
Authors’ Final Version - © 2013 IEEE (ieeexplore.org), ICSM 2013, Eindhoven, The Netherlands

Architecture Compliance Checking of Semantically Rich Modular Architectures

A Comparative Study of Tool Support

Leo Pruijt, Christian Köppe

Information Systems Architecture Research Group

HU University of Applied Sciences

Utrecht, The Netherlands

{leo.pruijt, christian.koppe}@hu.nl

Sjaak Brinkkemper

Department of Information and Computing Sciences

University Utrecht

Utrecht, The Netherlands

s.brinkkemper@uu.nl

Abstract—Architecture Compliance Checking (ACC) is an

approach to verify the conformance of implemented program

code to high-level models of architectural design. ACC is used

to prevent architectural erosion during the development and

evolution of a software system. Static ACC, based on static

software analysis techniques, focuses on the modular

architecture and especially on rules constraining the modular

elements. A semantically rich modular architecture (SRMA) is

expressive and may contain modules with different semantics,

like layers and subsystems, constrained by rules of different

types. To check the conformance to an SRMA, ACC-tools

should support the module and rule types used by the

architect. This paper presents requirements regarding SRMA

support and an inventory of common module and rule types,

on which basis eight commercial and non-commercial tools

were tested. The test results show large differences between the

tools, but all could improve their support of SRMA, what

might contribute to the adoption of ACC in practice.

Keywords—Software Architecture; Modular Architecture;

Architecture Compliance; Architecture Conformance;

Architectural Erosion; Static Analysis

I. INTRODUCTION

Software architecture is of major importance to achieve
the business goals, functional requirements and quality
requirements of a system. However, architectural models
tend to be of a high-level of abstraction, and deviations of the
software architecture arise easily during the development and
evolution of a system [1]. Architecture Compliance
Checking (ACC) is an approach to bridge the gap between
the high-level models of architectural design and the
implemented program code, and to prevent decreased
maintainability, caused by architectural erosion.
Architectural erosion is “the phenomenon that occurs when
the implemented architecture of a software system diverges
from its intended architecture” [2]. Opposing terms are
architecture compliance and its synonym architecture
conformance. Knodel and Popescu defined architecture
compliance as “a measure to which degree the implemented
architecture in the source code conforms to the planned
software architecture” [3].

Many tools and techniques are available to analyze a
software system, and to reconstruct, visualize, check, or
restructure its architecture [4]. In our study we focus on tools

supporting static ACC, which analyze the software without
executing the code. These tools, which we label as static
ACC-tools, focus on the modular structure in the source code
and identify structural elements such as packages and
classes. In addition, they analyze use-relations between these
elements, such as an invocation of a method or access of an
attribute. Furthermore, these tools support the definition of
rules on the structural elements in the code, or on logical
modular elements that are mapped to the code. Finally,
ACC-tools check the compliance and report violations to the
rules. For example, if a method call from class A to class B
in the code corresponds with a not-allowed dependency from
a lower layer to a higher layer in the intended architecture,
then the tool should report a violation.

Although Shaw and Clements included ACC in 2006 in
their list of promising areas [5], the adoption of ACC-tools is
still limited [2], [6], and research is necessary to advance and
improve current methods and tools [7]. A few studies have
compared ACC-tools and techniques, and these studies
revealed large differences in terminology and approach. A
high level overview of techniques and tools is included in a
survey on architectural erosion [2] and in a survey on
software architecture reconstruction [4]. Two other studies
[3], [8] identified and compared five static ACC techniques
at a more detailed level. One of these studies [8] also
explored the effectiveness and usability of three tools, each
representing one technique, by executing tests on the basis of
a small system.

Our research builds on these previous studies, but we
focus on ACC-tool support of semantically rich modular
architectures (SRMAs). We use this term for expressive
modular architectures, composed of different types of
modules, which are constrained by different types of rules;
explicitly defined rules, but also rules inherent to the module
types. Kazman, Bass, and Klein have stated the principle that
elements in a software architecture should be coarse enough
for human intellectual control, but also specific enough for
meaningful reasoning [9]. Modules with specific semantics,
like subsystems, layers, components or facades, enhance the
expressiveness of a modular architecture and support
architecture reasoning. Adersberger and Philippsen consider
the support of semantically rich architecture models essential
for the integration of ACC in model-driven engineering [10].
Furthermore, they make clear that support of semantically
rich constructs reduces the number of rules that need to be

Authors’ Final Version - © 2013 IEEE (ieeexplore.org), ICSM 2013, Eindhoven, The Netherlands

defined, compared to semantically poorer boxes and lines
models.

We started our study with the following research
question: Do static ACC-tools provide functional support for
semantically rich modular architectures? To answer this
question, we identified requirements, developed test-ware
based on the requirements, and we tested eight ACC-tools.
We restricted our study to the functional support of SRMAs
by ACC tools, and consequently we do not focus on other
aspects, like usability, scalability or accuracy (in another
study, we investigated the accuracy of dependency analysis
and violation reporting [11]). Other approaches than ACC
that may be supported by the same tools, like architecture
reasoning and re-engineering, are outside the scope of this
paper as well.

The next section of this paper identifies the information
available in semantically rich modular architectures, presents
requirements and a classification of common module and
rule types. Section 3 describes the test method and introduces
the tools, while Section 4 holds the test results. Section 5
discusses the test outcome and compares it to related work,
while Section 6 concludes this paper with recommendations,
and addresses some issues that require further research.

II. MODULAR ARCHITECTURES

A. Focus of Static ACC

Software architecture compliance checking covers a large
field, since software architecture is a broad term. According
to Perry and Wolf, software architecture “provides the
framework within which to satisfy the system requirements
and provides both the technical and managerial basis for the
design and implementation of the system” [12]. Static ACC
does not cover the full width of software architecture, but
only the static structure of the software: the modular
architecture. According to the Views and Beyond approach
[13], [14], module styles focus on the structure of the units of
implementation and not on runtime behavior or the
allocation to non-software resources. Different module styles
are defined such as the decomposition style, uses style,
generalization style, and layer style.

A modular architecture should describe the modular
elements, their form (properties and relationships) and
rationale [12]. Modular elements, properties and
relationships, are in ACC’s center of attention, and should be
included in a complete compliance check. A modular
element, or module, is an implementation unit of software
with a coherent set of responsibilities [14]. Properties and
relationships express architectural rules. Properties are used
to define constraints on the modular element and its content.
Relationships are used to constrain how the different
elements may interact or otherwise may be related [12].

B. Requirements Regarding SRMA Support

A semantically rich modular architecture may contain a
lot of information about the modules and the rules
constraining these modules. Modules may be of types with
different semantics, while different types of rules may be
used to constrain the modules. A rich set of module types

provides a language to express characteristics of the modules
in an architectural model, as well as default constraints
associated to the type of module. A rich set of rule types
provides a language to express constraints on the modules in
an architectural model. Provision of a rich rule set allows
architects to define logical rules in a comparable way as
expressed in regular language, without the need to translate a
logical rule to one or more rules at tool level.

Consequently, to support compliance checks of SRMA’s,
ACC-tools should preferably be able to: a) register common
information in SMRAs (modular elements, properties and
relationships of different types); b) prevent inconsistencies in
the definition of the architectural model; and c) check the
rules included in the architectural model and report
violations. Inconsistencies in the model, like modules not
properly mapped to code, will hamper the accuracy of the
actual rule check. Consequently, inconsistencies should be
recognized and reported.

In line with these requirements, we focused our research
on the following questions. Do ACC-tools provide support
for: a) common types of modules and their semantics; b)
common types of rules; and c) inconsistency prevention
within the defined architecture?

To determine the module types, rules types and
inconsistency checks relevant to our research, we studied
academic and professional literature, as well as software
architecture documents from professional practice and ACC-
tool documentation. The following subsections describe the
outcome of our study.

C. Common Module Types.

SMRAs may contain modules of different types. We
identified six common types of modules relevant for static
ACC:

1) Physical clusters are the type of modules that

represent a wide variety of software structures or units in the

code, like classes, Java packages, or C# namespaces [14].

This type of module does not represent a unit in the design,

but in the code.

2) Logical clusters represent units in the system design

with clearly assigned responsibilities, but with no additional

semantics. Comparable terms are subsystems, or packages.

3) Layers represent units in the system design with

additional semantics. Layers have a hierarchical level and

constraints on the relations between the layers. The concept

of layering can be traced back to the works by Dijkstra [15]

and Parnas [16]. Although the layered style is not supported

by UML [5], it is one of the most common styles used in

software architecture [14], [17]. We cite Larman [18], who

summarizes the essence of a layered design as “the large-

scale logical structure of a system, organized into discrete

layers of distinct, related responsibilities. Collaboration and

coupling is from higher to lower layers.”

4) Components within a software architecture are

designed as autonomous units within a system. The term

component is defined in different ways in the field of

software engineering. In our use, a component within a

Authors’ Final Version - © 2013 IEEE (ieeexplore.org), ICSM 2013, Eindhoven, The Netherlands

modular architecture covers a specific knowledge area,

provides its services via an interface and hides its internals

(in line with the system decomposition criteria of Parnas

[16]). Consequently, a component differs from a logical

cluster in the fact that it has a Façade sub module and hides

its internals. Since our definition of component is intended

for modular architectures, it does not include runtime

behavior, and a module in a module view may turn into

many runtime components within the “component and

connector view” [14].

5) Façades are related to a component and act as an

interface as described under components. We use the term

façade, referring to the façade pattern [19], to differentiate

with the Java interface, which has not exactly the same

meaning as a design-level interface. A façade may be

mapped to multiple elements at implementation level, like

Java interface classes, exception classes and data transfer

classes.

6) External systems represent platform and

infrastructural libraries or components used by the target

system. Useful ACC support includes the identification of

external system usage and checks on constraints regarding

their usage [20].

D. Example of an SRMA

An example of an SRMA, with modular elements of
different types, is shown in Fig. 1. The model shows a part of
a modular architecture of one of the systems at an airport,

where it was subject of an ACC. This system is used to
manage the state and services of human interaction points
where customers communicate with baggage handling
machines, self-service check-in units, et cetera.

Various notations for modular architecture diagrams are
used in practice [14]. The example in Fig. 1 shows UML
icons, but also an identification of the layers, not included in
UML. The model combines three modular styles, namely the
decomposition style, uses style, and layered style. Examples
of modules of different types are visible in Fig.1. such as
“Interaction layer”, logical cluster “HiWeb”, component
“HiManager”, façade “HimInterface”, and external system
“Hibernate”. The modules are easily identifiable, but the
rules are not. In this case, the basic principle is, “no module
is allowed to use another module”, except when a
dependency relation indicates “is allowed to use”.
Furthermore, the rules related to the layered style are not
visible, but the default rules apply: Interaction Layer is not
allowed to use Technology Layer (skip call ban);
Technology Layer is not allowed to use Service layer or
Interaction Layer (back call ban).

E. Common Rule Types.

SMRAs may contain rules of different types, where each
rule type characterizes the constraint. Constraints in a
software architecture are categorized in literature [12], [14]
as properties and relationships. Our inventory of architectural
rule types, in principle verifiable by static ACC, resulted in
two categories related to properties and relationships:
Property rule types; and Relation rule types.

Figure 1. Example of a semantically rich modular architecture model

Authors’ Final Version - © 2013 IEEE (ieeexplore.org), ICSM 2013, Eindhoven, The Netherlands

Property rule types constrain the elements included in the
module; their sub modules, et cetera. Clements et al. [14]
distinguish the following properties per module: Name,
Responsibility, Visibility, and Implementation information.
We identified rule types associated to these properties and
named them accordingly, except two types (Façade
convention, Inheritance convention), which represent the
property Implementation information. The identified rule
types are shown in Table I. The table contains per rule type:
a description, an example, and an exemplary reference to
literature covering the topic. The example rules constrain the
modules of the modular architecture shown in Fig.1.
Naming conventions may be useful, since names are used by
practitioners to unify software architecture and its
implementation [21]. Responsibility conventions are useful
to preserve the designed distribution of responsibilities over
modules. Visibility conventions and Façade conventions can
be used to enforce implementation hiding. Inheritance
conventions may be used to enforce a selected generalization
style. Finally, exceptions to property rules may be useful too.
For instance, an exception to the Visibility convention
example in Table I is, “HiManager classes have package
visibility or lower, except for façade HimInterface.”

Relation rule types specify whether a module A is
allowed to use a module B. The basic types of rules are “is
allowed to use” and “is not allowed to use”. However, we
encountered useful specializations of both basic types, which
we included in the classification shown in Table I. When
several rules of the same type are defined on the same from-
module, then they should be interpreted as complementary
rules; even if the word “only” is part of the name of the rule
type.

Some rule types are complex, because they include
dependency checks on other modules than only the from-
module and to-module. Exceptions to all relation rules are
complex, as well as the two following types: “Is only
allowed to use”, and “Is the only module allowed to use”.
Complex rule types are very useful in practice, for the
following reasons:

 Complex rule types allow architects to define rules in
a comparable way as expressed in regular language.
Complex rules of type “Is only allowed to use” may
constitute a significant part of the total rule set [22].

 Complex rule types help to transform rules in a
UML-like diagram to rules in most ACC-tools. For
instance, the dependency relationship from module
HF-Kiosk to module HP-Kiosk in Fig.1 expresses the
rule “HF-Kiosk is only allowed to use HP-Kiosk.”
Transformation is often necessary. The basic
principle underlying UML-like diagrams is restricting
(no other than the defined dependencies are allowed),
while in most tools, the basic principle is non-
restricting (all dependencies are allowed, unless there
is a not-allowed-to-use rule).

 Complex rule types may diminish the number of
rules, since one complex rule often replaces many “is
not allowed to use” rules. For instance, when the “is
only allowed to use” rule type is not supported by a
tool, than the dependency relationship from module
HF-Kiosk to module HP-Kiosk in Fig.1 may have to
be translated to many “not allowed to use” rules from
HF-Kiosk to all the other modules, except to HP-
Kiosk.

TABLE I. COMMON RULE TYPES (REF= PRIMARY LITERATURE REFERENCE)

Category\Type of Rule Description (D), Example (E) Ref

Property rule types

Naming convention D: The names of the elements of the module must adhere to the specified standard.
E: HiDao elements must have suffix DAO in their name.

[8]

Responsibility convention D: All elements of the module must adhere to the specified responsibility.

E: HiForms is responsible for presentation logic only.

[18]

Visibility convention D: All elements of the module have the specified or a more restricting visibility.
E: HiManager classes have package visibility or lower.

[14]

Facade convention D: No incoming usages of the module are allowed, except via the façade.

E: HiManager may be accessed only via HimInterface.

[19]

Inheritance convention D: All elements of the module are sub classess of the specified super class.
E: HiDao classes must extend CorporateWebCore.Dao.GenEntityDao.

[8]

Relation rule types

Is not allowed to use D: No element of the module is allowed to use the specified to-module.
E: HF-Kiosk is not allowed to use HP-Device.

[3]

 Back call ban (specific for layers) D: No element of the layer is allowed to use a higher-level layer.

E: Service Layer is not allowed to use the Interaction Layer.

[23]

 Skip call ban (specific for layers) D: No element of the layer is allowed to use a lower layer that is more than one level lower.
E: Interaction Layer is not allowed to use the Infrastructure Layer.

[23]

Is allowed to use D: All elements of the module are allowed to use the specified to-module.

E: HiWebApp is allowed to use HiForms (including its sub modules).

[14]

 Is only allowed to use D: No element of the module is allowed to use other than the specified to-module(s).
E: HF-Kiosk is only allowed to use HP-Kiosk.

[8]

 Is the only module allowed to use D: No elements, outside the selected module(s) are allowed to use the specified to-module.

E: HiDao is the only module allowed to use CorporateWebcore.

[8]

 Must use D: At least one elements of the module must use the specified to-module.
E: HiDao must use CorporateWebcore.

[3]

Authors’ Final Version - © 2013 IEEE (ieeexplore.org), ICSM 2013, Eindhoven, The Netherlands

F. Associations between Module and Rule Types

Optimal support of SRMAs includes the automatic
provision of rule types inherent to the type of module. For
instance, layers are inherently associated to a “Back call ban”
rule and a “Skip call ban” rule. Furthermore, components are
inherently associated to a “Façade convention” rule (and
possibly a “Visibility convention” rule, if supported by the
implementation language). Options to disable an inherent
rule, for instance in case of a relaxed layered model, or to
define an exception, will enhance the usability.

III. TEST METHOD AND TESTED TOOLS

A. Test Method

Based on the requirements and classification of module
types and rule types described in Section 2, a test was
designed to assess the ACC-tools on their SRMA support.
For each rule type, at least two test cases were included: one
without, and one with violations to the rule. A special test
software system was developed in Java. This system
included the various module types and separate packages for
each rule type, which contained classes with injected
violations to a rule and classes without. In addition, a test
script was prepared to instruct the tester and to document the
test results. The test script and test system are available on
request.

After the test preparation, the eight ACC-tools were

tested. During the first step of the test of a tool, the intended
architecture was entered. Thereafter, the modules were
mapped to source code units and the rules were entered into
the tool. If a tool did not support a rule type explicitly, then
we looked for a workaround; such as a combination of
separate rules. The first step was concluded by test actions
aimed at the tool’s ability to prevent inconsistencies in the
architecture definition. During the second step, the outputs of
the tool’s dependency analysis and conformance check were
studied and compared with the expected result. During the
third step, reports were prepared, after which the tools could
be compared on their SRMA support.

Two iterations of testing and reporting were conducted.
The first iteration was performed with 25 bachelor students
in the course of a third year specialization semester
“Advanced Software Engineering”, where each team studied
and tested a tool. In a second iteration, the authors studied
the tools and verified and refined the results of the students,
by using the tools and repeating the tests. ConQAT was
added afterwards to our tool set and was tested only by the
authors.

B. ACC-Tools Included in the Test

Many tools are available with some facilities to support
ACC. Our research focused on tools with explicit support of
ACC. We selected eight publicly available tools, which were
mentioned in academic work (e.g., [4] [8] [10]), were able to

TABLE II. CHARACTERISTICS OF THE TOOLS IN THE TEST

Tools 1 

Characteristics 

C
o

n
Q

A
T

 A
A

d
T

a
n

g
le

r

L
a

ttix

M
a

c
k

er

S
A

V
E

S
o

n
a
r
 A

R
E

S
o

n
a
r
g
r
a

p
h

A
r
c
h

itec
t

S
tr

u
c
tu

r
e

1
0
1

General functionalities

Dependency browsing    

Dependency visualization    

Architecture compliance checking        

Architecture refactoring/simulation   

Team support  

Code variants

Java        

Other languages    

Source file analysis   

Compiled file analysis       

Licensing

Free: commercial and non-commercial use    

Paid: commercial use    

1 ConQat AA– version 2011.9 – www.conqat.org;

dTangler - GUI version 2.0 - web.sysart.fi/dtangler;

Lattix LDM - version 7.2 - lattix.com;

Macker - version 0.4.2 - sourceforge.net/projects/macker;

SAVE - version 1.7 - iese.fraunhofer.de;

Sonar ARE - version 3.2 - docs.codehaus.org/display/SONAR/Architecture+Rule+Engine;

Sonargraph Architect (fusion of Sotograph and SonarJ) - version 7.0 - hello2morrow.com;

Structure101 - version 3.5 - structure101.com.

Authors’ Final Version - © 2013 IEEE (ieeexplore.org), ICSM 2013, Eindhoven, The Netherlands

analyze Java, and provided evaluation or research licenses
(two vendors rejected and one did not respond). We
excluded tools that focus mainly on architecture
visualization, metrics and/or architecture refactoring. The
eight tools included in our study are shown in Table II,
which also gives an overview of functionalities, code
variants and licensing.

The tools provide their support of ACC in various ways.
The eight tools can be subdivided in four categories of tools.
1) Macker and Sonar Architecture Rule Engine (Sonar ARE)
are text-based tools, which support relation conformance
rules. These tools provide HTML-based violation reports.
2) dTangler and Lattix are based on the Dependency
Structure Matrix (DSM) technique, complemented with text-
based editors to define rules. The DSM is used to select
modules and to show dependencies and violations. Lattix is
also able to visualize architectures graphically, and provides
extensive reporting facilities.
3) ConQAT Architecture Analysis (ConQAT AA) and
SAVE are strictly based on the Reflexion Model (RM)
technique [1], and both tools provide a graphical editor to
define the intended architecture and to show violations after
the evaluation. Textual reports are generated at request.
4) Sonargraph Architect and Structure101 are diagram-based
too, but these tools are not based on the RM-technique. To
define modules and rules, these tools provide diagrams in
which the horizontal and vertical position of a module
implies rules. Violations are shown in these diagrams, but
textual reports are provided in addition.

IV. TEST RESULTS

A. Support of Common Module Types

In Section 2 we identified six common types of modules,
relevant for static ACC. The results of our tests concerning
the support of these module types are shown in Table III, and
the most interesting findings are described below.

Clusters are supported by all tools. Five of the eight tools
support physical clusters. The advantages to use them are
that they allow fast, ad hoc rule checking; for instance, when
there is no formal modular architecture. The disadvantage is
the diminished or lost traceability to the formal modular
architecture, if there is one. Sonar ARE is the only tool that
supports only this type of modules. Logical clusters are
supported by seven tools. Although in very different ways,
these tools provide support to register logical clusters and to
map the logical clusters to code units. Furthermore, support
is provided to define rules constraining logical clusters and
to check these rules at code level.

Layers are supported by only one tool, Structure101, on
all indicators: modules can be marked as layers; back call
and skip call rules are reported; and layers are visualized.
Two other tools support the definition and visualization of
layers, but do not provide inherent support of the related
rules.

Components and Facades are supported by SAVE and
Sonargraph Architect, on the following indicators: modules
can be marked as component; facades can be defined. SAVE
visualizes components and facades, but does not actively

TABLE III. TOOL SUPPORT OF COMMON MODULE TYPES (+ = EXPLICIT SUPPORT; ± = PARTIAL SUPPORT; - = NO SUPPORT)

C
o

n
Q

A
T

 A
A

d
T

a
n

g
le

r

L
a

ttix

M
a

c
k

er

S
A

V
E

S
o

n
a
r
 A

R
E

S
o

n
a
r
g
r
a

p
h

A
r
c
h

itec
t

S
tr

u
c
tu

r
e

1
0
1

Clusters

Physical cluster - + + + - + - +

Logical cluster + + + + + - + +

Layers

A module can be marked as layer - - - - + - + +

Back call violations are reported - - - - - - - +

Skip call violations are reported - - - - - - - +

Components and Facades

A module can be marked as component - - - - + - + -

Facade can be defined - - - - + - + -

Facade-skip violations are reported - - - - ± - + -

External systems

A module can be marked as external system - - - - - - + -

A module can be mapped to an external system + + + + + + + +

Rules constraining their use are checked + + + + + + + +

Visualization

Clusters are visualized + - + - + - + +

Layers are recognizable visualized - - - - + - + +

Components are recognizable visualized - - - - + - - -

Facades are recognizable visualized - - - - + - + -

External systems are recognizable visualized - - - - + - + -

Authors’ Final Version - © 2013 IEEE (ieeexplore.org), ICSM 2013, Eindhoven, The Netherlands

support any of their semantics. Sonargraph Architect
visualizes facades and supports their semantics; it reports
facade-skip violations automatically when a facade is
associated to a module. ConQAT AA seems to support
components at first glance, since it depicts all modules as
UML components. However, it does not provide any other
icons and does not support the semantics of a component;
reason why we classified ConQAT’s components as logical
clusters.

External systems are not designated as a special module
type by all tools, except Sonargraph Architect, but all enable
conformance checks on modules mapped to external
libraries.

Five tools support visualization of modular architectures.
However, only two tools offer three or more different icons.
A notable observation is that the tools that support
semantically rich modules all have their own terminology,
icons, rules and ways to visualize the architecture. SAVE
provides an UML-like notation, while Sonargraph Architect
and Structure101 position the modules horizontally and
vertically. SAVE discerns five module types, while
Sonargraph Architect discerns six types (which are only
partly overlapping with those of SAVE), whereas
Structure101 does not show the logical meaning of a module,
but uses an icon to show the type of the related physical
item.

B. Support of Common Rule Types

In section 2 we identified twelve common types of rules,
relevant for static ACC. The results of our tests concerning

the support of these rule types are shown in Table IV.
Explicit support of a rule type is depicted by a “+”, meaning
that one logical rule can be registered as one rule in the tool.
Partial support, depicted by “±”, means that it is possible to
register a rule of this type, but only via a workaround; often a
combination of several rules. The most interesting findings
from the test are described below.

1) Property rule types
Property rule types are poorly supported. No tool

provides facilities to specify and check conventions
regarding naming, responsibility, or inheritance. Although
names are used, in combination with regular expressions, to
map modules to the code, no facilities are provided to check
all the packages and/or classes contained by a module on
conformance to a naming convention.

Only rule types to enforce implementation hiding are
supported by some tools. Visibility convention rules are
partly supported by Sonargraph Architect and Structure101.
These tools provide a property to restrict the accessibility of
a module, but do not check at code level on accessibility
settings; reason why they did not score a “+”. However,
when a module is marked as hidden or private, violation
messages are reported, when dependencies to the module are
detected from outside.

Façade convention rules are supported explicitly only by
Sonargraph Architect. Four other tools enable the definition
of this type of rules by default means, resulting in a
combination of separate rules, so their support is scored with
“±”.

2) Relation rule types
Relation rule types are supported by all the tools, but no

TABLE IV. TOOL-SUPPORT OF COMMON RULE TYPES (+ = EXPLICIT SUPPORT; ± = PARTIAL SUPPORT; - = VERY WEAK OR NO SUPPORT)

Support is provided for

C
o

n
Q

A
T

 A
A

d
T

a
n

g
le

r

L
a

ttix

M
a

c
k

er

S
A

V
E

S
o

n
a
r
 A

R
E

S
o

n
a
r
g
r
a

p
h

A
r
c
h

itec
t

S
tr

u
c
tu

r
e

1
0
1

Property rule types

Naming convention - - - - - - - -

Responsibility convention - - - - - - - -

Visibility convention - - - - - - ± ±

Facade convention - ± ± ± ± - + -

Superclass inheritance convention - - - - - - - -

Relation rule types

Is not allowed to use + + + + + + + ±

 Back call ban (inherent to layer) - - - - - - - +

 Skip call ban (inherent to layer) - - - - - - - +

Is allowed to use + + + + ± - + +

 Is only allowed to use ± ± ± ± ± - ± ±

 Is the only module allowed to use ± ± ± ± ± - ± ±

 Must use - - - - + - - -

Exception (to relation rules) ± ± ± ± - - ± ±

Visualization of rules and violations

Rules are visualized + - + - + - + +

Violations are visualized + + + - + - + +

Authors’ Final Version - © 2013 IEEE (ieeexplore.org), ICSM 2013, Eindhoven, The Netherlands

more than three rule types are explicitly supported per tool.
Complex rule types (Is only allowed to use, Is the only

module allowed to use, Exceptions to a relation rule) are not-
explicitly supported, or not at all. Without explicit support,
workarounds are needed, for instance for the rule “HF-Kiosk
is only allowed to use HP-Kiosk”. In Lattix, dTangler and
Macker, two combined rules are needed such as: “HF-Kiosk
Cannot-Use $Root” + “HF-Kiosk Can-Use HP-Kiosk”.
Since these rules are not related to each other, they form a
threat to the maintainability and traceability of the set of
rules. Sonargraph Architect and Structure101 may require
the specification of more than two rules or property settings
for complex rules, and sometimes many rules are needed,
depending on the number and position of other modules.
Sonar ARE provides no support at all to check complex
rules. ConQAT AA and SAVE work quite differently from
the other tools, since no transformation is required of rules in
UML-like diagrams to rules in the tool. SAVE supports only
the “Must use” rule type explicitly, while ConQat AA
supports “Is allowed to use” and “Is not allowed to use” rule
types. Complex rules can be checked, but this requires
interpretation of the architecture model and the conformance
check output.

3) Visualization
Six tools are able to visualize rules and violations. Lattix

and dTangler show colors in a DSM. ConQAT AA, SAVE,
Sonargraph Architect, and Structure101 use lines in
diagrams to define and show rules, and to show violations.
However, not all rules are visible in these diagrams.

C. Support of Inconsistency Prevention

In section 2 we defined the requirement, “ACC-tools
should prevent inconsistent definitions of modules and
rules.” The results of our tests concerning this requirement
are shown in Table V. Most tools allow, without a warning,
incomplete or contradictory definitions of modules and/or
rules. ConQAT AA scored best and prevented six out of six
types of inconsistency included in our test. Lattix prevented
five out of six types, while the other tools prevented or
warned for upmost three types. Six of the tools start the
compliance check without a warning when the defined
modules and rules model is inconsistent. In such a case, the
tool does not check all the rules as intended by the user, and

consequently the outcome of the check may be unreliable.

V. DISCUSSION

To our opinion, all tested tools are providing useful
functionality to support ACC or ad hoc rule checking. Apart
from our laboratory experiments described in the paper, we
used all eight tools to analyze an open source system.
Furthermore, we performed ACCs on professional software
systems with use of Lattix, Sonargraph Architect, and
Structure101. Based on these experiences we can conclude
that these tools are of great help for architecture
reconstruction and ACC. However, our tests show that all
eight tools could improve their support regarding SRMAs,
though in varying degrees. Not one of the tested tools is able
to support all the module types and rule types included in our
classification. However, we encountered interesting
examples of partial support. SAVE supports the graphical
definition of modules of nearly all the types in our
classification; only physical clusters are missing. However,
SAVE’s rule language is very limited, and the semantics of
the modules are not supported. ConQAT provides the same
types of diagrams, but complements the rule setting
capabilities considerably. Furthermore, ConQAT checks the
consistency of the defined architectural model accurately.
However, ConQAT provides one type of module only, and
does not support any semantics. Sonargraph Architect and
Structure101 are the only tools that actively support the
semantics of two module types in our classification.
Sonargraph Architect supports the definition of Facades and
relates the “Façade convention” rule to a defined façade.
Structure101 supports the definition of Layers and relates a
layer to the “Back call ban” and the “Skip call ban” rules.
Combination of these examples of partial support builds an
image of the provision of full functional SRMA support.

Another observation during our study is that the
combination of visualization, rule definition, and rule
checking appears to be challenging. Lattix, dTangler, and
Macker provide no support to define the architecture via a
graphical editor, but enable the definition and checking of
quite a diversity of rules, including complex rules. ConQAT,
SAVE, Sonargraph Architect and Structure101 provide
graphical support to define and check the architecture, but
lack the freedom of rule definition, as provided by the

TABLE V. PREVENTION OF INCONSISTENCIES (+ = SUPPORTED; - = NOT SUPPORTED; N/A = NOT APPLICABLE)

C
o

n
Q

A
T

 A
A

d
T

a
n

g
le

r

L
a

ttix

M
a

c
k

er

S
A

V
E

S
o

n
a
r
 A

R
E

S
o

n
a
r
g
r
a

p
h

A
r
c
h

itec
t

S
tr

u
c
tu

r
e

1
0
1

Modules must have (unique) name or ID + + + + - n/a + -

A module may have only one parent. + - + - + n/a - -

Modules must be mapped to code file(s) + - - - - n/a - +

Mapped code files must exist + - + - - n/a - -

Rules must be completely specified + - + + + - + +

Rules cannot be contradictory + - + - + - + +

Tool checks model prior to conf. check + - + - - - - -

Authors’ Final Version - © 2013 IEEE (ieeexplore.org), ICSM 2013, Eindhoven, The Netherlands

textual-rule based tools. Furthermore, sometimes we
experienced serious problems related to the graphical
models. Defining sub-subsystems, exceptions, and other
complex rules in the graphical models, is hard in some tools,
and impossible in others. Furthermore, it may result in many
lines, which makes the diagrams unreadable. Structure101
and Sonargraph Architect have introduced additional rule-
setting techniques to reduce the number of required rule-
lines. In these tools, the module type, the horizontal and
vertical position, and the value of a visibility property per
module may imply dependency rules. On top of that,
Sonargraph Architect provides a “transversal access”
variable per module as well. To our opinion, the combination
of all the rule-setting techniques increases the complexity
considerably, and it reduces the transparency of the set of
defined rules.

A. Limitations

Our study can be characterized as a quasi-experiment,
according to Wohlin et al. [24], since we did not work with a
randomized selection of tools. Consequently, our findings
may not be generalized to other tools, even though we tested
eight tools in a small market.

Furthermore, we do not claim that our classification of
common module types and common rule types is complete,
since common is not a qualified term. We aimed to cover the
most used types of modules and rules, reasoning from the
functional point of view; the architect’s view, not the tool
builder’s view. Creating the classification proved a valuable
step in our study. The classification was used as a basis for
our tests and will be used as starting point for our future
work.

B. Related work.

Requirements regarding the functional support of ACC
can be derived from quite a number of sources, like general
literature on software architecture and design, and studies on
ACC. In Section 2 we described the most relevant sources
used for our requirements and classification. Several studies
on ACC propose the inclusion of support for some specific
module and/or rule types, for instance [10] [20] [3] [8].
However, to the best of our knowledge, none of these studies
or other studies on ACC have provided and substantiated a
broad inventory and classification of module and rule types.
We intentionally did not include very specific or detailed
module or rule types, but kept the set of requirements broad
and not too specific. However, some interesting studies
elaborate on particular types. For instance, Adersberger and
Philippsen [10] describe the constraints and checks regarding
components in detail. Furthermore, Terra and Valente [22]
identified different types of dependencies (accessing
methods and fields, declaring variables, creating objects,
extending classes, implementing interfaces, throwing
exceptions, and using annotations), and based fine grained
rule types on these dependency types. Lattix, SAVE and
Structure101 provide support to define or configure rules at
this level of detail.

Not much comparative research on ACC-tools has been
performed, as described in the Introduction section. Only

Passos et al. [8] presented similar work. They evaluated three
tools, including Lattix and SAVE, on the basis of a very
small system. During our study no findings have arisen that
contradict their tool evaluations. Our study adds a
substantiated set of requirements focused on SRMA support,
as well as test results of eight tools.

VI. CONCLUSION

Architecture compliance checking (ACC) relies on the
support of tools to define modules and rules, to analyze the
code, to check the compliance, and to report violations to the
rules. In this study, we have investigated the support of
semantically rich modular architectures (SRMAs) provided
by static ACC-tools. We identified requirements to the
support of SRMAs and classified module types and rule
types relevant for static ACC. Furthermore, we prepared a
test, and we tested eight tools on their support of SRMAs.

We started our study with the following research
question: Do static ACC-tools provide functional support for
semantically rich modular architectures? We focused our test
on the support of: a) common types of modules and their
semantics; b) common types of rules; and c) inconsistency
prevention within the defined architecture.

Our tests regarding the support of common module types
show that five tools support non-semantic clusters only. The
three other tools distinguish also one or more semantically
rich module types from our classification. SAVE supports
the graphical definition of five types of modules, but does
not support their semantics. Sonargraph Architect supports
the semantics of a Façade actively, while Structure101
supports the semantics of Layers actively. However, no tool
provides the combined support of layers, components, and
facades.

Our tests regarding the support of common rule types
show that per tool only a few rule types are explicitly
supported. Complex relation rules are by no tool explicitly
supported. Consequently, complex relation rules at logical
level require workarounds at tool-level, which often result in
two or more unrelated rules; a threat to the maintainability
and traceability of the set of rules. Furthermore, only two of
the five property types are supported, and only partially, not
explicitly.

Our tests regarding the support of inconsistency
prevention show that only two tools, ConQAT and Lattix,
score high on the prevention of inconsistencies in the module
and rule model, while inconsistent models may result in an
unreliable outcome of the compliance check.

Based on our study and experiments, we present the
following recommendations to ACC-tool developers:
1) Widen the scope of the tools from dependency checking to
software architecture compliance checking, including
SRMAs. Provide explicit support for semantically rich
module types with their related rule types. The requirements
and the classification of common module and rule types,
presented in this paper, may be used as a starting point.
2) Minimize the difference between logical rules, as
perceived by the architect, and the technical implementation
in the tool. Offer rule types that match with logical rule

Authors’ Final Version - © 2013 IEEE (ieeexplore.org), ICSM 2013, Eindhoven, The Netherlands

types, including exceptions, and support each type explicitly.
3) Provide one method to define and edit rules. Do not mix
several rule setting mechanisms. Keep it simple to the user.
4) Provide several, best adaptable, views on the modular
structures, the rules, and the violations against the rules:
reports, browsers, and diagrams. Do not mix too much types
of information into one view.
5) Check on inconsistencies in the architecture definition,
and inform the user when it is incorrect or incomplete.

Not all issues identified in this study can be solved easily.
The provision of SRMA support calls for further research.
Techniques need to be identified, and support needs to be
designed and tested on effectiveness by means of prototypes
and case studies. Specific topics deserve attention too. For
instance, visualization, rule definition and rule checking
appeared to be a challenging combination. Furthermore,
automatic recognition of responsibility at code level, needed
to check against the defined responsibility of a module, is an
unresolved issue, though responsibility is an important
property of a module at design level.

In conclusion, the eight tested tools provide useful
support for ACC, but all could improve their support of
SRMAs. Solutions need to be found to reduce the gap
between documented modular architectures in software
architecture documents on one side, and module and rule
models in ACC-tools on the other side. More-complete
functional support of SRMAs might contribute to the
adoption of ACC and ACC-tools, and consequently could
improve the effectiveness of software architecture in the
practice and education of software engineering.

ACKNOWLEDGMENT

The authors would like to thank the students of the

specialization “Advanced Software Engineering” at the

HU University of Applied Sciences, but also colleagues and

reviewers for their contributions to this study.

REFERENCES

[1] G. C. Murphy, D. Notkin, and K. Sullivan, “Software reflexion
models,” ACM SIGSOFT Software Engineering Notes, vol. 20, no. 4,
pp. 18–28, Oct. 1995.

[2] L. de Silva and D. Balasubramaniam, “Controlling software
architecture erosion: A survey,” Journal of Systems and Software,
vol. 85, no. 1, pp. 132–151, Jan. 2012.

[3] J. Knodel and D. Popescu, “A Comparison of Static Architecture
Compliance Checking Approaches,” in Working IEEE/IFIP
Conference on Software Architecture, 2007, pp. 12–21.

[4] S. Ducasse and D. Pollet, “Software Architecture Reconstruction: A
Process-Oriented Taxonomy,” IEEE Transactions on Software
Engineering, vol. 35, no. 4, pp. 573–591, Jul. 2009.

[5] M. Shaw and P. Clements, “The golden age of software architecture,”
IEEE Software, vol. 23, no. 2, pp. 31–39, 2006.

[6] M. Gleirscher and D. Golubitskiy, “On the Benefit of Automated
Static Analysis for Small and Medium-Sized Software Enterprises,”

Software Quality. Process Automation In Software Development,
2012.

[7] G. Canfora, M. Di Penta, and L. Cerulo, “Achievements and
challenges in software reverse engineering,” Communications of the
ACM, vol. 54, no. 4, p. 142, Apr. 2011.

[8] L. Passos, R. Terra, M. T. Valente, R. Diniz, and N. Das Chagas
Mendonca, “Static Architecture-Conformance Checking: An
Illustrative Overview,” IEEE Software, vol. 27, no. 5, pp. 82–89,
2010.

[9] R. Kazman, L. Bass, and M. Klein, “The essential components of
software architecture design and analysis,” Journal of Systems and
Software, vol. 79, no. 8, pp. 1207–1216, 2006.

[10] J. Adersberger and M. Philippsen, “ReflexML: UML-based
architecture-to-code traceability and consistency checking,” in
Proceedings of the 5th European conference on Software
architecture, 2011, pp. 344–359.

[11] L. Pruijt, C. Köppe, and S. Brinkkemper, “On the Accuracy of
Architecture Compliance Checking Support: Accuracy of
Dependency Analysis and Violation Reporting,” in Proceedings of
the 21st International Conference on Program Comprehension
(ICPC), 2013, pp. 172-181.

[12] D. E. Perry and A. L. Wolf, “Foundations for the Study of Software
Architecture,” ACM SIGSOFT Software Engineering Notes, vol. 17,
pp. 40 – 52, 1992.

[13] L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice, Third Edit. Addison-Wesley, 2012.

[14] P. Clements, F. Bachmann, L. Bass, D. Garlan, P. Merson, J. Ivers, R.
Little, and R. Nord, Documenting Software Architectures: Views and
Beyond. Pearson Education, 2010.

[15] E. W. Dijkstra, “The structure of the ‘THE’-multiprogramming
system,” Communications of the ACM, vol. 11, no. 5, pp. 341–346,
1968.

[16] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Communications of the ACM, vol. 15, no. 12, pp. 1053–
1058, 1972.

[17] N. B. Harrison and P. Avgeriou, “Analysis of Architecture Pattern
Usage in Legacy System Architecture Documentation,” in Seventh
Working IEEE/IFIP Conference on Software Architecture, 2008, pp.
147–156.

[18] C. Larman, Applying UML And Patterns. Prentice Hall PTR, 2005.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vissedes, Design Patterns:
Elements of Reusable Object-Oriented Software (Google eBook).
Pearson Education, 1995.

[20] N. Ali, J. Rosik, and J. Buckley, “Characterizing real-time reflexion-
based architecture recovery: an in-vivo multi-case study,”
Proceedings of the 8th international ACM SIGSOFT conference on
Quality of Software Architectures, pp. 23–32, 2012.

[21] E. Woods and N. Rozanski, “Unifying software architecture with its
implementation,” in Proceedings of the Fourth European Conference
on Software Architecture, 2010, pp. 55-58.

[22] R. Terra and M. Valente, “A dependency constraint language to
manage object �oriented software architectures,” Software: Practice
and Experience, no. June, pp. 1073–1094, 2009.

[23] S. Sarkar, G. Rama, and R. Shubha, “A method for detecting and
measuring architectural layering violations in source code,” in
APSEC, 2006.

[24] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A.
Wesslén, Experimentation in Software Engineering. Springer, 2012.

