirements 

No. Domain Requirements 

1 Software The model should have the ability to frame out corrosions and defects. 

2 The performance of the deep learning model shall meet the minimum standard of 
criteria. 

3 The repository of this project should be possible for future personnel to continue to 
develop. 

4 Software & 
Hardware 

Configure the VOXL 2 to make the model compatible with the hardware. 

5 The result shall run smoothly on the VOXL 2. 

6 An instruction file shall be made for both compiling and installing the package. 

As is shown in this table, this project mainly focuses on developing an object detection task 

algorithm. To achieve this, the requirements will be converted to several tasks to make it 

clearer for the author to develop. The following diagram gives a general idea about what 

tasks and knowledge are needed in this project. 

 

Figure 19. Overview of the project process 
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4.2 System design 

The system design is created to analyse and satisfy the client’s requirements. In this chapter, 

it shows the final design and system test plan. 

 

4.2.1 System description 

The main objective of this project is to design an object detection model that can identify 

corrosion in real-time on drone-captured images. The system is intended to be deployed on 

the VOXL 2 platform, enabling drones to autonomously detect corrosion and mark its 

location on the surface under inspection. 

The system consists of four subsystems: Dataset Construction, Model Training and 

Optimization, Model Deployment, and Model Usage (Detection Phase). 

A secondary objective of the project is to create a repository or a toolkit for the company. 

This toolkit will contain all the resources and documentation necessary to allow the 

company to replicate the entire process of model creation and deployment. This will include 

resources for data collection and annotation, scripts for model training and evaluation, code 

for model deployment on the VOXL 2, and guides on how to use the model for real-time 

corrosion detection. Appendix 1.1 indicates the system description in detail.  

 

4.2.2 System test plan 

The system test plan aims to validate whether the system meets the requirements. It 

focuses on the coherence of each subsystem and the feasibility for future maintenance. 

Appendix 1.2 indicates the system test plan in detail.  
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4.3 Sub-system design and components design 

This chapter shows the sub-system and components design and the test plans. In this section 

it will show the solution of how these sub-questions are solved. There are four subsystems 

involved in this project: Data Collection and Preparation, Model Training and Optimization, 

Model Deployment, Toolkit Development. Each of these subsystems can be treated as 

individual components. In this project, components refer to different building block or parts 

of the system that can be developed and tested independently. These subsystems are 

interconnected, and each one contributes to the overall success of this project. 

By breaking down the project into these subsystems, the author can focus on testing and 

evaluating each component separately. This allows the author to identify potential issues 

and ensure the quality and performance of each subsystem before integrating them into the 

complete system. The following shows the workflow of sub-systems. 

 

Figure 20. Subsystems workflow  
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4.3.1 Data Collection and Preparation 

4.3.1.1 Data Collection and Preparation Subsystem Description 

The aim of this subsystem is to establish a robust and representative dataset that the object 

detection model can learn from.  

The subsystem involves the collection and preparation of the image dataset used for training 

the object detection model. The process starts with selecting images of vapor pipes with 

visible corrosion from the company's database. These images are then resized to a standard 

size of 640x640 pixels using an image conversion tool. The resized images undergo 

annotation using an online annotation tool, highlighting regions of corrosion in each image. 

The dataset is then expanded via data augmentation techniques (rotation, cropping, and 

noise addition), yielding a total of 2.7k images for model training. Appendix 2.1 indicates the 

sub-system description in detail. 

 

4.3.1.2 Data Collection and Preparation Subsystem test plan 

The subsystem test plan aims to confirm the integrity and readiness of the dataset for the 

subsequent stages of model training and optimization. The test ensures the images are 

properly formatted, accurately annotated, and the dataset is sufficiently diverse through the 

applied data augmentation techniques. For further details, please refer to Appendix 2.2 for a 

comprehensive description of the subsystem test plan. 

 

4.3.2 Model Training and Optimization 

4.3.2.1 Model Training and Optimization Subsystem Description 

This subsystem revolves around model training and optimization. This process uses an 

improved YOLOv5 model architecture, with added Convolutional Block Attention Module 

(CBAM) to enhance its ability to capture fine-grained details related to corrosion. The model 

is trained on the pre-processed dataset that mentioned in the previous subsystem, and its 

performance is optimized through iterative training and hyperparameter tuning. Appendix 

3.1 indicates the subsystem description in detail. 

 

4.3.2.2 Model Training and Optimization Subsystem test plan 

The subsystem test plan for model training and optimization aims to verify the functionality 

and performance of the trained model. It checks the model's operational readiness, 

evaluates performance metrics against project requirements, confirms effective 

hyperparameter optimization, and validates successful model training convergence. The 

success of this subsystem is assessed by the improved performance of the model in 

detecting corrosion instances accurately. The model should have a high precision-recall 

curve and an increased mAP, chapter 2.6 indicates the details of these metrics. For a 

comprehensive understanding of the test plan, please refer to Appendix 3.2 in the 

document. 
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4.3.3 Model Deployment Subsystem Description 

This subsystem pertains to model deployment. In this phase, the trained model is integrated 

into the VOXL 2 device. This is accomplished by modifying the SDK (voxl-tflite-server) 

provided by ModalAI, building the environment in the voxl-cross docker image, and creating 

a .deb package that is then deployed onto the VOXL 2 via an ADB command. Appendix 4.1 

indicates the subsystem description in detail. 

 

4.3.4 Model Deployment Subsystem test plan 

The subsystem test plan for model deployment aims to verify the successful deployment of 

the object detection model onto the VOXL 2 device. It involves confirming the installation of 

the .deb package, checking the real-time operation of the model on the device, and ensuring 

its performance meets project requirements. The subsystem can be considered as successful 

if the package can be installed and run correctly in the VOXL 2 platform after configuration. 

For an in-depth understanding of the test plan, refer to the relevant Appendix 4.2 in the 

document. 

 

4.3.5 Toolkit Development Subsystem description 

This subsystem revolves around toolkit development. This phase encompasses modification 

of the YOLOv5 model, addition of the attention module, architecture adjustments, and 

format conversion adaptations for further quantization. A Jupyter notebook is created for 

process simplification, and a comprehensive instruction manual (README file) is developed 

to facilitate the self-training of customized models for users. Appendix 5.1 indicates the 

subsystem description in detail. 

 

4.3.6 Toolkit Development Subsystem test plan 

The subsystem test plan for toolkit development aims to verify the successful modification 

of the YOLOv5 model, its correct conversion, and the functionality of the Jupyter notebook, 

along with the comprehensiveness and user-friendliness of the instruction manual. The 

success of this subsystem compiles to the requirements which hinge on the creation of a 

user-friendly toolkit that facilitates the training and application of the model for corrosion 

detection. This test ensures the toolkit is accessible and effective in enabling users to train 

their own models. For a detailed understanding of the test plan, refer to the relevant 

Appendix 5.2 in the document.  
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4.4 System integration 

System integration in the context of this project involves ensuring that each subsystem 

interacts coherently with others to create a unified, functioning system that can effectively 

detect corrosion from drone-captured images and provide a toolkit for future model 

development. 

1. Integration of Dataset Construction and Model Training & Optimization: The 

Dataset Construction subsystem, responsible for creating an augmented dataset for 

model training, works seamlessly with the Model Training & Optimization 

subsystem. The augmented dataset is used to train and optimize the YOLOv5 model, 

which incorporates an attention module to enhance the model's detection accuracy. 

 

Figure 21. The dataset for this project is saved on the company's shared drives. 

2. Integration of Model Training & Optimization and Model Deployment: After the 

model is trained and optimized, it enters the Model Deployment subsystem. The 

trained model is converted to TensorFlow Lite (tflite) format and packed into a .deb 

package for deployment on the VOXL 2 device. These two subsystems need to work 

in harmony to ensure the trained model can be effectively deployed and function in 

real-time on the device. 

3. Integration of Toolkit Development with Dataset Construction, Model Training & 

Optimization, and Model Deployment: The Toolkit Development subsystem 

integrates with all other subsystems. It simplifies the model training, conversion 

processes, and provides instructions for users to train their own models, ensuring 

that the benefits of the project can continue even after its conclusion. 
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Figure 22. The Develop Toolkit is saved in the company's GitLab Repository 

4. Overall System Integration: Once all subsystems are integrated, the whole system 

should operate cohesively. The end system will provide real-time object detection 

capabilities on the VOXL 2 device and empower users to develop their own object 

detection models. 
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4.5 Test results 

This chapter delves into the results obtained from testing the subsystems and the overall 

system to evaluate their performance and ensure that they meet the established project 

objectives. 

 

4.5.1 Sub-system and components test results 

All sub-systems are tested according to the test plan. 

 

4.5.1.1 Data collection and preparation test result 

In testing the dataset construction subsystem, the generated dataset contains the expected 

number of augmented images. Each image maintains a resolution of 640x640 pixels, 

preserving the corrosion details. The annotations are precise, and the image 

transformations, such as rotation, cropping, and noise addition, are successfully 

implemented, as it fulfils the requirements that emphasizes a diverse and comprehensive 

dataset for effective model training. Therefore, the dataset construction subsystem is 

validated as functioning as intended. Appendix 6.1 indicates a detailed result. 

 

4.5.1.2 Model Training and Optimization Subsystem test result 

The subsystem test confirms that the modified YOLOv5 model, integrated with the CBAM 

module, has trained successfully on the augmented dataset. The model demonstrates an 

improved detection accuracy during training, suggesting the effective functioning of the 

attention module. The optimization process further enhanced the model's performance. A 

comparative evaluation with the base YOLOv5 model indicates an improvement in the 

corrosion detection ability of the modified model. Hence, this subsystem is validated to have 

effectively fulfilled its purpose of training and optimizing the model to detect corrosion. 

Details of the tests are presented in Appendix 6.2. 

 

4.5.1.3 Model Deployment Subsystem test result 

This subsystem is validated through a series of tests. Successful SDK modifications are 

carried out, as it complies the requirement that it can build the package correctly and the 

VOXL 2 can run this program without any problem, followed by successful build environment 

setup and dependency installation inside the docker. The build scripts execute correctly, and 

a .deb package containing the model in the required tflite format is created. This package is 

successfully deployed on the VOXL 2. In real-time testing, the model demonstrated the 

ability to process drone-captured images and detect corrosion instances. Hence, the Model 

Deployment subsystem is verified to have achieved its goal of deploying the model to a real-

world device for real-time operations. Details of the tests are provided in Appendix 6.3. 

 

4.5.1.4 Toolkit Development Subsystem test result 

This subsystem has been successfully validated through rigorous testing. The YOLOv5 model 

modifications are carried out without errors, as is the adaptation for PyTorch to TensorFlow 

format conversion. The created Jupyter notebook executes correctly, streamlining the model 

training process. The readme file provides clear and comprehensive instructions, aiding in 
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user understanding. The test confirms the effectiveness and user-friendliness of the toolkit, 

as it includes a user-friendly interface and a detailed instruction guide and facilitates the 

training and application of the model. Thus, this subsystem has proven its capability to 

facilitate efficient training of customized models for corrosion detection. The detailed test 

results are elaborated in Appendix 6.4. 

 

4.5.1.5 System test result 

In the system test, the integrated system successfully processed the drone-captured images 

and accurately detected instances of corrosion. The performance metrics of the system 

meet the requirements, demonstrating improved mAP. 

Moreover, the system functioned seamlessly in real-time, processing drone-captured images 

and accurately detecting and analysing corrosion. The integration of subsystems and their 

collective performance are up to the expectations, fulfilling all the requirements. 

Thus, the system test is successful because it demonstrates that the integrated system 

meets all the requirements and aligns with requirements. The detection and analysis of 

corrosion instances in drone-captured images show the practical applicability of the system, 

highlighting its potential for real-world deployment in drone-based systems. The detailed 

system test result is elaborated in Appendix 6.5. 
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5 Conclusion and recommendations 

This project successfully achieves its objectives of developing an object detection model to 

detect corrosions and deploying it to a flight controller, VOXL 2, for real-time processing of 

drone-captured images. By modifying the YOLOv5 model, adding a Convolutional Block 

Attention Module (CBAM), and building a comprehensive dataset, it improves the model's 

ability to accurately detect corrosion instances especially for drone-captured images. 

Further, the development of a comprehensive toolkit has ensured the company's ability to 

create and train their own models, thus contributing to the sustainability and scalability of 

the project. A comparative analysis with the original YOLOv5 model clearly shows the 

effectiveness of the modifications, leading to an improved performance of the model. 

The project has taken a significant step in the field of corrosion detection methodologies, 

particularly when integrated with drone-based surveillance systems. The improved precision 

and adaptability of the detection model promise numerous opportunities for efficient and 

proactive corrosion management. 

 

5.1 Discussion 

The study carried out in this project provides a comprehensive analysis of the application of 

a modified YOLOv5 model for corrosion detection in drone-based monitoring systems. The 

results demonstrate the effectiveness of the modifications, highlighting the model's 

improved precision and mAP when compared to the original YOLOv5 architecture. 

The project highlights how deep learning models, when fine-tuned with domain-specific 

augmentations, can offer robust performance in specific applications such as corrosion 

detection. It further underlines the potential of integrating such AI-driven techniques into 

existing drone-based systems, enabling enhanced detection. 

However, it is important to contextualize the findings within the scope and limitations of the 

project. The training and evaluation of the model are based on a specific dataset, which 

could potentially affect its generalization to unseen instances of corrosion in different 

environmental conditions or varying severity levels. Hence, while the performance metrics 

are promising, they might not fully represent the model's capability to handle real-world 

complexity and diversity. 

What’s more, the project focuses on drone-captured images for corrosion detection, and the 

model's performance in varied real-world scenarios, such as different lighting conditions, 

angles, and distances, is not extensively evaluated. Therefore, future implementations 

should consider these factors to ensure the model's reliability and effectiveness in practical 

applications. 

Finally, although the modified YOLOv5 model demonstrates a significant improvement in 

corrosion detection, its true potential could be better harnessed when integrated with other 

decision-making systems, such as automated reporting, maintenance scheduling, and risk 

assessment frameworks. This would maximize the utility of the AI-driven detection system. 

In essence, the project results are encouraging, opening new avenues for leveraging AI in the 

field of corrosion detection. However, further research addressing the limitations and 
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exploring opportunities in diverse real-world conditions and integrative systems would be 

crucial to fully realize the potential of the modified YOLOv5 model in corrosion detection. 

 

5.2 Future Directions 

Future directions for this project include addressing these limitations, expanding the 

applicability of the dataset, and conducting comprehensive field trials. The potential 

integration of the corrosion detection algorithm with other monitoring systems and 

maintenance management frameworks should also be explored. 
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Appendix 1 System Design 

Appendix 1.1 System description 

System overview 

The purpose of this project is to design and deploy an object detection model capable of 

accurately detecting corrosions. The system is specifically developed to be deployed on the 

VOXL 2, which serves as a flight controller. The VOXL 2 plays a crucial role in processing real-

time images captured by drones and identifying the presence of corrosions within these 

images. The system encompasses two main objectives: 

 

1. Real-time Corrosion Detection: The primary objective of the system is to achieve real-

time and precise detection of corrosions in the drone-captured images. By leveraging 

a customized variant of the YOLOv5 object detection model, the system effectively 

identifies and localizes corrosions, enabling prompt inspection and timely remediation 

efforts. 

 

2. Repository for Model Development: In addition to the object detection model, this 

project aims to establish a comprehensive repository or tool that empowers the 

company to independently develop their own models in the future. This 

repository/tool serves as a foundational resource, allowing the company to create and 

train object detection models tailored to their specific requirements and domain 

expertise, even after the departure of the project developer. 

 

By accomplishing these objectives, this project significantly enhances the company's 

capabilities in efficient and reliable corrosion detection utilizing the VOXL 2. Moreover, the 

establishment of a repository/tool ensures the sustainability of model development efforts, 

enabling the company to continue advancing their expertise in the field of object detection 

even in the absence of the original project developer. 
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Appendix 1.2 System test plan 

I. Aim 

The goal of the system test is to validate that the entire system functions as expected and 

fulfils the predefined requirements. This includes the detection of corrosion in real-time on 

drone-captured images with satisfactory accuracy, successfully deploying the model on the 

VOXL 2 flight controller, ensuring the model works in real-time conditions, and that the 

company can replicate the model creation and deployment process using the provided 

toolkit. 

 

II. Hypothesis 

If the system and toolkit have been designed and developed correctly, then the system 

should detect and accurately mark corrosion instances in drone-captured images in real-

time when deployed on a VOXL 2 flight controller, and the company should be able to 

recreate this process using the provided resources. 

 

III. Tools required for the System Test 

1. VOXL 2 equipped with a camera and HereLink. 

2. Test dataset of drone-captured images including both normal and corrosion target. 

3. The deployment environment: voxl-tflite-server SDK and necessary hardware. 

4. Performance measurement tools for model evaluation. 

5. Log recording tool for system logs during the test. 

6. The repository containing all resources and documentation for replicating the 

model creation and deployment process. 

 

IV. Method 

This phase presents a sequential guide outlining all the necessary actions to be carried out 

during the test to infer an outcome. 

1. Preparation: Ensure the drone, VOXL 2, and all other equipment are ready and 

functioning correctly. Prepare the test dataset that has been kept separate from the 

training data for unbiased evaluation. 

 

2. Deployment: Deploy the trained model on the VOXL 2 using the adb shell. 

 

3. Real-Time Testing: Startup the process and record the output from the model 

(corrosion detection and marking) as well as system logs for further analysis. 

 

4. Performance Evaluation: Evaluate the model's performance based on the real-time 

detection results. Calculate mAP50-95. 

 

5. Functional Testing: Ensure all parts of the system are functioning as intended. This 

includes the real-time detection, marking of detected areas, handling of image data. 

 

6. Toolkit Testing: Test the toolkit by attempting to recreate the process of model 

creation and deployment. Verify that all necessary resources and documentation are 
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present, accurate, and sufficient for someone unfamiliar with the project to recreate 

the process. 

 

 

7. Validation: Validate the system test by comparing the actual results with the 

expected results. 

 

V. Checklist 

The checklist serves as an essential tool to ensure that each requirement has been 

addressed and verified.  

1. The voxl-tflite-server is operational on VOXL 2. 

2. The model has been correctly deployed on VOXL 2. 

3. Real-time detection is functional during operation. 

4. The model correctly marks areas of corrosion in real-time. 

5. mAP meets predefined performance thresholds. 

6. All parts of the system function as intended during drone operation. 

7. Toolkit contains all necessary resources and documentation. 

8. Toolkit allows for successful replication of the model creation and deployment 

process. 

 

VI. Expected Results 

1. The model should be capable of detecting and marking corrosion targets in real-time 

with a high degree of accuracy. 

2. There should be no functional issues or unexpected behaviors during the system 

test. 

3. The VOXL 2 should successfully handle the model and process drone-captured 

images in real-time. 

4. During the entire operation, the system should function in a stable manner. 

5. The toolkit should contain all necessary resources and documentation for replicating 

the model creation and deployment process. 

6. The toolkit should be sufficient for someone unfamiliar with the project to 

successfully recreate the process. 
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Appendix 2 Data Collection and Preparation Subsystem Design 

Appendix 2.1 Data Collection and preparation subsystem description 

This subsystem focuses on gathering and preparing the necessary data for training the 

object detection model. 

The following lists the steps that are normally taken to build a customized dataset: 

1. Image Collection: The initial step involves retrieving images containing corrosion 

from the company's database. These images specifically focus on the corrosion in 

vapor pipes, ensuring the model is trained to identify similar instances. 

2. Image Resizing: To maintain consistency and ensure compatibility with the object 

detection model, all collected images are resized to a standard size of 640x640 

pixels. This process utilizes an online image conversion tool which allows for bulk 

resizing, preserving the original aspect ratio and ensuring no critical information is 

lost during the resizing process. 

3. Image Annotation: After the images are resized, they are annotated using an online 

annotation tool. This step is crucial as it provides the "ground truth" labels that the 

model will use for learning. The tool is used to manually draw bounding boxes 

around instances of corrosion in each image and label them accordingly. In total, 

1079 instances of corrosion are annotated across the different images. 

4. Data Augmentation: The final step involves augmenting the dataset to increase its 

size and improve the model's ability to generalize. Techniques such as rotation, 

cropping, and noise addition are applied to the original images, creating variations 

that simulate different perspectives, image quality, and potential occlusions that 

the model might encounter in real-world scenarios. This step effectively expands 

the dataset to 2.7k images, providing a robust and diverse set of examples for the 

model to learn from. 

The initial stage entails the acquisition of images containing the desired targets from the 

company's extensive database. Following the completion of this step, a total of 1046 images 

have been procured. Subsequently, the subsequent stage involves the annotation of the 

acquired data, which is recognized as the most time-intensive undertaking. Deep learning 

methodologies necessitate a substantial volume of meticulously annotated data, thereby 

demanding the annotator's utmost concentration and attentiveness during the annotation 

process. 

The subsequent stage encompasses the application of data augmentation techniques. 

Augmentation plays a pivotal role in enhancing the model's ability to generalize its 

performance by augmenting the diversity of learning instances accessible to the model. In 

this project, the author employs three distinct methods for augmentation: rotation, 

cropping, and noise addition. Incorporating rotations aids in cultivating the model's 

insensitivity towards variations in camera orientation. Cropping facilitates the model's 

robustness against subject translations and deviations in camera positioning. Lastly, the 

inclusion of noise serves the purpose of fortifying the model's resilience against potential 

camera-related artifacts. 
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Figure 23. Image Augmentation:  Rotate, Crop, and Noise. 

After the augmentation, the final dataset has 2.7k images which is almost triple the original 

size. It is then divided into two sets: training sets and the testing set. The ratio of the training 

sets and the testing set is 9:1. Testing set is a dataset that would never be involved in 

training the model, it is used to test the performance of the model after training. 

The training sets need to be divided into two sets, the training sets and the validation set. 

The ratio between the training set and the validation set is 9:1. Training set is used for 

training; the number of images should be as many as possible. Validation set is used to 

validate the performance after each training round is complete, the change of the variables 

is based on the result of the validation in each round.  

 

Appendix 2.2 Data Collection and preparation subsystem test plan 

I. Aim 

The objective of this test plan is to ensure that the data collection and preparation 

subsystem functions correctly and produces a dataset that is suitably formatted, adequately 

diverse, and correctly annotated for training the object detection model. 

 

II. Hypothesis 

If the data collection and preparation subsystem has been implemented correctly, it should 

provide a sufficiently large and diverse dataset with accurate annotations that can be used 

to effectively train the object detection model. 

 

III. Tools required for the System Test 

1. The dataset of 2.7k images created by the subsystem. 

2. Image viewing software to visually inspect the images and annotations. 

3. Data analysis software (development toolkit) for analysing the dataset. 

 

IV. Method 

1. Image Check: Inspect a random sample of images to verify that all images are 

correctly resized to 640x640 pixels. 
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2. Annotation Check: Use an image viewer to visually inspect the annotations in a 

subset of images. The annotations should accurately highlight the corroded areas in 

each image. 

3. Data Augmentation Check: Examine the augmented images to ensure the data 

augmentation techniques (rotation, cropping, and noise addition) have been 

correctly applied and that they add meaningful diversity to the dataset. 

4. Dataset Diversity Check: Use data analysis tools to evaluate the diversity of the 

dataset, checking for a reasonable balance in the variety and distribution of the 

augmented images. 

 

V. Checklist 

1. All images are correctly resized to 640x640 pixels. 

2. Annotations accurately highlight the corroded areas in each image. 

3. Data augmentation techniques are correctly applied. 

4. The dataset is sufficiently diverse and balanced in terms of the variety and 

distribution of the augmented images. 

 

VI. Expected Results 

1. All images should be of the correct size (640x640 pixels). 

2. Annotations should correctly and accurately mark the instances of corrosion in each 

image. 

3. Data augmentation techniques should be correctly applied, creating diverse 

variations of the original images. 

4. The dataset should be adequately diverse, ensuring a robust set of examples for the 

model to learn from. 
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Appendix 3 Model Training and Optimization Subsystem Design 

Appendix 3.1 Model Training and Optimization subsystem description 

Appendix 3.1.1 Original YOLOv5n Model Architecture 

YOLOv5 belongs to the You Only Look Once (YOLO) family of computer vision models and is 

widely utilized for object detection. It is available in four primary versions: small (s), medium 

(m), large (l), and extra-large (x), with each version offering improved accuracy rates. 

Furthermore, each variant requires varying training durations. 

 

Figure 24. The release of YOLOV5 shows promise of state of the art object detection. (glenn-jocher, AyushExel, 

Borda, alexstoken, & NanoCode012, 2023) 

In the chart, the goal is to produce an object detector model that is very performant (Y-axis) 

relative to its inference time (X-axis). Preliminary results show that YOLOv5 does exceedingly 

well in the COCO dataset to this end relative to other state of the art techniques. 

In the provided chart, it is evident that all versions of YOLOv5 demonstrate faster training 

speeds compared to EfficientDet. The YOLOv5x model, which exhibits the highest level of 

accuracy among the YOLOv5 variants, can process images with comparable precision to the 

EfficientDet D4 model while achieving multiple times faster processing times. In this project, 

the YOLOv5n model has been selected due to its superior performance in terms of inference 

speed and reduced computational requirements. 

YOLOv5 derives most of its performance improvement from PyTorch training procedures, 

while the model architecture remains close to YOLOv4.  
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Figure 25. Original YOLOv5n Architecture 

 

Appendix 3.1.2 Model Training and Optimization 

This subsystem is dedicated to the development, training, and optimization of the object 

detection model. 

1. Model Development: To enhance the base YOLOv5 model’s ability to capture fine-

grained details related to corrosion, the model architecture is modified by adding a 

Convolutional Block Attention Module (CBAM) (S, J, & Y, 2018). CBAM is a spatial-

channel attention module that considers both spatial and channel-wise features. 

This project refers to two of the convolutional attention modules of CBAM: channel 

attention module (CAM) and spatial attention module (SAM).  CAM pays more 

attention to the semantic features of the feature map. The Channel Attention 

Module applies average pooling in the spatial dimension to aggregate spatial 

information and max pooling to collect finer target features on the feature map Y of 

size H×W×C. The simultaneous use of these two pooling operations can reduce the 

size of the feature map and the amount of computation while improving the 

expressive capability of the network. After pooling, the two one-dimensional vectors 

are sent to the fully connected layer for computation, where a 1×1 convolution 

kernel is used to implement the weight sharing between the feature vectors. Finally, 

through the addition operation and sigmoid activation, the channel attention Zc is 

generated. 

𝑧𝑐 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑌)) + 𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑌))) 

SAM pays more attention to the positional information of the features, focusing on 

areas of the feature map with more effective features, thus supplementing channel 

attention. Average pooling and max pooling are used to compress the feature map 

Yc in the channel dimension, resulting in two two-dimensional feature maps, which 
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are then concatenated based on the channel to produce a feature map with a 

channel number of 2. To ensure that the final feature is consistent with the input Yc 

in the spatial dimension, a hidden layer containing a single convolution kernel is 

used to convolve the concatenated feature map. Finally, the spatial attention weight 

Zs is generated through the sigmoid operation. 

𝑧𝑠 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑐𝑜𝑛𝑣(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑌),𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑌))) 

The attention module tells the model where to concentrate more computation, 

improving the expressive power of the region of interest. The SCAM module 

emphasizes focusing on meaningful features in both channel and spatial dimensions, 

which can be used to focus on important features and suppress invalid features, 

improving the effective flow of feature information in the network. SCAM is a very 

lightweight general module that can be seamlessly embedded into the YOLOv5 

network architecture for end-to-end training. This project also compares the 

performance of different attention modules such as SE (Squeeze and Excitation) 

Networks. The following is the improved YOLOv5 model architecture. 

 
Figure 26. Improved YOLOv5n architecture 

2. Model Training: The prepared dataset from the previous subsystem is used to train 

this modified YOLOv5 model. The training process is a supervised learning approach, 

where the model learns to recognize corrosion instances from the annotated 

images. This process involves forward propagation (making predictions), calculating 

the loss (difference between prediction and ground truth), and backpropagation 

(updating model weights to minimize loss). 

3. Model Optimization: After initial training, the model undergoes optimization to 

improve its performance. This includes hyperparameter tuning, where parameters 

that govern the training process (learning rate, batch size, etc.) are adjusted to find 

the most effective configuration. Additionally, techniques to prevent overfitting 

(early stopping and dropout) is employed. 
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4. Performance Evaluation: During and after training, the model's performance is 

evaluated using precision-recall curve and mAP. These evaluations help track the 

model's progress, identify potential issues, and determine the effectiveness of 

optimization strategies. 

 

Overall, the Model Training and Optimization subsystem focuses on developing a high-

performing object detection model that can effectively detect and mark instances of 

corrosion in drone-captured images. This subsystem is crucial as the model's accuracy 

and reliability have direct implications on the success of the entire project. 

 

Appendix 3.2 Model Training and Optimization subsystem test plan 

I. Aim 

The purpose of this test plan is to confirm that the model training and optimization 

subsystem operates effectively, resulting in an object detection model that can accurately 

identify and localize corrosion in images. 

 

II. Hypothesis 

If the model training and optimization subsystem has been executed correctly, then the 

modified YOLOv5 model should be able to detect and accurately mark instances of corrosion 

in the test datasets. 

 

III. Tools required for the System Test 

1. The trained YOLOv5 model 

2. Test dataset (a subset of the original dataset not used in training) 

3. Object detection evaluation metrics (mAP, Precision-Recall curve) 

4. Program involved in the repository of this project that based on Python for running 

the model and computing the evaluation metrics. 

 

IV. Method 

1. Model Functionality Check: Run the model with a few test images and verify that it 

operates without errors and produces expected outputs (bounding boxes and class 

predictions). 

2. Performance Evaluation: Evaluate the model's performance on the test dataset. This 

can be done by computing common evaluation metrics like precision, recall, F1 

score, and possibly Mean Average Precision (mAP) if multiple classes are involved. 

3. Hyperparameter Optimization Check: Review the training logs to confirm that 

hyperparameters were tuned and that the optimization improved the model's 

performance. 

4. Training Gradient Check: Review the training loss curve to ensure that the model 

training is gradient, i.e., the loss decreased over time and eventually stabilized. 

 

V. Checklist 

1. The model operates without errors and produces expected outputs. 
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2. The model's performance metrics meet or exceed the project requirements. 

3. Hyperparameters have been optimized and the optimization improved the model's 

performance. 

4. The model training is gradient, as evidenced by the training loss curve. 

VI. Expected Results 

1. The model should function correctly without any errors, producing bounding boxes 

and class predictions for input sources. 

2. The model's performance metrics should meet or exceed the project requirements, 

indicating effective learning and generalization ability. 

3. The training logs should show evidence of hyperparameter tuning and improvement 

in the model's performance due to optimization. 

4. The training loss curve should show a trend of decreasing loss over epochs, 

demonstrating that the model training has converged. 
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Appendix 4 Model Deployment Subsystem Design 

Appendix 4.1 Model Deployment Subsystem Description 

This subsystem focuses on integrating the trained object detection model into the VOXL 2 

device, a key component of the drone system. 

1. SDK Modification: The provided SDK from ModalAI, specifically voxl-tflite-server, is 

modified according to the project's requirements. The primary modifications are 

made in the main.cpp file and the inference_helper.cpp file to integrate the trained 

model. 

2. Building the Environment: The voxl-tflite-server project builds within the voxl-cross 

docker image (version 1.7 or above). The docker image is launched, and the required 

dependencies are installed within the docker environment. For dependency 

installation, the hardware platform 'qrb5165' and the target binary repo 'dev' are 

specified. 

3. Building Scripts: Scripts are built for the 64-bit hardware platform using the 

appropriate cross compilers. 

4. Creating a .deb Package: A Debian (.deb) package is created within the docker 

environment. This package encapsulates the modified voxl-tflite-server project with 

the integrated object detection model, enabling easy installation onto the target 

device. 

5. Deploying to VOXL 2: The created .deb package is transferred to the VOXL 2 using 

the ADB command "./deploy_to_voxl.sh". This command installs the package on the 

VOXL 2, effectively deploying the object detection model onto the device. 

 

In summary, the Model Deployment subsystem involves a series of technical steps to deploy 

the trained object detection model onto the VOXL 2 device. This allows the device to run the 

model in real-time and frame the targets (corrosions) from the drone-captured images. 

Successful deployment is critical to the functional completion of the project. 

 

Appendix 4.2 Model Deployment Subsystem test plan 

I. Aim 

The aim of this test plan is to ensure that the model deployment subsystem operates 

effectively, leading to a successful installation of the object detection model on the VOXL 2 

device. 

 

II. Hypothesis 

If the model deployment subsystem has been executed properly, the object detection model 

should be successfully deployed onto the VOXL 2 device and should be able to process input 

images in real-time. 

 

III. Tools required for the System Test 

1. The VOXL 2 platform 

2. ADB (Android Debug Bridge) 

3. HereLink 
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4. Test images for real-time testing 

 

IV. Method 

1. Deb Package Deployment Check: After deploying the .deb package to the VOXL 2 

device using the ADB command "./deploy_to_voxl.sh", check if the package is 

successfully installed on the device. 

2. Real-time Functionality Check: Run the model with real-time inputs and confirm that 

the model operates without errors and processes the images as expected. 

3. Performance Check: Evaluate the model's real-time performance on the VOXL 2 

device by providing it with test images and ensuring it accurately detects and frames 

corrosion instances in a timely manner. 

 

V. Checklist 

1. The .deb package is successfully deployed and installed on the VOXL 2 device. 

2. The model operates without errors and processes real-time images on the VOXL 2 

device. 

3. The model's real-time performance on the VOXL 2 device meets or exceeds the 

project requirements. 

 

VI. Expected Results 

1. The .deb package should be successfully deployed and installed on the VOXL 2 

device. 

2. The model should function correctly on the VOXL 2 device, processing real-time 

images without errors. 

3. The model's real-time performance on the VOXL 2 device should meet or exceed the 

project requirements, demonstrating successful deployment and operation. 
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Appendix 5 Toolkit Development Subsystem Design 

Appendix 5.1 Toolkit Development Subsystem Description 

This subsystem pertains to the development of a toolkit that facilitates easier and more 

efficient training of object detection models for users who may not be familiar with the 

process. 

1. Model Modification: The YOLOv5 model, based on the Ultralytics version, is 

adjusted. This involves incorporating an attention module and altering the model's 

architecture to enhance its ability to detect fine-grained details related to corrosion. 

 

2. Format Conversion Adaptations: To facilitate further model quantization and 

conversion, adjustments are made to ensure the model can be converted from 

PyTorch format to TensorFlow format. This conversion is a vital step as the model 

deployed on the VOXL 2 device is required to be in TensorFlow Lite (tflite) format. 

 

3. Jupyter Notebook Creation: To simplify the model training and conversion process, 

a Jupyter notebook is created. This notebook houses the code and serves as an 

interactive platform for executing the model training, conversion, and related 

processes. 

 

4. Instruction Manual (README file): A detailed instruction manual, provided in the 

form of a README file, is developed to guide users through the process of training a 

customized model. This document provides step-by-step instructions, effectively 

making the toolkit accessible and user-friendly, even for individuals who might not 

have a deep understanding of the underlying processes. 

 

In summary, the Toolkit Development subsystem is aimed at making the process of training 

and deploying a customized object detection model more straightforward and accessible. It 

helps to ensure that the project's benefits can continue to be realized, even after the 

project's conclusion. This subsystem is integral to meeting the second objective of the 

project, fostering a more sustainable model of technology use and development within the 

company. 

 

Appendix 5.2 Toolkit Development test plan 

I. Aim 

The aim of this test plan is to verify the successful operation of the toolkit development 

subsystem, ensuring the YOLOv5 model's modifications, conversions, and notebook 

operations are functioning as intended, and the instruction manual is comprehensive and 

user-friendly. 

 

II. Hypothesis 

If the toolkit development subsystem has been correctly implemented, then users should be 

able to train their own customized model following the instructions and using the provided 

Jupyter notebook. 
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III. Tools required for the System Test 

1. Jupyter notebook 

2. Test model for conversion and training 

3. A user unfamiliar with the process (to test the instruction manual) 

 

IV. Method 

1. Model Modification Check: Confirm the YOLOv5 model has been correctly modified, 

with the attention module and architectural changes effectively implemented. 

 

2. Conversion Check: Verify the successful conversion of the modified YOLOv5 model 

from PyTorch format to TensorFlow format, preparing it for further quantization and 

conversion to TensorFlow Lite (tflite) format. 

 

3. Jupyter Notebook Functionality Check: Validate the functionality of the Jupyter 

notebook in facilitating model training and conversion processes. 

 

4. Instruction Manual Review: Test the instruction manual with a user unfamiliar with 

the process, evaluating its comprehensiveness and user-friendliness. 

 

V. Checklist 

1. The YOLOv5 model has been correctly modified and can be converted from PyTorch 

to TensorFlow format. 

2. The Jupyter notebook operates effectively, simplifying the model training and 

conversion processes. 

3. The instruction manual (README file) is comprehensive, user-friendly, and enables 

users unfamiliar with the process to train their own customized model. 

 

VI. Expected Results 

1. The modified YOLOv5 model should successfully convert from PyTorch format to 

TensorFlow format. 

2. The Jupyter notebook should effectively simplify the model training and conversion 

processes. 

3. The instruction manual should be comprehensive and user-friendly, allowing users 

unfamiliar with the process to train their own customized model. 
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Appendix 6 Test results 

Appendix 6.1 Data Collection and Preparation Subsystem test result 

During the detailed testing process for the Dataset Construction subsystem, a variety of tests 

are carried out to confirm the successful creation of the dataset, its subsequent 

augmentation, and the precise annotation of the target corrosion areas in the images. 

1. Image Sourcing and Resizing: The first step of the subsystem involved sourcing 

images that contained instances of corrosion in vapor pipes from the company's 

database. A total of 1079 original images are sourced, each containing corrosion 

instances of varying degrees and sizes. These images are resized to 640x640 pixels 

using an online image converter tool. The images maintained a high degree of detail 

following resizing, preserving the essential features of the corrosion. 

 

Figure 27. Original Image, 6720 x 4480 

 

Figure 28. Resized Image, 640 x 640 

2. Annotation: The next phase involves the annotation of the images. Each image is 

annotated. The corrosion areas are carefully marked, ensuring accurate boundary 

identification for the machine learning model. 

3. Data Augmentation: After annotation, the images undergo augmentation, which 

involved rotation, cropping, and noise addition. The augmentation process 

successfully generates an augmented dataset of 2.7k images, thereby enhancing the 

dataset's size and variability. 
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Figure 29. Annotated Images with data augmentation 

4. Validation: The resulting dataset is tested by feeding it into the Model Training & 

Optimization subsystem. The model can learn effectively from this dataset and 

detect the annotated corrosion areas, validating the successful creation and 

augmentation of the dataset. 
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Figure 30. Model predictions on augmented dataset 

The detailed tests concluded that the Dataset Construction subsystem is functioning as 

expected, with the dataset being of high quality, correctly annotated, and sufficiently 

augmented. The system is ready for use in the following stages of model training and 

optimization. 

               

Appendix 6.2 Model Training and Optimization Subsystem test result 

The Model Training and Optimization subsystem undergo thorough testing to ascertain the 

successful adaptation of the YOLOv5 model and the incorporation of the Convolutional Block 

Attention Module (CBAM). 

1. Model Training: After adaptation, the model is trained on the augmented dataset 

created by the previous subsystem. The training phase is monitored to ensure the 

model is learning effectively and enhancing its detection capabilities. 
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Figure 31. Training Loss vs Epochs 

2. Model Evaluation: Upon completing the training, the model is evaluated for its 

detection accuracy. This is done using a validation dataset containing drone-

captured images of corrosion. 

 

 
Figure 32. Precision-Recall Curve of improved YOLOv5 model 

3. Comparison with Base Model: The modified model's performance is compared with 

the base YOLOv5 model. This comparison indicates that the improved model 

improved 0.04 in mAP@0.5. 
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Figure 33. Precision-Recall Curve of the original YOLOv5 model 

 

Appendix 6.3 Model Deployment Subsystem test result 

This subsystem is tested in detail to confirm the successful deployment of the modified 

YOLOv5 model on the VOXL 2 device. The steps for the deployment process and their 

respective test results are as follows: 

1. SDK Modification: The initial task involved modifying the SDK (voxl-tflite-server) as 

per the requirements. The main.cpp and inference_helper.cpp files are changed to 

adapt to the specific needs of the project. The modifications are successful and 

doesn't introduce any errors in the code. 

2. Building Environment: The voxl-tflite-server project is built in the voxl-cross docker 

image (V2.5). This process is carried out without any issues, verifying the creation of 

the required environment. 

3. Dependency Installation: The necessary dependencies are installed inside the 

docker. The dependencies are correctly specified and installed without errors, 

validating this step of the deployment process. 
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Figure 34. Dependency Installation Logs 

4. Build Scripts Execution: The build scripts are executed successfully.  

 
Figure 35. Successful build scripts 

5. Package Creation: A .deb package is created, containing the modified YOLOv5 model 

in the tflite format. The creation of this package is successful, verifying the 

successful conversion of the model to the required format. 

 

Figure 36. Successfully create package 
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6. Real-Time Testing: The model is tested for real-time performance on drone-

captured images. The model can process the images in real-time and correctly 

identify the corrosion instances. 

 

Figure 37. Real-time processing on the VOXL 2 

The test concludes that the Model Deployment subsystem is functioning correctly, achieving 

the successful deployment and operation of the modified YOLOv5 model on the VOXL 2. This 

subsystem is now ready for real-world operations. 

 

Appendix 6.4 Toolkit Development Subsystem test result 

This subsystem undergoes comprehensive testing to ensure the success of the toolkit 

creation process and the efficient training of the customized model. Here are the results for 

each significant step of the process. 

1. Modification of YOLOv5 Model: The YOLOv5 model is successfully modified, with 

the incorporation of the attention module and changes in the model architecture. 

The changes are made to suit the specific needs of the project. The modifications did 

not introduce any errors. 
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Figure 38. CBAM module 
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Figure 39. Modified YOLOv5 architecture 
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Figure 40. Modified YOLOv5 architecture 

2. Conversion Adaptation: The modified model is adapted to be converted from 

PyTorch format to TensorFlow format. This step is essential for the model to be 

quantized and converted into the tflite format. The model is successfully converted 

without any issues. 



 

60 
 

 

 

Figure 41. Successfully model conversion 

3. Jupyter Notebook Creation: A Jupyter notebook is created to streamline the model 

training process. The notebook is tested, and it executes correctly, proving its utility 

for training the customized model. 
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Figure 42. Jupyter Notebook Code and Outputs 
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Figure 43. Jupyter Notebook Code and Outputs 
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Figure 44. Jupyter Notebook Code and Outputs 

4. Readme File Creation: A detailed instruction file is created to guide users in training 

their customized models. The instructions are found to be clear and comprehensive 

during testing. 
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Figure 45. Readme file section 
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Figure 46.  Readme file section 
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Figure 47. Readme file section 
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Figure 48. Readme file section 

5. Toolkit Usability Testing: The toolkit is tested for usability by a third-party user who 

is not involved in the project. The user can use the toolkit to train a customized 

model successfully, confirming the toolkit's usability and effectiveness. 

 

The detailed tests affirm that the Toolkit Development subsystem is functioning as 

intended, facilitating the creation of a toolkit for efficient training of customized models. 

The subsystem is validated for future use in training customized models for corrosion 

detection. 

 

Appendix 6.5 System test result 

The goal of the system testing is to validate the complete functionality of the corrosion 

detection system when all subsystems are integrated and working in unison. Each subsystem 

– Data Collection and Preparation, Model Training and Optimization, Model Deployment, 

and Toolkit Development - undergoes a rigorous series of tests to validate their individual 

functionalities as well as their interoperability within the entire system. Here are the results: 
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1. Data Collection and Preparation Subsystem: Passes the subsystem test, 

demonstrating a high-quality dataset conducive to the detection of corrosion (Refer 

to Appendix 6.1 for more details). 

2. Model Training and Optimization Subsystem: Passes the subsystem test, validating 

the successful training and optimization of the modified YOLOv5 model (Refer to 

Appendix 6.2 for more details). 

3. Model Deployment Subsystem: Passes the subsystem test, proving successful model 

deployment and real-time performance on the VOXL 2 device (Refer to Appendix 6.3 

for more details). 

4. Toolkit Development Subsystem: Passes the subsystem test, affirming the usability 

and efficiency of the toolkit for training of customized models (Refer to Appendix 6.4 

for more details). 

Upon the successful completion of all subsystem tests, the corrosion detection system can 

be deemed to have passed the system test. The system has proven its readiness for real-

world deployment and use, meeting both of its primary objectives efficiently. The detailed 

results and descriptions are provided in the respective appendices. 


