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Abstract—Architecture Compliance Checking (ACC) is an 

approach to verify the conformance of implemented program 

code to high-level models of architectural design. ACC is used 

to prevent architectural erosion during the development and 

evolution of a software system. Static ACC, based on static 

software analysis techniques, focuses on the modular 

architecture and especially on rules constraining the modular 

elements. A semantically rich modular architecture (SRMA) is 

expressive and may contain modules with different semantics, 

like layers and subsystems, constrained by rules of different 

types. To check the conformance to an SRMA, ACC-tools 

should support the module and rule types used by the 

architect. This paper presents requirements regarding SRMA 

support and an inventory of common module and rule types, 

on which basis eight commercial and non-commercial tools 

were tested. The test results show large differences between the 

tools, but all could improve their support of SRMA, what 

might contribute to the adoption of ACC in practice. 
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I. INTRODUCTION 

Software architecture is of major importance to achieve 
the business goals, functional requirements and quality 
requirements of a system. However, architectural models 
tend to be of a high-level of abstraction, and deviations of the 
software architecture arise easily during the development and 
evolution of a system [1]. Architecture Compliance 
Checking (ACC) is an approach to bridge the gap between 
the high-level models of architectural design and the 
implemented program code, and to prevent decreased 
maintainability, caused by architectural erosion. 
Architectural erosion is “the phenomenon that occurs when 
the implemented architecture of a software system diverges 
from its intended architecture” [2]. Opposing terms are 
architecture compliance and its synonym architecture 
conformance. Knodel and Popescu defined architecture 
compliance as “a measure to which degree the implemented 
architecture in the source code conforms to the planned 
software architecture” [3].  

Many tools and techniques are available to analyze a 
software system, and to reconstruct, visualize, check, or 
restructure its architecture [4]. In our study we focus on tools 

supporting static ACC, which analyze the software without 
executing the code. These tools, which we label as static 
ACC-tools, focus on the modular structure in the source code 
and identify structural elements such as packages and 
classes. In addition, they analyze use-relations between these 
elements, such as an invocation of a method or access of an 
attribute. Furthermore, these tools support the definition of 
rules on the structural elements in the code, or on logical 
modular elements that are mapped to the code. Finally, 
ACC-tools check the compliance and report violations to the 
rules. For example, if a method call from class A to class B 
in the code corresponds with a not-allowed dependency from 
a lower layer to a higher layer in the intended architecture, 
then the tool should report a violation. 

Although Shaw and Clements included ACC in 2006 in 
their list of promising areas [5], the adoption of ACC-tools is 
still limited [2], [6], and research is necessary to advance and 
improve current methods and tools [7]. A few studies have 
compared ACC-tools and techniques, and these studies 
revealed large differences in terminology and approach. A 
high level overview of techniques and tools is included in a 
survey on architectural erosion [2] and in a survey on 
software architecture reconstruction [4]. Two other studies 
[3], [8] identified and compared five static ACC techniques 
at a more detailed level. One of these studies [8] also 
explored the effectiveness and usability of three tools, each 
representing one technique, by executing tests on the basis of 
a small system.  

Our research builds on these previous studies, but we 
focus on ACC-tool support of semantically rich modular 
architectures (SRMAs). We use this term for expressive 
modular architectures, composed of different types of 
modules, which are constrained by different types of rules; 
explicitly defined rules, but also rules inherent to the module 
types. Kazman, Bass, and Klein have stated the principle that 
elements in a software architecture should be coarse enough 
for human intellectual control, but also specific enough for 
meaningful reasoning [9]. Modules with specific semantics, 
like subsystems, layers, components or facades, enhance the 
expressiveness of a modular architecture and support 
architecture reasoning. Adersberger and Philippsen consider 
the support of semantically rich architecture models essential 
for the integration of ACC in model-driven engineering [10]. 
Furthermore, they make clear that support of semantically 
rich constructs reduces the number of rules that need to be 
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defined, compared to semantically poorer boxes and lines 
models. 

We started our study with the following research 
question: Do static ACC-tools provide functional support for 
semantically rich modular architectures? To answer this 
question, we identified requirements, developed test-ware 
based on the requirements, and we tested eight ACC-tools. 
We restricted our study to the functional support of SRMAs 
by ACC tools, and consequently we do not focus on other 
aspects, like usability, scalability or accuracy (in another 
study, we investigated the accuracy of dependency analysis 
and violation reporting [11]). Other approaches than ACC 
that may be supported by the same tools, like architecture 
reasoning and re-engineering, are outside the scope of this 
paper as well. 

The next section of this paper identifies the information 
available in semantically rich modular architectures, presents 
requirements and a classification of common module and 
rule types. Section 3 describes the test method and introduces 
the tools, while Section 4 holds the test results. Section 5 
discusses the test outcome and compares it to related work, 
while Section 6 concludes this paper with recommendations, 
and addresses some issues that require further research. 

II. MODULAR ARCHITECTURES 

A. Focus of Static ACC  

Software architecture compliance checking covers a large 
field, since software architecture is a broad term. According 
to Perry and Wolf, software architecture “provides the 
framework within which to satisfy the system requirements 
and provides both the technical and managerial basis for the 
design and implementation of the system” [12]. Static ACC 
does not cover the full width of software architecture, but 
only the static structure of the software: the modular 
architecture. According to the Views and Beyond approach 
[13], [14], module styles focus on the structure of the units of 
implementation and not on runtime behavior or the 
allocation to non-software resources. Different module styles 
are defined such as the decomposition style, uses style, 
generalization style, and layer style.  

A modular architecture should describe the modular 
elements, their form (properties and relationships) and 
rationale [12]. Modular elements, properties and 
relationships, are in ACC’s center of attention, and should be 
included in a complete compliance check. A modular 
element, or module, is an implementation unit of software 
with a coherent set of responsibilities [14]. Properties and 
relationships express architectural rules. Properties are used 
to define constraints on the modular element and its content. 
Relationships are used to constrain how the different 
elements may interact or otherwise may be related [12].  

B. Requirements Regarding SRMA Support  

A semantically rich modular architecture may contain a 
lot of information about the modules and the rules 
constraining these modules. Modules may be of types with 
different semantics, while different types of rules may be 
used to constrain the modules. A rich set of module types 

provides a language to express characteristics of the modules 
in an architectural model, as well as default constraints 
associated to the type of module. A rich set of rule types 
provides a language to express constraints on the modules in 
an architectural model. Provision of a rich rule set allows 
architects to define logical rules in a comparable way as 
expressed in regular language, without the need to translate a 
logical rule to one or more rules at tool level. 

Consequently, to support compliance checks of SRMA’s, 
ACC-tools should preferably be able to: a) register common 
information in SMRAs (modular elements, properties and 
relationships of different types); b) prevent inconsistencies in 
the definition of the architectural model; and c) check the 
rules included in the architectural model and report 
violations. Inconsistencies in the model, like modules not 
properly mapped to code, will hamper the accuracy of the 
actual rule check. Consequently, inconsistencies should be 
recognized and reported. 

In line with these requirements, we focused our research 
on the following questions.  Do ACC-tools provide support 
for: a) common types of modules and their semantics; b) 
common types of rules; and c) inconsistency prevention 
within the defined architecture? 

To determine the module types, rules types and 
inconsistency checks relevant to our research, we studied 
academic and professional literature, as well as software 
architecture documents from professional practice and ACC-
tool documentation. The following subsections describe the 
outcome of our study. 

C. Common Module Types. 

SMRAs may contain modules of different types. We 
identified six common types of modules relevant for static 
ACC:  

1) Physical clusters are the type of modules that 

represent a wide variety of software structures or units in the 

code, like classes, Java packages, or C# namespaces [14]. 

This type of module does not represent a unit in the design, 

but in the code. 

2) Logical clusters represent units in the system design 

with clearly assigned responsibilities, but with no additional 

semantics. Comparable terms are subsystems, or packages. 

3) Layers represent units in the system design with 

additional semantics. Layers have a hierarchical level and 

constraints on the relations between the layers. The concept 

of layering can be traced back to the works by Dijkstra [15] 

and Parnas [16]. Although the layered style is not supported 

by UML [5], it is one of the most common styles used in 

software architecture [14], [17]. We cite Larman [18], who 

summarizes the essence of a layered design as “the large-

scale logical structure of a system, organized into discrete 

layers of distinct, related responsibilities. Collaboration and 

coupling is from higher to lower layers.”  

4) Components within a software architecture are 

designed as autonomous units within a system. The term 

component is defined in different ways in the field of 

software engineering. In our use, a component within a 
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modular architecture covers a specific knowledge area, 

provides its services via an interface and hides its internals 

(in line with the system decomposition criteria of Parnas 

[16]). Consequently, a component differs from a logical 

cluster in the fact that it has a Façade sub module and hides 

its internals. Since our definition of component is intended 

for modular architectures, it does not include runtime 

behavior, and a module in a module view may turn into 

many runtime components within the “component and 

connector view” [14]. 

5) Façades are related to a component and act as an 

interface as described under components. We use the term 

façade, referring to the façade pattern [19], to differentiate 

with the Java interface, which has not exactly the same 

meaning as a design-level interface. A façade may be 

mapped to multiple elements at implementation level, like 

Java interface classes, exception classes and data transfer 

classes. 

6) External systems represent platform and 

infrastructural libraries or components used by the target 

system. Useful ACC support includes the identification of 

external system usage and checks on constraints regarding 

their usage [20]. 

D. Example of an SRMA 

An example of an SRMA, with modular elements of 
different types, is shown in Fig. 1. The model shows a part of 
a modular architecture of one of the systems at an airport, 

where it was subject of an ACC. This system is used to 
manage the state and services of human interaction points 
where customers communicate with baggage handling 
machines, self-service check-in units, et cetera.  

Various notations for modular architecture diagrams are 
used in practice [14]. The example in Fig. 1 shows UML 
icons, but also an identification of the layers, not included in 
UML. The model combines three modular styles, namely the 
decomposition style, uses style, and layered style. Examples 
of modules of different types are visible in Fig.1. such as 
“Interaction layer”, logical cluster “HiWeb”, component 
“HiManager”, façade “HimInterface”, and external system 
“Hibernate”. The modules are easily identifiable, but the 
rules are not. In this case, the basic principle is, “no module 
is allowed to use another module”, except when a 
dependency relation indicates “is allowed to use”. 
Furthermore, the rules related to the layered style are not 
visible, but the default rules apply: Interaction Layer is not 
allowed to use Technology Layer (skip call ban); 
Technology Layer is not allowed to use Service layer or 
Interaction Layer (back call ban). 

E. Common Rule Types. 

SMRAs may contain rules of different types, where each 
rule type characterizes the constraint. Constraints in a 
software architecture are categorized in literature [12], [14] 
as properties and relationships. Our inventory of architectural 
rule types, in principle verifiable by static ACC, resulted in 
two categories related to properties and relationships: 
Property rule types; and Relation rule types. 

 

Figure 1.  Example of a semantically rich modular architecture model 
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Property rule types constrain the elements included in the 
module; their sub modules, et cetera. Clements et al. [14] 
distinguish the following properties per module: Name, 
Responsibility, Visibility, and Implementation information. 
We identified rule types associated to these properties and 
named them accordingly, except two types (Façade 
convention, Inheritance convention), which represent the 
property Implementation information. The identified rule 
types are shown in Table I. The table contains per rule type: 
a description, an example, and an exemplary reference to 
literature covering the topic. The example rules constrain the 
modules of the modular architecture shown in Fig.1. 
Naming conventions may be useful, since names are used by 
practitioners to unify software architecture and its 
implementation [21]. Responsibility conventions are useful 
to preserve the designed distribution of responsibilities over 
modules. Visibility conventions and Façade conventions can 
be used to enforce implementation hiding. Inheritance 
conventions may be used to enforce a selected generalization 
style. Finally, exceptions to property rules may be useful too. 
For instance, an exception to the Visibility convention 
example in Table I is, “HiManager classes have package 
visibility or lower, except for façade HimInterface.”  

Relation rule types specify whether a module A is 
allowed to use a module B. The basic types of rules are “is 
allowed to use” and “is not allowed to use”. However, we 
encountered useful specializations of both basic types, which 
we included in the classification shown in Table I. When 
several rules of the same type are defined on the same from-
module, then they should be interpreted as complementary 
rules; even if the word “only” is part of the name of the rule 
type.  

Some rule types are complex, because they include 
dependency checks on other modules than only the from-
module and to-module. Exceptions to all relation rules are 
complex, as well as the two following types: “Is only 
allowed to use”, and “Is the only module allowed to use”. 
Complex rule types are very useful in practice, for the 
following reasons:  

 Complex rule types allow architects to define rules in 
a comparable way as expressed in regular language. 
Complex rules of type “Is only allowed to use” may 
constitute a significant part of the total rule set [22]. 

 Complex rule types help to transform rules in a 
UML-like diagram to rules in most ACC-tools. For 
instance, the dependency relationship from module 
HF-Kiosk to module HP-Kiosk in Fig.1 expresses the 
rule “HF-Kiosk is only allowed to use HP-Kiosk.” 
Transformation is often necessary. The basic 
principle underlying UML-like diagrams is restricting 
(no other than the defined dependencies are allowed), 
while in most tools, the basic principle is non-
restricting (all dependencies are allowed, unless there 
is a not-allowed-to-use rule).  

 Complex rule types may diminish the number of 
rules, since one complex rule often replaces many “is 
not allowed to use” rules. For instance, when the “is 
only allowed to use” rule type is not supported by a 
tool, than the dependency relationship from module 
HF-Kiosk to module HP-Kiosk in Fig.1 may have to 
be translated to many “not allowed to use” rules from 
HF-Kiosk to all the other modules, except to HP-
Kiosk. 

TABLE I.  COMMON RULE TYPES (REF= PRIMARY  LITERATURE REFERENCE) 

Category\Type of Rule Description (D), Example (E) Ref 

Property rule types   

Naming convention D: The names of the elements of the module must adhere to the specified standard. 
E: HiDao elements must have suffix DAO in their name. 

[8] 

Responsibility convention D: All elements of the module must adhere to the specified responsibility. 

E: HiForms is responsible for presentation logic only. 

[18] 

Visibility convention D: All elements of the module have the specified or a more restricting visibility. 
E: HiManager classes have package visibility or lower. 

[14] 

Facade convention D: No incoming usages of the module are allowed, except via the façade. 

E: HiManager may be accessed only via HimInterface. 

[19] 

Inheritance convention D: All elements of the module are sub classess of the specified super class. 
E: HiDao classes must extend CorporateWebCore.Dao.GenEntityDao. 

[8] 

Relation rule types   

Is not allowed to use D: No element of the module is allowed to use the specified to-module. 
E: HF-Kiosk is not allowed to use HP-Device. 

[3] 

 Back call ban (specific for layers) D: No element of the layer is allowed to use a higher-level layer. 

E: Service Layer is not allowed to use the Interaction Layer. 

[23] 

 Skip call ban (specific for layers) D: No element of the layer is allowed to use a lower layer that is more than one level lower. 
E: Interaction Layer is not allowed to use the Infrastructure Layer. 

[23] 

Is allowed to use D: All elements of the module are allowed to use the specified to-module. 

E: HiWebApp is allowed to use HiForms (including its sub modules). 

[14] 

 Is only allowed to use D: No element of the module is allowed to use other than the specified to-module(s). 
E: HF-Kiosk is only allowed to use HP-Kiosk. 

[8] 

 Is the only module allowed to use D: No elements, outside the selected module(s) are allowed to use the specified to-module. 

E: HiDao is the only module allowed to use CorporateWebcore. 

[8] 

 Must use D: At least one elements of the module must use the specified to-module. 
E: HiDao must use CorporateWebcore. 

[3] 
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F. Associations between Module and Rule Types 

Optimal support of SRMAs includes the automatic 
provision of rule types inherent to the type of module. For 
instance, layers are inherently associated to a “Back call ban” 
rule and a “Skip call ban” rule. Furthermore, components are 
inherently associated to a “Façade convention” rule (and 
possibly a “Visibility convention” rule, if supported by the 
implementation language). Options to disable an inherent 
rule, for instance in case of a relaxed layered model, or to 
define an exception, will enhance the usability. 

III. TEST METHOD AND TESTED TOOLS 

A. Test Method 

Based on the requirements and classification of module 
types and rule types described in Section 2, a test was 
designed to assess the ACC-tools on their SRMA support. 
For each rule type, at least two test cases were included: one 
without, and one with violations to the rule. A special test 
software system was developed in Java. This system 
included the various module types and separate packages for 
each rule type, which contained classes with injected 
violations to a rule and classes without. In addition, a test 
script was prepared to instruct the tester and to document the 
test results. The test script and test system are available on 
request. 

After the test preparation, the eight ACC-tools were 

tested. During the first step of the test of a tool, the intended 
architecture was entered. Thereafter, the modules were 
mapped to source code units and the rules were entered into 
the tool. If a tool did not support a rule type explicitly, then 
we looked for a workaround; such as a combination of 
separate rules. The first step was concluded by test actions 
aimed at the tool’s ability to prevent inconsistencies in the 
architecture definition. During the second step, the outputs of 
the tool’s dependency analysis and conformance check were 
studied and compared with the expected result. During the 
third step, reports were prepared, after which the tools could 
be compared on their SRMA support.  

Two iterations of testing and reporting were conducted. 
The first iteration was performed with 25 bachelor students 
in the course of a third year specialization semester 
“Advanced Software Engineering”, where each team studied 
and tested a tool. In a second iteration, the authors studied 
the tools and verified and refined the results of the students, 
by using the tools and repeating the tests. ConQAT was 
added afterwards to our tool set and was tested only by the 
authors.  

B. ACC-Tools Included in the Test 

Many tools are available with some facilities to support 
ACC. Our research focused on tools with explicit support of 
ACC. We selected eight publicly available tools, which were 
mentioned in academic work (e.g., [4] [8] [10]), were able to 

TABLE II.  CHARACTERISTICS OF THE TOOLS IN THE TEST 

Tools 1  
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General functionalities         

Dependency browsing         

Dependency visualization         

Architecture compliance checking         

Architecture refactoring/simulation         

Team support          

Code variants         

Java         

Other languages         

Source file analysis         

Compiled file analysis         

Licensing         

Free: commercial and non-commercial use         

Paid: commercial use         

1 ConQat AA– version 2011.9 – www.conqat.org;  

dTangler - GUI version 2.0 - web.sysart.fi/dtangler;  

Lattix LDM - version 7.2 - lattix.com;  

Macker - version 0.4.2 - sourceforge.net/projects/macker;  

SAVE - version 1.7 - iese.fraunhofer.de;  

Sonar ARE - version 3.2 - docs.codehaus.org/display/SONAR/Architecture+Rule+Engine;  

Sonargraph Architect (fusion of Sotograph and SonarJ) - version 7.0 - hello2morrow.com;  

Structure101 - version 3.5 - structure101.com. 
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analyze Java, and provided evaluation or research licenses 
(two vendors rejected and one did not respond). We 
excluded tools that focus mainly on architecture 
visualization, metrics and/or architecture refactoring. The 
eight tools included in our study are shown in Table II, 
which also gives an overview of functionalities, code 
variants and licensing. 

The tools provide their support of ACC in various ways. 
The eight tools can be subdivided in four categories of tools.  
1) Macker and Sonar Architecture Rule Engine (Sonar ARE) 
are text-based tools, which support relation conformance 
rules. These tools provide HTML-based violation reports.  
2) dTangler and Lattix are based on the Dependency 
Structure Matrix (DSM) technique, complemented with text-
based editors to define rules. The DSM is used to select 
modules and to show dependencies and violations. Lattix is 
also able to visualize architectures graphically, and provides 
extensive reporting facilities.  
3) ConQAT Architecture Analysis (ConQAT AA) and 
SAVE are strictly based on the Reflexion Model (RM) 
technique [1], and both tools provide a graphical editor to 
define the intended architecture and to show violations after 
the evaluation. Textual reports are generated at request. 
4) Sonargraph Architect and Structure101 are diagram-based 
too, but these tools are not based on the RM-technique. To 
define modules and rules, these tools provide diagrams in 
which the horizontal and vertical position of a module 
implies rules. Violations are shown in these diagrams, but 
textual reports are provided in addition. 

IV. TEST RESULTS 

A. Support of Common Module Types 

In Section 2 we identified six common types of modules, 
relevant for static ACC. The results of our tests concerning 
the support of these module types are shown in Table III, and 
the most interesting findings are described below. 

Clusters are supported by all tools. Five of the eight tools 
support physical clusters. The advantages to use them are 
that they allow fast, ad hoc rule checking; for instance, when 
there is no formal modular architecture. The disadvantage is 
the diminished or lost traceability to the formal modular 
architecture, if there is one. Sonar ARE is the only tool that 
supports only this type of modules.  Logical clusters are 
supported by seven tools. Although in very different ways, 
these tools provide support to register logical clusters and to 
map the logical clusters to code units. Furthermore, support 
is provided to define rules constraining logical clusters and 
to check these rules at code level.  

Layers are supported by only one tool, Structure101, on 
all indicators: modules can be marked as layers; back call 
and skip call rules are reported; and layers are visualized. 
Two other tools support the definition and visualization of 
layers, but do not provide inherent support of the related 
rules. 

Components and Facades are supported by SAVE and 
Sonargraph Architect, on the following indicators: modules 
can be marked as component; facades can be defined. SAVE 
visualizes components and facades, but does not actively 

TABLE III.  TOOL SUPPORT OF COMMON MODULE TYPES (+ = EXPLICIT SUPPORT; ± = PARTIAL SUPPORT; - = NO SUPPORT) 
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Clusters         

Physical cluster - + + + - + - + 

Logical cluster + + + + + - + + 

Layers         

A module can be marked as layer - - - - + - + + 

Back call violations are reported - - - - - - - + 

Skip call violations are reported - - - - - - - + 

Components and Facades         

A module can be marked as component - - - - + - + - 

Facade can be defined  - - - - + - + - 

Facade-skip violations are reported - - - - ± - + - 

External systems         

A module can be marked as external system - - - - - - + - 

A module can be mapped to an external system  + + + + + + + + 

Rules constraining their use are checked + + + + + + + + 

Visualization         

Clusters are visualized  + - + - + - + + 

Layers are recognizable visualized - - - - + - + + 

Components are recognizable visualized  - - - - + - - - 

Facades are recognizable visualized - - - - + - + - 

External systems are recognizable visualized - - - - + - + - 
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support any of their semantics. Sonargraph Architect 
visualizes facades and supports their semantics; it reports 
facade-skip violations automatically when a facade is 
associated to a module. ConQAT AA seems to support 
components at first glance, since it depicts all modules as 
UML components. However, it does not provide any other 
icons and does not support the semantics of a component; 
reason why we classified ConQAT’s components as logical 
clusters. 

External systems are not designated as a special module 
type by all tools, except Sonargraph Architect, but all enable 
conformance checks on modules mapped to external 
libraries.  
 

Five tools support visualization of modular architectures. 
However, only two tools offer three or more different icons. 
A notable observation is that the tools that support 
semantically rich modules all have their own terminology, 
icons, rules and ways to visualize the architecture. SAVE 
provides an UML-like notation, while Sonargraph Architect 
and Structure101 position the modules horizontally and 
vertically. SAVE discerns five module types, while 
Sonargraph Architect discerns six types (which are only 
partly overlapping with those of SAVE), whereas 
Structure101 does not show the logical meaning of a module, 
but uses an icon to show the type of the related physical 
item.  

B. Support of Common Rule Types 

In section 2 we identified twelve common types of rules, 
relevant for static ACC. The results of our tests concerning 

the support of these rule types are shown in Table IV. 
Explicit support of a rule type is depicted by a “+”, meaning 
that one logical rule can be registered as one rule in the tool. 
Partial support, depicted by “±”, means that it is possible to 
register a rule of this type, but only via a workaround; often a 
combination of several rules. The most interesting findings 
from the test are described below. 

1) Property rule types  
Property rule types are poorly supported. No tool 

provides facilities to specify and check conventions 
regarding naming, responsibility, or inheritance. Although 
names are used,  in combination with regular expressions, to 
map modules to the code, no facilities are provided to check 
all the packages and/or classes contained by a module on 
conformance to a naming convention.  

Only rule types to enforce implementation hiding are 
supported by some tools. Visibility convention rules are 
partly supported by Sonargraph Architect and Structure101. 
These tools provide a property to restrict the accessibility of 
a module, but do not check at code level on accessibility 
settings; reason why they did not score a “+”. However, 
when a module is marked as hidden or private, violation 
messages are reported, when dependencies to the module are 
detected from outside.  

Façade convention rules are supported explicitly only by 
Sonargraph Architect. Four other tools enable the definition 
of this type of rules by default means, resulting in a 
combination of separate rules, so their support is scored with 
“±”. 

2) Relation rule types 
Relation rule types are supported by all the tools, but no 

TABLE IV.  TOOL-SUPPORT OF COMMON RULE TYPES (+ = EXPLICIT SUPPORT; ± = PARTIAL SUPPORT; - = VERY WEAK OR NO SUPPORT) 
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Property rule types         

Naming convention - - - - - - - - 

Responsibility convention - - - - - - - - 

Visibility convention - - - - - - ± ± 

Facade convention - ± ± ± ± - + - 

Superclass inheritance convention - - - - - - - - 

Relation rule types         

Is not allowed to use + + + + + + + ± 

 Back call ban (inherent to layer) - - - - - - - + 

 Skip call ban (inherent to layer) - - - - - - - + 

Is allowed to use + + + + ± - + + 

 Is only allowed to use ± ± ± ± ± - ± ± 

 Is the only module allowed to use ± ± ± ± ± - ± ± 

 Must use - - - - + - - - 

Exception (to relation rules) ± ± ± ± - - ± ± 

Visualization of rules and violations         

Rules are visualized  + - + - + - + + 

Violations are visualized  + + + - + - + + 
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more than three rule types are explicitly supported per tool. 
Complex rule types (Is only allowed to use, Is the only 

module allowed to use, Exceptions to a relation rule) are not- 
explicitly supported, or not at all. Without explicit support, 
workarounds are needed, for instance for the rule “HF-Kiosk 
is only allowed to use HP-Kiosk”. In Lattix, dTangler and 
Macker, two combined rules are needed such as: “HF-Kiosk 
Cannot-Use $Root” + “HF-Kiosk Can-Use HP-Kiosk”. 
Since these rules are not related to each other, they form a 
threat to the maintainability and traceability of the set of 
rules. Sonargraph Architect and Structure101 may require 
the specification of more than two rules or property settings 
for complex rules, and sometimes many rules are needed, 
depending on the number and position of other modules. 
Sonar ARE provides no support at all to check complex 
rules. ConQAT AA and SAVE work quite differently from 
the other tools, since no transformation is required of rules in 
UML-like diagrams to rules in the tool. SAVE supports only 
the “Must use” rule type explicitly, while ConQat AA 
supports “Is allowed to use” and  “Is not allowed to use” rule 
types. Complex rules can be checked, but this requires 
interpretation of the architecture model and the conformance 
check output. 

3) Visualization 
Six tools are able to visualize rules and violations. Lattix 

and dTangler show colors in a DSM. ConQAT AA, SAVE, 
Sonargraph Architect, and Structure101 use lines in 
diagrams to define and show rules, and to show violations. 
However, not all rules are visible in these diagrams.  

C. Support of   Inconsistency Prevention  

In section 2 we defined the requirement, “ACC-tools 
should prevent inconsistent definitions of modules and 
rules.” The results of our tests concerning this requirement 
are shown in Table V. Most tools allow, without a warning, 
incomplete or contradictory definitions of modules and/or 
rules. ConQAT AA scored best and prevented six out of six 
types of inconsistency included in our test. Lattix prevented 
five out of six types, while the other tools prevented or 
warned for upmost three types. Six of the tools start the 
compliance check without a warning when the defined 
modules and rules model is inconsistent. In such a case, the 
tool does not check all the rules as intended by the user, and 

consequently the outcome of the check may be unreliable. 

V. DISCUSSION 

To our opinion, all tested tools are providing useful 
functionality to support ACC or ad hoc rule checking. Apart 
from our laboratory experiments described in the paper, we 
used all eight tools to analyze an open source system. 
Furthermore, we performed ACCs on professional software 
systems with use of Lattix, Sonargraph Architect, and 
Structure101. Based on these experiences we can conclude 
that these tools are of great help for architecture 
reconstruction and ACC. However, our tests show that all 
eight tools could improve their support regarding SRMAs, 
though in varying degrees. Not one of the tested tools is able 
to support all the module types and rule types included in our 
classification. However, we encountered interesting 
examples of partial support. SAVE supports the graphical 
definition of modules of nearly all the types in our 
classification; only physical clusters are missing. However, 
SAVE’s rule language is very limited, and the semantics of 
the modules are not supported. ConQAT provides the same 
types of diagrams, but complements the rule setting 
capabilities considerably. Furthermore, ConQAT checks the 
consistency of the defined architectural model accurately. 
However, ConQAT provides one type of module only, and 
does not support any semantics. Sonargraph Architect and 
Structure101 are the only tools that actively support the 
semantics of two module types in our classification. 
Sonargraph Architect supports the definition of Facades and 
relates the “Façade convention” rule to a defined façade. 
Structure101 supports the definition of Layers and relates a 
layer to the “Back call ban” and the “Skip call ban” rules. 
Combination of these examples of partial support builds an 
image of the provision of full functional SRMA support.  

Another observation during our study is that the 
combination of visualization, rule definition, and rule 
checking appears to be challenging. Lattix, dTangler, and 
Macker provide no support to define the architecture via a 
graphical editor, but enable the definition and checking of 
quite a diversity of rules, including complex rules. ConQAT, 
SAVE, Sonargraph Architect and Structure101 provide 
graphical support to define and check the architecture, but 
lack the freedom of rule definition, as provided by the 

TABLE V.  PREVENTION OF INCONSISTENCIES (+ = SUPPORTED; - = NOT SUPPORTED; N/A = NOT APPLICABLE) 
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Modules must have (unique ) name or ID + + + + - n/a + - 

A module may have only one parent. + - + - + n/a - - 

Modules must be mapped to code file(s) + - - - - n/a - + 

Mapped code files must exist + - + - - n/a - - 

Rules must be completely specified + - + + + - + + 

Rules cannot be contradictory  + - + - + - + + 

Tool checks model prior to conf. check + - + - - - - - 
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textual-rule based tools. Furthermore, sometimes we 
experienced serious problems related to the graphical 
models. Defining sub-subsystems, exceptions, and other 
complex rules in the graphical models, is hard in some tools, 
and impossible in others. Furthermore, it may result in many 
lines, which makes the diagrams unreadable. Structure101 
and Sonargraph Architect have introduced additional rule-
setting techniques to reduce the number of required rule-
lines. In these tools, the module type, the horizontal and 
vertical position, and the value of a visibility property per 
module may imply dependency rules. On top of that, 
Sonargraph Architect provides a “transversal access” 
variable per module as well. To our opinion, the combination 
of all the rule-setting techniques increases the complexity 
considerably, and it reduces the transparency of the set of 
defined rules. 

A. Limitations 

Our study can be characterized as a quasi-experiment, 
according to Wohlin et al. [24], since we did not work with a 
randomized selection of tools. Consequently, our findings 
may not be generalized to other tools, even though we tested 
eight tools in a small market.  

Furthermore, we do not claim that our classification of 
common module types and common rule types is complete, 
since common is not a qualified term. We aimed to cover the 
most used types of modules and rules, reasoning from the 
functional point of view; the architect’s view, not the tool 
builder’s view. Creating the classification proved a valuable 
step in our study. The classification was used as a basis for 
our tests and will be used as starting point for our future 
work. 

B. Related work. 

Requirements regarding the functional support of ACC 
can be derived from quite a number of sources, like general 
literature on software architecture and design, and studies on 
ACC. In Section 2 we described the most relevant sources 
used for our requirements and classification. Several studies 
on ACC propose the inclusion of support for some specific 
module and/or rule types, for instance [10] [20] [3] [8]. 
However, to the best of our knowledge, none of these studies 
or other studies on ACC have provided and substantiated a 
broad inventory and classification of module and rule types. 
We intentionally did not include very specific or detailed 
module or rule types, but kept the set of requirements broad 
and not too specific. However, some interesting studies 
elaborate on particular types. For instance, Adersberger and 
Philippsen [10] describe the constraints and checks regarding 
components in detail. Furthermore, Terra and Valente [22] 
identified different types of dependencies (accessing 
methods and fields, declaring variables, creating objects, 
extending classes, implementing interfaces, throwing 
exceptions, and using annotations), and based fine grained 
rule types on these dependency types. Lattix, SAVE and 
Structure101 provide support to define or configure rules at 
this level of detail. 

Not much comparative research on ACC-tools has been 
performed, as described in the Introduction section. Only 

Passos et al. [8] presented similar work. They evaluated three 
tools, including Lattix and SAVE, on the basis of a very 
small system. During our study no findings have arisen that 
contradict their tool evaluations. Our study adds a 
substantiated set of requirements focused on SRMA support, 
as well as test results of eight tools. 

VI. CONCLUSION 

Architecture compliance checking (ACC) relies on the 
support of tools to define modules and rules, to analyze the 
code, to check the compliance, and to report violations to the 
rules. In this study, we have investigated the support of 
semantically rich modular architectures (SRMAs) provided 
by static ACC-tools. We identified requirements to the 
support of SRMAs and classified module types and rule 
types relevant for static ACC. Furthermore, we prepared a 
test, and we tested eight tools on their support of SRMAs.  

We started our study with the following research 
question: Do static ACC-tools provide functional support for 
semantically rich modular architectures? We focused our test 
on the support of: a) common types of modules and their 
semantics; b) common types of rules; and c) inconsistency 
prevention within the defined architecture.  

Our tests regarding the support of common module types 
show that five tools support non-semantic clusters only. The 
three other tools distinguish also one or more semantically 
rich module types from our classification. SAVE supports 
the graphical definition of five types of modules, but does 
not support their semantics. Sonargraph Architect supports 
the semantics of a Façade actively, while Structure101 
supports the semantics of Layers actively. However, no tool 
provides the combined support of layers, components, and 
facades. 

Our tests regarding the support of common rule types 
show that per tool only a few rule types are explicitly 
supported. Complex relation rules are by no tool explicitly 
supported. Consequently, complex relation rules at logical 
level require workarounds at tool-level, which often result in 
two or more unrelated rules; a threat to the maintainability 
and traceability of the set of rules. Furthermore, only two of 
the five property types are supported, and only partially, not 
explicitly.  

Our tests regarding the support of inconsistency 
prevention show that only two tools, ConQAT and Lattix,  
score high on the prevention of inconsistencies in the module 
and rule model, while inconsistent models may result in an 
unreliable outcome of the compliance check. 
 

Based on our study and experiments, we present the 
following recommendations to ACC-tool developers: 
1) Widen the scope of the tools from dependency checking to 
software architecture compliance checking, including 
SRMAs. Provide explicit support for semantically rich 
module types with their related rule types. The requirements 
and the classification of common module and rule types, 
presented in this paper, may be used as a starting point.  
2) Minimize the difference between logical rules, as 
perceived by the architect, and the technical implementation 
in the tool. Offer rule types that match with logical rule 
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types, including exceptions, and support each type explicitly. 
3) Provide one method to define and edit rules. Do not mix 
several rule setting mechanisms. Keep it simple to the user. 
4) Provide several, best adaptable, views on the modular 
structures, the rules, and the violations against the rules: 
reports, browsers, and diagrams. Do not mix too much types 
of information into one view.  
5) Check on inconsistencies in the architecture definition, 
and inform the user when it is incorrect or incomplete. 
 

Not all issues identified in this study can be solved easily. 
The provision of SRMA support calls for further research. 
Techniques need to be identified, and support needs to be 
designed and tested on effectiveness by means of prototypes 
and case studies. Specific topics deserve attention too. For 
instance, visualization, rule definition and rule checking 
appeared to be a challenging combination. Furthermore, 
automatic recognition of responsibility at code level, needed 
to check against the defined responsibility of a module, is an 
unresolved issue, though responsibility is an important 
property of a module at design level. 

In conclusion, the eight tested tools provide useful 
support for ACC, but all could improve their support of 
SRMAs. Solutions need to be found to reduce the gap 
between documented modular architectures in software 
architecture documents on one side, and module and rule 
models in ACC-tools on the other side. More-complete 
functional support of SRMAs might contribute to the 
adoption of ACC and ACC-tools, and consequently could 
improve the effectiveness of software architecture in the 
practice and education of software engineering. 
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