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Abstract: Climate change is undermining the importance and sustainability of cooperatives as 9 
important organizations in small holder agriculture in developing countries. To adapt, cooperatives 10 
could apply carbon farming practices to reduce greenhouse gas emissions and enhance their business 11 
by increasing yields, economic returns and enhancing ecosystem services. This study aimed to 12 
identify carbon farming practices from literature and investigate the rate of application within 13 
cooperatives in Uganda.  We reviewed scholarly literature and assed them based on their economic 14 
and ecological effects and trade-offs. Field research was done by through an online survey with 15 
smallholder farmers in 28 cooperatives across 19 districts in Uganda. We identified 11 and 16 
categorized them under three farming systems: organic farming, conservation farming and 17 
integrated farming. From the field survey we found that compost is the most applied CFP (54%), crop 18 
rotations (32%) and intercropping (50%) across the three categorizations. Dilemmas about right 19 
organic amendment quantities, consistent supplies and competing claims of residues for e.g. biochar 20 
production, types of inter crops need to be solved in order to further advance the application of CFPs 21 
amongst crop cooperatives in Uganda. 22 

.  23 
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 26 

1. Introduction 27 
Cooperatives play an important role in agricultural production and commercialization [1] in 28 

most developing countries. In Uganda, around 80% of the populations’ livelihoods are directly reliant 29 
on the agricultural sector, yet it is the most vulnerable to current changes of the ecosystems and the 30 
services they provide and the changes in climate through emission of greenhouse gases  (GHGs) 31 
such as carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) [2].  Under these current 32 
circumstances, smallholder farmer groups must remain competitive and sustainable.  33 

Greenhouse gases (GHGs) are released by all sectors including the Agriculture, Forestry and 34 
Other Land Use (AFOLU). Worldwide the AFOLU sector contributes 24% of these GHGs [3]. GHGs 35 
in agriculture are mostly a result of farming operations such as; decomposing crop residues, the 36 
production and use of (in)organic fertilizers, land tillage, production and application spraying of 37 
pesticides and, planting and harvesting crops [4]. Agriculture may also contribute to GHG emission 38 
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reductions by e.g. sequestering carbon (C) through a process called C sequestration [5]. Farming 39 
practices that include some sort of C sequestration are called C farming practices (CFPs). CFPs are 40 
also practices that are known to improve the rate at which CO2 is removed from the atmosphere and 41 
converted to plant material and soil organic matter [6].    42 

CFPs have been existing for a long time. However, current conditions aim to revitalize such 43 
practices within cooperatives in order to sequester more C in light of increasing temperatures, but 44 
also to benefit the crop cooperatives. However, these practices have not been adopted widely among 45 
small holder farmers and where such practices are implemented, there are failures due to poor 46 
implementation [7]. This review explores different CFPs based on their carbon sequestration potential 47 
and examines their economic effects in terms of yield, inputs, profitability, income and what the 48 
ecological effects are in terms of ecosystem services while contrasting their economic and ecological 49 
trade-offs. These findings are then compared and contrasted within CFP application amongst 50 
smallholder farmers in cooperatives as a basis for both the community of practice and policy 51 
interventions towards low carbon agriculture in Uganda.  52 

The objective of the study was to identify CFPs and their economic and ecological effects and 53 
trade-offs and to provide insight into how and to what extent are they applied amongst crop 54 
cooperatives in Uganda  55 

2. Materials and Methods  56 

The first part of the objective was to identify CFPs. Scholarly literature was reviewed, and the 57 
identified CFPs were addressed within three farming systems; Organic farming (OF) [8], 58 
Conservation farming (CF) [3] and Integrated farming (IF) [9]. This categorization is based on the 59 
notion that these CFPs encompass most of what different literature sources attest to in relation to 60 
carbon sequestration.  To assess the economic and ecological effects, the following indicators: 1. 61 
Yield (t/ ha), 2. input use (unit), 3. Income (per ha) and 4. Profit (percent)  [10] and six ecosystem 62 
variables; 1. carbon sequestration, 2. soil quality, 3. water holding capacity, 4. pollination, 5. 63 
biodiversity, and 6. pest and disease control [11] were considered.  64 

 The second part of the objective was the assess how and to what extent the CFPs were 65 
applied amongst crop cooperatives in Uganda. To do so we administered an online survey amongst 66 
representatives from 28 cooperatives and online interviews with 6 key informants. The economic and 67 
ecological effects reviewed in literature were also used as a guide during the survey for ease of 68 
analysis. Descriptive statistics were used to analyze quantitative data from the online survey while 69 
qualitative data was analyzed by use MS Excel and MS Word. 70 

3. Results 71 

3.1. Literature 72 

The literature review of CFPs resulted in an overview presented in Table 1. Scholarly categorization 73 
of CFPs included but not limited to; improved agronomic practices, nutrient management, water 74 
management, agroforestry, land cover (use) change, management of organic soils and restoration of 75 
degraded lands [12], Agroforestry, Farmer Management Natural Regeneration (FMNR) and 76 
Sustainable Agricultural Land Management (SALM) [13], diversification practices and soil 77 
management practices [14], forestry practices, land based agriculture, livestock and integrated 78 
systems [15],  soil nutrient management practices, improved agronomic practices, improved 79 
livestock management practices, sustainable energy technologies, restoration of degraded lands soil 80 
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and water conservation measures [46], conservation agriculture, integrated soil fertility management, 81 
irrigation, agroforestry, crop diversification, improved livestock and feeding practices [16]  and 82 
single and diversified practices [10].  83 

Table 1.  CFPs identified in literature and categorized per farming system 84 
Farming system Carbon farming practice  Carbon Sequestration potential 

Organic Farming (OF) 
Compost application [17, 18, 19, 20] 2.14Gt – 3.1Gt between 2020 – 2050 [3] 
Manure application [21, 22 ,23] 0.16g kg–1 yr–1 increase per year [21]    
Biochar application [24 ,25, 26] 0.60–0.97 Mg.ha– yr–1  for 3–23 years [25] 

Conservation Farming 
(CF) 

No Till / Reduced Till [3, 22, 27] C redistribution along the soil profile [22] 
Residue Management [28, 29, 30] C increase from 4.38% to 4.44% [29] 
Cover crops [31, 32] C increase from 0.37 – 3.24 tCO2e ha–1 yr–1 [32] 

Crop rotations [28, 22, 33] 
C stability due legume crops with carbon 
compounds [28] 

Integrated Farming 
(IF) 

Intercropping [34, 35, 36] C emmission reductions by 7% [35]  
Agroforestry [3, 37] C increase from 0.84 – 4.23 tCO2e ha–1 yr–1 [32] 
Agropastoral [38]  
Agrosilvopastoral [39, 40]  

CFPs under OF are often Business as Usual (BAU) in the context of developing countries where 85 
often low-income farmers have neither access to agricultural input commodities like mineral 86 
fertilizers or pesticides [41]. While CFPs under CF were not initially considered as soil carbon 87 
sequestration practices, they are now widely considered as a potential technology to mitigate GHG 88 
emissions and reduce fossil fuel consumption [43] during tillage practices. CFPs under IF are useful 89 
in reducing the carbon footprint due to the land sharing concept which is fundamental in ecosystems 90 
services enhancement, such as carbon storage, pest control, pollination and climatic change 91 
adaptation [44]. Non-intensive agricultural, biodiversity-friendly, and ecosystem-preserving IF 92 
agricultural systems play a profound balance of conservation with environmentally and socially 93 
sound agriculture [45]. The economic and ecological effects are presented in Table 2. 94 

Table 2.  Literature overview of CFP economic and ecological effects under different farming systems  95 
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Economic effects Ecological effects 

Improved farm productivity [13] 
Enhancement of soil ecological health 

functions [22] 

Diversified incomes [13] Biodiversity protection [50] 

Reduced chemical fertiliser and pesticide 

use [47] 
Increased water holding capacity [13] 

Premium price markets for organic produce 

[41] 
Crop drought and flood tolerance [15] 

21.4% increase in fruit productivity, 22.4% 

fruit weight and 7.8% increase in fruit 

diameter for compost [48] 

Lower GHG emissions & reduced global 

warming potential [24] 

 

Capacity to control plant diseases [51] 

Soil organic carbon build up [48] 

Reduced nutrient leaching [52] 

Source of renewable energy [53] 
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Balanced ecosystem services 
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 Enhancing farmers’ income [55] Conserving natural resources [55] 

Low costs of production [55] SOM increase [8] 

Increased yield [27] Reduce atmospheric CO2 emissions [8] 

Low productivity [56] Soil erosion control [60] 

Reduced pesticides use [31] Weed control [61] 

Lower input costs [10] Reduce the rainfall intensity [31] 

Improved pollination services [31] Pest control [31] 
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l Improved productivity [57] Disease and pest suppression [57] 

Input-reduction [57] Improve soil fertility [58] 

Yield improvement [58] Lowering carbon emissions [35] 

Diversified income sources [43] Weed suppression [58] 

Increased production [59] biodiversity conservation [32] 

Soil erosion and flooding control [3]  

Improved water holding capacity [11]  

Enhance pest, disease control [11]  

Organic matter content [40]  

The main goal of CFP adoption lies in reducing GHG emissions which involves change of 96 
practices that may collide with crop production goals in both positive and negative forms [62] which 97 
results in trade-offs. Trade-offs occur when a CFP is adopted by farmers at the expense of economic 98 
benefits or vice versa. A critical dilemma is often faced when farmers need to  switch to  that 99 
completely transform their farm business operations [63]. On the other side, CFPs seem expensive 100 
[50],  they may not be such productive [11] and farmers are likely to only voluntarily adopt such 101 
practices if economically profitable [5]. Another trade-off may be the change in land use such as farm 102 
expansion into forest  land which is one of the most potent global threats to biodiversity 103 
conservation [64]. Other trade-offs include , more skills, knowledge , yields compromises, farming 104 
system incompatibilities, farm business uncertainty alongside land tenure rights [65]. Hence, win-105 
win situations may be possible by combining an awareness of what  may produce a trade-off with 106 
an understanding of why and what trade-offs result to create the synergies sought for better outcomes 107 
[66]. The economic and ecological trade-offs are presented in Table 3. 108 

Table 3: Overview of CFP economic and ecological trade-offs under the different farming systems 109 
Farming Systems CFPs Trade-offs 

Organic Farming Systems 
Compost, Manure and Biochar 

Ecological 

Inadequate to control pests and diseases [70] 

Provide insufficient pollination [70] 
GHG pollution swapping [71] 
Increase risk of accelerated erosion [26] 

Economic 
Lead to reduced crop yields [67] 

Competing uses for crop residues [26] 

Conservation Farming Systems Ecological High decomposition rates hence short-lived benefits [26] 
Minimum pest, weed and disease control [72] 
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No Till, Cover crops, Crop 
residues and Crop rotations 

Enhanced herbicide application on crop lands [10] 

Economic Crop residue competing uses [68] 

Integrated Farming Systems 
Intercropping, Agroforestry, 

Agropastoral, Agrosilvopastoral 

Ecological Reduced in pollination services [10] 
 

Economic 

High technical knowledge, implementation maintenance 

labour and input costs [40, 10, 69] 
 

Farm profit reduction [5] 

Loss in productivity [12] 

3.2. Field  110 

Responses from the online survey were collected from amongst from 28 cooperative respondents 111 
(Figure 1) in 19 districts and 6 key informants online interviews. The economic and ecological effects 112 
were reviewed in literature and reported in tables and were also used as a guide during the survey 113 
for ease of analysis. 114 

 115 
Figure 1. Online survey cooperative respondent portfolios 116 

 117 
CFP application amongst cooperatives under OF systems 118 

Amongst the CFPs examined in this farming system, the combination of compost and manure 119 
had the most respondents (54%) while the single most reported CFP under OF practiced by 120 
respondents was compost (Figure 2). The most reported beneficial effects of CFPs on the ecology 121 
where improved soil quality (Table 4) in terms of fertility, improved water holding capacity, 122 
enhanced microbial activity by natural organisms, pest, disease and weed control. However, 123 
biodiversity, pollination services and carbon sequestration were not mentioned by any respondent 124 
in this category. When considering economics, improved yield was the most reported effect of the 125 
CFPs followed by increased profitability as a result of improved incomes.  126 
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Within the OF system the combination of compost and manure was applied the most (54%) 127 
while the single most reported CFP was compost application (Figure 2). The most reported beneficial 128 
effects of CFP’s on the ecology where improved soil quality (Table 4) in terms through increased 129 
fertility, improved water holding capacity, enhanced microbial activity, pest, disease and weed 130 
control. Biodiversity, pollination services and carbon sequestration were not mentioned as beneficial 131 
effects by any of the respondents. When considering economics, improved yield was the most 132 
reported effect of the CFP’s followed by increased profitability as a result of improved incomes. 133 

 134 

Figure 2. CFP application among cooperatives under Organic Farming systems in Uganda. 135 
 136 

Table 4: Reported ecological and economic trade-offs of CFP’s under Organic Farming systems  137 

(n = Frequency of effect among all respondents) 138 

Effects  Trade-offs 

Ecological  n Economic  n Ecological  n Economic  n 

Improved soil quality   16 Improved yield 17 

Knowledge and adequacy 

of right amounts and 

mixtures 

9 Access, purchase 

cost, 

transportation &, 

hectic, bulk of 

amendments 

18 Enhanced water-

holding capacity 
5 

Increased 

profits 
6 Long decomposition time 7 

Increased natural 

organisms 
3 

Improved 

incomes 
5 Harbor pests 2 

Better pests, weeds, 

disease control 
3 

Reduced input 

use 
2     

Total  27  30  18  18 
 139 

CFP application amongst cooperatives under CF systems 140 

Amongst the CFPs, examined in this system; majority of the respondents (32%) were applying 141 
all the four CFPs.  The single most applied CFP was crop rotation, (Figure 3). Ecologically, improved 142 
soil quality was the most reported effect of CFP among the ecosystem services followed by improved 143 
water holding capacity and better pest, disease and weed control. Under this category, biodiversity, 144 
pollination services and carbon sequestration services were not mentioned by any respondent. 145 
Economically, yield improvement was the highest reported effect of followed by reduced usage of 146 
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other inputs while profitability and improved incomes were the least mentioned effects of the 147 
application of the CFPs respectively. This is the only CFP category in which low yield was reported 148 
compared to OF and IF systems. The ecological effects outweighed economic effects while economic 149 
trade-offs outweighed ecological trade-offs (Table 5). 150 

 151 

 152 

Figure 3. CFP application among cooperatives under Conservation Farming systems in Uganda.  153 

Table 4: Reported ecological and economic trade-offs of CFP’s under Conservation Farming systems  154 
n. = Frequency of effect among all respondents 155 

Effects  Trade-offs 
Ecological  n Economic  n Ecological  n Economic  n 

Improved soil 
quality   12 Improved yield 12 

Land availability / 
shortage  
 

7 

Capital, costs & 
availability of 
materials & 
Knowledge and 
skills 

8 

Enhanced water-
holding capacity 6 

Reduced input 
use 4 

Right crop rotations 
varieties, pathogens, 
harbour pests,  

3 
Time consuming, 
labour intensity, 
shortage, and costs 

4 

Better pest, weed 
and disease 
control 

5 
Increased 
profits 

2    
Low yield   
 

3 

  
Improved 
incomes 

2     

Total  23  20  10  15 
 156 

CFP application amongst cooperatives under IF systems 157 

Intercropping was the most reported CFP (50%) in IF systems while agroforestry was the least 158 
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reported CFP (Figure 5). Improved soil quality was the most reported effect followed by enhanced 159 
water holding capacity and better pests, weeds, disease control. Other ecosystem services such 160 
carbon sequestration, pollination services, and biodiversity were not mentioned by any respondent. 161 
Economically, improved yield as a result of diversification under CFPs under this category recorded 162 
the highest number of respondents while reduced inputs due to interdependence of the farming 163 
system activities were mentioned second, followed by improved incomes and increased profitability 164 
(Table 5) .  165 

 166 

  167 
Figure 5; Respondents CFP application under Integrated Farming 168 

 169 
Table 5. Reported ecological and economic trade-offs of CFP’s under Integrated Farming systems  170 

n. = Frequency of effect among all respondents 171 

Effects  Trade-offs 
Ecological  n Economic  n Ecological  n Economic  n 

Improved soil 
quality   

3 
Improved 
yield 

13 
Soil rest, fertility loss, 
nutrient competition, 
 

5 
 

Management, 
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costly, high 
labour, land, 
capital 
 

10 
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water-holding 
capacity 

1 
Reduced 
input use 
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crops 
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Better pests, 
weeds, disease 
control 

1 
Improved 
incomes 

4   

Knowledge, 
skills, Not 
common system 
 
 

3 

  
Increased 
profits 

2      

Total  5  23  9  15 
 172 

4. Discussion 173 

Of the CFP’s studied here, application of compost was the single most applied CFP under OF in 174 
small holder cooperatives in Uganda. This corresponds to a study [17] which discovered that small-175 

0 2 4 6 8 10 12 14 16

Intercropping

Agrosilvopastoral

Agropastoral

Agroforestry



Sustainability 2020, 12, x FOR PEER REVIEW 9 of 18 

holder farmers’ perceptions and their understanding of the benefits of compost can increase its 176 
adoption rate. This is also because compost application by a large majority of respondents could also 177 
be due to local availability of cheap organic amendments [75]. More so, the high compost and manure 178 
combination rate by farmers also resonates with [73] who asserted that most composts are made of 179 
plant residues and manure as well as [74] who suggested organic amendments combinations for 180 
benefit maximization. Biochar has been widely documented including in studies from within Uganda 181 
such as [25] although implementation is still limited as shown in the results of this study. This is 182 
probably due to limited awareness, yet it can be easily produced locally [26] from the burnt on-field 183 
crop residues which is a common practice among small-holder farmers. Results showed that 184 
respondents are more aware about the soil fertility effect, also mentioned by [60], improved water 185 
holding capacity, mentioned by [43], enhanced microbial activity by natural organisms, enhanced 186 
pest, disease and weed control as argued by [52]. Although, the non-recognition of services like 187 
biodiversity and carbon sequestration calls for attention since they are of great significance in carbon 188 
farming and for reducing the GWP potential. This non-recognition could arise from the invisibility 189 
and intangibility of biodiversity and carbon sequestration as relevant parameters for production and 190 
climate mitigation and resilience. Unawareness hereof may potentially increase the risk of cropland 191 
expansion into forests which highly further threatens biodiversity [64]. Improved yield [76], 192 
increased profitability [41] as a result of improved incomes and reduced use of other inputs [77] as 193 
reported effects appeared more appealing and attractive to the respondents. Some studies that 194 
suggest that organic amendments lead to reduced yield [70] and are quite expensive to implement. 195 
More to this are the increments in economic resources surrounding organic amendments’ access, 196 
costs, transportation, bulky nature and labor intensity which are serious trade-offs that should be 197 
considered.   198 

A large percentage of the respondents implemented multiple CFPs under CF. This provides 199 
opportunities for enhancing ecosystem services [33]. This study shows that crop rotations was the 200 
most implemented CFP which contradicts the norm across most farms in the country where 201 
monocultures are grown on the same piece of land for long periods of time. The low use of crop 202 
residues by respondents is justified in residue burning while preparing farmland which is also a very 203 
common practice amongst smallholder farmers especially prior to the rainy season. Our study also 204 
confirms that CFPs enhance ecosystem services [27] through soil fertility increase [10], water holding 205 
capacity [8], weed pest and disease control [61] as validated by small holder farmers. These three 206 
most mentioned ecosystem services are directly tangible and related to output which results into 207 
economic viability inform through yield increase [27], increased profitability [55] and reduced use of 208 
inputs [31]. However, yield increment is claimed to be in form of small percentages that could 209 
compromise food security in the long run [79]. Chances of yield and income maximization are higher 210 
when CFPs are jointly applied [78] as most respondents in this study revealed. Consequently, other 211 
ecosystem services such as, carbon sequestration, biodiversity and pollination roles need to be a norm 212 
at farm level amongst smallholder farmers. 213 
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 The study revealed that most respondents were involved in mixed farming systems under 214 
IF and mostly practice the intercropping combination, agroforestry was the least applied. According 215 
to several experts, the big difference is probably due to the perceived non profitability of agroforestry 216 
systems by farmers on arable lands coupled with small pieces of owned land. In as much as [43] 217 
argued improved incomes for agroforestry systems, this is not evidently appealing to most 218 
respondents. A study by [38] suggested that agropastoral combinations are a default system among 219 
small holder settings. This assertion stands to resonate with common practice where smallholders 220 
rear among others: poultry, cows, goats, rabbits, pigs, fish on their farms. These livestock units are 221 
mostly not for commercial purposes. The economic effects of CFPs under IF clearly outweighed the 222 
ecological effects in this study in form of yield improvement [4], reduced input [58] and diversified 223 
incomes [43]. Yield increases up to 150% were reached compared to conventional agricultural 224 
systems [35]. The reduced use of input is arguably due to the interdependency of the farming systems 225 
and shareable inputs as suggested by some agropastoral respondents and [80].  226 

In contrast to OF and CF systems, the IF results show the improvements in soil fertility are an 227 
outcome of intercropping with leguminous crops [43] and agrosilvopastoral combinations [40]. 228 
Although little responses in terms of water holding capacity and pest, disease and weed control were 229 
reported in the IF category [11], other ecosystem services were still not reported. Perceived ecological 230 
trade-offs like nutrient loss were reported by most respondents due to nutrient competition on the 231 
same piece of land compared to respondents in support of soil fertility improvement. This could 232 
imply that CFP application under IF still lacks localized proof and scientific evidence for 233 
implementation in favor of ecological benefits [59]. The most economic trade-offs involved CFP 234 
application were in form of management complexities and high resources which connects with [40, 235 
10]. More to this are the knowledge requirements reported which are in relation to a recent study 236 
conducted in Uganda [81].  237 

Irrigation, nutrients, pest, disease and weed management during CFP implementation require 238 
proper attention before implementation across various farming systems because these are the 239 
ultimate determinants of sustainable farming systems. This study suggests that increased ecological 240 
benefits under combined CFPs although this requires increased economic investment which is not 241 
readily available for small holder farmers in cooperatives whose core focus is to earn a livelihood. 242 
Our study provides a basis for CFP application in cooperatives and on grounds of presented positive 243 
effects. As far as trade-offs portrayed herein are concerned, attention of great significance in specific 244 
contexts of implementation is needed. Since CFP application is quite labor intensive, this could 245 
promote more gender inequalities since women are the most involved in farm work compared to 246 
men [79]. This requires careful consideration for the community of practice and smallholder farmers. 247 
Our study focused on crop land management as a major production factor of the farming system and 248 
the interaction of the system components (Figure 6). Other GHG production factors such as; water 249 
use, energy use, labor, capital and other inputs of the farming system small holder households need 250 
consideration.  251 
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 252 
Figure 6: Illustration of how CFPs can contribute to a climate smart an agricultural farming system 253 

  254 

5. Conclusions 255 
In this study, the following CFPs were identified and categorized under three farming systems; 256 

compost, manure and biochar under organic, no/reduced till, crop residues, cover crops and crop 257 
rotations under conservation and intercropping, agroforestry, agropastoral and agrosilvopastoral 258 
under integrated farming systems. The main positive CFP ecological effects were carbon 259 
sequestration with varying sequestration potential. The main economic effect was increased yield 260 
which also varies per CFP, crop grown and farming system. The main trade-offs were increases in 261 
high investment requirements required for CFP application amongst small holder farmers 262 
cooperatives.  263 

From the field survey we found that compost and manure were the most applied CFPs (54%) 264 
under organic farming, multiple CFPs under conservation farming were applied most and 265 
simultaneously (32%) while intercropping was the most applied CFP (50%) under integrated farming. 266 
Dilemmas about right and consistent organic amendments quantities and supplies need to be solved 267 
in order to further advance the application of CFPs amongst crop cooperatives in Uganda. 268 
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