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Abstract 
Forest inventories serve as a primary source for above-ground biomass and carbon stock 

estimations. These inventories, however, are costly and time-consuming especially over large areas 

with difficult terrain. Multiple remote sensing techniques can facilitate forest inventories with above-

ground biomass assessments, one of these methods is the use of vegetation indices. However, 

studies have shown varying results on the effectiveness of vegetation indices for estimating above-

ground biomass. The aim of the present study is to determine if the use of vegetation indices is a 

suitable method for above-ground biomass estimations in a mixed dipterocarp forest in Sarawak. The 

Aboveground biomass of 29 plots was measured, and these measurements were used to analysed 

the relationship between above-ground biomass and the reflection value displayed on vegetation 

indices. Regression analysis was performed on 11 vegetation indices, all of the analysed vegetation 

indices showed a weak and insignificant relationship with above-ground biomass. Out of all the 

analysed indices the RERVI had the strongest relationship with above-ground biomass, with an R2 

value of 0.05. The results found in the present study indicate that the analysed vegetation indices are 

not suitable for estimating above-ground biomass in a mixed dipterocarp forest in Sarawak. This 

study, therefore, concludes that vegetation indices are not a useful tool for aboveground biomass 

and aboveground carbon stock assessments in a mixed dipterocarp forest in Sarawak. 
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1. Introduction  
Developing suitable methods for estimating above-ground forest biomass on large scale is 

becoming increasingly important. Vegetation indices could potentially play a vital role in assessing 
forest above-ground biomass. However, the capability of vegetation indices to estimate above-
ground biomass in different forest types remains inconsistent.     
 

1.1 Background  
The increase of greenhouse gases (GHG) in the atmosphere and their effects on the global 

climate is one of the biggest environmental concerns in current times. Specifically the rise of carbon 
dioxide (CO2) which has been linked to an increase in mean global temperature (Ledley et al., 1999).  
According to Grace (2004), 60% of the increase in global temperatures is caused by an increase in 
CO2. This rise of global temperature has devastating effects for both the environment and humans 
such as; rise in sea-level, heavy precipitation, drought and precipitation deficits, and an increase heat 
waves (IPCC, 2018). The most recent climate change report from the Intergovernmental Panel on 
Climate Change  (IPCC) states that these extreme weather event have already impacted ecosystems, 
humans, settlements, and infrastructure (2022a). According to the report climate change has 
reduced food and water security, negatively affected human physical and mental health, and caused 
economic damages. Considerable damages have also been observed in ecosystems, with some 
showing an increase in irreversible losses. These damages and losses also affect humans, especially 
those whose livelihood depends on these ecosystems. Furthermore, the report states that if the rise 
in global temperatures continues climate hazards will increase which will strongly impact humans 
and ecosystems. In response to concerns about these rising temperatures and their effects more 
focus has been placed on methods that can assists with the removal of CO2 from the atmosphere.  
 

Currently, the only widely practiced methods that focus on the removal of CO2 out of the 
atmosphere are related to forestry. These methods include; afforestation, reforestation, improved 
forest management, agroforestry, and soil carbon sequestration (IPCC, 2022b). Within these forests, 
five major carbon pools can be found: (1) above-ground biomass (AGB), (2) below-ground biomass 
(BGB), (3) deadwood, (4) litter, and (5) soil carbon (IPCC, 2006). Forests have the highest global 
contribution to biomass, 92% of all biomass is stored within forests (Pan et al., 2013) . The world’s 
forest carbon stock is estimated to be 861 petagrams (Pg), with the highest amount (471Pg) found in 
tropical forests (Pan et al., 2011).  In addition, the report also estimates the world’s forests to serve 
as a carbon sink of 2.4Pg per year. The earth’s surface consists of 31% of forests which is equal to 
4.06 billion hectares, 46% of this surface consists of tropical forests (FAO, 2020). Despite covering 
about one third of the earth’s surface, the contribution of forests to the global carbon stock is 
enormous. Xu et al. (2021) estimated that the world’s forest contribute to about 72% of the total 
global carbon stock. Tropical forest contribute to almost half (47%) of the total global carbon stock, 
with 40% found in moist tropical forest and 7% in dry tropical forests. Tropical forests are the most 
carbon-dense forests in the world, which gives them the highest potential for carbon sequestration 
(Goodman & Herold, 2014). 

 
Estimations of carbon stocks within a forest are essential for monitoring the carbon fluxes in 

a forest, these estimations also show the potential of forests to serve as a carbon sink (Vashum & 
Jayakuma, 2012). Carbon stock estimations and understanding of the sources and sinks help to 
improve carbon flux models, which are needed to improve projections of climate change and impacts 
(Kumar & Mutanga, 2017). In addition, carbon stock assessment is needed for most financing 
schemes and incentives such as reduction of emissions from deforestation and forest degradation 
(REDD+) (UNFCCC, 2016). To be able to estimate the amount of carbon stored within a forest, the 
mapping and monitoring of the forest biomass are needed (Koch, 2010). 
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Carbon stock estimations can be derived from destructive and non-destructive field 
measurements. The destructive method consists of harvesting and measuring all trees within a 
certain area. This method is highly accurate, however, this method is time-consuming, expensive, 
destructive, and impractical (Gibbs et al., 2007). Destructive measurements are mainly used to 
develop allometric equations, which can be used to estimate the AGB with non-destructive field 
measurements. The carbon present in the above ground part of trees can be derived from these AGB 
estimations. During non-destructive field measurements, specific tree properties are measured for 
each tree within a plot (e.g. tree species, height, diameter at breast height). Data gathered in the 
field can be converted into biomass/carbon with the use of allometric equations. However, 
estimating biomass over large areas with the use of forest inventories is labour intensive, costly, and 
time-consuming. 
 

Remote sensing may facilitate forest inventories with these estimations since remote sensing 
offers multiple techniques which can quickly estimate biomass at a relatively low cost (Kumar et al., 
2015). Because of its many advantages, the combination of field data with remote sensing , is seen as 
the primary source for estimating AGB over a large area (Lu, 2006). According to McRoberts & 
Tomppo (2007), there are four primary ways in which remote sensing enhances national forest 
inventories; (1) reduces costs and time spent on forest inventories, (2) Increases the precision of 
inventory estimates, especially over larger areas, (3) estimates forest characteristics with acceptable 
bias and precision for small areas with insufficient field data, (4) Produces thematic maps of the 
forest which are useful for management strategies. 

  
Optical remote sensing, LiDAR, and radar have all been used for biomass estimations. Kumar  

et al. (2015) state that these different techniques have many potential benefits for estimating 

biomass however, the usefulness of each technique varies per circumstance. Optical remote sensing 

techniques are often used in forestry due to the high availability of free medium resolution spatial 

and temporal data. Numerous studies have been conducted where optical remote sensing 

techniques are used to estimate biomass (Steininger, 2000; Foody et al., 2003; Lu et al., 2004). One 

optical remote sensing technique commonly used for estimating biomass is vegetation indices. These 

indices calculate a single value for each pixel in an image by transforming two or more spectral 

bands. The purpose of a vegetation index is to highlight certain plant properties while minimizing the 

effects of other factors such as; soil-background reflectance, directional, or atmospheric effects (Fang 

& Liang, 2014). In the past decades, many vegetation indices have been developed and used for 

estimating biophysical parameters. Lu et al. (2004) state that the impact environmental conditions 

and shadows have on the reflectance value can in part be reduced by vegetation indices. This 

improves the correlation between AGB and vegetation indices, specifically in areas with complex 

vegetation structures. 

The most well-known vegetation indices focus on the ratio or difference of light reflected in 

the red and near-infrared (NIR) part of the electromagnetic spectrum. Vegetation indices that use red 

and NIR bands to estimate biophysical properties have been used to estimate biophysical properties 

of temperate forests. However, these indices have shown little success in estimating biophysical 

properties of tropical forests (Foody et al., 1996; Foody et al., 2001). Boyd et al. (1999) suggest that 

indices which include the middle-infrared (MIR) reflectance show a stronger relationship when 

estimating biomass in tropical forests. Freitas et al. (2005) determined that vegetation indices which 

included the Short-wave Infrared (SWIR) or MIR bands showed the best performance for estimating 

biophysical parameters in humid forests.  
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Significant correlations have been established between AGB and vegetation indices in 

previous studies (Zheng et al., 2004; Heiskanen, 2006; Das & Singh, 2012). However, the strength of 

the correlation between vegetation indices and biomass strongly varies per location and vegetation 

type (Foody et al., 2003). Therefore, the result obtained in these studies are mainly applicable in 

areas which have similar vegetation types. Determining the suitability of  vegetation indices to 

estimate biomass in a specific location is needed before this remote sensing technique can be 

applied to assist forest inventories.  

1.2 Problem statement   
Vegetation indices may facilitate forest inventories with AGB estimations. However, 

research done on the relationship between AGB and vegetation indices have varying results. 
Heiskanen (2006) conducted research in a pine forest in Finland, a strong relationship was observed 
between AGB and vegetation indices. The simple ratio (SR) showed the strongest linear relationship 
(r2 = 0.903), while the Normalized Difference Vegetation Index (NDVI) showed the strongest non-
linear relationship (r2 = 0.890). Das & Singh (2012) tested the relationship in a moist deciduous and 
semi evergreen forest in India. They concluded that all six of the analysed indices were useful for 
biomass estimations, with the strongest relationship (r2 = 0.785) found for the Ratio vegetation index 
(RVI). (Thakur et al., 2019) found a good relationship (r2 = 0.792) between biomass and the NDVI in a 
dry tropical forests in India. Foody et al. (2001) analysed vegetation indices for tropical forests in the 
North-eastern part of Borneo. This report determined a weak and insignificant relationship between 
forest biomass and the analysed vegetation indices. Lu et al. (2004) analysed the correlation of 23 
vegetation indices in 3 different study areas in the Brazilian Amazon basin. The conclusion of this 
report was that not all of the analysed indices showed a significantly relationship with AGB, Landsat 
band TM5 did show to be strongly correlated with forest parameters. This study also indicates that 
the strength of the correlation between AGB and vegetation indices strongly varied depending on the 
stand structure of the forest. Foody et al. (2003) analysed the transferability of predictive relations 
for estimating biomass with the use of vegetation indices. This research concluded that a vegetation 
index might accurately estimate a biophysical property of interest for a specific region however, this 
does not assure universal applicability. Lu (2006) also states that determining the most suitable 
vegetation index for a specific location is an important part of the process of remote sensing-based 
AGB estimation. 
 

The issue that arises when using vegetation indices for AGB estimations is that the results are 
site dependent. Therefore, results obtained in one area cannot automatically be applied to another. 
This means that the usefulness of vegetation indices for estimating AGB also varies depending on the 
location and forest type in which the indices are analysed. The aim of this research is to determine 
the suitability of vegetation indices for estimating the AGB, and aboveground carbon stock in a mixed 
dipterocarp forest (MDF) in Sarawak.  

 
The results of the present study could serve as an indication for the Forest Department 

Sarawak on the usefulness of vegetation indices for estimating AGB in mixed dipterocarp forests. This 
could serve as an argument for the inclusion of vegetation indices to facilitate forest inventories with 
forest biomass and carbon assessments.   
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1.3 Research objectives  
The main objective of the present study is to determine if vegetation indices are a suitable 

predictor of AGB in a mixed dipterocarp forest in Sarawak. This research will answer the following 
main research question; 

 
Which of the analysed vegetation indices is most suitable for estimating above-ground 

biomass in a mixed dipterocarp forest? 
 
The following sub-research questions will also be answered;  
 

- Which vegetation indices have the highest potential to have a strong relationship with 
above-ground biomass in a mixed dipterocarp forest?  

- What is the average reflection value for each of the analysed vegetation indices in each plot  
- How much above-ground biomass (Mg ha-1) is stored in each of the analysed plots? 
- Which of the analysed vegetation indices shows a significant relationship with above-ground 

biomass in a mixed dipterocarp forest? 
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2. Methods and materials  
This chapter of the report gives a brief overview of the study area and discusses the methods 

and materials used during the present study. The study area section describes features of the study 

area such as; location, topography, climate, and forest type. The first section of the method will 

discuss how the satellite images were acquired, and how the vegetation indices with the highest 

potential were selected. This section is followed by information on the field data that was used in the 

present study, and the location of the plots. The next section includes information on the design of 

the plot, and the sample methods used to establish the plots. This is followed by information on how 

the tree measurements were conducted. The next section discusses which formulas were used to 

estimate the AGB of the measured trees. The final section of the methods will discuss how the 

regression analysis will be performed. The material section will list all materials that were used 

during the present study. 

 

2.1 Study area 
Malaysia is comprised of 3 federal 

territories and 13 states, the states are 
divided into districts. Within the Sarawak 
state, these districts are grouped into 
larger administrative components called 
divisions (Britannica, n.d.). This research 
was conducted in the following districts; 
Selangau, Tatau, Song, and Kapit (figure 
1).  

 
 

 
 

2.1.2 Climate  
Sarawak has an equatorial climate with temperatures ranging between 23°C to 32°C, and 

humidity levels ranging between 80 to 90 percent. The districts have an annual rainfall of about 
3,000 millimetres, with November being the month with the most rain (Weatherbase, n.d.).   
 

2.1.3 Forest type  
This research was conducted in a 

mixed dipterocarp forest, about 80% of all 
natural forests in Sarawak consist of this 
forest type. mixed dipterocarp forest have 
a high diversity, with many commercially 
valuable tree species. This forest type is 
grouped into lowland (0-300m), hill (301-
750m), and upper (751-1200m) mixed 
dipterocarp forest, depending on the 
elevation (Forest Department Sarawak, 
2021). Figure 2 gives an overview of the 
locations of all different forest types 
found in Sarawak, table 1 gives an 
overview of the total area for each of the 
forest types.  

Figure 1: Districts study area 

Figure 2: Forest types found in Sarawak 
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Table 1: Total Area forest types Sarawak 

Forest type  Area (ha) Percentage of forest area 

Low Mixed Dipterocarp Forest 1,388,890 20,234% 

Hill mixed Dipterocarp 2,967,280 43,228% 

Upper Dipterocarp Forest 1,069,410 15,579% 

Beach Forest 190 0,003% 

Riverine Forest 170 0,002% 

Mangrove Forest 107,130 1,561% 

Peat Forest 689,000 10,038% 

Kerangas 136,050 1,982% 

Limestone Forest 10,860 0,158% 

Lower Tropical Montane Forest 365,880 5,330% 

Upper Tropical Montane Forest 129,390 1,885% 

Total  6,864,250 100% 
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2.2 Methods  

2.2.1 Satellite image acquisition    
The Sentinel-2 images used in the present study were obtained from Copernicus open-access 

hub (ESA, n.d.). A polygon was drawn so that only satellite images of Sentinel-tile 49NFC and 49NGC 
were selected. An additional filter of a cloud cover between 0 and 20 percent was applied to obtain 
images that are largely cloud-free. The acquisition date was set between January 1st, 2017- and 
January 1st, 2021. This resulted in some variance between the acquisition date of the Sentinel-2 
images and the date on which the fieldwork took place. This was not considered to be an issue 
because changes in biomass over a three-year period are minimal in general circumstances. Sentinel-
2 images of the project area were selected if at least 80 percent of the plots were not covered by 
clouds, or covered by the shadow of a cloud.  
 

Atmospherically corrected products (2A) with an acquisition date of the 23rd of July 2018 
were used in the present study. This acquisition date was the only time between January 1st, 2017- 
and January 1st, 2021 on which both the Sentinel-tile 49NFC and 49 NGC were mostly cloud-free. 
Therefore, the images obtained on this acquisition date were deemed most suitable as input for the 
vegetation indices. 

 

2.2.2 Vegetation indices  
A literature review was conducted to determine which vegetation indices were most suitable 

to be analysed in a mixed dipterocarp forest. The vegetation indices were selected based on results 
obtained by other research in a similar forest type and climate.  

 
At first, a more general search was applied, in which vegetation indices were considered to 

have potential in a mixed dipterocarp forest if they complied with one of the following two criteria. 
The first criterion which deemed an index suitable was if the index had shown a strong relationship 
with AGB in humid tropical forests in previous studies. The second criterion considered a vegetation 
index suitable if the index included bands that showed potential in humid tropical forests. Therefore, 
for some of these indices, the relationship with AGB in humid forests had not been analysed in 
previous studies. The inclusion of these indices was solely based on the bands used as input, which 
had shown to be sensitive in humid tropical forests. Some of the keywords used to find these indices 
were as follows; “biomass” “vegetation indices”  “tropical forests”,  “biomass” “vegetation indices”  
“humid forests”, “biomass” “vegetation indices”  “humid tropical forests”, “AGB” “vegetation 
indices”  “tropical forests”, “biomass” “SWIR”  “tropical forests”, and “biomass” “MIR”  “tropical 
forests”. 
  

After the general search was done a more specific search was conducted, in which the focus 
was placed on vegetation indices that showed a strong relationship with AGB in a mixed dipterocarp 
forest. This search was more specified into vegetation indices that showed potential in a mixed 
dipterocarp forest in Malaysia. The keywords used to conduct these specific searches were as 
follows; “AGB” “vegetation indices” “mixed dipterocarp forest”, “biomass” “vegetation indices” 
“mixed dipterocarp forest”, “biomass” “VI’s” “mixed dipterocarp forest”, "vegetation indices" 
"biomass" "Malaysia", “biomass” “vegetation indices” “mixed dipterocarp forest” “Malaysia”, 
“biomass” “vegetation indices” “mixed dipterocarp forest” “Sarawak”, and “biomass” “vegetation 
indices” “mixed dipterocarp forest” “Borneo”. 
  

The vegetation indices selected for the present study were calculated using the raster 
calculator in ArcGIS Pro. A spatial resolution of 20 by 20 meters was used for all of the analysed 
indices. 
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2.2.3 Field data  
The study area was inaccessible during the period in which the fieldwork was planned, due to 

unfavourable weather conditions. Therefore field data collected in previous years was used for the 
present study. The Database was gathered during a project conducted by Van Hall Larenstein 
University of Applied Sciences for Sarawak Forestry Corporation (van der Meer et al., 2021). The 
database consisted of 110 main plots, each main plot consisted of two sub-plots and two sapling 
plots. The database contained the following forest types; Beach forest, low MDF, hill MDF, upper 
MDF, low montane, planted forest, oil palm plantation, mangrove, and peat forest. The field 
inventories were conducted throughout Sarawak in different forest types between October 2017 and 
March 2020. The present study focuses on mixed dipterocarp forests, therefore the following forest 
types were included in the results; low mixed 
dipterocarp forests, hill mixed dipterocarp forests, 
and upper mixed dipterocarp forests. 
 

Out of the 110 plots, 88 consisted of mixed 
dipterocarp forests. Most plots were located in hill 
MDF (41) followed by low MDF (28), upper MDF 
contained a total of 17 plots.  

   
All mixed dipterocarp forest plots located 

within Sentinel-2 tile 49 NFC and 49 NGC were used 
in the present study (figure 3). These Sentinel-2 tiles 
seemed most suitable because the acquisition date of 
these tiles is on the same day, therefore the images were obtained in the same atmospheric 
conditions. In addition, a relatively large part of the plots (31/110) was centred within these Sentinel-
2 tiles. Furthermore, obtaining cloud-free Sentinel-2 images for the plots located in the north, 
northeast, and east of Sarawak was difficult due to the high cloud cover in these areas year-round. 
Table 2 gives a more detailed overview of the plot locations.          

 
Table 2: Details plot locations 

Name District Number of plots  Plot numbers Division Elevation range plots 

Kapit 4 84,85,86,87 Kapit 151 - 486 m 

Selangau 6 10,77,79,80,81,82 Sibu 107 - 474 m 

Song 15 2,4,9,14,17 ,20 ,23 ,39, 49,51,69 
,70,71, 72, 73 

Kapit 105 - 547m 

Tatau 6 63,64,65,66, 67, 68 Bintulu 203 – 620 m 

 
The database contained DBH and height measurements of living and standing dead trees. 

The vegetation indices analysed in the study mainly focus on the reflection caused by chlorophyll and 
water content in the leaves of living vegetation. Standing dead trees lack leaves therefore they have 
a limited contribution to the reflection value displayed on the vegetation indices. However, in some 
cases, they have a high contribution to the overall biomass within a plot. This high contribution in 
biomass while having a low contribution to the reflection value could result in inaccuracies when 
comparing the biomass to the reflection values. Therefore, all standing dead trees were excluded 
from the results. 

  
Furthermore, the DBH and height measurements of the sapling plots (C) were incomplete for 

the following plots; 10, 14, 17, 20, 23, and 85. Because of this, AGB estimations of the sapling plots 
were not possible for these plots. Including AGB estimation of the sapling plot, while having 
incomplete data for some of the plots could lead to errors in the results. Therefore, AGB estimations 
of all sapling plots were excluded from the total AGB results. This meant that trees with a diameter at 
breast height (1.3 m, DBH) of 10 and above were included in the results.  

Figure 3: Plot location 
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2.2.4 Plot establishment  
 Distance measuring equipment (DME) was not used 

during the fieldwork, therefore the actual plot boundaries had to 
be established. Since plot boundaries had to be established, the 
decision was made to use rectangular shape plots, which in 
general are easier to establish, compared to circular plots. 

  
Rectangular-shaped plots of 20 by 50 meters (0.1 hectare) 

were during the field inventories. The plots were divided into a 
main plot (20 x 50 m), two subplots (2 x 20 x 10 m), and two 
sapling plots (2 x 5 x 5 m).  An overview of the plot layout is shown 
in figure 4. The main plots included trees with a DBH of 30 cm or 
greater. Trees with a DBH ≥ 10 cm and < 30 cm were recorded in 
the subplots. Within the sapling plot, all trees with a DBH equal to 
or greater than 2 and smaller than 10 cm were recorded.  
 
 
 The sample plots used during the fieldwork were randomly 
selected with the use of ArcMap. Firstly the classify tool was used to determine the location of the 
logging roads within the study area, the logging roads were used to access the plot locations. To 
ensure easy accessibility, the randomly selected plots needed to be within a reasonable distance 
from the logging roads. Because of this, a buffer of 500 meters was placed around the logging roads. 
This buffer was used to ensure that the randomly selected plot would fall within a distance of 500 
meters from the nearest access point. The potential sampling locations  were created, with the 
create random points tool in ArcMap. However, the potential plots should not be located too close to 
the logging roads, since logging activities could cause disturbances to the plots. Therefore all points 
which were located within 80 meters of the centre of a logging road were removed from the 
potential plots. 
 
 Even though the original coordinate point was randomly selected, 
the placement of the other three corner points was done in the field. To 
avoid any bias when establishing the plot a set of rules was applied in the 
field when selecting the other corner points. The plot consisted of four 
corners; A, B, C, and D. The A-corner consisted of the original coordinate 
point that was randomly selected in ArcMap. The B-corner was placed 
directly east of the A-corner, the C-corner north of the A-corner, and the 
D-corner north of the B-corner (figure 5). The coordinates of each corner 
point were measured in the field with a handheld GPS. 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 4: Plot lay-out 

Figure 5: Plot Corner points 



 

10 

2.2.5 Tree measurements  
All species within the plot were identified and recorded by their common name and scientific 

name. The identification of the species was important to determine the wood density, which was 
needed as input for the allometric equation. 

  
The DBH of each tree included in the measurements was recorded. Measurements were 

taken with a diameter tape, all recordings were in centimetres (rounded to one decimal point). 
Boundary trees were included when the centre of the tree at DBH was within the plot boundary. 
Different DBH classes were measured in the three different plot sizes. Within the A-plots (main plots) 
all trees with a DBH ≥ 30 cm were measured. The B-plots (sub-plots) included all trees with a 
diameter ≥ 10 cm and < 30 cm, and the C-plots (sapling plots) measured all trees with a DBH between 
2 and 10 cm. Table 3 gives an overview of the different plots and the DBH sizes measured. The 
surface area of the B and C plots has to be multiplied by two because each main plot consists of two 
B and two C plots.  

 
Table 3: Tree measurements in different plots 

 
Table 4 displays how measurements were conducted in certain exceptional circumstances. 

All data were recorded on a field form, this field form can be found in the appendices (appendix A). 
Information such as plot corner coordinates, inventory team, date, and elevation was recorded on 
the field form.    

 
Table 4: Methods of measuring DBH for special circumstances 

 
  

Plot dimensions  Surface area (m2) Tree size measured, DBH (cm) 

50 x 20 m  1,000 ≥ 30 cm  

10 x 20 m (x 2) 200 (x 2) ≥ 10 - < 30 cm 

5 x 5 m (x 2) 25 (x 2) ≥ 2 - 10 cm 

Special circumstance Measuring method  

Trees growing on slopes  Measurements took place at the uphill side of the slope 

Leaning trees Measurement tape followed the tree stem axis, to ensure correct 
DBH measurement 

When irregularities occur at DBH (e.g. 
swellings, depressions, branches)  

DBH measurements were taken above the irregular feature  

Trees with buttresses at (or above) DBH Measurements took place 30cm above the end of the buttress  

Forked trees  1. If split is slightly above DBH, measurements took place 
just underneath the split 

2. If the split of the trees is below DBH, the DBH of both 
trees were measured individually  
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2.2.6 Estimation on above ground biomass of living vegetation 
The AGB was estimated for each of the analysed sample plots, these estimations were based 

on an allometric equation. Chave et al. (2014) developed an allometric equation model which can be 
applied to a wide range of tropical vegetation types. Multiple allometric equation models were 
developed, the most suitable model depends on the parameters measured in the field. Model four is 
advised by Chave et al. (2014) for AGB estimation, therefore this model was used in the present 
study when all necessary parameters were recorded. The equation (1) of model 4 used the 
parameters; height (total tree height), DBH, and wood density. Whenever total tree height 
measurements were not recorded, the equation (2) of model 7 was used. Model 7 used DBH, wood 
density, and an environmental variable as input parameters, therefore model 7 is suitable in the 
absents of height measurements. The equations developed by Chave et al. (2014) were also used by 
the Forest Department Sarawak for AGB estimation in a mixed dipterocarp forest (Forest Department 
Sarawak, 2021).  

𝐴𝐺𝐵𝑖 = 0.0673 ∗ (𝑝𝐷2𝐻)0.976  (1) 
𝐴𝐺𝐵𝑖 =  𝑒𝑥𝑝 [−1.803 − 0.976𝐸 + 0.976 𝑙𝑛(𝑝) + 2.673 𝑙𝑛(𝐷) − 0.0299[𝑙𝑛(𝐷)]2]  (2) 

Where: 
AGB𝑖 = Above-ground biomass of the analysed tree (kg/tree) 
𝑝 =   Wood specific gravity of analysed tree (g cm-3) 
D = diameter at breast height of the analysed tree (diameter in cm at 1.30 meters) 
H = Height of the analysed tree (m) 
E = Environmental variable 
 

The environmental variable was a necessary covariable to determine the tree diameter-
height relationship. This environmental variable depended on the coordinates of analysed plot, the 
value was derived from an R script provided in the supplementary information by Chave et al. (2014). 
Due to the script being provided, detailed knowledge of R was not needed to be able to obtain the 
environmental variable. The R script developed by Chave et al. (2014) only needed the longitude and 
latitude coordinates of a location as input, based on this input the R script derived the E-value for 
that area. Therefore the plot coordinates for all plots which had tree records without height 
measurements were placed into the R script. 

  
The value for the wood-specific gravity was obtained from the wood density database 

developed by ICRAF (n.d.). Whenever the wood gravity of a specific species was not available, the 
average wood density of the genus was used.  

  
The AGB of each tree inside a plot was combined to determine the total AGB for each 

sampling plot. The AGB per hectare of a sampling plot was derived with the use of a scaling factor. 
Each plot (main, sub, and sapling) used a different scaling factor to determine the AGB per hectare. 
Table 5 gives an overview of the scaling factor used to determine the AGB per hectare for the sample 
plots. Both the B- and C-plots are multiplied by two because each main plot consisted of two B- and 
two C-plots. The total AGB per hectare of a plot was determined by combining the AGB per hectare 
of all sampling plots. The amount of carbon per hectare for each plot was also determined, this value 
was derived from the total AGB per hectare. A scaling factor of 0.47 was used to convert AGB into 
carbon, this factor is also used in the forest inventory reports by Forest Department Sarawak (Forest 
Department Sarawak, 2021). 

 
Table 5: Scaling factor per plot 

 
 
 

Plot dimensions   Surface (m2) Scaling factor  

5 x 2 m x 2  20 500 

10 x 20 m x 2 400 25 

50 x 20 m  1,000 10 
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2.2.7 Regression analysis 
The biomass estimated within the plots served as sample points that were used for the 

regression analysis. Simple linear regression was performed to determine if there is a significant 
relationship between AGB and the analysed vegetation indices. A regression model allows one to 
estimate the value of one variable based on the measured value of another variable (Cohen et al., 
2013). To develop the regression models, the AGB per hectare within each plot was compared to the 
average reflection value of that plot.  

 
The coordinates of each corner point were measured in the field, these coordinates were 

then placed into ArcGIS Pro. The coordinates points were used to create the plots in ArcGIS Pro. The 
vegetation indices analysed during the present study had a spatial resolution of 20 by 20 meters. 
Therefore, the total surface of a plot consisted of multiple pixels, which all have a specific value. To 
be able to develop the regression model the average reflection value found within each plot was 
needed. The zonal statistic tool was used to obtain a single value for each index in each plot. The 
zonal statistics tool determined the reflection value of each pixel that lies within the plot boundaries, 
the tool then calculates the average pixel value within the plot boundaries. If only one coordinate 
point of a plot was recorded, all neighbouring pixels to the coordinate point were used as input.  

 
To determine if there is a significant relationship between the AGB and the reflection value 

of the vegetation indices, an alpha level of 0.05 was used as the threshold. 
 

2.2.8 Materials  
All materials and software programs that were needed to conduct this research are 

mentioned in table 6. For each item listed, the table indicates what the function of the listed material 
was during the forest inventories. Table 7 gives a full overview of all software programs that were 
needed to analyse the data gathered in the field. 
 
Table 6: Materials needed for forest inventories 

Material  Function  

Measuring tape (20 m) Measuring the boundaries of the sample plots  

DBH measuring tape  Measuring the diameter at breast height (1.30) for each of the analysed trees 

Field form  To record all data measured in the field 

Handheld GPS To accurately determine the exact location of the researchers in the field   

Poles  + tape  Set out plot boundaries  

 
Table 7: Software programs used 

Software program  Function  

Sentinels Application Platform (SNAP) Atmospherically correct sentinel-2 images, cloud removal 

ArcGIS pro 
ArcMap 

To develop base maps of the area, create the vegetation indices, calculate 
the overall biomass/carbon, generate random sample points  

R  To Derive the “E” value (allometric equation) 

Access Process the field-data  
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3. Results 
This chapter analyses the obtained results of the present study. The first part of this chapter 

consists of a literature review of the vegetation indices which were analysed during this study. The 
chapter discusses the reasoning behind the selection of these vegetation indices. This part is 
followed by the results of the selected vegetation indices, with a visual display of the selected indices 
and a table that contains the reflection values for each index and the corresponding plot. This section 
is followed by the results obtained from the field inventories, in which the AGB per hectare of the 
plots is displayed. The final part of the results consists of the statistical analysis, in which the results 
of the regression analysis are shown for each of the analysed indices. 

 

3.1 Vegetation indices  
 

3.1.1 Vegetation indices selection 
The selection of the most suitable vegetation indices was one of the most important parts of 

this research. Therefore a literature review was done to determine which vegetation indices had the 
highest potential to distinguish differences in biomass in a mixed dipterocarp forest. The selected 
indices have either; 1) shown potential in other research done on the relationship between 
vegetation indices and biomass in a humid tropical forest, or 2) Used bands shown to be sensitive to 
the biophysical properties of humid tropical forests. However, Vegetation indices that are well-
known and often used in biomass studies like the normalized difference vegetation index (NDVI) 
were also analysed. Table 8 gives an overview of the selected indices, and the authors of the indices. 
The table gives the Sentinel-2 bands used in the formula of the vegetation index to avoid confusion, 
mainly with the indices that include SWIR and MIR.  

  
The NDVI is one of the most well-known vegetation indices, which mainly focuses on 

enhancing the signal of vegetation in conditions with low biomass (Huete et al., 1997). The results 
obtained by studies analysing the relationship between NDVI and AGB have varying outcomes. This 
variation is mainly caused by the location of the study area in which the NDVI is analysed (Lu et al., 
2004). A strong relationship between the reflection value displayed by the NDVI and AGB has been 
found in forested areas (Lee & Nakane, 1997; Heiskanen, 2006; Gizachew et al., 2016). These strong 
correlations are mainly found in forests with relatively low biomass, however, Hussain et al. (2019) 
found a strong relation in a tropical forest in a tropical wet evergreen forest in India as well. This is in 
contrast with most studies done on the relation between NDVI and AGB in areas with high biomass 
(Sader et al., 1989; Foody et al., 1996; Foody et al., 2003; Lu et al., 2004). The main limiting factor for 
the NDVI is the saturation at higher levels of biomass (Thenkabail et al., 2000; Van Der Meer et al., 
2001; Huete et al., 2002). Furthermore, the soil brightness also strongly influences the NDVI (Huete & 
Jackson, 1988; Todd & Hoffer, 1998). 

  
The enhanced vegetation index (EVI) is similar to the NDVI, however, the EVI also includes 

the blue band. The inclusion of the blue band does not result in more data on biophysical properties, 
it is mainly included to reduce atmospheric noise in the image. Furthermore, the EVI includes the 
adjustment factors; G, C1, C2, and L to correct canopy background noise and atmospheric influences. 
The adjustment factors C1 and C2 use the blue band to correct for influences of aerosols in the red 
band. The L-factor is in place to overcome issues with the soil background brightness (Jiang et al., 
2008). The values used for the adjustment factors in this study can be found in table 8 Because of 
these adaptation factors the EVI is considered to be more sensitive to higher levels of biomass. Huete 
et al. (2002) observed the EVI to remain sensitive in areas with high levels of biomass like the 
amazon. Furthermore, Huete et al. (1997), found the EVI to show minimal saturation problems in 
various temperate and tropical biomes. They conclude that vegetation indices that use higher 
weighting coefficients in the near-infrared perform best in high-density forests. Eckert (2012) 
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analysed the potential of high spatial resolution images for estimating biomass and carbon in a 
tropical humid rain forest. A strong relationship was observed between the EVI and biomass in a non-
degraded forest area. Pandapotan Situmorang et al. (2016) found a relatively strong relationship (R2 
= 0.83) between biomass and the EVI in a production forest in Indonesia. However, research 
conducted by Anaya et al. (2009) found no relationship between EVI and forest biomass in Colombia. 
The adjustment factors used in the EVI require the reflectance value of the Sentinel-2 bands. 
Therefore all Sentinel bands used in the formula given in table 8 are divided by 10,000.    

 
Red-edge vegetation indices make use of the region between the visible red and the NIR part 

of the electromagnetic spectrum. Indices derived from red-edge bands are highly sensitive to dense 
vegetation and less prone to saturation (Mutanga & Skidmore, 2004; Forkuor et al., 2020). Laurin et 
al. (2016) showed that red-edge and green vegetation indices were able to distinguish differences in 
canopy densities. Schumacher et al. (2016) determined that red-edge indices are an important 
indicator for estimating wood volume. Models used to estimate wood volume improved significantly 
with the use of red-edge indices in forests in a semi-arid region. Research done by Imran et al. (2020) 
compared broadband vegetation indices such as NDVI to narrowband indices. They found the 
narrowband red-edge vegetation indices to be a superior predictor for vegetation biomass over the 
broadband indices. This was especially the case for forested areas with a high density, in which the 
red-edge indices seem to overcome saturation issues. The strongest relationship was found between 
biomass and the red edge normalized difference vegetation index-2 (RENDVI-2). Research done by 
Adan (2017) in a lowland dipterocarp forest in Malaysia also found similar results, with narrowband 
red-edge indices having the strongest relationship with AGB. The index with the strongest 
relationship with biomass was the red-edge ratio vegetation index (RERVI), the RENDVI also showed 
a relatively strong relationship.  

 
The RENDVI analysed by Adan (2017)  was originally proposed by Fernández-Manso et al. 

(2016) as the normalized difference vegetation index red-edge 2 (NDVIre2), which is an adaptation to 
the NDVIre proposed by Gitelson and Merzlyak (1994). Therefore from now on, the present report 
refers to the original name of the RENDVI, which is the NDVIre2. The name of the RENDVI-2 was not 
altered because the formula used for this vegetation index by Imran et al. (2020) could not be found 
in other reports. 
 

As mentioned in the introduction, indices that include the MIR or SWIR bands seem to have 
the best performance for estimating biophysical parameters in tropical forests. The SWIR bands can 
discriminate moisture content in soils and vegetation (USGS, 2019). The usage of the SWIR band 
makes vegetation indices more sensitive to absorption by leaf moisture (Horler and Ahern, 1986). 
Studies conducted in a tropical moist deciduous forest in India also found the SWIR band to be 
strongest related to biomass (Yadav & Nandy, 2015; Nandy et al., 2017). The same result was found 
in China by Yang et al. (2019), who concluded that only SWIR band 5 of Landsat TM data was 
significantly sensitive to tropical forest biomass. Foody et al. (1996) found vegetation indices using 
MIR more strongly related to tropical forest biomass than indices using red or NIR. Boyd et al. (1999) 
also found the MIR to have the strongest relationship with biomass in tropical forests in Cameroon, 
stating that MIR reflectance is more sensitive to forest changes in forest structure than visible and 
NIR reflectance. In addition, a strong relationship between the MIR reflectance and biomass was 
observed by Steininger (2000) in a secondary forest in Brazil. Lu et al. (2004) analysed the correlation 
between AGB and Landsat Thematic Mapper spectral responses for three different testing sites. The 
MIR was most strongly correlated with AGB in two of the three testing sites. Because of these 
findings, this study included some indices that use the SWIR and MIR bands. The SWIR and MIR 
bands are combined in this section because there is some overlap between the region of the SWIR 
and MIR in different studies. For example; Lu et al. (2004) labels band 5 and 7 of the Landsat 
Thematic Mapper as MIR bands, while the United States Geological Survey labels these bands as 
SWIR bands (USGS, 2019). 
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The moisture vegetation index (MVI) proposed by Sousa and Ponzoni (1998), was developed 

to detect changes in timber volume with the use of MIR reflectance values. A comparison was made 
between the NDVI and the MVI in the Atlantic rainforest by Freitas and Cruz (2003) to see how well 
both indices perform in dense canopies. MVI showed to be less sensitive to saturation and to be 
more sensitive in dense canopies. The relationship between MVI and forest structure was again 
analysed by Freitas et al. (2005) in South-eastern Brazil. The NDVI and two versions of the MVI were 
analysed, using Landsat 7 satellite images. The first MVI (MVI-5) used SWIR band 5 as input, The 
second (MVI-7) used band 7 which is a MIR band. MVI-5 and MVI-7 both performed best in dense 
humid forests, however, MVI-5 did show to be more consistent in all regression models. Therefore, 
Freitas et al. (2005) indicate that MVI-5 has the highest potential in dense mature tropical forests. 
Roy and Ravan (1996) found similar results in a mixed forest type in India, they found that models 
which used MIR bands showed higher reliability for biomass estimations.  

 
A mention of the variation of MIR in different studies should be made here, mainly due to 

the variation in the wavelength that is used in different studies. Sousa and Ponzoni (1998) proposed 
MVI-5 and MVI-7, which use bands 5 (1.55-1.75 µm) and 7 (2.08-2.35 µm) of Landsat 5, both these 
bands are labeled as MIR bands in their study. Boyd et al. (1999) also concluded the MIR wavelength 
to be useful for estimating biomass in tropical forests with the use of an index similar to the MVI-
5/MVI-7. However, Boyd et al. (1999) used a MIR index proposed by Kaufman and Remer (1994), 
who used  AVHRR channel 3, which has a wavelength of 3.55-3.93 µm. The present study only 
included the MVI-5 and MVI-7 proposed by Sousa and Ponzoni (1998) because neither Sentinel-2 nor 
Landsat 7/8/9 have bands in a wavelength similar to the bands analysed by Boyd et al. (1999). During 
the present study Sentinel-2 images were used therefore the input bands for MVI-5 and MVI-7 are 
different, however, the wavelengths of the Sentinel-2 input bands (band 11 and band 12) are similar. 

 
 The Moisture Adjusted Vegetation Index (MAVI), was developed to reduce background 
reflectance and topographical Effects (Zhu et al., 2014). The MAVI proved to be strongly correlated 
with LAI in mixed forest types in a subtropical climate zone in China. The MAVI seems to be more 
strongly correlated to LAI due to the incorporation of the red, NIR, and SWIR bands. No relationship 
between MAVI and biomass was analysed in this study. However, LAI is an indicator of forest biomass 
(Gupta et al., 2000). Therefore a strong correlation with LAI would suggest that this index 
might also be useful for biomass estimations. In addition, the index includes a SWIR band, which has 
been suggested to be used in tropical forests, as discussed above. Furthermore, MAVI showed to 
have a stronger correlation to LAI than some of the more well-known vegetation indices (e.g. NDVI, 
SAVI). The original MAVI was developed based on Landsat-5 data, therefore the SWIR band used 
varies slightly from the Sentinel-2 SWIR band used in this study. SWIR band 11 was used as input for 
this study since this band is closest to the range (1.5–1.75 µm) used in the original study. 
 

The simple ratio (SR) is another well-known vegetation index, which displays the ratio of 

reflected light between the NIR and red wavelength. The ratio between NIR/red strongly emphasizes 

the difference in reflectance of the bands in areas with vegetation. Additionally, the index minimizes 

problems of variable illumination due to topography (Silleos et al., 2006). The SR is very similar to the 

previously mentioned RENDVI, however, it uses the red band instead of the red-edge band. The SR 

proved to have a strong relationship with biomass in an open to sparsely treed pine forest in Canada 

(Chen et al., 2012). A Strong relationship between AGB and the SR was also found in a coniferous and 

deciduous forest in the Himalayan region in India (Ghosal et al., 2022). Furthermore, the SR was seen 

as an effective predictor of biomass for a mangrove forest in the Philippines (Baloloy et al., 2018). 

These studies indicate that the SR has a high potential to estimate AGB in different locations and 

different forest types. However, the main reason to include the index in this study is due to the 

findings of Rasib et al. (2018). This study was conducted in a mixed dipterocarp forest in peninsular 
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Malaysia, which is the same forest type and the same country as the present study. A strong 

relationship was found between AGB and the simple ratio (SR) with an R2 value of 0.72 

Another well-known vegetation index is the tasseled cap transformation, developed by Kauth 
and Thomas (1976). The tasseled cap transformation reduces the volume of data with a minimal loss 
of information. Three transformations were developed to obtain different levels of information 
about the surface, these transformations have different coefficients which are applied to the bands. 
The three transformations emphasize brightness, greenness, and wetness. The present study 
analysed the greenness (TC-2) and wetness (TC-3) indices since these indices emphasize vegetation 
(TC-2) and soil and canopy moisture (TC-3). The indices include a total of six bands; blue, green, red, 
NIR, SWIR-1, and SWIR-2. The coefficients applied to the bands by TC-2 are meant to emphasize the 
signal of vegetation (Silleos et al., 2006). The TC-2 and TC-3 had a relatively strong relationship with 
AGB in a plantation forest in Ethiopia (Geda, 2021). This strong relationship was also found by Shen 
et al. (2018) in a mixed forest region in China. Their study area consisted of three main forest types; 
subtropical evergreen broadleaved, evergreen broadleaved, and tropical monsoon forest. Their 
results indicate both TC-2 and TC-3 have a strong relationship with AGB. Uttaruk and Laosuwan 
(2018) also found TC-2 to have the strongest relationship with AGB in a dry dipterocarp forest in 
Thailand, the relationship between TC-3 and AGB was not analysed during this study. The coefficients 
developed by Kauth and Thomas (1976) are sensor-dependent, therefore the exact coefficients used 
for the tasseled cap transformations depend on the satellite data used during the study (Sheng et al., 
2011). Shi and Xu (2019) proposed coefficients for the Sentinel-2 sensor, these coefficients are used 
in this study.    

Table 8: Vegetation indices analysed during this study 

Vegetation index  Formula  Symbology  Author index  

Normalized difference 
vegetation index 

𝑁𝐷𝑉𝐼 =
B8 − B4

𝐵8 + 𝐵4
 

 

 Rouse et al., 1974 

Enhanced vegetation 
index 

 

𝐸𝑉𝐼 = G
B8 − B4

B8 + C1 ∗ B4 − C2 ∗ B2 + L
 

G = 2.5 
C1 = 6 
C2 = 7.5 
L = 1 

Huete et al. 1997 

Normalized Difference 
Vegetation Index red-
edge 2 

𝑁𝐷𝑉𝐼𝑟𝑒2 =
B8 − B6

𝐵8 + 𝐵6
 

 Fernández-Manso et al. (2016) 

Red edge normalized 
difference vegetation 
index-2 

𝑅𝐸𝑁𝐷𝑉𝐼 − 2 =
B7 − B4

B7 + B4
 

 Imran et al. (2020) 

Red-edge ratio 
vegetation index 

𝑅𝐸𝑅𝑉𝐼 =
𝐵8

𝐵6
 

 Cao et al., 2016 

Moisture vegetation 
index-5 

𝑀𝑉𝐼5 =
B8 − B11

B8 + B11
 

 Sousa & Ponzoni, 1998 

Moisture vegetation 
index-7 

𝑀𝑉𝐼7 =
B8 − B12

𝐵8 + 𝐵12
 

 Sousa & Ponzoni, 1998 

Moisture adjusted 
vegetation index 

𝑀𝐴𝑉𝐼 =
B8 − B4

B8 + B4 + B11
 

 Zhu et al., 2014 

Simple ratio 
𝑆𝑅 =

B8

B4
 

 Jordan, 1969 

Tasseled cap 
greenness  

𝑇𝐶 − 2 = −0.2818(𝐵2) − 0.3020(𝐵3)
− 0.4283(𝐵4)
+ 0.3138 (𝐵8)
− 0.1341(𝐵11)
− 0.2538 (𝐵12) 

 Original: 
Kauth & Thomas (1976) 
 
Sentinel-2 adaptation:  
Shi and Xu (2019) 

Tasseled cap wetness  𝑇𝐶 − 3 = 0.1763(𝐵2) + 0.1615(𝐵3)
+ 0.0486(𝐵4)
− 0.0755(𝐵8)
− 0.7710(𝐵11)
− 0.5293(𝐵12) 

 Original: 
Kauth & Thomas (1976) 
 
Sentinel-2 adaptation:  
Shi and Xu (2019) 
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3.1.2 Vegetation indices value per plot 
Table 9 gives an overview of all of the plots and the corresponding average reflection value 

for all of the analysed indices.  
 

Table 9: Average reflection value per plot 

Plot 
nr 

Vegetation index 

NDVI EVI NDVIre2 RENDVI2 RERVI MVI5 MVI7 MAVI SR TC-2 TC-3 

2 0.82 0.50 0.10 0.83 1.23 0.34 0.59 0.57 10.83 232.08 -1603.65 

4 0.86 0.48 0.10 0.86 1.22 0.36 0.66 0.60 13.27 320.33 -1255.86 

9 0.87 0.54 0.14 0.86 1.34 0.37 0.67 0.61 15.29 394.52 -1662.21 

10 0.87 0.51 0.14 0.87 1.36 0.41 0.70 0.63 16.29 374.38 -1299.09 

14 0.88 0.57 0.08 0.88 1.19 0.33 0.66 0.60 15.46 305.95 -1603.82 

17 0.85 0.51 0.11 0.85 1.25 0.30 0.62 0.56 11.83 232.22 -1489.97 

20 0.83 0.42 0.12 0.86 1.28 0.35 0.65 0.57 11.51 227.90 -1476.15 

23 0.88 0.71 0.09 0.89 1.19 0.32 0.63 0.60 15.57 426.14 -2193.24 

39 0.88 0.49 0.11 0.88 1.25 0.35 0.67 0.60 14.55 279.85 -1276.09 

49 0.88 0.54 0.11 0.87 1.25 0.34 0.66 0.59 14.52 283.40 -1457.05 

51 0.89 0.53 0.11 0.88 1.26 0.37 0.68 0.61 16.43 387.28 -1581.61 

63 0.89 0.54 0.11 0.89 1.25 0.34 0.66 0.60 15.96 286.07 -1396.76 

64 0.88 0.59 0.07 0.89 1.18 0.33 0.64 0.60 16.84 351.81 -1724.76 

65 0.89 0.55 0.08 0.88 1.19 0.33 0.64 0.60 16.35 321.44 -1582.27 

66 0.87 0.46 0.09 0.89 1.21 0.34 0.64 0.60 15.06 282.15 -1316.64 

67 0.87 0.45 0.08 0.88 1.14 0.31 0.63 0.58 14.46 224.25 -1302.74 

68* 0.83 0.52 0.14 0.84 1.32 0.34 0.60 0.58 11.82 223.25 -1652.16 

69* 0.76 0.44 0.11 0.79 1.27 0.30 0.61 0.53 7.82 90.02 -1427.45 

70 0.87 0.63 0.09 0.76 1.21 0.30 0.59 0.55 11.65 244.56 -2057.05 

71 0.84 0.53 0.10 0.86 1.22 0.30 0.57 0.52 10.39 -9.65 -1773.74 

72 0.87 0.51 0.12 0.87 1.28 0.35 0.65 0.60 14.60 327.80 -1596.27 

73 0.84 0.54 0.12 0.86 1.28 0.35 0.65 0.59 12.54 293.35 -1494.63 

77 0.87 0.60 0.11 0.89 1.28 0.37 0.68 0.61 15.34 452.82 -1798.01 

79 0.81 0.48 0.08 0.62 1.16 0.16 0.42 0.37 6.00 -502.11 -1982.42 

80 0.87 0.61 0.10 0.88 1.21 0.38 0.68 0.61 13.95 389.90 -1663.47 

81 0.85 0.47 0.12 0.84 1.29 0.35 0.67 0.59 13.24 307.80 -1458.46 

82 0.86 0.55 0.10 0.86 1.30 0.37 0.68 0.61 13.49 341.30 -1437.94 

84 0.85 0.56 0.12 0.81 1.29 0.38 0.67 0.61 13.18 416.72 -1719.85 

85 0.87 0.59 0.07 0.87 1.17 0.33 0.65 0.59 15.08 377.16 -1762.86 

86 0.84 0.55 0.10 0.86 1.22 0.33 0.64 0.58 11.94 295.34 -1583.40 

87 0.85 0.58 0.07 0.85 1.17 0.30 0.61 0.55 11.44 143.98 -1831.34 

*Plot (partially) covered by clouds 

 
A boxplot for each of the analysed indices was created to display the distribution of the 

values for the different indices. The results of the calculated vegetation indices were placed 
underneath boxplots to visualise the differences between the indices (figure 6). A larger visual 
display of the vegetation indices with more details is shown in appendix B.   
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Figure 6: Boxplot and visual display for each of the analysed vegetation indices 
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3.2 Above-ground biomass estimation  
 

3.2.1 Above-ground biomass in different MDF classes  
To determine if there was a 

significant difference in biomass found 
in the different classes of mixed 
dipterocarp forests a one-way ANOVA 
test was used. The results of the test 
showed that there was no significant 
difference in AGB between the different 
classes of mixed dipterocarp forest 
when using a threshold of 0.05 (table 
10). Because of this, all three classes of 
mixed dipterocarp forests were 
combined and used as input for the 
statistical analysis. The boxplot in figure 
7 displays the distribution of the AGB 
values in the different forest types. 

 
Table 10: ANOVA-test low, hill, and upper MDF 

Source of Variation SS df MS F P-value F crit 

Between Groups 758.5823 2 379.2911 0.025609 0.974723 3.103839 

Within Groups 1,258,904 85 14810.63 
   

       

Total 1,259,662 87         

 
  

Figure 7: Distribution of AGB per hectare in lowland MDF (0-300m), hill 
MDF (301-750m), and upper MDF (751-1200m) 
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3.2.2 Field data results  
The AGB per hectare was analysed for a total of 31 main and sub-plots. The field data shows 

that the total AGB per hectare ranged from 62.58 Mg (plot 79) to 672.90 Mg (plot 17), with an 
average of 245.33 Mg ha-1. The average aboveground tree carbon stored within a mixed dipterocarp 
forest was found to be 115.30 C Mg ha-1. 

 
 Within the main plots, the lowest amount of AGB was found in plot 4 with a total of 2.07 Mg 

ha-1. The highest amount of AGB in the main plots was found in plot 17, with a total of 560.03 Mg ha-

1. An average AGB of 162.79Mg ha-1 was found in the main plots. Four of the analysed plots (17, 23, 
63, 67) had one (plot 23,63,67) or two (plot 17) trees with a DBH greater than 100, these four plots 
also contained the highest amount of total AGB in the main plots. Within the sub-plots, the lowest 
amount of AGB was found in plot 51 (26.63 Mg ha-1), and the highest amount in plot 84 (182.05 Mg 
ha-1). On average an AGB of 82.54 Mg ha-1 was found in the sub-plots. An overview of the AGB and 
the above-ground carbon found in the analysed plots is given in table 11. A more detailed overview 
of the AGB values for the sub- and the main plots is given in Appendix C.  
 
Table 11:Total AGB and above-ground carbon per hectare per plot 

Plot ID Elevation (m) Main plot AGB (Mg ha-

1) 
Subplot AGB (Mg ha-

1) 
Total AGB 
(Mg ha-1) 

Total above ground 
carbon (Mg ha-1) 

2 128 22.07 81.47 103.54 48.66 

4 116 2.07 77.25 79.32 37.28 

9 120 42.84 28.58 71.41 33.56 

10 297 76.00 41.24 117.24 55.10 

14 355 190.76 99.55 290.31 136.45 

17 105 560.03 112.87 672.90 316.26 

20 469 102.04 75.35 177.39 83.37 

23 459 315.53 77.82 393.34 184.87 

39 311 90.42 42.87 133.30 62.65 

49 147 213.34 29.28 242.62 114.03 

51 158 102.73 26.63 129.36 60.80 

63 339 420.75 72.03 492.78 231.61 

64 216 129.14 111.74 240.89 113.22 

65 203 155.70 128.26 283.96 133.46 

66 232 123.31 88.60 211.91 99.60 

67 281 475.64 95.83 571.47 268.59 

68 620 258.26 106.73 365.00 171.55 

69 465 120.13 98.46 218.60 102.74 

70 547 240.02 140.44 380.46 178.82 

71 536 174.96 96.00 270.96 127.35 

72 213 141.82 56.04 197.85 92.99 

73 398 224.12 165.87 389.99 183.30 

77 474 80.92 112.56 193.49 90.94 

79 203 28.86 33.72 62.58 29.41 

80 107 111.68 85.93 197.61 92.88 

81 178 149.77 83.00 232.77 109.40 

82 149 134.41 36.49 170.89 80.32 

84 290 49.81 182.05 231.86 108.97 

85 486 159.37 69.39 228.76 107.52 

86 151 113.21 33.88 147.09 69.13 

87 286 36.63 68.92 105.55 49.61 
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3.3 Statistical analysis  
 To determine the relationship between AGB and vegetation indices simple linear regression 
analysis were performed. In total 29 out of the 31 plots could be used to perform the analysis due to 
partial cloud cover above plots 68 and 69. The AGB per hectare for each of the plots was compared 
to the average reflection value of the analysed index of that plot. 
 

3.3.1 Regression analysis  

Simple linear regression was used to determine whether the reflection value displayed on a 

vegetation index had a significant relationship with the measured AGB in the plots. An alpha level of 

0.05 was used to determine if the relationship between AGB and an index was significant or not. No 

significant relationship was found between any of the analysed vegetation indices and the measured 

AGB. The next section shortly discusses each of the analyse indices and shows the scatter plots.  

 

3.3.1.1 NDVI 

The NDVI showed the second best relationship 
between reflection value and AGB, the result indicates 
that the reflection value displayed on the NDVI  
explains 4.9% of the measured AGB (F(1,27) = 1.402, p = 
0.247).  However, there is no significant relationship 
between the NDVI value and AGB. The two plots with 
the highest measured AGB do not seem to display a 
high NDVI value (figure 8).  

 

 

3.3.1.2 EVI 

No significant relationship was found between 
the EVI and AGB (F(1,27) = 0.438, p = 0.514), with the 
model explaining 1.6% of the variation in measured 
AGB. When analysing the scatter plot it again shows a 
relatively low reflection value for the two plots with the 
highest amount of AGB (figure 9).   
   

 

3.3.1.3 NDVIre2 

The NDVIre2 model could explain 1.6% of the 
variation in measured AGB. There was no significant 
relationship between the NDVIre2 values and the 
measured AGB. The scatter plot shows relatively low 
reflection values for plots with high levels of AGB 
(figure 10). Furthermore some of the plots that had the 
lowest amounts of AGB display a high and low 
reflection values for the NDVIre2.  

 

 

 

Figure 8: Scatter plot NDVI 

Figure 9: Scatter plot EVI 

Figure 10: Scatter plot NDVIre2 
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3.3.1.4 RENDVI-2 

The RENDVI-2 showed no significant relationship 
with AGB. The RENDVI-2 model could explain 3.7% of the 
variance in measured AGB. The scatter plot shows that 
most of the points are clustered around the 0.86 value 
(figure 11).  

 
 
 

 

3.3.1.5 RERVI  

 The RERVI had the strongest relationship with AGB. 

However, No significant relationship was observed 

between the RERVI and AGB. With the model being able to 

explain 5.0% of variance in measured AGB. The scatter plot 

shows a negative relationship between the RERVI and AGB. 

The plots in which high levels of AGB were measured again 

showed to be outliers (figure 12). 

 

3.3.1.6 MVI-5  

 The model of the MVI-5 was able to explain 2.1% 
of the AGB, and showed no significant relationship. The 
scatter plot shows a very low reflection value for the plot 
with the lowest AGB, however, high reflection values can 
also be found for plots with low amount of AGB (figure 13).  
 

 

3.3.1.7 MVI-7  

The MVI-7 also did not show a significant 
relationship with AGB. The model of the MVI-7 performed 
worse than the MVI-5, the model could explain less than 
1% of the measured AGB. The scatter plot does not show 
any pattern, with both low and high reflection values for 
low levels of AGB (figure 14).   
 

 

 

3.3.1.8 MAVI 

The MAVI shows similar results as the MVI-7, with 
no significant relationship and the model being able to 
explain less than 1% of the AGB.  The scatter plot of the 
MAVI (figure 15) is similar to that of the MVI-7. With most 
of the data points clustering around the 0.6 value.   

Figure 11: Scatter plot RENDVI-2 

Figure 12: Scatter plot RERVI 

Figure 13: Scatter plot MVI-5 

Figure 14: Scatter plot MVI-7 

Figure 15: Scatter plot MAVI 
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3.3.1.9 SR 

The SR model could explain 1.6% of the 

measured AGB, and was also found to be insignificant. 

The pattern displayed by the scatter plot is similar to that 

of the NDVI, with the outliers being the two plots with 

the highest amount of AGB (figure 16). Furthermore, 

some low AGB points display a high reflection value.  

 

3.3.1.10 TC-2 

The greenness tasseled cap index (TC-2) also 
showed no significant relationship with AGB. When 
analysing the scatter plot it seems that the plots with a 
high amount of biomass show a relatively low reflection 
value (figure 17). The model of the TC-2 could explain 
less than 1% of the variance in AGB.  
 

 

 

 

3.3.1.11 TC-3 

Out of all of the analysed indices, the TC-3 

showed the weakest relationship with AGB. The scatter 

plot does not display any clear pattern (figure 18). 

Especially the low AGB values seem to display both high 

and low reflection values.  

 

 

 
None of the analysed indices showed a significant relationship with the measured AGB. An 

overview of the regression analysis for each of the analysed indices is given in table 12.  
 

Table 12: Results linear regression 

Vegetation index Equation  R2 Standard error F P-value  

NDVI y = 1588.5x - 1127.3 0.049 1341.713 1.402 0.247 

EVI y = 311.64x + 74.591 0.016 470.776 0.438 0.514 

NDVIre2 y = -983.75x + 341.86 0.016 1474.680 0.445 0.510 

RENDVI-2 y = 538.52x - 218.22 0.037 531.005 1.029 0.320 

RERVI y = -618.48x + 1007.1 0.050 517.088 1.431 0.242 

MVI-5 y = -490.55x + 407.22 0.021 650.947 0.568 0.458 

MVI-7 y = 47.768x + 211.55 0.000 550.634 0.008 0.932 

MAVI y = 218.49x + 114.8 0.005 606.943 0.130 0.722 

SR y = 7.976x + 132.92 0.016 12.017 0.441 0.513 

TC-2 y = 0.082x + 219.48 0.009 0.162 0.257 0.616 

TC-3 y = 0.013x + 262.88 < 0.000 0.122 0.011 0.916 

 

Figure 16: Scatter plot SR 

Figure 17: Scatter plot TC-2 

Figure 18: Scatter plot TC-3 
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3.3.2 Regression analysis without outliers  

 Additional regression analysis was performed, in which outliers were left out of the input 
data. The first, third, and interquartile range was used to determine whether a data point was 
considered an outlier or not. The following decision rule was used; 
  
-          Lower bound; first quartile – 1.5 * interquartile range 
-          Upper bound; third quartile + 1.5 * interquartile range 
  
  
This decision rule gave an upper bound of 20.40, and a lower bound of -3.71. This resulted in the 
exclusion of plot number 17 and 67, which both exceed the upper bound value. The EVI shows a 
significant relationship with AGB when plots 17 and 67 are excluded from the input data. EVI shows 
the strongest relationship, with the model explaining 20.4% of the AGB (F(1,25) = 6.424, p = 0.018). 
Most of the other indices also improved, however, they still did not show a significant relationship 
with AGB (table 13). The RERVI, which had the strongest relationship with the inclusion of the 
outliers, showed a decline in the strength of the relationship when plots 17 and 67 were removed. 
 
Table 13: Results linear regression without outliers 

Vegetation index Equation  R2 Standard error F P-value  

NDVI y = 1844.4x - 1376.3 0.134 939.077 3.857 0.061 

EVI y = 816.49x - 228.45 0.204 322.135 6.424 0.018 

NDVIre2 y = -661.74x + 281.37 0.014 1101.885 0.361 0.554 

RENDVI-2 y = 455.61x - 175.15 0.053 384.262 -852.399 502.090 

RERVI y = -302.61x + 589.21 0.022 406.838 0.553 0.464 

MVI-5 y = 6.6818x + 211.71 0.000 488.271 0.000 0.989 

MVI-7 y = 218.46x + 73.915 0.012 399.296 0.299 0.589 

MAVI y = 407.14x - 23.678 0.034 436.636 0.869 0.360 

SR y = 12.013x + 49.003 0.072 8.594 1.954 0.174 

TC-2 y = 0.1274x + 178.34 0.046 0.116 1.214 0.281 

TC-3 y = -0.0962x + 58.661 0.043 0.090 1.136 0.297 
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4. Discussion   
This chapter discusses the results obtained in the present study and compares the results to 

those found in other studies. Furthermore, the limitations of the present study are discussed. 
 

4.1 Vegetation indices  
 The following 11 vegetation indices were deemed to have the highest potential to show a 

strong relationship with AGB in a mixed dipterocarp forest; NDVI, EVI, NDVIre2, RENDVI-2, RERVI, 

MVI-5, MVI-7, MAVI, SR, TC-2, TC-3. Noticeable is the variation in the distribution of the data when 

analysing the boxplots and the visual displays of the different indices. Some of the analysed indices 

like the RENDVI-2, MVI-5, MVI-7, MAVI, and TC-2 seem to have a very limited distribution of the data. 

Whilst the NDVI, EVI, NDVIre2, RERVI, SR, and TC-3 show to have more spread in the reflection values 

found within the plots. 

4.2 Above-ground biomass plots  
The results of the field data showed an average of 162.79Mg ha-1 in the main plots and an 

average of 82.54 Mg ha-1 in the sub-plots. The average total AGB found within the plots was 245.33 
Mg ha-1. The presence of large trees seemed to have a strong impact on the overall AGB. Trees with a 
DBH greater than 100 cm were found in 4 out of the 28 analysed plots (17, 23, 63, and 67), these 
plots were also the plots in which the highest overall AGB was found. Especially plot 17 and 67 had a 
high total AGB, which seems to be caused mainly by the presence of one or two large trees in the 
main plots. 

  
The average carbon found in the plots is somewhat lower than the results found by the 

Forest Department Sarawak. The average aboveground tree carbon stored within a mixed 
dipterocarp forest was found to be 115.30 C Mg ha-1 in the present study. Forest Department 
Sarawak found an average of 143.25 C Mg ha-1 (Forest Department Sarawak, 2021). Three reasons 
could be the cause of the differences in measured AGB. Firstly, both reports used models developed 
by Chave et al. (2014) for estimating AGB. However, Forest Department Sarawak used model 7, while 
the present study mainly used model 4. A second explanation is the specific classification of forest 
type in which the studies were conducted. Since the forest inventories conducted by Forest 
Department Sarawak (2021) consisted of 16.4% of totally protected areas. A higher number of large 
trees can likely be found within these totally protected areas, which could explain the overall higher 
average per hectare found by Forest Department Sarawak. A third reason for finding a lower average 
per hectare in the present study is the exclusion of the sapling plots. The exclusion of these plots did 
result in an underestimation of the total AGB. 

 

4.3 Regression analysis results  
The capability of vegetation indices to estimate AGB varies strongly depending on forest type 

and location. This study aimed to determine if vegetation indices are a suitable predictor of AGB in 
mixed dipterocarp forests in Sarawak. The results indicate that there is no significant relationship 
between the AGB measured in the field and the reflection value displayed on the analysed 
vegetation indices. The relationship between AGB and the vegetation indices proved to be relatively 
weak, with the strongest model of the RERVI being able to explain 5.0% of the observed variance in 
AGB. Most indices improved their relationship with AGB when outliers in AGB were removed from 
the input data. The EVI showed a significant relationship with AGB when outliers were removed from 
the dataset. However, the relationship remained weak, with the model (EVI) being able to explain 
20.4% of the AGB. The findings of this study suggest that none of the analysed vegetation indices is a 
suitable predictor of AGB in a mixed dipterocarp forest in Sarawak.   
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             Most noticeable about the results are the low and insignificant relationships of the indices 
that were specifically developed for tropical forests, and thus supposedly more sensitive to higher 
levels of biomass. One of the problems that stand out is the reflection value of plots with a very high 
amount of AGB. Vegetation indices are known to have issues with saturation in high amounts of 
biomass (Mutanga & Skidmore, 2004). However, in the present study, the opposite was observed, 
plots with a very high amount of AGB displayed a relatively low reflection value. During the analysis 
of the main plots, it was already noticed that the highest amount of AGB was found in plots that 
contained one or two large trees with a DBH greater than 100, this was most noticeable in plots 17 
and 67. These large trees had a high impact on the overall AGB found in the plots, however, they did 
not seem to cause the same effect on the reflection value of the vegetation indices. Therefore it 
seems that one of the problems of the analysed vegetation indices is the inability to explain high 
amounts of AGB caused by a singular large tree. 
 
 The additional analysis in which AGB outliers were excluded makes clear that the inability to 
explain high amounts of AGB is not the only issue for the analysed indices. The NDVI, NDVIre2, 
RENDVI-2, RERVI, MVI5, MVI7, MAVI, SR, TC-2, and TC-3 all remained to show a weak and 
insignificant relationship when the AGB outliers were removed. When analysing tables 9,11, and the 
scatter plots it is noticeable that the lower levels of AGB also show a strong variation for all of these 
indices. Only the EVI shows somewhat of a pattern, in which low AGB values display low reflection 
values and vice versa (with exception of the very high AGB value, as discussed above). The other 
indices display varying reflection values for the plots with a low amount of AGB. All of the other 
indices seem to display both high and low reflection values in the plots with low amounts of AGB.   
 

Results obtained in the present study contradict the results obtained by the literature that 
was used when these indices were selected. All of the selected indices have shown a strong 
relationship with AGB in studies done in the past. The reason for these differences in strength could 
be explained by the results obtained by Foody et al. (2003), this study highlights the problem of 
vegetation indices when transferring results obtained from one site to another. Foody et al. (2003) 
analysed the relationship between AGB and vegetation indices and found that the strength of the 
relationship varied strongly between testing sites. Lu et al. (2004) found similar effects, with a strong 
variation in results obtained by the indices in different testing sites. Therefore the strong 
relationships found in other studies do not guarantee that the same relationship would be found in 
the present study. 
 

Even when taking the issues with transferability into account, the contradicting results 
between the present study and other studies conducted in mixed dipterocarp forests were 
unexpected. Adan (2017) conducted research in a mixed dipterocarp forest in Malaysia and found 
relatively strong relationships between AGB and red-edge vegetation indices, specifically the RERVI 
(R2 = 0.64). In the present study, a non-significant and weak relationship (R2 = 0.05) was found 
between the RERVI and AGB. The differences in results for the RERVI could partially be explained by 
the different methodologies used in both studies. 
 

Adan (2017) separated total biomass into two groups; upper canopy biomass, and lower 
canopy biomass. The lower canopy biomass was estimated based on the DBH and allometric 
equations, similar to the method used in the present study. However, the upper canopy biomass was 
estimated using the DBH and airborne laser scanner data (ALS) for height estimations, this could have 
resulted in more accurate biomass estimations. Furthermore, Adan (2017) removed outliers based 
on the pixels in which a tree was found. A tree was excluded from the database if the pixel in which a 
tree was found did not fall completely within the boundaries of the plot. In addition, a terrestrial 
laser scanner (TLS) was used to determine the location of each tree within the plot on the Sentinel-2 
images. This made it possible to determine the exact biomass value of each pixel within the plot, and 
thus the ability to use each pixel within the plot as a sample point for the regression analysis. 
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Because of this methodology, Adan (2017) had almost four times as many sample points, with 
presumably a higher accuracy, whilst having a similar number of field plots as the present study. The 
AGB per pixel approach used by Adan (2017) could result in a better representation of singular large 
trees. Since the high AGB of the singular tree was linked to the pixel in which the tree is found, 
instead of an average of all pixels within the plot as in the present study.   

 
Another study conducted by Rasib et al. (2018) in a mixed dipterocarp forest in peninsular 

Malaysia found a relatively strong relationship between biomass and the simple ratio (SR). Rasib et 
al. (2018) found the strongest relationship when comparing the SR to the AGB of 100 random sample 
points (R2 = 0.72). At first, this seems like a strong contrast with the present study, however, a strong 
decrease in the strength of the relationship occurred when the sample size was increased. When 
increasing the sample size from 100 to 250, the R2 decreased from 0.72 to 0.02, which is similar to 
the results obtained in the present study (R2 = 0.02). Because of this, it seems that the strong 
relationship obtained by Rasib et al. (2018) when analysing a smaller sample size, is not 
representative of the predictive capability of the SR in a mixed dipterocarp forest. 

 
Uttaruk and Laosuwan (2018) also conducted research in a dry dipterocarp in Thailand. They 

found a relatively strong relationship between TC-2 (R2 = 0.81) and AGB. Similar results were not 
obtained in the present study, in which the TC-2 and TC-3 showed one of the weakest relationships 
with the AGB. The main reason for the differences in results again seems to be caused by the sample 
size used. As shown by Rasib et al. (2018), a smaller sample size could result in high relationships 
caused by chance. Uttaruk and Laosuwan (2018) used a relatively small sample size of 12 plots, this 
could explain why the TC-2 obtained such a high R2 value. 
 

The moisture indices (MVI-5, MVI-7, and MAVI) were included in the analysis because of the 
inclusion of the SWIR band, besides the red and the NIR band. The inclusion of the  SWIR band has 
been shown to make vegetation indices more sensitive to biomass in tropical forests (Yadav & 
Nandy, 2015; Nandy et al., 2017; Yang et al., 2019). The MVI-5 and MVI-7 both also proved to have a 
strong relationship with AGB in dense humid forests (Freitas et al., 2005). The results of the present 
study show that none of the moisture indices proved to have a strong relationship with AGB in a 
mixed dipterocarp forest. These results are similar to the finding of Basuki et al. (2012), which was 
also conducted in a mixed dipterocarp forest. Basuki et al. (2012) also found a weak and non-
significant relationship between AGB and the MVI-5 (R2 = 0.02) and the MVI-7 (R2 = 0.04). Adan 
(2017) found similar results when analysing the relationship between indices that combined the NIR 
and SWIR bands in a mixed dipterocarp forest in Malaysia. A weak relationship was found for all 
analysed moisture indices. Therefore it seems that the SWIR bands are less sensitive to AGB in mixed 
dipterocarp forests. 
   
 So far, mainly studies that contradict the results found in the present study have been 
discussed however, there are studies that agree with the findings of the present study. Foody et al. 
(2001) analysed the relationship between AGB and 230 vegetation indices in Malaysia. The results 
indicated that all of the 230 analysed vegetation indices were weakly and insignificantly related to 
forest biomass. In addition, Lu et al. (2004) also found a large amount of the analysed indices to have 
a weak and insignificant relationship with AGB, with strong variations between testing sites. A study 
by Lu et al. (2002) concluded that vegetation indices alone were not suitable to establish effective 
biomass estimation models.  Lu et al. (2002) stated that vegetation indices are weakly related to 
biomass because of the use of red and NIR bands, which were shown to be weakly correlated to 
biomass. Similar results were found in a study by Wang et al. (2005), in which most of the analysed 
vegetation indices were weakly correlated with biomass. Therefore Wang et al. (2005) concluded 
that vegetation indices are insufficient for establishing effective models to predict biomass. As 
mentioned above, the results obtained when analysing the larger sample size by Rasib et al. (2018) 
are also similar to those obtained in the present study. 
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4.4 limitations  
 One of the limitations found in the present study is the relatively small sample size used. 
Outliers had a strong impact on the predictive capability of the models, as shown by the additional 
analysis. A larger sample size could have limited the impact of these outliers and thus given a better 
indication of the potential of the predictive models. 
  
           Field data could not be gathered as intended due to unfavourable weather conditions. 
Therefore, older source data were used which was gathered in a longer time frame of approximately 
a three-year period (2017-2020). Only one Sentinel-2 image (2018) was deemed suitable to use as 
input since it was the only image during this time period with minimal cloud cover. No large changes 
in biomass due to the growth of the woody biomass are expected in a timeframe of three years. 
However, other natural causes such as diseases and storms could have affected the overall AGB 
during this period. Therefore, having a Sentinel-2 acquisition date close to the field inventory date 
would be optimal for comparing the field data to the Sentinel-2 image. The greater the difference 
between the field-inventory date and the Sentinel-2 acquisition date, the higher the chances are that 
changes in forest structure have occurred. Therefore, the Sentinel-2 image used in the present study 
might not have represented the exact same situation as was observed during the field inventories. 
This could have resulted in errors in some of the plots when comparing the AGB to the reflection 
value. Preferably a smaller time period was used, with a Sentinel-2 acquisition date close to the date 
on which the field data were gathered.       
  

The sapling plots were excluded from the AGB assessment, due to incomplete DBH and 
height measurements in some of the sapling plots. The exclusion of these plots resulted in an 
underestimation of the total AGB found within the plots. The inclusion of these sapling plots would 
have given a more accurate representation of the actual situation. 
  
           As observed during the analysis of the field data, the presence of a single large tree strongly 
impacted the total AGB inside a plot. However, a single large tree mainly affects the reflection value 
of one pixel inside the plot. The use of an average reflection value based on all pixels inside the plot 
might have limited the capability of the models to express high reflection values caused by a single 
tree. A pixel-based approach similar to Adan (2017) might be more capable to express strong 
reflection values when a high amount of AGB is caused by a single large tree. 
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5. Conclusion 
Remote sensing techniques, such as the use of vegetation indices, may facilitate forest 

inventories with AGB estimations. Studies, however, have shown varying results regarding the 
effectiveness of vegetation indices for estimating AGB. The present study aimed to investigate the 
usefulness of vegetation indices for estimating AGB in a mixed dipterocarp forest in Sarawak, 
Malaysia. The following conclusion was found regarding the main research question; 

 
Which of the analysed vegetation indices is most suitable for estimating above-ground 

biomass in a mixed dipterocarp forest? 
 
Out of 11 analysed indices, the RERVI showed to be most suitable for predicting AGB in a 

mixed dipterocarp forest. However, the relationship was weak and insignificant, as it was for all of 
the analysed vegetation indices. The outcomes of the present study imply that vegetation indices are 
not suitable as predictors of AGB in a mixed dipterocarp forest.  
 

The strength in relationship between AGB and 11 vegetation indices was analysed in the 
present study. A total of 29 plots were used as input for the regression analysis, for each plot the 
measured AGB was linked to the reflection value displayed on the vegetation indices. No significant 
relationship was found between the analysed vegetation and the measured AGB. An additional 
analysis was performed in which outliers of AGB were excluded. This analysis showed improvements 
for most of the indices, with the EVI showing a significant relationship with the AGB. However, the 
relationship with AGB remained rather weak.  

 
   Most noticeable was the inability of the models to explain high amounts of AGB. Plots with 
a high amount of AGB did not show any sign of saturation, but rather a lack of reflection signal. The 
presence of large trees and the method used to determine the reflection value of the plots could be 
a reason for this phenomenon. 

 
 

5.1 recommendations  
 The results of the present study indicate that the analysed vegetation indices are not suitable 
as a predictor for AGB in a mixed dipterocarp forest. The following recommendations are made for 
future studies; 
  

- Future studies should examine if a pixel-based approach AGB-reflection value approach 
results in stronger relationships between AGB and the reflection values. 

 
- Future studies should analysed if the relationship between AGB and vegetation indices 

improves with the use of high-resolution satellite images.   
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Appendix A: Field form  

Plot nr. : ………………………………………              Date:…………………………………. 
 
Plot coordinates: ………………………………………………………………………………… 

Group members: …………………………………………………………………………………… 
X-coordinates A corner :……………………                Y-coordinates A corner:…………………. 
X-coordinates B corner:…………………….                Y-coordinates B corner:………………….. 
X-coordinates C corner:…………………….                Y-coordinates C corner: …………………. 
X-coordinates D corner:……………………                 Y-coordinates D corner:…………………. 
Slope:…………………………………….                     Elevation:………………………………... 
Coordinate system: WGS-1984 (Decimal degree)  
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Height  
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Appendix B: Display vegetation indices 
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Appendix C: Field data main and sub-plots 

 DBH (cm) Height (cm) AGB Mg 
ha-1 

Plot nr. Sample 
plot 

Size plot 
(m2)  

DBH class 
(cm) 

Number 
of trees  

min max mean min max Mean   

2 Main  1,000 ≥ 30  3 30.8 36.7 33.1 20 23 22 22.07 

 Sub 400 ≥ 10 - < 30  20 10  28.6 15.4 13 28 18 81.47 

4 Main  1,000 ≥ 30  1 30.7 30.7 30.7 10 10 10 2.07 

 Sub 400 ≥ 10 - < 30  20 11 29.4 18.2 6 26 16 77.25 

9 Main  1,000 ≥ 30  5 30 42.9 35.4 17 27 21 42.84 

 Sub 400 ≥ 10 - < 30  13 10 24.5 14.0 6 18 14 28.58 

10 Main  1,000 ≥ 30  10 30 49 37.1 12 27 19 76.00 

 Sub 400 ≥ 10 - < 30  11 14 28.8 19.7 7 15 12 41.24 

14 Main  1,000 ≥ 30  14 31.9 54 39.2 18 45 27 190.76 

 Sub 400 ≥ 10 - < 30  20 11 28 18.2 8 29 16 99.55 

17 Main  1,000 ≥ 30  13 32 120 60.0 15 40 27 560.03 

 Sub 400 ≥ 10 - < 30  21 10 29.1 18.4 9 25 17 112.87 

20 Main  1,000 ≥ 30  8 30.2 54.5 37.3 24 32 27 102.04 

 Sub 400 ≥ 10 - < 30  25 10 23.8 15.0 12 20 15 75.35 

23 Main  1,000 ≥ 30  13 31.2 140 50.4 15 40 25 315.53 

 Sub 400 ≥ 10 - < 30  21 11 26 16.9 8 20 15 77.82 

39 Main  1,000 ≥ 30  9 31.1 49 41.2 18 27 23 90.42 

 Sub 400 ≥ 10 - < 30  19 11 23.8 14.2 8 20 12 42.87 

49 Main  1,000 ≥ 30  12 32.2 75 46.1 12 28 21 213.34 

 Sub 400 ≥ 10 - < 30  16 10 25 14.2 7 18 10 29.28 

51 Main  1,000 ≥ 30  6 36 60 50.7 15 27 21 102.73 

 Sub 400 ≥ 10 - < 30  7 13 28.5 19.1 7 16 11 26.63 

63 Main  1,000 ≥ 30  23 30.1 135 43.3 19 35 24 420.75 

 Sub 400 ≥ 10 - < 30  15 11 27.7 19.0 13 20 16 72.03 

64 Main  1,000 ≥ 30  8 30 78 44.1 19 30 24 129.14 

 Sub 400 ≥ 10 - < 30  26 10 27.7 17.7 8 19 16 111.74 

65 Main  1,000 ≥ 30  11 30 80 40.2 19 34 24 155.70 

 Sub 400 ≥ 10 - < 30  28 11 26.9 17.9 6 20 16 128.26 

66 Main  1,000 ≥ 30  14 31.2 56.9 39.5 17 27 22 123.31 

 Sub 400 ≥ 10 - < 30  23 10 29.4 18.0 6 20 15 88.60 

67 Main  1,000 ≥ 30  19 30.8 130 50.6 17 34 23 475.64 

 Sub 400 ≥ 10 - < 30  25 11 28.4 16.8 10 26 16 95.83 

68 Main  1,000 ≥ 30  19 30 80 41.5 14 31 22 258.26 

 Sub 400 ≥ 10 - < 30  28 11 29.5 16.5 8 20 16 106.73 

69 Main  1,000 ≥ 30  11 30.5 55.5 39.3 18 27 23 120.13 

 Sub 400 ≥ 10 - < 30  29 10 28 16.0 9 18 16 98.46 

70 Main  1,000 ≥ 30  16 30.2 80 44.3 18 29 23 240.02 

 Sub 400 ≥ 10 - < 30  28 10 29.3 17.7 4 21 16 140.44 

71 Main  1,000 ≥ 30  12 30.5 58 42.1 20 29 25 174.96 

 Sub 400 ≥ 10 - < 30  22 12 28.1 16.3 6 22 15 96.00 

72 Main  1,000 ≥ 30  13 30 42.9 37.6 17 27 24 141.82 

 Sub 400 ≥ 10 - < 30  16 12 21.1 16.4 10 18 16 56.04 

73 Main  1,000 ≥ 30  15 30 57.2 42.9 22 28 25 224.12 

 Sub 400 ≥ 10 - < 30  32 10 29 17.5 10 23 17 165.87 

77 Main  1,000 ≥ 30  9 30.1 41.8 35.9 15 25 21 80.92 

 Sub 400 ≥ 10 - < 30  25 11 28.1 19.7 10 21 14 112.56 

79 Main  1,000 ≥ 30  4 30.1 35.1 33.4 20 25 24 28.86 

 Sub 400 ≥ 10 - < 30  13 10 28.8 15.2 5 15 10 33.72 

80 Main  1,000 ≥ 30  10 30.1 50.2 38.8 22 27 26 111.68 

 Sub 400 ≥ 10 - < 30  18 10 29.5 17.7 7 27 16 85.93 

81 Main  1,000 ≥ 30  13 30.5 55.5 38.8 17 27 24 149.77 

 Sub 400 ≥ 10 - < 30  20 11 27.1 17.1 7 25 15 83.00 

82 Main  1,000 ≥ 30  11 31.1 55.5 41.7 20 35 24 134.41 

 Sub 400 ≥ 10 - < 30  10 12 27.1 18.6 10 17 13 36.49 

84 Main  1,000 ≥ 30  5 31.4 45.5 37.7 20 25 23 49.81 

 Sub 400 ≥ 10 - < 30  29 11 29.5 19.3 10 25 20 182.05 

85 Main  1,000 ≥ 30  11 30.3 65 42.2 18 26 23 159.37 

 Sub 400 ≥ 10 - < 30  16 11 28.2 17.0 10 22 17 69.39 

86 Main  1,000 ≥ 30  10 33 55 41.1 20 25 23 113.21 

 Sub 400 ≥ 10 - < 30  10 12 22 15.3 10 20 17 33.88 
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87 Main  1,000 ≥ 30  1 70.6 70.6 70.6 25 25 25 36.63 

 Sub 400 ≥ 10 - < 30  17 11 27 16.2 15 25 19 68.92 

 


