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• Manure application resulted in the in-
crease of erm(B) and tet(W), but not of
sul1.

• Soil gene decay in soils was dependent
on the type of ARG (erm(B) b tet
(W) b sul1).

• Soil texture affected gene decay in adja-
cent surface water (clay b peat b sand).

• Linear models predicted restoration of
ARG levels shortly after sampled
timeframe.
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Manure application can spread antimicrobial resistance (AMR) frommanure to soil and surfacewater. This study
evaluated the role of the soil texture on the dynamics of antimicrobial resistance genes (ARGs) in soils and sur-
rounding surface waters. Six dairy farms with distinct soil textures (clay, sand, and peat) were sampled at differ-
ent time points after the application of manure, and three representative ARGs sul1, erm(B), and tet(W) were
quantified with qPCR. Manuring initially increased levels of erm(B) by 1.5 ± 0.5 log copies/kg of soil and tet
(W) by 0.8 ± 0.4 log copies/kg across soil textures, after which levels gradually declined. In surface waters
from clay environments, regardless of the ARG, the gene levels initially increased by 2.6 ± 1.6 log copies/L,
after which levels gradually declined. The gene decay in soils was strongly dependent on the type of ARG (erm
(B) b tet(W) b sul1; half-lives of 7, 11, and 75 days, respectively), while in water, the decaywas primarily depen-
dent on the soil texture adjacent to the sampled surface water (clay b peat b sand; half-lives of 2, 6, and 10 days,
respectively). Finally, recovery of ARG levels was predicted after 29–42 days. The results thus showed that there
was not a complete restoration of ARGs in soils between rounds of manure application. In conclusion, this study
demonstrates that rather than showing similar dynamics of decay, factors such as the type of ARGand soil texture
drive the ARG persistence in the environment.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Antimicrobial resistance (AMR) is considered as one of themost sig-
nificant challenges to global public health (WHO, 2016). AMR is cur-
rently approached from a “One Health” perspective, which includes
exploring the occurrence of AMR in animals, humans, the environment,
and its transmission between reservoirs (One Health, 2019). The pres-
ence of antimicrobial resistance genes (ARGs) in manure, related to
the usage of antibiotics in veterinary practices (Hoelzer et al., 2017;
Topp et al., 2018), results in environmental contamination of manured
soils and surface water.

In the Netherlands, per year, approximately 1.6 million cows are
present in the dairy industry, and 57 million chickens in layer poultry
farming (de Greeff and Mouton, 2017), annually producing over 40.8
million tons of manure. While it is known that manure application in-
troduces antibiotics and other pharmaceuticals to soils (Heuer et al.,
2011; Jechalke et al., 2014) and can result in antimicrobial-resistant bac-
teria and ARGs entering the environment in soil and water systems
(Agga et al., 2015; Chee-Sanford et al., 2009), the contribution of the
soil texture to the spread of AMR to the environment has not yet been
thoroughly addressed. The soil texture (relative content of particles
from different size classes) comprises a set of physicochemical parame-
ters, which may interact in a non-independent manner. Whether by
protection against predation, limited organic carbon availability, or
other, the soil texture has proven effects on the survivability of fecal
bacteria in soils (Franz et al., 2014; van Veen et al., 1997) and on the
structure of the soil bacterial community (Blau et al., 2018; Girvan
et al., 2003). Thus, one can also assume that the soil texture will also
play a significant role on the fate of ARGs. Changes in soil bacterial com-
munities and resistomes have been studied after the application of dif-
ferent types of manure (Han et al., 2018; Zhang et al., 2017), of
different manure loads (Gou et al., 2018), or after multiple manure ap-
plications (Chessa et al., 2016; Wang et al., 2018). However, these stud-
ieswere performedundermicrocosm settings. Only a few recent studies
investigated the fate and transport of ARGs after manure application in
soils andwater runoffs simultaneously in field experiments (Fahrenfeld
et al., 2014; He et al., 2016; Joy et al., 2013; Luby et al., 2016; Muurinen
et al., 2017; Soni et al., 2015), and even fewer studies aimed to model
the spread of resistance (Baker et al., 2016; Volkova et al., 2013),
while no study so far addressed the role of soil texture in a field setting.

The soil resistome has been correlated with the microbial phyloge-
netic and taxonomic structure across soil textures, indicating that the
soil native bacterial composition is the primary determinant of the
ARG content in agricultural and grassland soils (Forsberg et al., 2014).
Additionally, recent field studies focus on changes in resistomediversity
after manure application measured with high-throughput qPCR (Chen
et al., 2019; Cheng et al., 2019; Pu et al., 2018; Xie et al., 2018a,
2018b), but this approach does not provide the quantitative data
needed to determine the fate of the different ARGs in the environment
in terms of decay rates.

This study analyzed the role of the soil texture on the dynamics of
AMR in soils and adjacent surface waters (runoff). To achieve this
goal, we (i) evaluated the impact of manure application on selected
ARG levels, over time, in manured soil and watercourses adjacent to
the soil; and (ii) tested the role of soil texture on the dynamics of ARG
decay in soils and surrounding surface water over time. Manure, soil,
and water samples were examined by qPCR to quantify β-lactam
(blaTEM), sulfonamide (sul1), macrolide (erm(B)), and tetracycline (tet
(W)) resistance genes levels. These ARGs were selected because they
represent resistance to themost consumed antimicrobial families in an-
imal health (de Greeff and Mouton, 2018; ECDC et al., 2017), and are
measured in manured soils worldwide (Blau et al., 2018; McKinney
et al., 2018; Tien et al., 2017). In this work, we focus on qPCR on a
large number of samples, as qPCR – in contrast to metagenomics or re-
sistance gene arrays which can generate data on a wide scale of resis-
tance genes – can provide information on the absolute gene
concentrations per g of soil which are needed to determine resistance
gene kinetics. We hypothesized that the soil texture would have a sig-
nificant impact on the decay rates of ARGs introduced bymanure appli-
cation in soils and water streams.

2. Materials and methods

2.1. Sampling locations and soil characteristics

In the Netherlands, manure application to soils is only permitted be-
tween February and August (spring and summer; RVO 2017). During
the rest of the year, cattle manure is collected and stored below the sta-
bles until the compartment's holding capacity is full, after which it is
transferred to a storage silo until the manuring season starts. The ma-
nure is then applied by injection, and no-tillage is performed. For this
study, six dairy farms were selected, each of which had distinct soil tex-
tures (clay, sand, or peat; Table 1). For the lastfive years before the sam-
pling campaign, the sampled fields had similar usage (grassland) and
fertilization rates (farmers' personal communication). In these farms,
the animals pasture during the day, but not in the parcels to which ma-
nure was applied. Farmers regularly perform soil analysis on their fields
every four to five years; however, the results were not available to us.
Therefore, the physicochemical properties of the soils were determined,
following standardized procedures (Eurofins Agro; Netherlands), and
detailed information about the soil characteristics can be found in
Table S1.

2.2. Sample collection

Sampling occurred from February to August 2017, during the ma-
nuring season. The manure samples were collected shortly before
being applied to the field (after mixing). Soil and water samples were
collected within one week before manuring (time point T0) and at de-
fined time intervals after manuring (1, 4, 7, 14, and 21 days, time points
T1, T2, T3, T4, and T5, respectively). In addition, never manured soil
samples from each soil texture (NM) were used as controls and were
collected from gardens nearby the sampled farms due to the inability
to find buffer or forest areas of the same soil types. Each sampling
cycle was repeated after each round of manure application, and oc-
curred 34–80 days after the previous round, except for the first round.
Composite soil samples were collected and prepared according to ISO
guidelines (ISO 10381-6:2009). Briefly, after walking the fields in a
“W” pattern, in which N25 grab samples of each field (0–10 cm soil
depth, 4–8 samples taken on the manure bands) were collected every
40 steps with a soil probe. To avoid an excess of plant biomass and rhi-
zosphere, the grass turfs were pushed aside by foot before collection
with the probe. The manure bands were visible until two weeks after
manure application. After collection, the soil was homogenized with a
regular 3-prong gardening tool and enclosed in plastic zip-lock bags.
Water sampleswere collectedwith sterile 2-L bottles, from the adjacent
discharge ditch (closed and independent systems). Because the drain-
age pipes ended below the ditch water surface, the water samples
were collected as close as possible to the drainage pipe exit, except
the first round of farm F01, whichwas collected directly from the drain-
age pipe. All samples were kept on ice during transport and were proc-
essed for E. coli enumeration within 24 h and stored at −20 °C before
DNA extraction and further chemical analysis.

2.3. E. coli enumeration

Manure samples (10 g) were homogenized in a blender with 10 mL
of sterile saline solution (0.85% NaCl, m/v) and were diluted before
being plated on Tryptone Bile X-glucuronide (TBX) agar media (Oxoid,
UK). Soil samples (100 g) were homogenized for 1 min with 100 mL
sterile saline solution and then diluted 10-fold. The homogenate and di-
lution were plated on TBX, in duplicate, and incubated. Volumes of 1, 3,



Table 1
Characteristics of the farms included in the study.

Farm code Soil texture Clay (%) Silt (%) Sand (%) Org. matter (%) Nr. animals Manure applied (tons/ha) Area (ha)a

Round 1 Round 2 Round 3

F01 Clay 18 32 45 4,8 700 32 25 – 5,0
F02 Clay 35 41 9 14,6 200 30 – – 8,7
F03 Sand 5 15 70 10,3 340 30 15 – 1,7
F04 Sand 2 10 79 8,6 100 25 15 15 1,0
F05 Peat 36 28 17 19,3 120 40 10 – 7,0
F06 Peat 31 34 9 25,1 400 30 20 15 10,0

Footnote Note: Even though the chemical analysis of the farm F05 classified it as clay, the previous analysis performed by the farmers indicated that its soil texture was peat. Similarly, the
analysis classified the farm F01 as loam, but the previous analysis indicated that its texture is clay.

a Estimated via https://boerenbunder.nl.
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10, 30- and 100-mL of ditch water were filtered through 0.45 μm pore
cellulose nitrate membranes (Merck-Millipore, USA), and filters were
placed on TBX. All plates were prepared in duplicate and were incu-
bated between 16 and 24 h at 37 °C before counting. Bacterial enumer-
ation was calculated according to ISO guidelines (ISO 8199:2018).
Briefly, the final bacterial concentration (CFUs/kg or L) resulted from
the sum of the total CFUs obtained in a sample divided by the total
amount of the same sample tested. The limit of quantification (LOQ)
was calculated by assuming a count of 10 CFUs in the highest volume
of the original sample.

2.4. DNA extraction and qPCR

Total DNA extracts were obtained from 200 mg of manure with the
QIAampDNAStoolMini Kit (QIAGEN, Germany), 250mgof soilwith the
FastDNA™ Spin Kit for Soil (MP Biomedicals, USA), and 100mL of water
samples with the DNeasy® PowerWater® Kit (QIAGEN), in triplicate.
The water samples were filtered through 0.22 μm pore PVDF filters
(Merck-Millipore, USA) prior to DNA extraction. At each sampling
cycle, an internal standard was spiked in at least one sample type
from each farm to assess the DNA extraction efficiency (Fig. S1). The
spike consisted of 50 μL containing 6.34 × 106 gene copies of a synthetic
blue fluorescence protein as a 720 bp DNA fragment (BFP; gBlocks; IDT
technologies, Belgium) added at the first step of the extraction proce-
dure, before cell lysis. As the after-lysis recoveries were comparable
within soil and water samples (Fig. S1), the concentrations were not
corrected for after-lysis recovery, and no lysis efficiency was measured.
DNA extraction proceeded according to the manufacturer's instructions
with one adaptation, which consisted of adding or adjusting the bead-
beating step with Precellys Evolution (Bertin Instruments, France) for
enhanced cell lysis. DNA quantification was performed using Quantus
Fluorometer (Promega, USA) according to the manufacturer's protocol,
and checked for purity with NanoDrop 1000 Spectrophotometer
(Thermo Fisher Scientific, USA).

The 16S rRNA gene and the selected ARGs were quantified by qPCR
in a CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad, USA).
Each qPCR reaction contained 1× iQ™ SYBR Green Supermix (Bio-
Rad), 300 mM of both forward and reverse primers (except for ermB
and blaTEM where 400 mM was used), 2 μg of bovine serum albumin
(BSA; Thermo Scientific, USA), and 2 μL of 10-fold diluted DNA
(1–10 ng), in a final volume of 20 μL (Table M2). The following thermal
cycling conditions were applied: 95 °C for 10 min (1 cycle); 95 °C for
15 s, 60 °C for 1min (except for sul1, which required 65 °C), in 40 cycles.
Samples were tested with a standard curve ranging between 10−3–
10−7, or 10−5–10−9 target copies of standardized gene fragments
(gBlocks) for the 16S rRNA gene, or ARGs, respectively, and non-
template controls for each run. Cut-off values were calculated based
on the lowest amount of genes included in the calibration curve of all
plates. All calibration curves had a signal intensity of N2 ct difference
to the non-template controls (only for 16S rRNA gene, other genes did
not show amplification in non-template controls). The average of ct
obtained from this point across all plates was taken, and the standard
deviation added to it. Melting curves were performed to confirm the
specificity of each reaction, starting at 65 °C with successive increments
of 0.5 °C, up to 95 °C. Quantifications for each extract was performed in
duplicates, following the Standard Curve method described elsewhere
(Brankatschk et al., 2012). Possible qPCR inhibition was verified by
quantifying the 16S rRNA gene using 10-, 100-, and 1000-fold diluted
extracts. The primer sets and concentrations used in this study can be
found in the supplemental information (Table S2). Predicted values
were estimated based on the average ARG concentration in manure
and soil previous to amendment, on the amount of manure applied
and soil sampled (top 10 cm) per hectare, and on assumed densities
of 1.0 and 1.5 kg/dm3 for manure and soil, respectively.

2.5. Data analysis

For the comparison of gene levels (log copies/kg soil) before and
after manuring, outcome variables were tested for normality, and
when verified, an analysis of variance (ANOVA) was applied, using
Tukey post-hoc analysis.Whennormalitywas not achieved, group com-
parison was performed using the equivalent non-parametric test
(Kruskal-Wallis). For analysis of decay rates of gene levels (log copies/
kg soil), linear mixed models were used treating the farms and the
rounds of manuring as random effects. Because higher gene levels
were observed at T2 than at T1, the first three days (i.e., T0 and T1)
after manure application were excluded from the models for soil and
water models. Relevant factors were identified through model reduc-
tion. The full model included the following variables as fixed effects:
days after manure application (4–21 days), gene type, the soil texture,
the amount of rain, the interaction between days after manuring and
soil texture, and interaction between days after manuring and gene
type. Resulting models were inspected for normality of residues, and
significance scores of p b 0.05 were considered for all performed tests.
The half-liveswere calculated based on the slope of themodels. The sta-
tistical analyses were performed with R version 3.5.1 (R Core Team,
2020) and RStudio (Version 1.1.456; https://www.rstudio.com/) using
the software packages dplyr (Wickham et al., 2015), tidyr (Wickham
and Henry, 2019) and reshape2 (Wickham, 2007) to trim, clean, and
transform data; lme4 (Bates et al., 2015), lmerTest (Kuznetsova et al.,
2017), and MuMIn (Barton, 2018) to create the models; Rcmdr (Fox,
2005), and sjstats (Lüdecke, 2019) to perform the group comparisons;
and ggplot2 (Wickham, 2016) to produce the graphs.

3. Results and discussion

3.1. Gene identity determines ARG persistence in soil fertilized with dairy
manure

In this study, ARG levels were measured to understand the role of
manure and soil type on the persistence of AMR in grasslands and adja-
cent watercourses after manure application. Across soil textures, a

https://www.rstudio.com/
https://boerenbunder.nl
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significant increase of erm(B) and tet(W) was observed directly after
manuring (Fig. 1), followed by a gradual decrease, while sul1 levels
remained roughly constant throughout time (Fig. 2). Overall, the
decay rates differed between genes, but the soil textures did not affect
resistance gene decay rates. blaTEM was only incidentally detected in
the manure samples used in the first round of manuring from farms
F01 and F05 (8.75 and 8.83 log copies/kg, respectively). Thus, it was ex-
cluded from further analysis.

The erm(B) levels increased significantly after manuring (p b 0.01).
After being transported from manure (manure concentrations
10.25–11.30 log copies/kg; Table S3) and reaching its highest concen-
trations in soils, erm(B) decreased by roughly −0.05 log copies/kg per
day across soil textures (t1/2 = 7 days; Table 2; p b 0.01), as predicted
from linear mixed models that were used to relate the gene decay to
soil texture and gene identity (Table 2). These findings are corroborated
by Tien et al. (2017), who found an identical reduction of this ARG in soil
30 days after manure application. In the present study, erm(B) levels in
soils immediately after manuring differed between the rounds of ma-
nure application, but ARG decay was identical.

Moreover, erm(B) was not detected in never-manured soils (NM),
nor before the first spring manure amendment (T0; Fig. 1). Recently, it
has been found that erm(B)was only detected in soils amendedwith ei-
ther pig or cattle manure, and not in soils that either received chemical
fertilizer or were not fertilized (Peng et al., 2017). Others were able to
detect erm(B) in composite and band samples of manure-injected
soils, but not between the manure bands of the same soils (Luby et al.,
2016). This suggests that erm(B) is mainly introduced to soils via ma-
nure application, and our findings support this hypothesis. According
to the Comprehensive Antibiotic Resistance Database (CARD) (Jia
Fig. 1. ARG concentrations in soil samples that were never manured (NM), and before (T0)
application systems. Predicted values were estimated based on the average ARG concentratio
sampled, and on assumed densities of 1.0 and 1.5 kg/dm3 for manure and soil, respectively
determined based on the experimentally defined cut-off values for qPCR (7.78, 7.85, and 7.82
represent the number of DNA replicates above the LOQ used to calculate the represented a
between each time point.
et al., 2017), erm(B) is often found in Gram-positive bacteria, namely
in Enterococcus spp. and the obligate anaerobic Clostridium spp., which
are common manure microbiota (Hodgson et al., 2016; Leclercq et al.,
2016). The relatively fast decay of erm(B) could be related to the decline
of Clostridia, as they are less fit to thrive in aerobic soil habitats
(Pourcher et al., 2007).

Despite being found in manure (10.20–10.83 log copies/kg), and in
contrast to erm(B) findings, tet(W) was present in NM samples and at
T0 (Fig. 1) and showed a slower decay rate than erm(B) (t1/2 =
11 days; Table 2). This finding is in accordance with recent publications
(Fahrenfeld et al., 2014; McKinney et al., 2018), where tet(W) could be
quantified in soils before manure application, but at higher levels than
the ones described here. However, in two studies focusing on the prev-
alence of ARG after long-term manure application (Li et al., 2017; Peng
et al., 2017), tet(W) was not found in the non-manured soils used as
controls. A similar decay of tet(W)was found 20 days after the applica-
tion of poultry litter in untilled soils (Cook et al., 2014), and after the ap-
plication of cattle manure in soils with different pastures (Kyselková
et al., 2015), although in these studies fewer time points were mea-
sured. In one of those long-term studies, where soils were continuously
applied with different manures for 30 years (Peng et al., 2017),
Firmicutes, Gammaproteobacteria, and Bacteroidetes were found posi-
tively correlated with most of the ARGs, including tet(W). These phyla
represent bacteria commonly found in the gut, whose adaptability to
agricultural environments (e.g., manure, soils) differs – Clostridia and
Bacteroidetes represent obligate anaerobes that will quickly die-off in
mostly aerobic soils, in contrast to Bacilli. Given this condition, the rela-
tively moderate decay rate of tet(W) could be explained by the survival
potential of its host bacteria. Recently, different bacterial hosts have
and after (T1) manure application on farms using different manure types and manure
n in manure and soil previous to amendment, on the amount of manure applied and soil
. The horizontal dashed bar represents the limits of quantification (LOQ), which were
log copies/kg of soil, for sul1, erm(B), and tet(W), respectively). Values between brackets
verages. a, b, c Indicate significantly different groups (p b 0.05) of gene concentrations



Fig. 2. ARG level in soil samples after manure application in farms from different soil textures.
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been associatedwith single types of ARGs (Stalder et al., 2018), reinforc-
ing the argument that the bacterial hosts can vary greatly, and that fate
of genes will depend to a large extent on the fate of host bacteria. An al-
ternative hypothesis would be that the application of manure, and its
organic compounds and other components, could stimulate the soil bac-
terial communities that carry the targeted ARGs (Udikovic-Kolic et al.,
2014; Xie et al., 2018a), thus contributing to the maintenance (slow
Table 2
Bestmodels for soil andwater samples in farmswith different soil textures (excl. 0–3 days
after manuring).

Sample
type

Explanatory factor Estimate (log/kg or
log/L)

Std.
error

p-Score

Soil (Intercept) 9.6 0.19 b0.01
Gene decay per day −0.05 0.01 b0.01
tet(W) −0.5 0.1 b0.01
sul1 −0.5 0.1 b0.01
Soil texture: sand −0.4 0.2 0.09
Soil texture: peat −0.0 0.2 0.99
Rainfall 0.04 0.01 b0.01
Interaction: days and tet
(W)

0.02 0.01 0.08

Interaction: days and sul1 0.04 0.01 b0.01
Water (Intercept) 7.8 0.5 b0.01

Gene decay −0.15 0.02 b0.01
tet(W) −0.26 0.25 0.29
sul1 −0.4 0.2 0.01
Soil texture: sand −1.7 0.7 0.04
Soil texture: peat −1.7 0.7 0.03
Rainfall 0.04 0.02 0.01
Interaction: days and tet
(W)

0.04 0.02 0.07

Interaction: days and sul1 0.05 0.01 b0.01
Interaction: days and sand 0.12 0.03 b0.01
Interaction: days and peat 0.10 0.03 b0.01
decay) of the ARGs. This might be particularly relevant for the case of
tet(W) since it was detected before manure application (T0) and in
NM samples.

The sul1 genewas present inmanure (9.33–11.96 log copies/kg), but
did not increase after manure application, and consequently, the decay
rate was the lowest of the targeted ARGs in this study (−0,01 log units
per day; t1/2 = 75 days; Table 2; p b 0.01). The constant levels of sul1
(Fig. 2; p = 0.15) can be explained by the high prevalence of this ARG
in soils previous to manure application (NM and T0; Fig. 1), which con-
firms the ubiquity of sul1 in the environment (Gillings et al., 2008). Re-
cently, Wang et al. (2017) also observed that sul1 had the lowest decay
rates in manure-amended soil microcosms, over 96 days. Nevertheless,
that decay rate was calculated based on the ARG relative abundance
(ARG copies/16S rRNA copies), which limits the comparison with the
results of this study. However, in contrast to our findings, during a mi-
crocosm study where manure, with and without antibiotics, was ap-
plied to different soil textures (Heuer and Smalla, 2007), an increase
of sul1 in both soils was observed after manure application, and after
32 days, the sul1 levels had decreased close to 1 log, which
corresponded to a much higher decay rate than in the current study
(roughly−0.03 log units per day). In other field studies, the sul1 levels
after application of dairymanure were similar to the ones in the current
study, even though it was increased after manuring (Munir and
Xagoraraki, 2011; Nõlvak et al., 2016). Increases of sul1 after manuring
were also observed by (McKinney et al., 2018).

Furthermore, the results showed that in most cases, there was not a
complete recovery of soil resistome fromone round to the next. Accord-
ing to the model-predicted decay rates, it would take on average
42 days (47 and 33 days in round 1 and 2, respectively) for the levels
of erm(B) to decrease to the LOQ levels before manure application in
clayey soils. In sandy soils, themodel predicted that it would take an av-
erage of 29 days for erm(B) levels to decrease back to original levels,
while in peaty soils, erm(B) levels were predicted to decrease to LOQ
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in roughly 40 days. Similar trends were also found for tet(W), as it
would take on average 38, 36, and 37 days for the tet(W) levels to de-
crease to the levels found before the first application of manure in
clayey, sandy, and peaty soils, respectively. As the pasture soils are
often repeatedly manure-fertilized after 34–80 days, soil resistance
levels do not recover entirely between manuring rounds. Decay at
later timepoints might be related to the input of fresh manure from
grazing cows.

In contrast to gene identity, the soil texture did not affect gene decay
rates in soil samples. This was shown in the linear mixed models by
non-significant interactions between soil texture and time after manur-
ing, and from the fact that this interaction was not included in the final,
best models after model reduction (Table 2). It was initially hypothe-
sized that the soil texture would play a significant role in the fate of
ARGs in manure-amended soils. The fate of added microorganisms can
vary with soil texture, as shown for E. coli, for which survival was
lower in organically managed sandy soils (Franz et al., 2005). Recently,
it has been found that physicochemical properties, such as heavy
metals,moisture content, and organicmatter, can affect thedecay kinet-
ics of someARGs in soils (Sui et al., 2019). However, according to the re-
sults observed in this study, the type of ARG rather than the texture of
soil was the determining variable affecting the decay of the measured
ARGs (Table 2). This discrepancy might indicate that the fate of the re-
sistance gene host and the background of resistance genes has stronger
effects than the soil textures. Additionally, the rhizosphere might also
contribute to the maintenance of the gene in soils as it is a known
hotspot for horizontal gene transfer because they promote the occur-
rence of high densities of active cells (Jechalke et al., 2013; Kopmann
et al., 2013; Van Elsas et al., 2003).

E. coli is commonly used as an indicator organismof fecal contamina-
tion, and it was tested to evaluate whether fecal bacteria would be able
to remain viable in manured soils throughout the sampling time frame,
complementing resistance gene measurements, which also detect
genes from dead cells posing smaller public health risks. E. coli was
only detected after manure application (except in round 3 of farms
Fig. 3. ARG level in water samples after manure ap
with peaty soil), and although no clear survival trends were observed,
E. coli was more abundant at round 2, and it was still quantifiable
three weeks after manuring in all soil types, except in farms with
sandy soils (Fig. S2).

Rainfall had an overall increasing effect on the levels of ARG found in
soils according to the linear mixed models (Table 2). Rainfall has been
linked to the transport of erm and tet genes in agricultural runoffs (Joy
et al., 2013; Soni et al., 2015), supposedly through mobilization from
the upper soil fraction through infiltration and surface transportation.
Also, the shorter survival of E. coli has been found in soils with higher
moisture content (Oliver et al., 2006; Rothrock et al., 2012). Given
this, one would assume that the ARG levels in topsoil would decrease
after rainfall; however, that was not the case. On the other hand, the
water content of a soil microcosm set-up had a negligible effect on the
decay of ARGs (Sandberg and LaPara, 2016). Also, the findings of this
study are consistent with the findings of Joy et al. (2013), where the
levels of erm and tet genes increased in the top manure-broadcasted
soils even after three rainfall events. This increase is likely to be due to
the dissemination of the manure bands in the field caused by the rain-
fall, making it more homogeneous, but it can also be due to ARG-
carrying bacterial growth.

3.2. Soil texture determines ARG persistence in water

In the ditch water samples, the rates of the ARG decrease (i.e., slope)
were similar within the same soil texture, regardless of the ARG (Fig. 3).
The ARG levels decreased quicker in ditches than in soil: by roughly
−0.15 (t1/2 = 2 days; p b 0.01), −0.03 (t1/2 = 10 days; p b 0.01),
and − 0.05 (t1/2 = 6 days; p b 0.01) log copies / L per day in clay,
sand, and peat, respectively (Table 2).

ARG transport from thefields to the ditches can dependon rainfall as
well as on the strength of bacterial and gene sorption to soil particles,
which in turn can depend on the soil type. Here, water samples from
two clayey soils showed to have the highest ARG decline. This might
be related to rainfall-induced transport of ARG to the ditches shortly
plication in farms from different soil textures.
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after manure fertilization: on two of the three sampling occasions in
clayey soils, N8 mmprecipitation per day occurred shortly after manur-
ing. As the permeability of clay particles is low (Schramm et al., 1986),
surface run-off from clay might, therefore, have resulted in peaks of re-
sistance genes in the receiving water early on. On the other hand, high
levels of ARGs have also been found in farm F01 in round 1 in water, al-
though this represented the only water sample taken at the outlet of a
drainage pipe and, therefore, representing soil infiltrate. Thus, in clay
soils, infiltration is another mechanism of transfer to adjacent ditches
next to surface run-off, in contrast to high sorption of bacteria (Cho
et al., 2016; Pachepsky et al., 2006) and nucleic acids (Ogram et al.,
1988) to clayey soils. Arguably, even though the water ditches were
surrounded solely by fields owned by one farmer, adjacent soil parcels
owned by the same farmer can follow a different manure application
cycle, possibly leading to additional leaching into the sampled ditches.
It should be noted that the ARG persistence within ditches depends on
hydrological parameters that determine the dilution of soil run-off,
such as flow and volume of ditches, which were not recorded in this
study.

4. Conclusions

In thisfield study, the role of the soil texture on the dynamics of AMR
in soils and adjacent surface waters was addressed. Overall, this study
demonstrated that the persistence of the measured ARGs in soils dif-
fered, and largely depended on the type of gene. The descending
decay rates (sul1 N tet(W) N erm(B)) were related to the level of the
ARG prior to manure application and possibly influenced by the differ-
ent survival capabilities of the bacteria hosting these ARGs in soils.
Nonetheless, in water samples, the texture of soil to which manure
was applied determined the persistence of the targeted ARGs
(clay b peat b sand), thus affecting the fate of AMR in the environment.
Finally, ARG levels were predicted to recover to levels before manure
fertilization after 29–42 days of manure application, i.e., do not recover
between rounds of manure application. To conclude, this study demon-
strates that rather than showing similar dynamics of decay, factors such
as the type of ARG and soil texture drive the ARG persistence in the
environment.
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