
Requirements and Matching Software Technologies for Sustainable and Agile
Manufacturing Systems

Daniël Telgen, Leo van Moergestel, Erik Puik, and Pascal Muller
Dept. of Micro Systems Technology and Embedded Systems,

HU University of Applied Sciences Utrecht
Nijenoord 1, 3552AS Utrecht, The Netherlands
{Daniel.Telgen, Leo.vanMoergestel, Erik.Puik,

Pascal.Muller}@hu.nl

John-Jules Meyer
Dept. of Information and Computing Sciences

Utrecht University
Princetonplein 5, 3584 CC Utrecht, The Netherlands

J.J.C.Meyer@uu.nl

Abstract—Sustainable and Agile manufacturing is expected of
future generation manufacturing systems. The goal is to create
scalable, reconfigurable and adaptable manufacturing systems
which are able to produce a range of products without new
investments into new manufacturing equipment. This requires a
new approach with a combination of high performance software
and intelligent systems. Other case studies have used hybrid and
intelligent systems in software before. However, they were mainly
used to improve the logistic processes and are not commonly used
within the hardware control loop. This paper introduces a case
study on flexible and hybrid software architecture, which uses
prototype manufacturing machines called equiplets. These systems
should be applicable for the industry and are able to dynamically
adapt to changes in the product as well as changes in the
manufacturing systems. This is done by creating self-configurable
machines which use intelligent control software, based on agent
technology and computer vision. The requirements and resulting
technologies are discussed using simple reasoning and analysis,
leading to a basic design of a software control system, which is
based on a hybrid distributed control system.

Keywords—Sustainable Manufacturing; Agile Manufacturing;
Agent Technology; Hybrid Systems; Multi Agent Systems.

I. INTRODUCTION

Sustainability and flexibility are growing more important
by the day. A changing economy, technological progress and
a decline of world resources fuel these needs. At the same
time, consumer expectations are rising. A new phone is bought
almost every year and of course preferably in the color and
coating of your choice. To make this possible there is a
need for more flexibility in manufacturing and a shorter time
to market. The term used for this fast and flexible type of
production is Agile Manufacturing [7]. Agile Manufacturing
calls for automated flexible production which is still cost-
effective. To achieve this, a change is required from original
Dedicated Manufacturing Systems (DMS), i.e., classic produc-
tion lines [1]. Sustainability is another important consideration
in addition to agility. Not only should the products be more
sustainable for the new generation of manufacturing systems,
but the manufacturing systems themselves are required to be
sustainable as well. This is achieved by developing machines
which can build generations of different product families on
small to medium scale rather than just one product. This will
require a new and more flexible approach for manufacturing,
hence it is necessary to create manufacturing systems that can
be reconfigured for the latest demand. To be able to produce
small to medium quantities and still be cost-effective, these

machines should be scalable [5]. Reconfiguration should also
be possible on every layer: from adding or removing entire
systems for scalability towards changing a specific module
or device on a single production machine to give it new
capabilities. Hardware should be either changed by hand or
by another machine; the software and necessary variables
should automatically configure itself. This flexibility through
reconfiguration is an important step towards sustainable and
agile manufacturing [1]. However, the main problem is that
while the flexibility of such systems increases its possibilities,
it also increases the complexity of the software. For this reason
there is a need to limit dependency between software systems.
This requires an analysis of current platforms and architectures
to move towards a new approach of the software which controls
flexible manufacturing systems.

This research project focuses on a case study on flexible
manufacturing systems for sustainable and agile manufacturing
purposes [2]. A manufacturing machine is introduced that is
not only modular from a hardware point of view, but also
from a software perspective. This system should have some
intelligence to be able to recognize its own environment. It
needs to identify and configure the modules and capabilities
automatically, or with limited support from a mechanic rather
than an expert or engineer.

In this research project all systems and products have a
virtual counterpart. These counterparts should be autonomous
entities [8]. This led to a research project on an architecture
that makes use of agent technology. The word agent comes
from the Latin word agere, meaning: to act. Software agents
are autonomous entities [3] with their own goals and the ability
to communicate with other agents. Agent technology provides
a way to deal with a dynamic, unpredictable environment and
it enforces a system design with distributed control. There are
many types of agents, for example a Belief Desire Intention
(BDI) agent, see Fig. 1. A BDI agent has its background in
the philosophies of Dennett [14] and Bratman [13]. The BDI
agent uses its sensors to build a set of beliefs, its desires
consist of goals, which lead to an intention of the agent, which
characterizes the desire the agent has selected to work on.
The BDI agent is also equipped with a set of plans and it
will deliberately choose a plan to achieve its goals. Agents
in manufacturing systems and products have been proposed
before in several other research projects, like Ellis (recycle
of rare earth elements) [16] and Kovacs (agent technology
in car-recycling) [17]. Also Paolucci and Sacile [18] give
an extensive overview of related work. Agents are used in

30Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

Figure 1. BDI-agent.

these systems for various reasons: scheduling, replacing human
operators and control support. However, our research focuses
on a production paradigm where every physical entity has a
virtual agent counterpart, where all systems are distributed,
and where the agents are essential for all processes: from
scheduling and product logging towards direct control to the
machine and module layer.

At the HU University of Applied Sciences Utrecht, the
project HUniversal production was started to look at the
current level of technology and use this to research and
develop new modular and self-configuring machines, which are
called equiplets [2]. Equiplets are meant to be low cost and
have multi-purpose properties, offering generic services to any
product which requires a production step that falls within its
capabilities. An equiplet can be configured with a variety of
modules necessary for manufacturing purposes, e.g., pick and
place modules, grippers, (3D) printers, etc.

Fig. 2 shows three schematics of prototype equiplets with
several modules. The particular equiplet on the left has a pick
and place module (based on a delta robot), in the middle a
gripper module is added to pick and place parts. On the right
a camera module is added to get the location parameters of
the objects it interacts with. While the hardware is changed
manually or by another equiplet, software agents are used to
automatically start the appropriate control software entities and
set up the variables for the correct configuration of the system.
This is what we call ’automatic reconfiguration’.

To deal with several equiplets, Grid Manufacturing [2] is
introduced to show that production is not done anymore by
production lines, but by flexible grids, which provide services
to virtual products called product agents [8]. A grid is a set
of equiplets. There are several agents on the grid layer. Hence
the software of this manufacturing paradigm is based on a
Multi Agent System (MAS). MAS consists of several inter-
acting autonomous agents that should cooperate, coordinate
and negotiate to achieve their goals. In a multi-agent system
several abstract concepts are specified, for instance what the
role, permission, responsibility and possible interactions are
between each agent. In the concept of grid manufacturing
these specifications are set for all entities. The product agent
is a virtual (software) representative of the real product, which
holds the requirements and knowledge that is needed to build
it. There are also equiplet agents that represent the equiplets.
The equiplet agents will interact with the product agents and
other entities in the environment. The grid provides a flexible
setup with a range of equiplets which uses modular tooling
and hardware so that a large range of services can be provided

Figure 2. This particular equiplet has (from left to right) a pick and place
module (based on a delta robot), a gripper module to pick and place parts
and finally a camera module to get the location parameters of the objects it
interacts with.

to the products. This makes it possible to create a range of
different products on a single grid. Products can be produced
dynamically using this concept. Intelligent agents also ease
the processes on the grid layer; coordinating and configuring
modules when necessary and providing the cognitive abilities
that are necessary for the communication between equiplets
and the products.

The paper shows the problems involved in the software
of agile manufacturing systems and gives an example of how
such a system could function. Next it states what is required to
create such a flexible architecture for reconfigurable systems.
The requirements, feasible for future use in industry, are
discussed and matched. Also, a software hierarchy and basic
architecture is presented that can be developed using these
technologies. Finally, the conclusion states the potential for the
combination of these technologies and discusses future work
based on the analysis in this paper.

II. PROBLEM DESCRIPTION

The goal of HUniversal production is to create a grid of
manufacturing machines which is fully flexible, meaning it
can create any product at any scale which falls within the
sum of capabilities that are determined by the parameters and
configurations of all equiplets in the grid. These capabilities
can change at any time, since the grid is designed as such that
it can be reconfigured at runtime. Equiplets can manually be
added or removed with limited interference to other systems.
As a result, software systems have to act autonomously, since
they are unaware of all the systems and their capabilities in
the environment. Giving them all the information of every
system in the grid would make the software too complex
and inflexible. This implies that a distributed control system
is required, which uses autonomous software entities, where
every entity can have unknown abilities. Since these systems
still need to interact, it is required that they communicate in a
more abstract manner. This way each system can interpret the
abstract communication according to its knowledge. In such a
system it is not possible to program beforehand which methods
to call. To achieve cooperation, there is a need for dynamic
behavior.

Fig. 3 shows an example of a simplified functional design
of the architecture that is currently under development [9]. The
example shows one product within a grid and two modular
manufacturing systems (equiplets). Since these equiplets are
configured with several modules they have to acquire the right
information to be able to function. In Fig. 3, six steps are

31Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

Figure 3. Simplified example of how a product communicates with equiplets in a grid where equiplets offer services within certain parameters.

presented when a product requires a pick and place action.
In this example, equiplet Y is just added within the grid and
has been configured with two modules. Equiplet Y has just
been reconfigured with these modules and is therefore not
yet aware of all its capabilities. Because the environment is
completely flexible, it is possible that new equiplets, products
or modules, and therefore new functionality and production
steps, can be added at any time in a running system. This
makes it necessary for the equiplets to inquire at the central
database whether they are able to perform this specific action.
To ”know” the capabilities of the equiplet we look towards
the research of Järvenpää [6] who has developed a rule-
based matching system for requirements and capabilities in
production systems. Equiplet Z already has done several pick
and place actions. Since it has not been reconfigured it can
immediately answer to product X that its demands fall within
the possibilities.

The largest problems that need to be overcome are the high
software complexity which is a result of the flexible automation
and the different requirements of the software on different
levels within the software architecture. While the direct control
of the hardware requires high performance, stability and real-
time capabilities, the flexible agents require cognitive abilities,
which are inherently slow and not real-time. These cognitive
abilities are necessary for automatically reconfiguring the
systems. The agents have to load the necessary software and

setup the correct variables that it needs to function. Hence
the modules and machines have to be able to recognize their
capabilities, necessary parameters for their configuration, and
dependencies. This requires an entirely new hybrid architec-
ture, whereof the requirements and the hierarchy design are
presented in this paper. The scope will be limited to the
decisions on the requirements and necessary specifications of
the technologies that are required to develop a proof of concept
system using the current equiplet prototypes. The problem
description brings us to the main research questions which
are important at this phase:

• What are the requirements for the software architec-
ture of an equiplet, using agents and MAS?

• Which technologies are available at this time that
could be used in a proof of concept system and fit
the requirements?

• What architecture can be used for industrial applica-
tions which works within a dynamic environment?

III. REQUIREMENTS AND MATCHING TECHNOLOGIES

The system is meant to become applicable in industry. The
system is also reconfigurable and should work in a dynamic,
non-deterministic environment. Hence, the logistics, i.e.,
where are the product parts that are necessary and the parts

32Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

it interacts with, should be dynamic as well. The equiplet
has to be able to find the component and important objects
within the environment to interact with on a visual level.
Since systems, objects and therefore functionality can be
added at any moment in runtime, the system needs to have
distributed control, where dependencies between systems
have to be kept to a minimum [10]. It is unlikely that the
dependencies between different systems and modules can be
nil. Take for example a system that transports the product
between equiplets. If such a system is in an error state, this
will directly influence the equiplets it is connected to. It is
important to decouple the depending systems as much as
possible. This is done by using a data driven system. The
different systems, e.g., ’higher’ logistic systems and ’lower’
control systems, are decoupled by data that can be influenced
from both sides. This way an error in one autonomous
system will not block another, also the performance of several
systems will only be influenced by interdependent systems.
Finally it is important that the abstraction of the system is as
high as possible, for the hardware, as well as the software,
interfaces and communication between systems.

Summarizing the requirements:

• Since the configuration and the logistics are flexible,
every equiplet system should be visually aware of
objects it needs to interact with within its working
environment.

• There should be a minimum amount of dependencies
between systems, since not all systems are aware of
each other’s existence, hence distributed control is
necessary.

• To further decouple systems and be able to change
and update information, the system should have some
properties of a data driven software design. This way,
it is easier to add new functionality for new products
without directly interfering with the running systems.
Required data for new actions could be requested from
the database when necessary.

• There should be a high level of abstraction for the
communication between the software entities them-
selves and the hardware. By using a higher abstraction
level, communication can be made less specific which
makes the system more flexible. Systems can use their
own beliefs to interpret the messages they receive
and act according to their own design goals and
capabilities.

• Manufacturing machines interact within the
environment. While most objects (products and
modules) in the environment have an agent as virtual
representative, there are also (very) simple hardware
devices and software objects that only have to be
used and as such are not depicted as a (software)
entity. These objects in the environment should also
be as abstract as possible such that all entities can
interact with them when necessary.

This brings us to some specific requirements that are set to
be the basis of an architecture that will be researched and

developed in the next phases:

• Hardware systems should be able to communicate as
abstract as possible with the higher order intelligent
agents in the software. Therefore there is the need for
a hardware abstraction layer where modules can be
added in runtime.

• An adaptive system is required based on computer
vision that can interpret the environment in which
the manufacturing machine operates to distinguish
production parts and their position.

• A higher level abstract architecture is necessary that
can communicate with other unknown entities in the
system and can deal with a dynamic and changing
environment.

To apply all these requirements and to limit the scope of the
research, we have decided to use the following technologies:

1) ROS - Robot Operating System is a software frame-
work and provide tools and libraries. ROS can be
used as an abstraction layer for the hardware in
modular machines and robots. ROS utilizes the C++
program language and can be used directly to control
hardware systems in real-time.

2) MAS - Multi Agent Systems [4] are the most likely
option for the higher layer systems. Since a dynamic
environment is used with many reconfigurable mod-
ules, it is important to decouple dependencies and
lower the overall complexity by defining specific en-
tities that each have their own responsibilities. Agents
can act independently and have flexible behavior.
Especially the Java Agent DEvelopment framework
(JADE) seems of interest because of its low learning
curve (based on the Java programming language), ne-
gotiation abilities, and its ability to migrate, terminate
and add agents in runtime [15], the Jade platform
has been in development since 2001 and has matured
enough to be thrustworthy for industrial application.

3) OpenCV - Open Computer Vision is included with
ROS, as such it is logical to choose for the OpenCV
library that is integrated in this system. The computer
vision is used to identify and localize parts within
the working space of the equiplet and is used for
other logistic processes necessary for configuration
and calibration of the systems, e.g., identification of
a new gripper.

4) Environment Programming - As mentioned in the
requirements, the MAS system needs to interact
with parts of the environment that might not be di-
rectly part of the MAS. Ricci introduced environment
programming that considers the environment as an
explicit part of the MAS and clearly distinguishes
responsibilities between the agents and the environ-
ments. [11]. In Environment Programming there are
agents and artifacts. Artifacts are non-autonomous,
function-oriented entities that operate as a first level
abstraction of usable objects in the environment.

IV. DISCUSSION

The requirements and matching technologies provide the
possibility to start the design of an architecture for control

33Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

Figure 4. An example of the software hierarchy showing a single product
and equiplet with several modules and the ROS, MAS and Linux layers.

of all systems within the equiplet and grid layer. To be able
to create a system based on industrial specifications, it is
necessary to combine these systems, hence to create a hybrid
system [12]. The hybrid system is based on an architecture
where the real-time capabilities with the physical abilities and
cognitive abilities are split in two. In practice this means that
real time capabilities like the direct control of sensors and
actuators are managed by ROS, which runs on the Linux
operating system and is especially tailored to interface with
modular hardware. Cognitive abilities, like reasoning, are to
determine if an equiplet has the capability to perform a new
action on request by a product. This is handled by the MAS
platform based on the JADE platform. The equiplets and
grids have a modular design and are configurable in real-
time, hence the system should be able to change the software
when necessary. Both MAS and ROS platforms have these
capabilities. Several MAS platforms are able to start new agent
entities at runtime. ROS also works with entities that can
interface with each other and it calls these software entities
nodes. Nodes can be launched and stopped in runtime, but
do not have the autonomous and cognitive capabilities like an
agent. In other words, they are less intelligent.

In Fig. 4 the hierarchy is shown. On the MAS layer
there is social interaction using the abstract communication

Figure 5. A QR code is used to identify items and modules in the
environment, this particular QR code leads to a demonstration of an older
prototype showing its flexible adaptation to the environment.

on the equiplet and product layers between several entities.
Note that there can be any number of equiplet and product
agents and every entity represents a physical counterpart. The
knowledge that is required by the data driven environment is
stored on Blackboards, which can also be used to decouple
the data from the agents that needs to be shared amongst
the agents. On a lower layer ROS also uses (autonomous)
entities. However, these are called nodes. Nodes are usually
programmed on the ROS platform using the program language
C++. While they are autonomous entities, they do not offer the
abstract level of communication that is common among agents.
However, ROS is designed to be used for Robot or Industrial
Machine applications and does provide better performance and
a more rigid and stable platform that is required for industrial
applications. Also ROS provides a large amount of libraries,
making it easier to develop new functionality. Therefore ROS
provides a more robust method of the essential control of
hardware systems. Finally at the lowest layer of the hierarchy
there is the firmware layer, where devices are shown that are
connected to the control system using an Industrial bus.

A. Reconfiguration

As determined, MAS and ROS can be configured with new
software in runtime. However, how does any system know that
it has been reconfigured? In other words, what is the trigger
to start or update a node with the necessary software to use it?
For this a system is designed that uses QR codes to ”scan”
items. Every module or device has its own QR code, see
Fig. 5, which uniquely identifies this module. This way the
machine can be configured just by scanning a configuration
QR code and a specific QR code that belongs to the new
module that is being added or removed. When the Computer
Vision system detects a reconfiguration code it will inform
the ROS control system, which will in turn message the MAS
system to find the appropriate software, either on the cognitive
(MAS) or physical (ROS) layer. While Computer Vision is
used to trigger changes in the hardware it is also used to
provide other parameters. The environment is monitored by
the system, providing information of the working field and
objects within sight. By communicating with product agents
and other equiplets also objects and systems are identified.
This way the physical configuration of systems can also be
determined automatically. If necessary, QR codes are also used
to help with the identification. The QR codes can be identified

34Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

accurately without the usual margin of error that is common
in computer vision applications.

V. CONCLUSION AND FUTURE WORK

The analysis shows that a proof of concept of a combina-
tion of ROS (using C++), MAS (using Java) and Computer
Vision has potential for an industrial environment. Problems
like stability and performance of the agent platforms are
minimized by using the hybrid system with a combination of
JADE and ROS. The more stable and performant ROS is used
for critical systems that should be running at all times and
MAS provides the cognitive abilities that are necessary in a
dynamic distributed system. The hierarchy of these systems
also lowers the overall complexity, because of the decoupling
of systems and the distributed (autonomous) architecture. The
distributed nature of the systems lowers the complexity of
the software and makes it possible to address problems with
a black box approach, focusing on the interfacing behaviour
between the entities. The software auto configuration is made
possible by using the MAS and ROS architecture, that are both
based on autonomous entities, which can be added and con-
figured in runtime. In combination with the computer vision
systems based on OpenCV the parameters of the environment
are used to quickly determine the state of the environment,
identifying objects of interest and making it easy to configure
new hardware systems when necessary.

Currently, due to the analysis in this paper, the research
group has decided to start the development of the software
architecture as presented. The functional design of the software
has been completed and the hardware of several modules is in
its beta phase. Progress has also been made on the hardware,
in Fig. 6 the newest (4th generation) equiplet prototype is
shown. This prototype uses the distributed system as proposed,
including the suggested hybrid architecture using agents and
nodes coupled by blackboards. The programming of various
subprojects are in progress, like research on the lifecycle
of a product [8], which is used to acquire information on
the product for (sustainable) goals like recycling and repairs.
Several other projects are planned for the future, for example
how grid agents can be used for optimalisation, intelligent
behavior within an equiplet and the development of more
hardware and software modules.

REFERENCES

[1] Y. Koren et al., Reconfigurable Manufacturing Systems, CIRP Annals
- Manufacturing Technology, vol. 48, no. 2, 1999, pp. 527-540.

[2] E. Puik and L.J.M. van Moergestel, Agile multi-parallel micro manu-
facturing using a grid of equiplets, IPAS 2010 proceedings, 2010, pp.
271-282.

[3] M. Wooldridge and N. Jennings, ”Intelligent Agents: Theory and
practice”, The knowledge Engineering Review, 1995, pp. 115-152.

[4] M. Wooldridge, ”An Introduction to Multi Agent Systems”, Second
Edition, Wiley, 2009.

[5] E. Puik, L. van Moergestel, and D.Telgen, Cost Modeling for Micro
Manufacturing Logistics when using a Grid of equiplets, ISAM2011,
IEEE, Finland, 2011.

[6] E. Järvenpää, P. Luostarin, M. Lanz, and R. Tuokko,”Development of
a Rule-base for Matching Product Requirements against Resource Ca-
pabilities in an Adaptive Production System”, FAIM2012 proceedings,
Helsinki, 2012, pp. 449-456.

[7] A.Gunasekaran, Agile manufacturing: the 21st century competitive
strategy, 2001.

Figure 6. One of the new prototype equiplets currently under assembly.

[8] L. van Moergestel, E. Puik, D. Telgen, H. Folmer, M. Grnbauer, R.
Proost, H. Veringa and J.-J. Meyer, ”Monitoring Agents in Complex
Products - Enhancing a Discovery Robot with an Agent for Monitor-
ing, Maintenance and Disaster Prevention”, ICAART2013 proceedings,
volume 2 , 2013, pp. 5-13.

[9] D. Telgen, L. van Moergestel, E. Puik, and J-J. Meyer, ”Agent Manu-
facturing Possibilities with Agent Technology”, FAIM2012 proceedings,
Helsinki, Finland, 2012, pp. 341-346.

[10] L. van Moergestel, E. Puik, D. Telgen, and J-J. Meyer, Decentralized
autonomous-agent-based infrastructure for agile multiparallel manufac-
turing, ISADS 2011 Japan, 2011, pp. 281-288.

[11] A. Ricci, M Piunti, and M. Viroli, ”Environment Programming in Multi-
Agent Systems An Artifact-Based Perspective” Autonomous Agents
and Multi-Agent Systems journal 23(2), September 2011, pp. 158-192.

[12] R.C. Arkin, ”Behaviour-Based Robotics”, MIT press, Hybrid Systems,
1998, pp. 205-234.

[13] M.E. Bratman, ”Intention, Plans, and Practical Reason”, Harvard Uni-
versity Press, Cambridge, Mass, 1987.

[14] D.C. Dennett, ”The Intentional Stance”, MIT Press, Cambridge, Mass,
1987.

[15] N.R. Bordini, M. Dastani, J. Dix, and A. E. F. Seghrouchni, ”Multi-
Agent Programming”, Springer, 2005.

[16] T.W. Ellis, F.A. Smith, and L.L. Jones. ”Methods and opportunities in
the recycling of rare earth based materials”, The Metallurgical Society
(TMS) conference on high performance composites, (IS-M796), 1994.

[17] G. Kovacs and G. Heidegger, ”Car-recycling sme network with agent-
based solutions”, European Research Consortium for Informatics and
Mathematics, (73), 2008, pp. 53-54.

[18] M. Paolucci and R. Sacile, ”Agent-based manufacturing and control
systems: new agile manufacturing solutions for achieving peak perfor-
mance”, CRC Press, Boca Raton, Fla., 2005.

35Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

