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Abstr act

The sensitivity of tropical forest carbon to climate igey uncertainty in predicting global climate
change. While short-term drying and warming are known toctripaests it is unknown if such effects
translate into long-term responses. Here we analyse 590 mpamtpots measured across the tropics to
derive the equilibrium climate controls on forest carboaxihum temperature is the most important
predictor of aboveground biomass (-9.1 Mg C t@%), primarily by reducing woody productivity, and
with a greater rate of decline in the hottest forests (>32)20ur results nevertheless reveal greater
thermal resilience than observations of short-term wandmply. To realisethe long-term climate

adaptation potential of tropical forests requires botheptintg them and stabilising tiarth’s climate.

One sentence summary. Biome-wide variation in tropical forest carbon stocks andadyins shows

long-term thermal resilience.
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Main text

The response of tropical terrestrial carbon to environmehéaige is a critical component of global
climate models (1). Land-atmosphere feedbacks depend on theebalgnusitive biomass growth
stimulation by CQfertilisation (i.e. ) and negative responses to warmer temperatures and any

change in precipitation (i.e. y). Yet the climate response is so poorly constrained that it remains one of
the largest uncertainties in Earth system models (2, 3), dttetmperature sensitivity of tropical land
carbon stocks alone differing by > 100 Pg C #@nong models (2). Such uncertainty impedes our
understanding of the global carbon cycle, limiting our abititgimulate the future of the Earth
system under differembng-term climate mitigation strategies. A critical longatezontrol on tropical
land-atmosphere feedbacks is the sensitivity to climate (y) of tropical forests, where c. 40 % of the

world’s vegetation carbon resides (4).

The sensitivity to environmental change of tropical biomadsocestocks, their rate of production
and their persistence, can all be estimated by relatingsthat-term and inter-annual responses to
variation in climate (5-7). These sensitivities are thegduto constrain longer-term projections of
climate responses (23uch approaches typically find that higher minimum tempermnestrongly
associated with slower tree growth and reduced forestcatboks, likely due to increased
respiration at higher temperatures (7-9). Tropical forest nagbalso sensitive to precipitation (10)

with, for example, elevated tree mortality occurringinigidrought events (11)

Yet the sensitivity of ecosystems to inter-annual fluaeumatmay be an unreliable guittetheir
longer-term responses to climate change. Such responses witlaalafiuenced by physiological
acclimation (12), changes in demographic rates (13), and shiffgecies composition (14). For
example, both respiration and photosynthesis can acclimatesusiamed temperature increases
(15-17), and tropical trees exhibit physiological plasticity @&) shifts in species composition (14)
under sustained drought. These processes could mean thatl tfopsts are less sensitive to climate
than estimates derived from inter-annual variability imply.alternative, complimentary approach to
assessing sensitivity to climate is to measure and analysa spaiation in tropical ecosystems
across climate gradients as a space-for-time substitutich. ISome-wide spatial variation in forest

8
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carbon stocks, fluxes and persistence offers a unique aadylamexplored window into the potential
equilibrium sensitivity of tropical forest vegetation tanming, as it captures real-world vegetation

responses that allow for physiological and ecological adaptdt&n (

To assess the long-term climate controls on tropical foresttrand carbon stocks, here we have
assembled, measured, and analysed a pan-tropical netiAs®R permanent, long-term inventory
plots (Fig. 1, see Figs. S1-2 for ability to capture bionmeatie space). Our analysis combines
standardised measurements from across South AmericaramfAsian and Australian tropical
lowland forests (273, 239, 61 and 17 plots respectivEly) every plot we calculated aboveground
carbon stocks (19). Then, to better assess the dynamic camratoveground carbon stocks, we
also computed the rate of carbon gained by the system (abomdgrmody carbon productipn
calculated as tree growth plus newly recruited trees, in Mg*@r?), and the carbon residence time

in living biomass (calculated as the ratio of living C ssotkC gains, in years).

We find considerable variation in biomass carbon among coisineith lower stocks per unit are
in South America compared with the Paleotropics even afwounting for environmental variables
(Fig. 1). Continents with high carbon stocks had eithgelaarbon gains (Asia), or long carbon
residence times (Africa, Fig. 1). Because of these diffeamong continenta/hich are potentially
due to differences in evolutionary history (20), we anatlygeeenvironmental drivers of spatial
variation in carbon stocks while accounting for biogeograpHiffarences. We fitted linear models
with explanatory variables representing hypothesised améstic controls of climate on tropical
forest carbon (Table S1). We also included soil covariateginent intercepts and eigenvectors

describing spatial relationships amongst plots to account for sheces of variation (21).

Forest carbon stocks were most strongly related to maximonperature (-5.9 % per 1°C increase in
maximum temperature, 95 % CI = -8.6 to -3.1 %, Fig. 2ivedgnt to -9.1 Mg C h&°C™* for a stand
with the mean carbon stocks in our dataset, 154.6 Mg™[; followed by rainfall (+2.4 % per 100
mm increase in precipitation in the driest quarter, 951% @6 4.3 %, Fig. 2, equivalent to 0.04
Mg C ha' mm* for a stand with the mean carbon stocks in our datas#t)nw statistically
significant relationship with minimum temperature, wind sparedoud cover (Fig 2). The effects of

9



67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

Sullivan et al. Thermal sensitivity of tropical forests

maximum temperature and precipitation are also evidemt analysis considering a wider suite of
climate variables than those tied to hypothesised mechau@#Sg S3), and in an additional
independent pantropical dataset of 223 single-census plots (for gdrtobn gains and residence time

cannot be assessed, Fig. S4).

The negative effect of maximum temperature on abovegraantaic stocks mainly reflects reduced
carbon gains with increasing temperature (-4.0 % per 1°C,®5%6.2 to -1.8 %, Fig. 2) while the
positive effect of precipitation emerges through longer carésidence times with increasing
precipitation in the driest quarter (3.3 % per 100 mm, 95 % @9 5.7 %, Fig. 2). Carbon

residence time also increased with the proportion of clélyarsoil (Fig. 2). The additive effects of
precipitation and temperature on carbon stocks werefiaddly an interaction between them (A AIC

= 15.4 comparing full linear model with or without interactiomith temperature effects more
negative when precipitation is low (Fig. S6). The intemactwas through shortening carbon residence
time (A AIC = 11.9) rather than reducing carbon gains (model without interaction better, A AIC =

1.4).

An alternative analysis using decision tree algorithms (22)salswed maximum temperature and
precipitation to be important (Fig. S7). This decision &geroach, which can capture complex non-
linear relationships (22), indicated potential non-linearityharelationships between carbon stocks
and both temperature and precipitation, with the posétifert of increasing dry season precipitation
on residence times strengthening when precipitation was lowhantkgative effect of maximum

temperature intensifying at high temperatures (Fig. S7).

We further investigated non-linearity in the temperatuiaiasship using breakpoint regression
(supported over lineaegression based on lower AIC, A AIC = 15.0), which revealed that above 32.2
°C (95 % CIl = 31.7 32.6 °C) the relationship between carbon stocks and maxtemperature
became more negative (cooler than breakpoint: -3.8 W&rmer than breakpoint: -14.7 %*C
Fig. 3). By partitioning carbon stocks into their productiod persistence we find that this non-
linearity reflects changes to carbon residence time (A AIC = 10.6) rather than gains (A AIC = 1.7).
Overall, our results thus indicate two separate climate dsrnocarbon stocks: a negative linear

10
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effect of maximum temperature through reduced carbarsgand a non-linear negative effect of
maximum temperature, ameliorated by high dry-seasoiipjiegon, through reduced carbon

residence time.

The effect of temperature on carbon residence time ondyges when dry season precipitation is low
so is consistent with theoretical expectations that negeiftigets of temperature on tree longevity are
exacerbated by moisture limitation, rather than being indepentiégrand due to increased

respiration costs alone (23). This could occur through highuwagpessure deficits in hot and dry
forests increasing mortality risk by causing hydraulic stress2@3or carbon starvation due to

limited photosynthesis as a result of stomatal closure (23)bNothe temperature-precipitation
interaction we find for aboveground stocks is in the oppdgieetion to temperature-precipitation
interactions reported for soil carbon. In soils, moisturdtdition suppresses the temperature response
of heterotrophic respiration (25), while in trees moisturetéittin enhances the mortality risks of

high temperatures.

The temperature effects on biomass carbon stocks and gaipsraarily due to maximum rather

than minimum temperature. This is consistent with highicleeytemperatures reducing €O
assimilation rates, for example due to increased photoagispi or longer duration of stomatal

closure (26, 27), whereas if negative temperature effectstavbigve increased respiration rates there
should be a stronger relationship with minimum (i.e. nighe}itemperature. Critically, minimum
temperature is unrelated to aboveground carbon stocks bwotingpécally and in the one continent,
South America, where maximum and minimum temperatuéaagely decoupled & 0.33; Fig. S8)
While carbon gains are negatively related to minimum &eatpre (Fig S9) this bivariate relationship
is weaker than with maximum temperature, and disappeaestivaeffects of other variables are
accounted for (Fig. 2). Finally, in Asia, the tropioegion which experiences the warmest minimum

temperatures of all, both carbon stocks and carbon gaifghest (Fig. 1, Fig. S11).

Overall our results suggest that tropical forests have consid@a@telatial to acclimate and adapt to
the effects of night-time minimum temperatures, but a@rlglsensitive to the effects of daytime
maximum temperature. This is consistent with ecophysiabgloservations suggesting that the

11
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121  acclimation potential of respiration (15) is greater e of photosynthesis (17Jhe temperature

122 sensitivity revealed by our analysis is also considerably weéladershort-term sensitivities

123 associated with inter-annual climate variation (8). &ample, by relating short-term annual climate
124  anomalies to responses in plots, the effect of a 1°Cagerim temperature on carbon gains has been
125 estimated as more than three-fold our long-term, panabgsut (28). This stronger long-term

126  thermal resilience is likely due to a combination of indivicaglimation and plasticity (15-17)

127  differences in species’ climate responses (29) leading to shifts in community composition due to

128  changing demographic rates (12) and the immigration of speitresigher performance at high

129  temperatures (12).

130  Our pantropical analysis of the sensitivity to climate lmbeground forest carbon stocks, gains and
131  persistence shows that warming reduces carbon stocks andrgaingdody productivity. Using a
132 reference carbon stock map (30) and applying our estimatg@etatare sensitivity (including non-
133 linearity) while holding other variables constant leads teveamtual biome-wide reduction of 148
134  Cinlive biomass (including scaling to estimate carbomits) for a 1°C increase in maximum

135  temperature (95 % CI = 6:920.7 Pg). This compares with a large range of projectesitsdties in
136  the subset of coupled climate carbon cycle models that repotatiegecarbon (1 58 Pg CC?),

137  although we note that these models have not been run tibeaquil (see SI Methods).

138  Our results suggest that stabilising global surface temperatl2&S above pre-industrial levels will
139  cause a potential long-term biome-wide loss of 35.3 Pg C (95%@2019- 49.0 Pg, estimates with
140  alternative baseline biomass maps 242B.4 Pg, Fig. S12). The greatest long-term reductions in
141  carbon stocks are projected in South America, where basetiperatures and future warming are
142  both highest (Fig. 4, Fig. S13). This warming would push 71 %eobtome beyond the thermal
143 threshold- maximum temperature of 32.2°Gwnhere larger long-term reductions in biomass are
144  expected (Fig. S14). Of course, growth stimulation by carbmdid (31) will partially or wholly

145  offset the effect of this temperature increase, dependibgttnthe level of atmospheric carbon
146  dioxide that limits warming to 2°C above pre-industrial levelsthrdertilization effect of this

147  carbon dioxide on tropical trees. Although £fertilisation is expected to reduce temperature induced

12
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carbon losses from biomass across the tropics (Table S3), dysisnaicates that C£fertilisation

is not enough to offset long-term temperature induced cdobsas within Amazonia (Fig. S15).

The long-term climate sensitivities derived from our panitaddield measurements incorporate
ecophysiological and ecological adaptation, and so provide iamgsbf the long-term, quasi-
equilibrium, response of tropical vegetation to climate Mite that this thermal adaptation potential
may not be fully realised in future responses because Epted of temperature rises may exceed
species’ adaptive capabilities, (ii) habitat fragmentation may limit species’ ability to track changes in

the environment, and (iii) other human impacts such as loggithdire& can increase the vulnerability
of forest carbon stocks to high temperatures. While mamjctl forests are under severe threat of
conversion, our results show that, in the long-run, tropical #that remain intact can continue to
store high levels of carbon under high temperatures. Achievirgdhee-wide climate resilience
potential we document depends on limiting heating and on taejde-conservation and restoration to

protect biodiversity and allow species to move.
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419  Figure 1. Spatial variation in tropical forest carbon. (A) Our pletwork. Filled symbols show multi-census plots used in the maiysi)apen symbols
420 show single-census plots used as an independent dataset. (BpWamiaarbon among continents. Boxplots show raw variatiotevahiie points show

421  estimated mean values (x SE) after accounting for envinotaineéariation. Letters denote statistically significant défees between continents (P < 0.05)
422  based on raw data (black) or accounting for environmefieate (blue, square brackets).
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Figure 2. Correlates of spatial variation in tropical forest cartwints show coefficients from model-averaged general linearlsnigiables that did not
occur in well-supported models are shrinkage adjusted towasCaefficients are standardised so that they represangehn the response variable for
one standard deviation change in the explanatory variable. lizr® show standard errors (thick lines) and 95% confidebtemvats (thin lines). Sail texture
is represented by the percentage clay, and soil feftyityation exchange capacity. The full models explained 44.1 %%3a”d 30.9 % of spatial variation
in carbon stocks, gains and residence time respectivedffi€ients are shown in Table S2. Results are robust to usirtgeamasive allometry to estimate
tree biomass (Fig. S5).
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pan-tropical relationships accounting for environmental catesi The grey line shows the additional linear pan-tropatationship for carbon stocks.
Coloured lines show bivariate relationships within each contiisatistically significant relationships are shown with satidd, non-significant with
dashed lines. Note that the y-axis is on a log-scale. Symbolginénis proportional to weights used in model fitting baseplatrsize and monitoring
length, see S| Materials and Methods. For stocks and gaias énd break-point pan-tropical relationships are allssidily significant (P < 0.001), as are
better sampled continents. For carbon residence timdprsaips with temperature are non-significant but there is iat&tally significant interaction
between maximum temperature and precipitation in tlestdguarter (Figure S6). Relationships with other variabtestown in Fig. S8-S10. *** R

0.001, *P < 0.01, * P <0.05, ns P0.05

23



Supporting information for Sullivan et al.

445
A Carbon stocks (Mg ha™")

0
20°N 46
10°N =20

-30

0 -40

f) -50
10°8 ~60
20°S ﬁ i
T T T -80
0° 50°E 100°E
A Carbon stocks (%)
0
=5
-10
-15
-20
-25
-30
-35
-40
-45
446

447  Figure 4. Long-term change in carbon stocks due to global surface tatapewarming of

448  approximately 2°C. Maps show the predicted absolute andveetettange in tropical forest carbon
449  stocks. Note that parts of the biome become warmer tiraently observed in our dataset (Fig. S14).
450  See Fig. S12 for predictions using alternative carbon refensaps. Predictions are based on

451  temperature alone and do not include precipitation changewtffoh future patterns of change are
452  uncertain) or potential moderation via elevated: X@e Fig. S15 for analysis incorporating this).
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Materials and Methods

Forest census data

Our plots come from the RAINFOR, AfriTRON, and T-FORCE®x~orks. Forest inventory plots
were located in lowland (<1200 m), old-growth, closed-carfopsts that were not known to have
been subject to anthropogenic disturbance through fire origeltamging. Plots characterised
floristically as dry forest were not included, as weresptbat received less than 1200 mm
precipitation each year. We also did not include plots in veiaitel, swamp and seasonally flooded
forests, as we expect these to experience marked edapbicaints (extreme nutrient limitation for
white sand forests (32), stress caused by hypoxic conditions forpsasad seasonally flooded forests
(33)). All plots were > 0.2 ha (median size = 1 ha) and were monitored for at least two years (median
monitoring period = 9.7 years). All censuses were prior to the-20Mery strong El Nifio event, as

we expected that event to supress carbon gains relative tong-term mean.

Forest inventory plots were sampled using standardised pro(8ddjsvhere all live stems with
diameter > 100 mm were measured at 1.3 m or 50 cm above buttresses and deforméeswere
tagged so that the same tree could be identified in subsiegensuses. In some cases the point of
diameter measurement (POM) had to be moved due to upwarthgrblwttresses and deformities.

For these trees we use thgRapproach from Talbot et al. (35)

In a few cases (6 plots) the minimum diameter measured changetime, or palms and
Phenakospermum were excluded in some censuses. For these, aedsiinoveground biomass
(AGB, subsequently converted to carbon stocks) and abovegraody\wroduction (AGWP
subsequently converted to carbon gairging a minimum diameter taxonomic protocol that could
be consistently applied across censuses, and scaled thesebyatbe aboveground biomass ratio
between that protocol and all stems > 100 mm protocol for censuses when all stems were measured.
Some plots had nested designs where the plot was split into subplotifferent minimum diameter
protocols (69 plots). For these, we only analysed the ardareing to our minimum diameter
protocol. For analysis, we grouped small (< 0.5 ha) plots within 1 km of each other, and also grouped
contiguous larger plots (18 plots), as these will experiendgalgnt climate and larger plots are less

sensitive to stochastic tree fall events (36).

Data were curated in ForestPlots.net (37, 38), or were stibjequivalent offline handling, and
experienced the same quality control procedures. Detailsatifygcontrol procedures are described
in Brienen et al. (39). Our final dataset consists of 59(®bagnunits (hereafter plots) covering 637.2
ha, with 2.2 million measurements of 670,499 unique stems. Fdatiatj models of carbon stocks
an additional dataset of 223 single-census plots using the same meagyymtocols was assembled

from the same networks (see section “Validation with independent single-census plot datasgtw).
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544

545 Estimating above-ground biomass

546  Diameter measurements were converted to estimates of abonddiiomass (AGB). For dicot trees
547  we used the allometric equation

548 AGB =0.673 X,QDZH)O'W‘S, "

549  from Chave et al. (40), whepas wood density (from (41, 42)) ahtlis tree height estimated using
550 allometric equations described below. For monocots andiemes we used a palm-specific
551  allometric equation

552 In(AGB) = -3.3488 + 2.7483.In(p [2]
553  from Goodman et al. (43), where D is the measured diameter.

554  The heights of a subset of trees in our dataset were meastinedield, either with a laser

555  rangefinder, hypsometer, or clinometer, or directly by lolitg the tree. We filtered this dataset to
556  stems with measured diameters, height <90 m, diameters > 90 mm DBH, as height-diameter

557 allometries of saplings differ from those of more maturestraed to stems that were not broken,
558 leaning or fallen. This gave a total of 78,899 height measmeamWe used this dataset to fit local
559 height-diameter allometric models, as these refine AGB ety capturing spatial variation in
560 height-diameter allometries missed by large-scale allomewitels (44). Height data were not
561 available from every plot, so to ensure consistent treatofigrmots height-diameter models veer
562  constructed for each biogeographic region. We fitted threenaetea asymptotic models (45) of the
563  form

564 H =a(l-exp(-b¥)), (3]

565 where ab and c are estimated parameters (‘Weibull' models, 46)ittdtbthese models either

566  treating each observation equally or with case weights proportional to each trees’ basal area. These

567  weights give more importance to large trees during modieifittVe selected the best fitting of these
568  models, determining this as the model that minimised predietian of stand biomass when

569 calculated with estimated heights or observed heights (44hWVaiodels were implemented using
570 the nis function in R with default settings. Starting values © 25, b = 0.05 ancl= 0.7 were chosen
571  following trial and error as they led to regular model cogerce. Where models did not converge

572  this was usually because the height-diameter relationship didaxdt an asymptote, so in these cases
573  we used the log-log model In(H) =tab(In(D)) to estimate height, where b gives the scaling exponent
574  of a power law relationship between height and diam&#erchecked if models gave unrealistic

575  predictions by applying models to predict the height of all tredseibiogeographic region, and
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excluded models that predicted any tree height 10 % highetteaallest tree we recorded in that

continent.

Estimating above-ground woody production

We estimated AGWP following Talbot et al. (35). AGWP is pased of four components, (1) the
sum of growth of surviving trees, (2) the sum of AGB of newuiesyr (3) the sum of unobserved
growth of trees that died during a census interval anthé3um of growth of unobserved recruits
that entered then died during a census inteA@ounting for the latter two componelgsecessary

to avoid census-interval length effects, as more AGWRese components will be missed due to the

greater mortality of trees that accumulates over longesuseintervals.

Components 3 and 4 can be estimated using two quantitieathbe calculated from observed stem-
dynamics in each plot; per-area annual recruitmentgi®d per-capita annual mortality JmPer-

capita mortality is calculated from the ratio of survivetgms to initial stems, using equation 5 in
Kohyama et al. (47). Per-area annual recruitment is cédcuiesing estimated mortality rates and the
observed change in the number of stems over a census intsingl equation 11 of Kohyama et al.
47).

To estimate the unobserved growth of stems that died dudagsals interval, we first use plot-level
per-capita mortality rates @no estimate how many trees are expected to have deatinyear of
the census interval, and from that calculate the meat@uaf years that trees that died during the
census interval would have lived before death. The demoétree at death @) can then be

estimated as
Dgeath= Dstart X G X Ymean [4]

where R is the diameter at the start of the census inte@va,the plot-level median growth rate of
the size class the tree was in at the start of the censnalr{tdze classes are definedias 200 mm,
400 mm >D > 200 mm, and D > 400 mm) and YmeaniS the mean number of years trees survived in
the census interval before dying. The diameter at deathnisthwerted to AGB at death using
allometric equations (equation 1, except for ferns and monocote wheation 2 is used), and the
unobserved growth is calculated as the difference betweenad@&ath and AGB at the start of the

census.

To estimate the growth of recruits that were not obsereeduse they died during the census
interval, we first need to estimate the number of unulesierecruits. This can be estimated from per-
area annual recruitmentRand per-capita annual mortality {mR, gives the number of stems per ha

that recruit in a given year, and the probability of e&adhuit surviving until the next censuss(f is



609
610
611
612
613
614
615
616

617

618
619
620
621

622
623
624
625
626
627
628
629

630

631

632
633
634
635
636
637
638
639

640

Supporting information for Sullivan et al.

Psun= (1-my)T, whereT is the number of years remaining in the census intervalnlitmber of

recruits in a given year that survive to the next census+PRnRa. Summing this for each year in a
census interval gives the total number of unobserved reortitat census interval. We then need to
estimate how long each recruit was alive for. Fromwvencan calculate the number of recruits in a
given year that died in each subsequent year, and froratbislate the mean life-span of recruits in a
given year that died before the next census. The averagpéifeof unobserved recruitsntXh-red is

the weighted mean of each cohort’s lifespan, weighted by the number of unobserved recruits in each

year. Diameter at death is given in rogn
Dgeatn= 100 + (Gx Ymean-re) [5]

whereG is the plot-level median growth rate of the smallest siasgsc{i.e. D < 200 mm).
Aboveground biomass of recruits at the time of death is eslileing equation 1. These corrections
for unobserved growth have a marginal impact on AGWP cailonggtcollectively accounting on

average for just 2.3 % of estimated plot-level AGWP.

AGB was calculated for each census, and AGWP was caduiat each census interval, and the
time-weighted mean of each was taken to give one valugigte We used a time-weighted mean to
give greater importance to AGB estimates separated by loegeus-intervals, as these will be more
independent. Estimates of AGB and AGWP were converted to catticks and carbon gains by
multiplying by 0.456 (48)Carbon residence time was then estimated as carbon stadi@/gains,
and represents the length of time carbon resides in living b®fore being passed to the litter and
necromass pools (49). Calculations to estimate AGB and AGW® peeformed using the R package
BiomasaFP (50).

Obtaining environmental data

Most climate data were obtained from climate data froanltiélim2 (51) as it provides the highest
resolution (~ 1 km) pantropical climate data, although we thatesome regions, such as central
Africa, have limited station data. We extracted montiaia for the following variables: mean daily
minimum temperature, mean daily maximum temperaturejgitaion, solar radiation and wind
speed, In addition to calculating the standard series of tfirbédic variables, using the dismo R
package (52), we calculated 1) mean daily maximum temperd&3lO1 + BIO2/2, 2) mean daily
minimum temperature, BIO4 BIO2/2, 3) maximum cumulative water deficit as the mininagross

the year of monthly cumulative water defigit

W = Wi1- min(0, R— 100) , 6]
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where P is monthly precipitation in mm, and 100 represents meastapdtranspiration. This
calculation was run for a year from the wettest month iry#ae, starting at a water deficit of zero, 4)
the number of months where monthly cumulative water defigg negative, 5) the number of months
where monthly precipitation was below 100 mm (i.e. less tliapatranspiration), 6) mean annual
solar radiation, 7) mean annual wind speed, and 8) vapour pressigie(VPD = SVP- vapour
pressure, where saturated vapour pressure, SVP, = 0.6 f0%!@perate)/ (temperature +2409) \\je glso
obtained data on cloud frequency at ~1 km resolution frofedWi& Jetz (53), who processed twice-
daily MODIS satellite images. Temperature values were adjust differences in altitude between
the plot and the 1 km grid cell used for Worldclim integpioin, as these can differ in topographically
diverse regions, using lapse rates, so that=TTworldcimt 0.005 X (Aoridcim- Aplor), WhereT is
temperature (°C) and Ais altitude (m). Temperaturaesivere also corrected for systematic
warming trends. To do this, the mean annual temperat@aecim grid-cell in each year was extracted
from the CRU TS 3.24 dataset (54), and robust linear regregsed to estimate grid-cell specific
warming rates. These were used to adjust Worldclim2 temyperzalues for the difference between

the midpoint of plot monitoring and the midpoint of the Wiolim2 climatology.

Data on soil texture and chemistry was obtained at 1 km remofatim the SoilGrids dataset (55)
with this resolution selected to match the resolutiomefdimate data. From this we extracted CEC,
representing soil fertility, and percentage clay, @spnting soil texture. For each soil variable we

calculated the depth-weighted average for3D cm.

Statistical analysis

We used linear models to relate carbon, carbon gains anchagadidence time to environmental
explanatory variables. The role of different explanatorjatdes was assessed using multi-model

inference.

Response variables were positively skewed and had positivevagance relationships, so were
log-transformed to meet the assumption of normality anaceetieterogeneity in variances. The log-
normal nature of forest carbon stocks and dynamics mearthehais greater potential for variation
when forests are large, which could be due to the non-lgeeding of tree biomass and tree basal

area.

We selected explanatory variables to represent hypothegigedin which climate could affect
carbon stocks (Table S1). We assessed colinearity within the$ eeplanatory variables using
variance inflation factors (VIF) and pairwise corraat. Because of colinearity, we had to exclude
VPD, total precipitation, use only one of MCWD and preciptatn the driest quarter, and could
include both minimum and maximum temperature but not meamed temperature. We used
precipitation in the driest quarter rather than MCWD adatter is zero truncated and so is less

amenable to regression analysis. After removing thesables all pairwise correlations (including

8



676
677

678
679
680
681
682
683
684

685
686
687
688
689
690
691
692
693

694
695
696
697
698

699
700
701
702
703
704

705
706
707
708
709

Supporting information for Sullivan et al.

with soil explanatory variables) were weak enough noaitse problems through collinearity (r < 0.6
and VIF < 3)

To account for variation other than in climate we atetuded soil variables relating to texture (%
clay) and fertility (CEC), and included continent spedifiercepts to account for biogeographic
variation in carbon. To account for unmeasured environmeradiegts (e.g. soil variation ho
captured by the SoilGrids variables), we used Moran’s eigenvector maps as explanatory variables,
selecting eigenvectors the corresponded to positive spatiabangation in the distance matrix (56)
These variables act as a proxy for unmeasured spatialgsaldiecapturing positive spatial

associations between plots.

Plots differed in their area and the length of time tlveye monitored for. This is likely to affect the
variance of carbon stocksarbon gains and carbon residence time, as smaller pipkst®only
monitored for short periods are more likely to be sensitivhé¢ mortality of a few large trees. To
account for this, we used case weights relating to pbat and monitoring period. Following Lewis et
al. (57), we selected weights by relating residuals fronlioear models to plot area and to plot
monitoring period, and subsequently assessing which root tramadfon of plot area/ monitoring
period removed the pattern in the residuals when used as a.v@sgtdted weights were: carbon
stocks, Ared”®, carbon gains, Monitoring lengtff; carbon residence time, Ar&a+ Monitoring
length¥*2-1.

We fitted all subsets of the general linear model with explayatoiables described above, forcing
spatial eigenvectors into atlodels. We then averaged the subset of models where A AIC < 4, using

full averaging so variables that do not appear in the modéhgetlue of zero for their coefficients.
This means that model averaged coefficients of terms wiitelil support exhibit shrinkage towards

zero. Multi-model inference was performed using the MuMIn Fkage (58).

We assessed whether the two climate variables found tdrhpeetant additive effects on carbon
stocks in this analysis (mean daily maximum temperatuttee warmest month and precipitation in
the driest quarter) interacted with each other by addirigtaraction term between these variables to
the full generalised linear model of carbon stocks as a funatiother climate and soil variables,
continent and spatial eigenvectors. We compared these two mesigsAlC. We repeated this with

carbon gains and carbon residence time as response variables.

To assess whether the temperature carbon relationship wasieanvie used breakpoint regression
implemented in the segmented R package (59). This estimhatealgoint in the explanatory variable
at which the slope of the relationship with the responsabarchanges. We estimated the breakpoint
for the mean daily maximum temperature in the warmesthmeariable in the full model with a

temperature-precipitation interaction described above. Wssexd the support for the breakpoint by
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comparing the AIC of the model with a breakpoint with th€ Af a model with a linear relationship.
We repeated this with carbon gains and carbon resideneasimesponse variables.

We also analysed spatial variation in carbon stocks asctidorof the above climate and soil
variables and spatial eigenvectors using Random Forest decisiatgmathms (22) implemented
using the randomForest R package (60). We assessed variablemopdoy calculating the average
increase in node purity across all decision trees (measumegidyal sum of squares) when using the
variable to split the data. We assessed modelled relaiisrisétween response and explanatory
variables using partial plots, which show predicted change inspemse variable, averaged across

trees, when changing the explanatory variable and holdighelt variables constant.

To compliment this analysis based on relationships expected a, préoaiso performed an
exploratory analysis to assess whether other climate vesiaktluded from the full general linear
models had an effect on carbon. To do this, we fitteddimealels to assess the bivariate relationship
of carbon with each climate variable, with continesbadhcluded as an explanatory variable to

account for biogeographic variation in forest charactesistic

Validation with independent single-census plot dataset

We assessed whether the relationships with environmental varidéfgified in the analyses of
multi-census plot data described above held when appligdddditional dataset of 223 single-
census plots. As the single-census data were not used in anyaohtiiges above they did not
influence modelling decisions, so provide an independent tds¢ oélationships identified with the

multi-census plot analysis.

Single-census plots were extracted from the ForestPlots tadiaga (37, 38) using the same plot-
selection criteria as for the multi-census plots, exdeitdensuses during or following the 2015-16
strong EI Nifio were included in the single-census plot dataset azpected that carbon stocks,

unlike gains, would still remain close to their long-termame

We fitted a general linear model with the five climate arptory variables, soil fertility and texture,
continent and spatial eigenvector, and model averaging sifladlets of this model as described for
the multi-census plots. We performed this analysis using justrigke-census plots and a combined

dataset of single and multi-census plots.

10
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Scaling results to the biome

We applied the non-linear relationship between carbon stocksi@aua daily maximum temperature
in the warmest month identified by the breakpoint regressi@stimate the total change in carbon
stock due to temperature effects alone for differentages of temperature increase. We delimited
the biome extent using the WWF tropical and subtropical moist leaaztl forest biome (61)
restricted to tropical latitudes, and further refined ielgluding grid-cells with < 50 Mg C Hausing
data from (30), as these are unlikely to be forest. Caionatvere conducted at 10-minute
resolution. The non-linear relationship between temperatuareaion means that the change i
biomass for a given increase in temperature will deperideobaseline temperature. For each grid-
cell we predicted the percentage change in carbon for a tiugerature increase from the baseline
temperature in that grid-cell based on the non-lineatiogiship identified in our statistical model,
holding all other variables constant. We then used a refecanben stock map (30) to convert
percentage change to change in carbon stocks per hectiig If'). To calculate change in carbon
stocks for the whole grid-cell, we multiplied change petdre by the area of the grid-cell in
hectares, and then adjusted this by the proportion of the gtithaelvas forested by multiplying by
2014 forest cover (62). Total change for the biome (in Pg) waslated by summing these grid-cell
level values. Uncertainty due to our statistical modelaggessed by generating multiple predictions
by resampling model parameters (breakpoint threshold, sldpew besakpoint, slope above
breakpoint), and extracting quantiles from the resultantillision of predicted change values.
Aboveground biomass carbon values were scaled to includbioooass based on a root to shoot

ratio of 0.19 in tropical evergreen forests (63).

The Avitabile et al (30) aboveground biomass map was chogeovigle reference carbon stocks.
While other maps have previously been produced by Saatdh{@#pand Baccini et al. (65) we
selected the Avitabile map because it synthesises the earfisr(sge Mitchard et al. (66) for
discussion of substantial differences between these mapis) amchored by more field data.
Importantly, the Avitabile map reproduces spatial patterab@veground biomass that have been
described from field data but are absent in the Saat®aazini maps, including the much higher
biomass density of north-east Amazonian forests due to talldarebvery high wood density (67).
Nevertheless, we also investigated the consequences of usingtblei BaBaccini maps for our

estimates of biomewide thermal sensitivity and spatial pattgrohange in carbon stocks (Fig S15).

We investigated three temperature change scenarios. Rivetgpplied a 1°C increase to all
locations. Secondly, we assessed the consequence of globalamgsestabilizing 1.5°C above pre-
industrial levels for the equilibrium temperature responsmpfdal forest carbon. Finally, we
assessed the consequence of global temperatures stabiliziah@?E€pre-industrial levels. For the

latter two we obtained data from CMIP5 climate models, usawgnscaled future climate projections

11
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based on the Worldclim climatology (68). As downscaling was pedd using Worldclim version
1.4 (69) and our statistical models use Worldclim version 2, lgalaged the warming anomaly in
each grid-cell from the current Worldclim version 1.4 condgjand applied this to the Worldclim 2
data to obtain future temperature. RCP scenarios andpoinés were chosen to give global
temperature increases that best match 1.5°C and 2°C abewelpstrial. Importantly, these future
climate projections were used to capture the spatially vanahge of warming, and our predictions
relate to the long-term response of vegetation if the cligtatglised at these new warming levels,
rather than being predictions of transient responses at thexsBcsiime-points. For 1.5°C we used
RCP 2.6 averaged for 2040-2060 (median temperature increass awdels = 1.5°C, (70)). For
2°C, we used RCP 2.6 averaged for 2040-2060 (median tempenategese models = 1.9°C (70)).
Note that predicted increases in maximum temperaturesaften considerably greater than the
global increase, especially in South America. For bothesoes we used the median predicted
temperature change for each grid-cell from an enseafitil® models (BCC-CSM1-1, CCSM4,
CNRM-CM5, GFDL-CM3, GFDL-ESM2G, GISE&2-R, HadGEM2-A0, HadGEM-ES, IPSL-
CM5A-LR, MIROC-ESM-CHEM, MIROC-ESM, MIROCS5, MPI-ESM-LR, MRI-CGM3,
NorESM1-M).

We assessed the potential for long-term carbon dioxide lyretimulation to offset these long-term
temperature effects. We used £0Oncentrations from the RCP scenarios and time-points described
above, which approximate the long-term concentrations if thrate stabilised at the new
temperatures (71). Thus the 1.5°C ah@ &cenarios were associated with Oncentrations of 443
ppm and 487 ppm respectively (72). We cannot assess the effect ofi Giomass from our spatial
dataset, so instead used independent estimates.@ffe€s from other sources. Firstly, we obtained
CO; only effects on net primary production (NPP) extracted fannensemble of CMIP5 earth system
models by (73). This gives the proportional change in NPP fogea forests (note that this also
includes boreal forests) over 1980-2010, standardised to a 100 peasigin C@concentration. To
propagate this through to changes in AGB under futurgdgo@ditions we first estimated the
logarithmic dependency of NPP on £€(@4) by substituting values of NPP a@@; at time zero and t
(from (73) into the equation,

NPP, = NPP, [1+ § In (%)] Equation 7

This equation can be used to compute NPP annually given iahN®P estimate and a time series of
atmospheric Ceconcentrations (from a combination of the observed recond pre-industrial and
the RCP 4.5 scenario, modified so that it stabilises at A843ppm depending on warming
scenario). Initial pre-industrial NPP was back-calculatedhfpresent-day values using Equation 7,

with 13.3 Mg C ha yr* (mean of nine Amazon plots where NPP has been measured78pnused

12
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for present-day NPP. To propagate NPP into change in wmodhass (following (49)) we used the

equation

aMm d M d .

% = QuoodNp — —— Equation 8
Twood

where Mwodis Woody biomass, Ns NPP, aweodiS the allocation of NPP to wood (taken as 0.33, the
mean value across nine plots from () twooaiS the residence time of woody biomass, taken as
59.1 years (the median value across plots used in this study)m®del (equations 7 and 8) was run
from pre-industrial to 2500, enabling us to see the equilibrium efféctreased Ce@concentrations
on biomass, assuming temporally invariant allocation and resdane. We calculated the
proportional change in biomass from 2000 to 2500, and applied tthis teference carbon stock map
to obtain predicted equilibrium change in aboveground biomes$odCQ effects.

The effects of C@in earth system models have been reported to be largethitee deduced from
satellite data or Cg&enrichment experiments (73), so we also ran the above modekhsinges in
NPP reported from a synthesis of free-air.@@richment experiments conducted in forests. (73)
Finally, we looked at the impact of using £€¥fects derived from a recent large meta-analysis of
COzxenrichment experiments (76), which reported a 12.5 % inchedsemass of tropical trees for a
250 ppm increase in G@oncentration. As this relationship was reported to berlifs we used
linear interpolation to estimate the change in biomass undgcd@hcentrations associated with each
warming scenario (i.e. 443 and 487 ppm). To estimate long-teanges in biomass accounting for
both temperature and carbon dioxide, we first applied ther€i&ionship to estimate the change in
biomass due to carbon dioxide growth stimulation, and thessestéhe effects of warmer
temperatures from this revised baseline. Our approach alleingée assessment of Géffects
exploring a range of different effect strengths. Real-evotponses will likely be more complex,
with, for example, nutrient limitation potentially affaxg the extent to which growth is stimulated by
CQO: (76).

Temperature sensitivity of CMIP5 models

The temperature sensitivity (y.r) of coupled climate carbon cycle models can be identified by
comparing responses of carbon stocks in coupled and uncoupledtginsiforced with a 1%
increase in C@concentrations per year (respectively, these are the 1pct@BanfixClim
simulations), following Wenzel et al. (77). Both coupéad uncoupled simulations are exposed to
the same increase in G&ncentration, but in the uncoupled simulation temperature inaotly

affected by this increase in GO

Vegetation carbon outputs are reported from six CMIP5 models watthoupled and uncoupled

simulations (78, 79)or all simulations, we calculated the change in vegetatidion (the cVeg

13
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variable) in the tropics between year 110 and year 30 of tleiment, and also calculated the
difference in land temperature (the tas variable). Tha@h in vegetation carbon due to temperature
alone was calculated by taking the difference in change in vegetation carbon in the coupled (ACvegc)

and uncoupled (ACvegy) simulation, and this was then divided by the change in tidpicd
temperatre (AT) to obtain the temperature sensitivity of the model,

it = (ACvegc- ACvegu) / AT Equation 9.

We calculated the temperature sensitivity of the six CMIP5 fadhat report vegetation carbon:
CESM-1BGC (y.r=-0.7 Pg C °C), GFDL-ESM2M (y.r = -58.4 Pg C °Q1), HadGEMZES (y.r = -
9.2 Pg C °C), IPSL-CM5ALR (yi7=-11.3 Pg C °C), MPI-ESMLR (y.7 = -22.8 Pg C °C) and
NorESM1ME (y.7 = -1.0 Pg C °C). Note that the simulations do not run to equilibrium (77), so
changes in carbon stocks due to increased temperatuneatg fully realised.

14
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857  Figure S1. Climate space represented by our plot network. Red lines thigoprobability density
858  function of each variable in our multi-census plot netwBtlck lines show the probability density

859  across 10 minute grid-cells in the biome, restrictedaasawith forest cover in GLC 2000 (80).
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Figure S2. Ability of our plot network to represent the climate coiwdis found in the moist tropical
forest biome. (a) Minimum climate dissimilarity (measuasdEuclidean distance on variables scaled
by their standard deviation). Climate variables used areame as in Fig. 2) between 10 minute grid
cells and the multi-census plot network. Green lines indibatextent of the biome. (b) Geographic
distance (km) between grid cells and the multi-census ptatonie (c) Relationship between climatic
and geographic distance of 10 minute grid cells acrossdpieat forest biome to our plot network.
The lack of relationship between climate dissimilarity gadgraphical distance, alongside the mostly
low climatic dissimilarities, shows that our sampling is suffitito capture the environmental space
of the biome and that we can reasonably extrapolate to gdncmlly distant areas from our plots,
which are in any case largely deforested already and lcentgbute very little to our projected
biome-wide carbon response to climate change. (These tromigstl forest areas that are poorly
sampled and largely lost include the Atlantic Forests azilBrAndean Forests in western South
America, eastern Caribbean, Madagascar, and much ofar&math Asia, south China, continental
Southeast Asia, Philippines, Sumatra and Java).
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Figure S3. Relationships between individual climate variables and trbfocast aboveground carbon
stocks. Standardised coefficients are from models withlitnate variable and continent as
explanatory variables and show change in In(carbon) for a stadéeaiation change in the
explanatory variable. Error bars show standard errorsaMas used in the main analysis have black
outlines. Full variable names are: T_maximumean daily maximum temperature, BioBnean

daily maximum temperature in the warmest month, Bi@nhnual temperature range, BioZnean
diurnal temperature range, Bie8nean temperature in the wettest quarter, VRRpour pressure
deficit, Biol— mean annual temperature, Biol@hean temperature in the warmest quarter, Bioll
mean temperature in the coldest quarter, N_dry_monthsuinber of months with negative
cumulative water deficit, N_dry_months—Zumber of months where precipitation is less than
evapotranspiration, Bio4 temperature seasonality, Biot&recipitation in the warmest quarter, Bio9
— mean temperature in the driest quarter, T_minimum wanmmesth— mean daily minimum
temperature in the warmest month, Bielprecipitation seasonality, T_minimwrmean daily
minimum temperature, Biol6 precipitation in the wettest quarter, BiolPrecipitation in the

wettest month, Bio3 isothermality, Biol2- annual precipitation, Bio19 precipitation in the coldest
guarter, Bio6- mean daily minimum temperature in the coldest montimdV8peed- mean daily

wind speed, Biol7 precipitation in the driest quarter, Biot4recipitation in the driest month,
Cloud cover- proportion of MODIS passes with cloud present, MCWiDaximum cumulative

water deficit (note this is negative when water deficitigh, so a positive relationship with MCWD
indicates higher carbon when water deficits are less).
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Figure $4. Validation of tropical forest carbon stock sensitivity maagainst an independent dataset
of 223 single-census plots from our networks measured with the satoegis.Model-averaged
shrinkage adjusted coefficients from multiple regression modléi®mass carbon stocks as a
function of climate, soil, biogeography and spatial eigenveditodels were either fitted to the
multi-census plot dataset (as in Fig. 2), to the single-cqristidataset, or to the combined dataset.
This analysis shows that the relationships identified to be impstrtant in the main multi-census

plot analysis (i.e. the negative relationship between carbokssand maximum temperature and
positive relationship with precipitation in the driest quaréee) also found in an independent dataset,
which was not used for preliminary analysis so did not énfae the choice of explanatory variables.
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914  Figure Sb. As Figure 2, but with aboveground biomass estimated using the €have005 (81)

915  moist forest allometric equation, which does not include a hesgitt and is instead based on a third-
916  order polynomial relationship between diameter and abovegroun@$soihis indicates that our
917  results are robust to using an alternative allometry to estialoveground biomass.
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922  Figure S6. Interaction between mean daily maximum temperatuttesinvarmest month and

923  precipitation in the driest quarter in determining abovegraromical forest carbon stocks, gains and
924  residence time. Modelled relationships with temperature are sholdimg precipitation either one
925  standard deviation above or below the mean. Models with breakpoeréh@vn for carbon stocks
926  and residence time as they were found to be better supported based on lower AIC (AAIC >2). Note

927  that the temperature-carbon relationship is steeper wieeipjtation is low for carbon stocks and
928 (above the breakpoint threshold) carbon residence time, baihdbehange with precipitation for

929 carbon gains. Response curves are predicted with continexrs Ag&ica.
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Figure S7. Partial relationships between tropical forest carbon st@oéighe two climate variables
identified to be most important by the random forest dacisee algorithm. Partial plots show
predicted values of carbon stocks averaged across an ensembbésain tree models when
changing the explanatory variable of interest and holdingratariables constant. The importance of
variables in random forest analysis is assessed by cabguiat average increase in hode purity
across all decision trees (measured by residual sum of squaesslging the variable to split the
data. Higher values indicate greater importance. Maxinaumpérature increased node purity by 4.8
and precipitation by 4.7. For all other climate variabhtesdases in hode purity were < 3.5.
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942  Figure S8. Relationships between aboveground tropical forest carbokssémd environmental
943  predictors. Symbols and colours as in Fig. 3. Coloured lines shawidie relationships in each
944  continent, and black lines show pan-tropical relationshigs atcounting for the effect of continent.
945  Lines are only plotted where statistically significant.
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Figure S9. As Fig. S8, but showing relationships with carbon gains.
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950  Figure S10. As Fig. S8, but showing relationships with carbon residence tim
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952

953  Figure S11. Variation in tropical forest aboveground carbon stocks,sgaivdl residence time within
954  and amongst continents. Data are presented as empiricabititplsiensity functions (top row) and
955  dot-plots showing raw data points for all our multi-census glmtom row). SA = South America,
956  AF = Africa, AS = Asia, AU = Australia.
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Figure S12. Effect of using earlier biomass reference maps for estimatdgnge in long-term
carbon stocks for global temperature increases of ~2°C. Usowgground biomass stock maps from
Saatchi et al(64) and Baccini et a{65) predicted biome-wide reductions in biomass carbon stocks
are 24.0 Pg (95 % Cl = 5:839.6) and 28.4 Pg (95 % CI = 16-B7.5) respectively. Under the ~
1.5°C warming scenario these are 18.4 Pg{%8.5) and 21.1 Pg (10-229.4) respectively. Results
in the main text use the 2016 Avitabile et al. baseline map-(86¢ methods for justification.
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969  Figure S13. Biome-wide change in mean daily maximum temperaturedmiarmest month from

970  present conditions (based on the Worldclim climatology, 1970-2000) glebal increases in

971 temperature of approximately 2Gand 2C above pre-industrial levels. These levels of global

972  temperature increase are obtained from, respectively, & R040-2060 and RCP 4.5, 2040-2060 to
973  represent the potential spatial pattern of warming assdcigith global temperatures stabilising at
974  these levels. Global temperature increases of 1.5 dhdl®ve pre-industrial levels (so ~0@ and

975  ~1.3°C above our current baseline climate) would lead to meaadses in maximum temperature in
976  the warmest month across the tropical forest biome 6€la@d 2.4C the current baseline climate

977  respectively.
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Current

Non-analogous
Above threshold
Below threshold

Figure S14 Areas of the biome above or below the 3€.zhreshold, above which carbon stocks
decline more rapidly with temperature, under current canditand two warming scenarios (see Fig.
4). Areas warmer than any currently observed in our dafas€°C) are also shown (non-analogous
conditions). Note that even the 1.5°C warming scenario pushes outhkt/Anerican forests above
the 32.2°C threshold.
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Figure S15. Predicted long-term change in aboveground carbon stocks und@rgiodal warming,
based on either temperature effects alone or when alsongiogpfor carbon dioxide growth
stimulation. CQ fertilisation effects on equilibrium biomass levels were olet@ifrom a recent
synthesis of results of elevated C&xperiments (Terrer et al. (76)), free-air £e@richment (FACE)
experiments (Kolby Smith et al. (73)) and CMIP5 earthesysinodels (Kolby Smith et al. (73)).
Depending on their strength, Géffects either partially or fully ameliorate the biomed&inegative
effects of increasing temperatures on biomass carbon siialike (S3), but these carbon stocks are
predicted to decline over much of Amazonia even under the strab@esffect considered.
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Table S1. Climate variables selected for analysis and mechanisméici they can affect carbon stocks.

Climate Variable selected for analysis Mechanism to affect carbon stocks
property
Daytime Maximum temperature in the High daytime temperatures exceed photosynthesis optima ri8&ase evaporative stress, causing

temperature warmest month

Night-time Mean daily minimum
temperature temperature

Moisture Precipitation in the driest
availability — quartef

Light Cloud frequency
availability

Wind speed Mean wind speed

stomatal closure and reducing time for photosynthesis (26 harehise risk of mortality through
hydraulic failure and/or carbon starvation (23).

Respiration rate increases with temperature so proporticarbbn taken through photosynthesis that
allocated to wood should decline with temperature (83)e&s®d respiration cost could also reduce t
longevity (23). As respiration occurs day and night, and photossistbely in the day, nighttime
temperature should better reflect respiration effectdagtime temperature better reflect photosynthe
effects.

Moisture availability could limit photosynthesis and hencégargains, with stomata closing when
moisture availability is limiting. The risk of mortality twgh hydraulic failure or carbon starvation is
higher when moisture is limiting (23), and this could also $ietinon potential tree size and hence tre
longevity.

Increased photosynthesis and hence AGWP when light avajlabititeatest (i.e. cloud cover is low)
(84). Alternatively, light availability could have a nagateffect due to high evapotranspiration stress
when cloud cover is low.

Carbon stocks are expected to be lower where physical dahmaggh wind throw or breakage is
higher, as carbon is removed more quickly from the systemdhrmortality (85). But there is potentie
for greater carbon gairisforests are more dynamic.

! Mean daily temperature in the warmest month (bio5) wastsel instead of mean daily maximum temperature aasitmore strongly decoupled from
other climate variables. VPD could also represent somweséteffects, but was too strongly correlation with maxirremperature to include as an

independent variable.

2 Moisture availability could also be represented by MCWDx{mam cumulative water deficit) or total precipitation, loaty one of the three variables
could be included in the model due to collinearity. MCW&s excluded as it is zero truncated, so less amenaleigréssion fitting.
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1011  Table S2. Coefficients of model-averaged general linear models of carboksstgains and residence time as a function of climatecsotinent and spatial
1012  autocorrelation. Coefficients are AIC weighted averages across models with AAIC < 4 from the best performing model; variables are given a score of zero if
1013  they did not appear in a model. NA indicates that a termatiddccur in any model in this set. MEM1-8 are spatial eigenvectors.

Carbon stocks Carbon gains Carbon residence time
Variable Estimate SE z P Estimate SE z P Estimate SE z P
Intercept - Africa 4.986 0.010 476.9 <0.001 0.571 0.525 1.09 0.278 3.909 0.688 5.67 <0.001
Minimum temperature 0.031 0.019 1.67 0.096 -0.001 0.007 0.18 0.861 0.019 0.022 0.88 0.381
Maximum temperature, warmest -0.089 0.022 4.11 <0.001 -0.060 0.017 3.47 <0.001 -0.001 0.015 0.10 0.924
month
Precipitation, driest quarter 0.045 0.018 2.54 0.011 -0.001 0.008 0.14 0.887 0.061 0.023 2.70 0.007
Cloud frequency 0.002 0.008 0.24 0.814 -0.006 0.011 0.54 0.592 0.025 0.021 1.17 0.241
Wind speed 0.004 0.012 0.38 0.705 0.016 0.020 0.78 0.437 -0.004 0.015 0.24 0.807
Soil texture (% clay) 0.021 0.017 1.26 0.208 -0.005 0.011 0.49 0.628 0.040 0.018 2.17 0.030
Sail fertility (CEC) -0.003 0.009 0.34 0.732 0.005 0.011 0.51 0.613 -0.012 0.017 0.70 0.486
MEM1 0.115 0.014 7.96 <0.001 0.319 0.559 0.57 0.569 0.375 0.734 0.51 0.610
MEM2 0.098 0.017 5.67 <0.001 0.083 0.273 0.30 0.762 0.286 0.359 0.80 0.427
MEM3 -0.025 0.014 1.84 0.065 0.014 0.041 0.34 0.735 0.007 0.054 0.12 0.904
MEM4 -0.021 0.011 1.84 0.066 -0.038 0.020 1.84 0.066 -0.002 0.027 0.07 0.945
MEMS5 0.027 0.011 2.46 0.014 0.020 0.015 1.33 0.182 0.020 0.020 0.98 0.327
MEM®6 0.017 0.011 1.56 0.118 0.025 0.011 2.34 0.019 -0.014 0.014 1.05 0.293
MEM7 0.010 0.011 0.93 0.353 -0.017 0.010 1.61 0.107 0.036 0.014 2.57 0.010
MEMS8 -0.072 0.013 5.64 <0.001 0.057 0.012 4.91 <0.001 -0.127 0.016 7.80 0.000
Asia NA 0.380 0.542 0.70 0.485 -0.753 0.683 1.10 0.271
Australia NA -0.173 0.390 0.44 0.658 0.006 0.516 0.01 0.990
South America NA 0.643 1.164 0.55 0.582 0.542 1.530 0.35 0.724
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1015 Table S3. Predicted biome-wide changes in long-term biomass carbon stoaled(szinclude root
1016  biomass) under global temperature increases of ~ 1.5°C and ~230g&S are based on temperature
1017  effects alone, and when also accounting for the effdacodased C@concentrations on tree growth
1018  COeffects were obtained from a synthesis of results of elevate@xj@riments (Terrer et al. (76)),
1019 free-air CQenrichment (FACE) experiments (Kolby Smith et al. (73)) @MIP5 earth system

1020 models (Kolby Smith et al. (78)95% confidence intervals around changes (based on uncertainties
1021  temperature effects alone) are shown in parentheses.

CO effect Change in biomass carbon stocks (Pg)

~1.5°C warming ~ 2°C warming

(443 ppm CQ) (487 ppm CQ)
None -26.9 (-38.4 - -15.8) -35.3 (-49.0 - -20.9)
Terrer et al. elevated GO -22.0 (-33.0--9.9) -26.3 (-37.6 - -11.5)
experiments
Kolby Smith et al. FACE -6.2 (-16.8-7.7) -9.9 (-24.3- 3.9)
experiments
Kolby Smith et al. CMIP5 3.9 (-8.3-12.6) 2.0 (-11.9-19.8)
models
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