International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http.//www.iariajournals.org/software/

309

Reconfigurable Equiplets Operating System

A Hybrid Architecture to Combine Flexibility and Performance for Manufacturing

Daniél Telgen*, Erik Puik*, Leo van Moergestel*, Tommas Bakker*, John-Jules Meyer!
*Research Centre Technology & Innovation
HU University of Applied Sciences Utrecht
Nijenoord 1, Utrecht, The Netherlands
Email: daniel.telgen@hu.nl
TDept. of Information and Computing Sciences
Utrecht University
Utrecht, The Netherlands
Email: J.J.C.Meyer@uu.nl

Abstract—The growing importance and impact of new tech-
nologies are changing many industries. This effect is especially
noticeable in the manufacturing industry. This paper explores a
practical implementation of a hybrid architecture for the newest
generation of manufacturing systems. The papers starts with
a proposition that envisions reconfigurable systems that work
together autonomously to create Manufacturing as a Service
(MaaS). It introduces a number of problems in this area and
shows the requirements for an architecture that can be the
main research platform to solve a number of these problems,
including the need for safe and flexible system behaviour and the
ability to reconfigure with limited interference to other systems
within the manufacturing environment. The paper highlights
the infrastructure and architecture itself that can support the
requirements to solve the mentioned problems in the future. A
concept system named Grid Manufacturing is then introduced
that shows both the hardware and software systems to handle
the challenges. The paper then moves towards the design of
the architecture and introduces all systems involved, including
the specific hardware platforms that will be controlled by the
software platform called REXOS (Reconfigurable EQuipletS
Operating System). The design choices are provided that show
why it has become a hybrid platform that uses Java Agent
Development Framework (JADE) and Robot Operating System
(ROS). Finally, to validate REXOS, the performance is measured
and discussed, which shows that REXOS can be used as a
practical basis for more specific research for robust autonomous
reconfigurable systems and application in industry 4.0. This
paper shows practical examples of how to successfully combine
several technologies that are meant to lead to a faster adoption
and a better business case for autonomous and reconfigurable
systems in industry.

Index Terms— Flexible Manufacturing Systems; Multi-agent
systems; Autonomous agents; Reconfigurable architectures.

I. INTRODUCTION

Computers are continuously changing industry, and whereas
in the past this has created opportunities for improved logistics
and overview like SCADA (Supervisory Control and Data Ac-
quisition) it is now starting to change the industry itself. This
paper is based on our original work [1], which was presented at
the INTELLI conference. Computers are not only supporting
existing mechatronical systems, but are fundamentally chang-

ing the processes in how they are used. This is the basis for
many changes in the field of manufacturing that are known
under a variety of names, including ’Smart Industry’, ’Agile
Manufacturing’, ’Industry 4.0’, and Cyberphysical systems.

With the use of more computing power in manufacturing
systems it is easier to integrate “intelligent”, i.e., dynamic
behaviour by using microsystems, i.e., sensors and actuators,
together with advanced software to interpret the sensed data
and act accordingly. This creates a robotic system that can
dynamically interact and act with its environment. However,
the dynamic behaviour of this systems can also increase
complexity [2]. Therefore, it is important to create a balanced
architecture that, on the one hand, has a high performance to
control the hardware, i.e., dynamically interpret and interact
with its environment in real-time and, on the other hand, is
not so complex that it will be difficult to use and shows
unexpected, i.e., unsafe or unwanted, behaviour.

From a hardware perspective there are also several changes
that are occurring, as the costs for developing such complex
systems have to be earned back and, therefore, it is necessary
to reuse systems as often as possible. This has led to the
creation of modular systems, where the modules can be used
as building blocks that can be combined for a specific purpose.
If the modular systems are standardized and well-documented
they can also be easily reconfigured to provide a range of
options. Since a well-defined module could be seen as a black
box, it also lowers complexity of the overall system, since
functionality can be abstracted on a higher level [2].

The structure of the paper is as follows: The next section
will give further information for the motivation and how
the research was conducted. Section IIT will provide more
insight overview of current technologies and paradigms that
are involved when researching smart technologies for manu-
facturing. After this overview the problem will be investigated
more closely in Section IV, which will result in a number
of specific research questions. Section V will then continue
with the chosen approach and provide the basis for the
requirements in Section VI. The requirements will then lead as
input for an overview of several technologies and concepts in

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Section VII. Section VIII will then describe the design choices
that have been made. The design triggered the development
of a software architecture and hardware platform thas been
implemented and described in Section IX. Finally, the platform
will be evaluated with several performance results in Section
X. These results and critical points of the platform will be
discussed and concluded in the final Section XI.

II. RESEARCH MOTIVATION

Due to the obvious advantages of using smart systems,
many companies and research groups are experimenting and
conducting Research and Development with several projects.
However, the success in industry itself has so far been limited
[3]. This is due to a number of reasons, including the complex-
ity of such systems with the high initial investment costs, the
expertise needed to create such systems, and the difficulties to
create a business case for dynamic systems. Schild and Buss-
mann show this in a case where a successful self-organized
manufacturing system was setup at Daimler-Chrysler. They
state that while the system was successfully implemented it
was discontinued because a technical advantage is not always
a measurable economical advantage [4]. When continuing this
research in this field, therefore, it is important to take this
aspect into account. In this research, this is done by taking into
account several techniques and requirements that will lower
the hardware costs, and also by targeting the manufacturing
means at an even wider variety.

Besides industrial parts there is also a change in retail
industry. Mass customization is slowly beginning to become
a standard. Wind even introduces the concept of ’customer-
ization’. This is a new business strategy that combines per-
sonal marketing strategies, with mass customization. Figure
1 shows that customerization comes through a combination
of standardization, personalization and mass customization.
Wind mentions that for successful customerization requires
the integration of multiple processes, including operations and
R&D [5]. He also states that increasing the digital content of
everything the company does is one of two critical aspects that
should be considered.

MASS CUSTOMIZATION

Personalization/ Customerization

Hi 1tol
Marketing — 1
Customization — 1 |

L

Mass
Customization

°

Standardization

>

Operational Customization

Figure 1. Combining personalisation and mass customization towards a new
business strategy [5].

This paper will take a step further into the field of flexible

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http.//www.iariajournals.org/software/

310

reconfigurable manufacturing by laying the foundation for
a flexible and reconfigurable architecture for high-mix, low-
volume manufacturing that could enable customerization.

A. Research Approach

As observed in the introduction, technological advances and
changes in industry are starting to have an increasing impact
on the manufacturing industry. However, a true paradigm shift
has not yet occurred, likely because the maturity and efficiency
of these new technologies has yet to be proven. As Leitdo
states in the conclusion of his survey: *The challenge is thus
to develop innovative, agile and reconfigurable architectures
for distributed manufacturing control systems, using emergent
paradigms and technologies that can provide the answer to
those requirements’ [3]. Leitdo also identifies some specific
issues in this field, including:

1) The need for mature and proven technology - the ma-
jority uses laboratorial control applications without the
need of physical devices [6].

2) Reconfigurability mechanisms - what architecture will
support the society of distributed entities? [3].

3) Development-related aspects - current platforms have
limited scalability and robustness [7].

4) Prediction in disturbance handling systems - the inte-
gration of prediction mechanisms with identification and
recovery of disturbances that can prevent these problems
[3].

The research in this paper responds to these factors by
including the hardware systems and the practical implementa-
tion to show a feasible system that can be used for industry.
Together with the hardware, several emulators and simulators
will also be developed to test various aspects of the proposed
system. Besides using the simulation for benchmarking, it will
also be used to predict problems like collisions in the changing
and possibly chaotic environment.

B. Hypothesis

The hypothesis is that new (software) technologies could be
used to create a new flexible manufacturing paradigm that is
(cost-) efficient and stable. The flexibility will have to provide
for a much shorter time to market and an increased variety in
products. The challenge for this hypothesis is to keep the com-
plexity (and, therefore, the practical applicability) of the smart
and flexible approach under control. This has to be proven
by developing a proof of concept that shows the abilities,
performance and stability of such an ’agile’ architecture. To
prove the feasibility and practical implementation the system
will be fully built including low-cost hardware designed for
this purpose.

C. Research Methodology

The study will be largely based on applied research. An
architecture and several hardware and software systems will
be developed to be used as a proof of concept. This system
will be the basis of future research and will be combined with

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

several emulators to be tested in a large variety of cases. The
study will combine quantitative and qualitative elements:

o performance: quantitative research based on empirical
data using experiments from live proof of concepts and
simulators.

« abilities: qualitative research - comparing designs and
architecture performance based on correlation.

e processes: qualitative comparison based on cases with
(partly) quantitative data.

The research project will start with a "top-down’ approach,
i.e., deductive research, that will test the proposition set in
the next subsection. However, the platform will be created
’bottom-up’ and as such is hoped to be a basis for inductive
research to create new insights in the future for the use
of reconfigurable systems and application of self-organizing
manufacturing platforms.

D. Propositions

To focus the research, a concept has been created for a man-
ufacturing platform that is based on several basic principles:

1) A range of products can, in principle, be dynamically
built on demand - i.e., the machines offer a (wide) range
of services where any product that can be made with
these services can be manufactured.

2) Each system (with its own purpose) is autonomous - i.e.,
both products as manufacturing systems have no strong
dependencies and can act autonomously.

3) Hardware should be reconfigurable. - i.e., both hardware
and software modules within a system should be able
to be changed with limited downtime. In the case of
the software, compiling code should be required for a
reconfigure action.

4) Machines should be low-cost and single-purpose. - i.e.,
the flexibility that is offered should be done with limited
investment costs to guarantee experimental use and a
valid business case.

5) System behaviour should be transparent and safe. - The
flexibility and dynamic behaviour of the system must be
guaranteed not to lead to a high risk of use.

The idea is to create a range of products that can be built
on demand, i.e., all products can be manufactured ad hoc so
long as the parts and required services to assemble them are
available in the manufacturing systems or ’grid’.

The principles also focus on limiting complexity by creating
a minimum amount of interdependence between systems. This
results in a concept that has been called ’grid manufacturing’,
where each manufacturing system delivers a service to a
product. Since products and the manufacturing systems have
their own purpose, i.e., the machine delivers a service, the
product wishes to be produced, they are both autonomous and
will work together dynamically. Hence, the system will not be
a ’production line’, since the need for services will depend on
the specific product demand.

Since the products will be manufactured dynamically with-
out any specific programming it is important that they are

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http.//www.iariajournals.org/software/

311

still produced safely and according to the specifications. The
products will schedule themselves in negotiation with the
manufacturing systems and, therefore, it is unknown which
services are required. This makes it difficult to establish the
demand, and therefore, the chances are that some manufactur-
ing systems have a higher load than others.

III. GENERAL RESEARCH OVERVIEW

This section provides a theoretical framework and overview
for the current research. It discusses a number of paradigms
and technologies that could be applicable for the current study.

A. Manufacturing Paradigms

Many paradigms have emerged that have been of influence
in the manufacturing industry, the most influential have been
the three main paradigms, see Figure 2.

Variety
F 3

Customization

FMS

Mass
Customization

RMS

Mass
Production

DMS

I

» Volume

Figure 2. The three main manufacturing paradigms [8].

Dedicated Manufacturing Systems (DMS) are the classic
way of mass-production. In this paradigm, all manufacturing
systems are developed for a specific single-purpose goal with
limited to no dynamic properties. This creates a cost-efficient
system for producing high volumes of a single product over a
longer timespan [9]. The requirements stay the same, therefore,
DMS are known to have a high performance and limited initial
costs.

Flexible Manufacturing Systems (FMS) offers dynamic
behaviour, which it uses to react to changes. Usually, Flexi-
ble manufacturing systems offer a single purpose where the
machine has the ability to perform one action. This ability
is combined with sensors like a vision or dynamic routing
system so it can adapt certain parameters, e.g., the position of
a product. This creates more flexibility at the disadvantage of
complexity and cost to the initial implementations.

Reconfigurable Manufacturing Systems (RMS) are
unique in the perspective that the functionality of the system
itself can be adapted [10]. As shown in Figure 2, they are
positioned between FMS and DMS. However, since RMS
provide a way to integrate change within a system it is
expected that they will become more flexible over time
[11]. ElMaraghy notes that the key characteristics of RMS
include modularity, integrability, scalability, convertibility, and
diagnosability [12]. These characteristics have to be taken

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

into account when defining the requirements for a flexible
manufacturing architecture.

Besides the main three manufacturing paradigms, there are
also many other paradigms and methods of interest.

Agile Manufacturing (AM) is characterised by the inte-
gration of customer and supplier for both product design,
as manufacturing, marketing, and support services [13]. An
agile manufacturing environment creates processes, tools, and
a knowledge base to enable the organisation to respond quickly
to the customer needs and market changes whilst still control-
ling costs and quality [14].

Manufacturing As a Service (MAAS) is a concept to
deliver customizable and on-demand manufacturing. This is
closely related to manufacturing clouds, where factories and
their IT infrastructure are interconnected to create an infras-
tructure where ad-hoc products are being made [15].

Holonic Manufacturing is seen as an alternative to hi-
erarchical management of manufacturing systems. It focuses
on modularization and ’plug and play’ capabilities when
developing or using manufacturing systems [16]. Holonic
manufacturing systems are often implemented using Multi
Agent Systems [17], which will be discussed later in this paper.

Noteworthy are also a number of concepts that are closely
related to this research:

Smart Industry and Industry 4.0 are often used as a
concept that combines industrial systems with properties like
the ’internet of things’ and other cloud related services. They
depict the vision of smart factories that consist of cyber-
physical systems. Cyber-physical systems (CPS) are collab-
orating computational (virtual) elements that control physical
entities. i.e., basically a virtual entity with its virtual world
image that uses its own world image to control and interpret
the physical world and operate a physical counterpart in this
environment. This virtual entity is commonly an embedded
system within the system that it controls.

IV. PROBLEM DESCRIPTION

While many paradigms and technologies show promise they
are not yet considered mainstream in industry. As mentioned
before, the initial investment costs and complexity are factors
for this problem. However, while business is important, this
particular paper will first focus on the technological aspects
that are required to create a basic software platform as a
basis for further research and test cases for industry. For this
platform a number of main challenges have been identified:

1) Architectural performance / intelligence gap - The plat-
form should both be able to show ’intelligent’ behaviour
and have real-time performance to control the hardware.

2) Abstract Services - To use manufacturing as a service
and limit complexity the hardware can not be ’known’
by the product.

3) Reconfigurable systems - It should be possible to quickly
adapt the hardware and reconfigure the system by chang-
ing its hardware modules.

4) System Behaviour - While systems should be au-
tonomous and modular and work in a dynamic ’chaotic’

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http.//www.iariajournals.org/software/

312

environment their behaviour should also be predictable
and ’safe’.

The first problem will be the main focus of this paper.
How can you create an architecture that combines the dy-
namic behaviour and flexibility for high-level functionality,
i.e., understand its environment and cooperate with other
systems in the grid, and low-level functionality, i.e., high
performance hardware control and algorithms. These different
functionalities are based on different behaviour and therefore
have different requirements. High-level functionality is based
on abstract cognitive processes that use networked data and
slow heuristic processes. Low-level processes are based on
strict rule based systems that have a direct impact on the
actuators. As such they are usually written in native code using
real-time systems. While native code could grant a higher
performance it is also more difficult to develop. Additionally,
it is important that the high-level functionality will have no
performance impact on the low-level systems.

The next problems will be taken into account and seen
as preconditions for the proposed architecture in this paper.
Their impact on the architecture will be discussed. However,
the solutions and research conducted to solve these specific
problems are not within the scope of this paper itself and will
be published in detail in future work.

The second problem focuses on the use of the manufac-
turing systems. Since the grid manufacturing concept asks
for autonomous systems the product is not aware of which
manufacturing system will produce it beforehand. As a result
both product and the manufacturing system are not designed
specifically for each other. Hence, to be able to use the
service for a product they should be able to interface with
and understand each other. This asks for an ontology that both
product and manufacturing system can use. The architecture
should take into account which services and limits it can
provide and match these to the requirements of the product.

The third problem focuses on the reconfigurable aspect of
the systems. Since demand can change it is important to adapt
the systems to the (possibly new) demand. To create maximum
flexibility the system should be easy to adapt and if possible
automatically update its use and services so they can become
unavailable to the products in the grid.

The last and fourth problem focuses on the system be-
haviour. Since products are unknown and manufacturing hard-
ware can be reconfigured there is a large dynamic in a grid.
Hence, it is difficult to define its exact behaviour. To be sure of
the exact manufacturing specifications and safety aspects it is
required to create specifications and procedures for action that
a hardware module can perform. A system should be created
that defines the behaviour and describes how it will act during
diverse situations like starting up/shutting down or errors.

A. Research Questions

The research question will focus on the main problem of
this paper, the creation and specification for a flexible software
architecture that will provide both performance for low-level,
and flexibility for high-level functionality.

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1) What technologies are available for use in the proposed
concept for grid manufacturing?

2) What requirements are necessary for a software archi-
tecture for smart industry?

3) How can low-level performance and high-level flexibil-
ity be combined?

4) Can such an architecture be scalable?

5) Is the proposed concept feasible for near future use in
industry?

V. CONTEXT - THE CONCEPT

The main concept is based on the philosophy of cyber-
physical systems. A grid will consist of three main types of
systems: several logistic services (including autonomous trans-
port systems), autonomous manufacturing systems, and lastly
the products that will also be cyberphysical systems. Figure 5
shows the concept of a grid with autonomous (cyberphysical)
systems. The reconfigurable manufacturing systems are called
“equiplets’.

Classic manufacturing is based on a Line Cell Module
Device (LCMD) model as shown in Figure 3. The model
represents a modular manufacturing process based on 4 hi-
erarchical levels. The line is literally a *manufacturing line’
that is made up of a number of cells where a specific job is
performed. A Cell commonly uses multiple modules which
perform specific actions, e.g., pick & place. The module can
decomposed even further into devices, e.g., a pick & place
module will likely consist of several sensors and actuators,
each sensor and actuator can be seen as a device. The LCMD
model is optimised for cost efficient manufacturing of products
that are made in high quantities. Since this is a linear model
where products are made in a line, any change at any level will
influence the entire manufacturing process. Hence, the product
as well as the manufactured process will have to be matured
completely before actual mass manufacturing can start.

Device

Figure 3. Classic Line Cell Module Device (LCMD) structure.

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http.//www.iariajournals.org/software/

313

The concept of Grid manufacturing provides the opportunity
to dynamically adapt both product and equipment at any level
where the overall impact will be limited as much as possible.
This is performed by autonomous reconfigurable systems that
provide generic services that products can use. All systems in
the grid should cooperate to become self-organizing. Because
of the reconfigurable aspect of these systems they are named
equiplets. Equiplets are not arranged in a line, but in a grid
to emphasize that they can be used sequentially based on
the current dynamic demand, i.e., dynamic in the sense that
different products can be made at any time using equiplets
in any order using (soft) real-time negotiation and scheduling
to plan how a possibly unique product will be manufactured.
Figure 4 shows a rendering of a grid with 12 equiplets, where
every equiplet can have a different configuration to provide
a variety of services that are required for the manufacturing
process. Note that a grid does not require to have any specific
form; depending on the demand they can be placed in any
relative position based on the local logistic setup of the factory.

Figure 4. Example of a Grid Structure.

Equiplets provide capabilities that are based on the config-
uration of the specific modules that are installed. In this con-
text, reconfiguration is defined as adding/removing/changing
modules within the equiplet so as to change its capabilities.
This includes both the physical change as the adaptation and
configuration of the software to control the equiplet.

In contrast to LCMD, this architecture for Grid Manufactur-
ing is called the Grid Equiplet Module (GEM) Architecture, as
shown in Figure 6. With GEM the systems are loosely coupled,
the Grid layer provides services to the autonomous equiplets.
Modules are commonly designed as Components of the Shelf
(COTS).

Besides delivering flexibility the concept also introduces a
manner to bring the product designers and production experts
closer together. In the past, lines were made specifically for
one product and as such it would come at a high cost to take a
working line off-line to create a prototype for a new product.
Since grids can dynamically handle various products in parallel
a product designer is able to use the same manufacturing
equipment that is used for the final manufacturing to create
prototypes and test the production phase. This shortens the
time-to-market and lowers costs.

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Product 1

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http.//www.iariajournals.org/software/

314

Equiplet 1

Who can 3D print my parts?j

Can you handle these speciﬁcaﬁonsEI

Equiplet 2

| can if | change my nozzle!
If it fits your schedule | will
plan to reconfigure at this time.

Grid Server

[I can pick&place smz@

@ a list of services!]

Figure 5. The simplified concept of grid manufacturing.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, - ,1,,,,,,,,,,,,
/Al.l/H/Al.ZHA13/
I
Legend
Fquiplets | |AL4F {ALS {16
{ I

Module

]
D Equiplet
0

Transport

Modules

Figure 6. GEM Architecture.

To further work out the required platform and analyse
the success of this concept the requirements should first be
discussed.

VI. REQUIREMENTS

The requirements of grid manufacturing will be split into
different parts. First, the preconditions and functional require-
ments of all levels within the GEM architecture. Then the
products themselves, and finally the processes that are required
to be active within the grid to fulfil its function.

Since the design of complex systems as used in grid manu-
facturing is challenging, the requirements are loosely based
on the Axiomatic Design methodology developed by MIT
[18]. Axiomatic design uses design principles or axioms, i.e.,

premises or starting points for reasoning. In Axiomatic design
the characteristics needs are translated into four domains:

o Customer Domain - Customer Attributes (CA)

o Functional Domain - Functional Requirements (FR)

o Physical Domain - Design Parameters (DP)

e Process Domain - Process Variables (PV)

A. Functional Requirements

The functional requirements in Axiomatic Design are given
by answering the question, ’what should the system do?’.
This is placed in the scope of all software systems for
multiple autonomous reconfigurable manufacturing machines.
During the decomposition phase this clustered to a three level
decomposition for the manufacturing system and a fourth for
the product entity that represents the product:

e The Grid - A decentralised system where Equiplets and

Products cooperate.

o Equiplet - An autonomous modular reconfigurable single-

service low-cost manufacturing machine.

e Module - A hardware module that provides one specific

function within an equiplet.

o Product - The cyberphysical entity that will represent the

product.

B. Grid Level

The grid should be able to:

o GFRI1 offer services to a variety of products.

o GFR2 validate and assess its own efficiency.

o GFR3 adapt (remove or add) services / equiplets with
limited to no interference to other products.

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

o GFR4 provide for product transport dynamically between
each equiplet.

C. Equiplet Level

An equiplet should be able to:

« EFRI1 provide a specific service to a product.

o EFR2 be reconfigured (adding or removing of modules -
to provide a different service).

« EFR3 work autonomous, i.e., it has no strict dependencies
with other equiplets or create interferences for other
equiplets.

o EFR4 automatically adapt its software when modules are
added or removed.

— EFRA4A let its new service (capability) known to the
grid.

— EFR4B update its system behaviour and safety soft-
ware.

o EFRS5 translate abstract instruction from a product and
translate it to instructions for its own specific hardware
modules.

o EFRG efficiently control the hardware in real-time.

D. Product representation entity

A product representation (in its manufacturing phase)
should be able to:

o PFRI1 coordinate its own production.

o PFR2 know of which parts it requires to be completed.

o PFR3 know which (abstract) services it requires to be
assembled (production steps).

o PFR4 determine which services are available.

o PFR5 communicate with equiplets to determine if they
can perform a production step.

e PFR6 create a (viable) schedule on how it will be
produced.

o PFRS log its production/assembly history.

E. Module Level

A module should be able to:

o« MFR1 know its own characteristics.
o MFR?2 accept and perform instructions from the equiplet.

VII. TECHNOLOGY COMPARISON

To create a platform for the proposed concepts let us first
investigate some current technology:

Agent Technology The word Agent comes from the Latin
word agere, which means: to act. Software agents, as shown
in Figure 7 are entities that have their own interpretation of
their environment on which they act autonomously. Hence, we
uphold the definition of Wooldrige and Jennings: *An agent
is an encapsulated computer system that is situated in some
environment and that is capable of flexible, autonomous action
in that environment in order to meet its design objectives’[19].

Therefore, some consider agents as ’objects with an atti-
tude’, since unlike an object an agent has control over its own
behaviour. Agents can also be seen as a higher abstraction
of objects, which makes them ideally suited to deal within

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http.//www.iariajournals.org/software/

315

complex dynamic environments. Paolucci and Sacile noted
that they can create a flexible, scalable and reliable production
system [20].

Environment

\ /
Sensin g
/gf T

Figure 7. An autonomous agent in its environment.

Agents can be split in two main types:

1) Reactive agents

2) Reasoning agents

Figure 8 shows an example of a standard reactive agent
cycle that perceives its environment through sensors, inter-
prets it according to standard rules, and chooses an action
accordingly and acts using actuators to change something in
the environment.

4 N

AGENT

)

percepts

Sensors -k

What is the
world like now

ENVIRONMENT

A

Condition-action Action to
(ifthen) rules be done
actions
Actuators

. Y, ___

Figure 8. Simple reflex of an Intelligent Agent.

Reasoning agents exist in multiple types, the best known of
which being the belief-desire-intention (BDI) agent, see Figure
9. The BDI agent uses the philosophy of Dennett and Bratman
[21], [22]. The BDI agent uses its senses to build a set of
beliefs, where its desires are a set of accomplishments that
the agent wants to achieve. The BDI agent can choose desires
that it wants to actively try to achieve, these are its goals. It
then commits to a goal to make it into an intention, activating
a plan that consist of actions that it will take to achieve its
goal and thus satisfying its desire. Ideally, BDI agent uses the
following sequence to achieve this [23]:

1) initialize-state

2) repeat

a) options: option-generator(event-queue)

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

b) selected-options: deliberate(options)
¢) update-intentions(selected-options)
d) execute()

e) get-new-external-events()

f) drop-unsuccessful-attitudes()

g) drop-impossible-attitudes()

3) end repeat.

N

>
N —
> -
Sensing | » Acting

y

~
)

Figure 9. Beliefs Desire Intention Agent [24].

o

Figure 10 shows the concept of Multi Agent Systems
(MAS), where multiple environments communicate and work
within an environment. Agents interact and can cooperate or
negotiate to achieve common goals. Either agent can have a
specific role within a MAS and can interact with the other
agents using specific permissions and responsibilities.

Environment

agent-agent
interaction

—>

Sensiyy

Acting

Figure 10. Multiple agents forming a Multi Agent System (MAS).

MAS can also be associated with Environment Program-
ming. Environment Programming is seen as an abstraction
where the environment is seen from the agent perspective.
Objects in the environment that the agent interacts with
are seen as programming models and are named ’artefacts’.
This creates an extra abstraction where objects keep their
abstraction layer and can be used effectively by the agents
[25].

VIII. DESIGN

The platform that has been developed is called REXOS,
which stands for Reconfigurable EQuipletS Operating System.
For the design it was necessary to consider an important rule
of Axiomatic Design:

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http.//www.iariajournals.org/software/

316

TABLE I. Design Matrix that shows the relationship between FRs and DPs

Hardware Platform
High Performance X
Intelligent behaviour X

Intelligent Platform

e Axiom 1: The independence Axiom - Maintain the inde-
pendence of the functional requirements

o Axiom 2: the information Axiom - Minimise the infor-
mation content of the design

These axioms show why cooperating autonomous systems
like MAS lower the complexity of a design, since many
functional systems can be isolated in a single entity. However,
this is not true for equiplets. Hence, they require specific
attention in the design.

The domains are represented as vectors that are interrelated
by design matrices.

{FR} = [A]-{DP} (1

Where {FR} is the vector of the Functional Requirements
(What should it do), {DP} the vector for the Design Param-
eters (What can satisfy the FR), and [A] is the design matrix
that hold the relationships between these two vectors:

][][5

FR2 A21 A22 DP2

As mentioned in the Problem Section, the architectural
design has to be able to have high performance and be able to
have intelligence behaviour. This is a common problem that is
recognized in recent literature [26]. Based on the methodology
of axiomatic design this urges us to think of how to decouple
these properties.

Table I shows the relationship between the requirements
and the solution. In this case, the requirements are decoupled
through the creation of a hybrid architecture where multiple
platforms are combined to potentially yield the best of two
worlds [27]. This in contrast to a system where one platform
is used where these requirements should be combined.

Hence, for the design, it is important to analyse a number
of platforms and research how they can interface without
becoming coupled. The next section will review a number of
platforms and technologies that could become the basis of
REXOS.

A. Choice of Technology

Grid Manufacturing can be seen as a complex system where
many autonomous systems have to interact. This is one of
the reasons why it is important to use autonomous entities
to become as flexible as possible without creating too many
interdependencies that increase the overall complexity of the
system. As shown in Figure 11, a multi-agent system fits this
requirement in that it offers a level of abstraction and limits
the sphere of influence for an entity.

The use of a MAS seems a good option to choose as a basis
for REXOS, if we investigate this further we can also look at
the characteristics of a manufacturing environment [29]:

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

< agent

- » interaction

Q organizational
relationship .

Sphere of
visibility
and
influence

Environment

Figure 11. The sphere of influence within a MAS [28].

1) Autonomy

2) Cooperative

3) Communicating

4) Reactive

5) Pro-active
Together with the set requirements for equiplets and the grid,
these fit perfectly into the concept of grid manufacturing. Be-
sides the manufacturing processes themselves agents provide
many more possibilities that are out of the scope for this paper,
e.g., a product agent that stays with the product to analyse its
behavior and offer problem solutions whenever possible [30].
The agent that can represent hardware could also be utilized
to analyse efficiency and learn from the behaviour to optimize
schedule times and other logistic matters.

B. Choice of platforms

Even though we choose to use MAS as a basis for REXOS,
this does not fulfil all requirements that we require for grid
manufacturing. MAS will provide a dynamic decision platform
that will represent all systems. However, it is normally not
suited for direct real-time control of hardware. Hence, it
is important to investigate which platform could fulfil this
requirement and to research how these platforms could be
successfully combined. To approach this task lets first look
at a number of agent platforms.

C. Agent platforms

The platform that is used for REXOS had to meet certain
requirements as mentioned in the problem description. Several
attributes also have to be satisfied, which are part of the
Customer Domain:

1) The platform needs to be scalable.

2) For flexibility the platform needs to be able to change
or add new agents during runtime.

3) The platform needs to be mature (for industrial applica-
tion).

4) Performance needs to be sufficient to handle grid-wide
logistics.

5) The platform should preferably be open source, but also
applicable for industrial use with propriety sources.

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http.//www.iariajournals.org/software/

317

Several agent platforms have been investigated:

e« 2APL [31]
o JADE [32]
e Jadex [33]
o Madkit

o Jack

e Jason

The choice for the agent platform has become Java Agent
Development Framework (JADE), since in JADE agents can
migrate, terminate and start in runtime, also JADE has been
widely adopted and has an active community. While JADE has
no direct support for BDI agents it can be extended to add this
when necessary in the future. Currently, the architecture does
not force the use of the BDI. JADE is also compliant with
the Interoperable intelligent multi-agent systems specifications
standard FIPA. Which makes it possible to easily extend
the MAS with other FIPA compliant systemsFoundation for
Intelligent Physical Agents.

D. Diverse platforms

Besides the agent platform, there is a need to combine it
with other platforms to control the hardware and satisfy the
Customer Attributes and Functional requirements.

Robot Operating System (ROS) is a software framework
that provides services, tools and libraries for robots [34].
The framework has extensive support for a variety of sensors
and actuators and offers hardware abstraction and low-level
device control. ROS is free and open-source and uses nodes
as software modules that communicate with messages. Nodes
can be started and stopped in runtime, making it possible to
adapt software modules at any time. ROS has been created to
create general purpose robot software that is robust.

Robot Operating System (ROS 2.0) is currently under
development and is being created to overcome some limita-
tions of ROS 1.0, including real-time requirements and use for
multiple robots.

MongoDB Due to the diversity and flexibility of the grid it
is difficult to define all schemas that relational databases use.
MongoDB uses dynamic schemas, is cross-platform and has
a document-oriented database. Hence, MongoDB can be used
as a blackboard between platforms.

OpenCV Open Computer Vision can easily be integrated
with ROS, it is released under the BSD license and can be used
on multiple platforms. It has a focus on real-time applications
and has been proven in many projects. Hence, it is logical
to choose for the OpenCV library to integrated OpenCV in
REXOS. The computer vision is used to identify and localise
parts within the working space of the equiplet and is used
for other logistic processes necessary for configuration and
calibration of the systems, e.g., identification of a new gripper.

E. REXOS

REXOS has been developed using JADE and ROS 1. The
main reason for using ROS is its proven use in many projects
and the experience from other projects. The combination of

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http.//www.iariajournals.org/software/

318

Grid server

S ——— " S — A -

Grid Data

Directory
Facilitator

Acquisition

Logistic
Manager

port computer

Trang

Transport
Agent

Hardware
Controller

HaL

Equiplet node

nyironmer
cache

Modules &

ROS hodes

JADE and ROS results in the architecture as shown in Figure
12, the high-level design of REXOS.

REXOS is a distributed multi-platform system and as such
will run on a number of computers. The basic logistics will run
on a grid server that provides a Directory Facilitator (DF), Grid
Data Acquisition System and Logistic manager. The DF can
be seen as a yellow page service that knows which equiplets
are active and what services they provide for the products.
The Data acquisition will be used for statistical and Enterprise

Resource Planning (ERP). The Logistic manager is mainly
meant for transportation within the grid.

Products will be created dynamically, and when they are
created they will usually be created by an application and then
be moved to the grid server where it will be produced. If the
product has an embedded computer the product agent will be
moved to the product after it has been completed. However,

2015, © Copyright by authors, Published

LEGEND

Object

Communication Platform
S —

System
houndary

Blackboard

Relation

_

Figure 12. High-level software design of REXOS.

it might also exist in the cloud. This way the product agent
can be of value throughout the entire life-cycle of the product.
This way it can provide a number of services for the owner and
others who use it, e.g., manuals, repair or recycle information
[35].
Transport agents are responsible for the transportation of the
device. Depending on the implementation this could be done
in a number of ways, including Autonomous Ground Vehicles
(AGV) or with (multi-directional) conveyor belts.

The equiplet will be the main system in a grid and will have
a number of main platforms that each consist of one or more

entities:

1) The equiplet agent
2) The Hardware Abstraction Layer (HAL)

3) The ROS layer
All these platforms will commonly reside on one computer

under agreement with IARIA - www.iaria.org

and are embedded within the equiplet. The equiplet agent will
represent the equiplet hardware and interact with the grid and
the products. It will also deal with scheduling and determine its
capabilities based on its configuration. When a product arrives
on schedule to be manufactured it will send its product steps
[29]to the equiplet agent that will forward it to the Hardware
Abstraction Layer (HAL). The HAL is capable to interpret
the steps and translate them to specific instruction known as
’hardware steps’ that will be send to the ROS layer to be
executed.

The ROS layer consists of an equiplet node and at least
one node per module that represents the hardware module.
It also consists of a spawner node that is able to start new
nodes when modules are reconfigured. The equiplet node
will receive instructions from the HAL. The ROS layer uses
an environment cache that represents the physical dynamic
environment. Information that the environment cache holds is,
for example, the position of products that are perceived by a
computer vision or external system.

The interface between the different platforms is essential
for a successful hybrid architecture. While Figure 12 shows a
blackboard, other implementations have been developed and
will be discussed in the next section.

IX. IMPLEMENTATION

For this paper, the basic architecture of REXOS is being
researched. Therefore, the main focus will be on the infras-
tructure and platforms that are required for grid manufacturing.
As mentioned before in the introduction, the hardware is an
important aspect to prove the feasibility of the concept. As
such, this section will show the implementation of the software
platforms, the interfaces, but also give an overview of the
hardware that is used.

A. middleware

Figure 13 shows the implementation of an example of the
JADE platform for grid manufacturing, which consists of two
equiplets and a grid server. JADE uses a main container that
can be connected to remote containers (which are in the other
equiplets). The main container holds a container table (CT)
and two special agents, named the Agent Management Service
(AMS) and the Directory Facilitator (DF). JADE has the ability
to replicate or restore the main container to remain fully
operational in case of a failure.

Java | Java Java
SDGINGE DD
:| Container E1 Main Container Container E2 |:
GADT (cache) ;
””””””””””””””””””””””” JADE - Platform ™~

Equiplet Server Equiplet

Figure 13. The Java Agent Development Platform.

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http.//www.iariajournals.org/software/

319

In every container there is a Global agent descriptor table
(GADT) that registers all the agents in the platform, including
their status and location, and a local descriptor table (LADT).
The GADT in the remote containers will be used for caching.

EqA and PA are the Equiplet and Product agent who will
represent a specific product or equiplet.

B. Grid

The grid provides logistic functionality, which the au-
tonomous equiplets can use. Based on the architecture shown
in Figure 12 it is standard that the GRID services run on a
separate server. However, since the software runs on a standard
linux system and the JADE environment can be moved or
distributed in any way, the GRID functionality can be run on
any computer within the network. As such it is possible to start
it on a computer within an equiplet. This creates the ability to
quickly setup the functionality of an equiplet without requiring
a complete infrastructure.

Transport [36], [37], [38] and other logistic systems like
scheduling [39] are discussed in separate research and are
considered out of scope for this paper.

C. Egquiplets

The equiplet and its modules are specifically designed with
grid manufacturing in mind. An equiplet consists of a rigid
base with standard mounting points to attach modules. A
standard equiplet is commonly used for assembly actions
and as such typically uses 4 modules to be attached, a
manipulator, gripper, vision system and a working plane. A
standard equiplet stands on a rails to be easily moved and holds
a standard on-board PC. Equiplets and a number of modules
has been developed and tested, Figure 14 shows a demo setup
of 2 equiplets configured with a pick and place setup.

Figure 14. Equiplet demo setup.

The REXOS architecture is based upon different technolo-
gies, the C++ based ROS and the JAVA based JADE platform.
Therefore, the interface between these two is an important
aspect for stability, performance and, therefore, scalability

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

issues. Due to the importance three different implementations
have been developed:

1) Blackboard

2) ROS bridge

3) ROS Java

The blackboard implementation (see Figure 15) uses a
MongoDB database server and multiple MongoDB database
clients. The HAL and ROS components each have a client,
connected to the server. By enabling the replication feature
of MongoDB (usually used to keep the databases of multiple
servers synchronised), the server generates an operation log,
which logs all databases and collections on the server. The
clients listen to this operation log using a tailable cursor. This
enables the clients to communicate with each other via the
server without having to periodically query the server.

HAL
Mongo Java client
. v
insert/update tailable
statement cursor

Mongo database server

tailable
cursor

\insert/update
statement

ROS

Mongo Cpp client

Figure 15. ROS HAL interface using a blackboard.

The ROS bridge implementation (see Figure 16) uses a
ROS node, which acts as proxy between the HAL and ROS
components. The bridge is written in Python and is designed
for flexible integration of ROS in other non-C++ systems. The
bridge acts as a websocket server to the outside (for REXOS
this is the HAL component) and acts as a standard ROS node
to the inside (for REXOS this is the ROS component). Because
the bridge acts as a standard ROS node, the ROS component
of REXOS can use standard ROS communication methods and
messages, reducing the complexity of the interface.

The ROS Java implementation (see Figure 17) uses the
rosjava_core library to communicate between the HAL and
ROS components. ROS is currently available for C++ and
Python. Rosjava_core is an attempt to make ROS available for
Java. It implements the internal ROS infrastructure including
time synchronisation, namespace resolving, topic and service
advertising, and communication methods.

D. Modules

Modules are usually not designed specifically for a product,
this enables the equiplets to offer generic services to a variety

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http.//www.iariajournals.org/software/

320

HAL
Websocket Java client
v
websocket websocket
message message
ROS Bridge
ROS topic ROS topic
ROS

ROS node

Figure 16. ROS-HAL interface using a ROS bridge.

HAL

ROS Java node

ROS topic ROS topic

ROS

ROS node

Figure 17. ROS HAL interface using a ROS JAVA node.

of products. For this purpose, a components off the shelf
(COTS) strategy is adopted together with modules that are
specifically designed for grid manufacturing using equiplets,
and which are developed using product family engineering. As
shown in Figure 18, Product Family Engineering uses common
parts for as many different modules as possible.

Currently, a number of modules have been developed specif-
ically for grid manufacturing:

Delta Robot The deltarobot is a parallel manipulator where
three actuators are located on the base, and where arms made
of light composite material are used to move parts. All moving
parts have a small inertia, which allows for very high speed
and accelerations.

Figure 19 shows the schematics of the deltarobot that
is specifically designed to be used for equiplets. The end
effector is designed in such a way that grippers can easily
be changed using a precise clicking system with magnets.
Many components of the delta robot are also manufactured
using additive manufacturing, making it easy to customise or

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

321

a larger variety of products types. For this purpose, the Delta
Robot design with 3 degrees of freedom was adapted to an
inverted Stewart Gough platform, which uses 6 motors to
be able to have a limited 6 degrees of freedom. Figure 21
shows this 6 DOF parallel manipulator module. This module
is very useful since products can arrive at the equiplets in any
orientation.

Figure 18. Two different parallel manipulators with 3 and 6 Degrees of
Freedom using as many identical components as possible.

produce parts for the modules on demand.

Figure 21. An adaptation to the deltarobot, which uses 6 motors as an
inverted Stewart Gough Platform to create more flexibility.

Upper plate
Wiount plate eonnection
Wintar conneetion

This specific Gripper module is controlled using modbus
over TCP. This is performed by an inline bus coupler (Phoenix
contact IL ETH BK DI8 DO4) that is accessed from the re-
spective gripper node. Most types of grippers that are currently
used work with a pneumatic system to move an effector or
create a vacuum to pick up small parts.

Upper arm (hip)
Switch connectar

P Fiatform (effector)
Tapered part (spacer)

Plug

Carben tube (ankle)

Step motar

Precision switch

Rod end

Figure 19. Delta robot Hardware Component Schematics.

rexos_jo::InputOutput Controller
The Delta Robot uses three actuators of the type Ori- TR |__< roxes JorinpROUpICanraler
ental Motors PK566PMB) that are controlled using motor — e
controllers (Oriental Motors CRD514-KD). The controllers oo e 1o
are directly accessed from the respective ROS module node. Figure 22. Gripper call / inheritance graph.
Figure 20 shows the steppermotor class, which uses a modbus
interface. The modbus interface is offered by a generic In- The Vision Module is of high importance within grid man-

putOutput class that is implemented by the InputOutputMod- ufacturing. The product location will usually not be prepro-
BusRtuController class. This class has been created for easy grammed and as such must be detected dynamically in real-
reuse throughout the system and is implemented by all RTU time. This is done by the Vision module that uses an OpenCV-
modbus implementations. based detection system to determine either the location of a
product, or the location of a tray or other transport device

that has the knowledge of the relative location of the product

towards itself. The location data that will be found by the
Vision Module will be delivered to the environment cache so
1 that other modules can easily access it. The standard vision

rexos_io:InputOutputCont
Tnterface: writeU 16

rexos i N
Conroller::setCurentSlave

rexos_motor::Stepperhotor rexos_jo::RtuModbusinput
powerOn o itel)

rexos_jo::InputOutputController
Tnterface: writeU32

e el s module holds a number of algorithms to deal with a variety
of situation. It can automatically calibrate its lenses and has a
built-in correction and balance system to deal with differences
Figure 20. The call/inheritance graph for the motor controller. in lighting and distortions.

The Work plane is the area where a product, crate or
Since equiplets are not specifically designed for a product it vehicle that carries a product is located. Many equiplets use
is important to have as much flexibility as possible to service transparent working planes such that computer vision systems

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

vision_node
<interface> ’;Rmm,mg,
Camera
~—| camera/qr_codes
[VisionNede | _—>] |
L i |
\\%%» camera/fiducials
—_—
i enableQr enableFudicial

EyeCorrection CodeReader Detector

CameraControlNode

Figure 23. Vision system.

can be used to localise the specific parts. If a product is placed
on a crate or cart the product agent can usually infer the
location based on its own position as seen by the vision system.
While the working plane has no actuators or sensors itself it
is still seen as a module and has a ROS node that represents
it. The ROS node is used to calculate its own position based
on where it has been attached, its own known specifications
and calibrations using vision and markers that can be placed
on the working plane.

The Additive Manufacturing module can be used for a wide
range of tasks. Figure 24 shows the 3D printer module that
can print any object, i.e., casings or buttons for a unique
customized internet radio. This module is an important asset
for grid manufacturing since it makes it possible to create a
variety of items not only for custom products, but also for the
modules itself.

Figure 24. 3D printer module.

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

322

E. Basic operation

While not all services of a grid are relevant for this paper
it is important to show the basic operation of a grid. More
specific actions like reconfiguration and the implementation
of the HAL will be discussed in other work. Figure 25 shows
the normal operation when manufacturing. The sequence is
implemented in the following way:

1) An equiplet agent is aware of the capabilities based on
the modules it has configured.

2) The equiplet agent registers its service at the Directory
Facilitator (DF) that acts as a ’Yellow Page’ service for
the Product agents.

3) When a product agent is initialised it has a number of
product steps that describe how it needs to be manu-
factured, the product agent queries the DF to find the
services that could potentially perform the steps.

4) The product agent uses the list of equiplets it has
received from the DF to inquire the equiplets if the
equiplet can match the specific schedule.

5) If the schedule can be met the product agent also
inquires if it can meet its specific detailed criteria that the
product may require for the product step to be performed
adequately.

6) When all criteria are met and the product arrives on
schedule at the equiplet it will send its instructions on
how to perform the steps to the equiplet.

7) The equiplet will translate the steps to its specific
hardware and send it to the equiplet node in ROS to
control the hardware and perform the specific step.

8) When done the equiplet agent will inform the status to
the product agent.

X. EVALUATION AND PERFORMANCE

The next step will be to evaluate the performance and
scalability by performing a number of benchmarks. These have
been split in multiple types:

1) Synthetic benchmark - to test the individual systems and
latencies during load [40].

2) Full testing in simulation mode - to test realistic cases
using the entire architecture.

A. Synthetic benchmarking

First, a standard equiplet setup has been created that uses
a ROS/JADE infrastructure connected by a MongoDB black-
board, see Figure 26.

Three tests were performed:

1) Node to Node communication over ROS.
2) Agent to Agent communication using JADE.
3) A pick and place case utilizing all layers.

For all three benchmarks 10,000 messages will be send,
where full round time including a response message is mea-
sured. Results are shown in Figure 27, which uses a trend line
over 5 periods. The message is an instruction that contains a
JavaScript Object Notation (JSON) object that holds a target,
ID, instruction data and parameters.

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http.//www.iariajournals.org/software/

323

Equiplet Product Directory Equiplet
Agent Agent Facilitator Node
I I I
| | il |
| | |
initialization: capabilities I : L
register: [servicel : |
initialization: product steps I
——search: service—P|
<~ ‘capable to perform: <service, criteria>— —
yes, at time ...
i — or _
no, I'm not capable
< — —perform: <service, criteria, time> — — 1~
perform: instructions
K—————-—-——————— feedback instructions — — — — — FF——————
feedback————————P»|

Figure 25. REXOS service.

JADE

DATA

ROS

Figure 26. Synthetic test setup for benchmarking.

The results show that ROS to ROS and JADE to JADE
performance is much better than when both are combined
using a blackboard. Hence, different interfaces were required
to be investigated to handle the communication between the
ROS and agent layer. This was performed using the simulated
benchmarking system.

B. Simulated benchmarking

This section evaluates the performance of the entire archi-
tecture using a full simulation of the system. The sources
are identical to a real runtime situation, only the hardware
responses are being simulated. The most important aspect of
this test is the different interface implementations that connect
the (C++ based) ROS and (JAVA based) JADE platform.

To determine the best implementation for the interface

between HAL and ROS, every implementation was bench-
marked. The benchmark has been performed using custom
written software and measures the time required to communi-
cate from node A to node B and back to A. Node B will re-
spond immediately. Node A is always a ROS node, while node
B is either a regular ROS node, a ROS Java node, or a Java
ROS bridge listener. The only exception are the blackboard
measurements. Because the blackboard implementation does
not use the ROS infrastructure, measuring the latency using
ROS is not an accurate measurement. Instead the time required
to communicate from A to the MongoDB server and back to
A is measured. Because this gives an unfair discrepancy in
the measurement (the relevant case is to transmit a message
from A to B and receive and response from B), the blackboard
latencies have been multiplied by two to compensate that the
message has to be send twice (first from A to MongoDB and
then from A to B).

The idle equiplets are equiplets that have been started but
are not performing any tasks. The busy EQs are equiplets
executing a hardware step every 1 second and measuring data
every 10ms. The measurements have been determined using
100,000 samples.

The average latency as seen in Figure 29 has been measured
with 10 and 50 active equiplets. Other scenarios have also
been measured, but produced less relevant data. The ROS
C++ topic, service, and action servers used are native ROS
communication methods and act as a reference. They are not
actual implementations of the interface. The data clearly shows
that the average latency for the ROS C++ topics is the lowest.
The ROS C++ service and ROS C++ actionServer also have

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

324

g 2,: || | —_ Blackboard
5 e B |' b g -

1 501 1001 1501 2001 2501 3001 3501

Messages

4001 4501 5001 5501 6001

6501 7001 7501 8001 8501 5001 9501

Figure 27. Synthetic benchmark of ROS to ROS communication (bottom), Agent to Agent communication (middle), and the pick and place benchmark (top).

Average latency

60000000

50000000

40000000

30000000

nanoseconds

20000000

10000000

ROS C++ topic ROS C++ service

1 |
ROS C++

ROS bridge

ROS blackboard ROS java topic

actionServer

W10 busy EQ m50 busy EQ

idle

Figure 28. Average latency of the different interfaces that have been developed.

a low average latency. The blackboard implementation has a
low base latency, but scales very poorly.

During the benchmarks it became clear that the blackboard
implementation has a specific point after which the latency
increases spectacularly. This might be caused by a connection
pool in the MongoDB server running out, resulting in other
connections having to wait. The ROS bridge has a very high
base latency but scales much better. In all the other scenarios
the base latency is also approximately 10,000,000 nanoseconds
(equals 10 milliseconds). This suggests that the ROS bridge
uses a periodical poll mechanism. The ROS Java topic has
very low base latency and seems to scale excellently.

Figure 29 shows the consistency of the latency of an
implementation of the interface. This shows how reliable the

interface is when it comes to consistent behaviour. The average
deviation matches the average latency in that once again the
ROS C++ topic, ROS C++ service and ROS C++ action server
perform very well, while the ROS blackboard scales poorly.
The ROS bridge has a quite high, but steady deviation.

XI. CONCLUSION

The paper takes an all-embracing approach to self-
organising, reconfigurable autonomous manufacturing sys-
tems. The goal behind this is to provide a basis for a practical
implementation by combining new technologies as a staging
ground for new manufacturing methodologies based on the
industry 4.0 principles that will boost the adoption by industry.
Hence, this includes the development of hardware, the use of
system and software engineering principles and integration of

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http.//www.iariajournals.org/software/

325

Average deviation

14000

12000

10000

8000

6000

nanoseconds

4000

2000

0 —

ROS C++ topic ROS C++ service

ROS C++

ROS bridge

ROS blackboard

ROS java topic

actionServer

W 10 busy EQ

50 busy EQ idle

Figure 29. Average deviation of the latencies.

the newest hardware designing techniques. It also builds on
current advances in software by using distributed systems and
combining them in a hybrid architecture. The hope is that
this leads to solutions that prove to industry that the newest
technology is becoming more and more suitable for true mass
adoption. This is done by investigating the current state of
technology, analysing the requirements and new developments
in smart industry and trying to encompass this in the concept of
’grid manufacturing’ that consists of both a hardware platform,
i.e., the equiplets and a software platform, i.e., REXOS.

The main research question of the paper was intended to
show that grid manufacturing, based on the REXOS plat-
form can combine low-level performance and flexibility using
intelligent behaviour. The choice to combine two platforms
are supported by the axiomatic design methodology, which
strongly asks to decouple the requirements from the design
parameters. The results give insights in how both JADE and
ROS can best be interfaced using the JAVA ROS node that
act as a wrapper for the messages from JADE towards the
ROS platform. It also shows that the interface between these
platforms are crucial to get a scalable platform, by demonstrat-
ing that the (originally developed) Blackboard interface was
severely lowering the performance when 50 or more equiplets
were used. However, the paper also introduces the entire
concept, by introducing the GEM architecture and giving an
introduction to the functionality that REXOS and the equiplets
can provide.

The paper also evaluates the concept of grid manufactur-
ing in general, taking design techniques and hardware into
account. The equiplet platform in general and the modules
specifically were designed using a low-cost strategy where
equiplets can easily be reconfigured, providing a high utiliza-
tion to a minimum cost. This was done by using combining
product family engineering with the use of many standard
components. When specific components have to be made they

are commonly designed in such a way that equiplets can
produce them themselves, for example by using 3D printed
parts.

More generally, the paper makes it clear that it is essential to
take an applied approach to solve these problems. The industry
will require working proof of concepts that not only tackle the
theory but also the practical problems that occur when working
with complex systems such as the ones demonstrated in this
paper. The development and testing of all these systems have
required a large amount of work but also add to the validity,
and therefore, usefulness for industry.

This research provides a number of insights:

1) ROS and MAS can be effectively combined - which
decouples the performance and intelligence gap.

a) The MAS provides the abstractness to deal with
the dynamics that are required for self-organising
systems.

b) ROS gives the performance and tools to effectively
develop a large range of control systems that can
be reconfigured.

¢) The choice to specifically combine JADE and ROS
seems to be effective.

2) The autonomous nature of both platforms makes it possi-
ble to adapt part of the systems during runtime, which is
an important aspect when considering reconfigurability.
The use of autonomous systems makes it easier to
lower interdependence between functionalities, creating
a decoupled design, which lowers overal complexity.
Combining different platforms like MAS and ROS have
a high potential for industry.

3)

4)

The combination of the requirements and propositions gives
fuel to new research in more practical problems that are
fundamental for smart industry; in future work both the aspects
of (automatic) reconfiguration and dynamic (safety) system
behaviour will also be discussed in more detail. However, the

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http.//www.iariajournals.org/software/

326

proposition as mentioned in Section II-D seems feasible. [20] M. Paolucci and R. Sacile, Agent-based manufacturing and control

systems : new agile manufacturing solutions for achieving peak per-

ACKNOWLEDGMENT formance. Boca Raton, Fla.: CRC Press, 2005.
[21] D. Dennett, The Intentional Stance. —Cambridge, Mass: MIT Press,

This work has been supported by the ARTEMIS R5-COP 1987.
project and the HU University of Applied Sciences Utrecht, [22] gﬂ%;‘r’;mggl V’;’;’t’;"gei l“’f;gg”d Practical Reason. Cambridge, Mass:
the Netherlands. Thanks go to all the computer engineering [23] A.S.Rao, M. P. Georgeff et al., “Bdi agents: From theory to practice.”
students that have helped with the implementations of REXOS, in ICMAS, vol. 95, 1995, pp. 312-319.
Maarten Dinkla for performing a language review, and Joost [24] 1;/[Wool[(_i}rlidg\i}?n I;ngguction to MultiAgent Systems, Second Edition.
.. Cye . . ussex, UK: Wiley, .

van Duijn for providing information about the hardware design [25] A. Ricci, M. Virczlli, and M. Piunti, “Formalising the environment in
process. mas programming: A formal model for artifact-based environments,”
in Programming Multi-Agent Systems, ser. Lecture Notes in Computer
REFERENCES Science, L. Braubach, J.-P. Briot, and J. Thangarajah, Eds. ~ Springer

Berlin Heidelberg, 2010, vol. 5919, pp. 133-150.

[1] D. Telgen, L. van Moergestel, E. Puik, P. Muller, and J.-J. Meyer, “Re- [26] F. Heintz, P. Rudol, and P. Doherty, “Bridging the sense-reasoning gap
quirements and matching software technologies for sustainable and agile using dyknow: A knowledge processing middleware framework,” in K/
manufacturing systems,” in INTELLI 2013, The Second International 2007: Advances in Artificial Intelligence, ser. Lecture Notes in Computer
Conference on Intelligent Systems and Applications, 2013, pp. 30-35. Science, J. Hertzberg, M. Beetz, and R. Englert, Eds. ~ Springer Berlin

[2] D. Telgen, L. van Moergestel, E. Puik, and J.-J. Meyer, “Agile manu- Heidelberg, 2007, vol. 4667, pp. 460-463.
facturing possibilities with agent technology,” in Proceedings of 22nd ~ [27] R. C. Arkin, Behavior-based robotics. MIT press, 1998.
International Conference on Flexible Automation and Intelligent Man- ~ [28] N.R.Jennings, “An agent-based approach for building complex software
ufacturing. Tampere University of Technology, 2012, pp. 341-346. systems,” Commun. ACM, vol. 44, no. 4, pp. 3541, apr 2001.

[3] P. Leitdo, “Agent-based distributed manufacturing control: A state-of- [29] L. v. Moergestel, J.-J. Meyer, E. Puik, and D. Telgen, “Decentralized
the-art survey,” Eng. Appl. Artif. Intell., vol. 22, no. 7, pp. 979-991, autonomous-agent-based infrastructure for agile multiparallel manufac-
Oct. 2009. turing,” Proceedings of the International Symposium on Autonomous

[4] K. Schild and S. Bussmann, “Self-organization in manufacturing oper- Distributed Systems (ISADS 2011) Kobe, Japan, pp. 281-288, 2011.
ations,” Commun. ACM, vol. 50, no. 12, pp. 74-79, Dec. 2007. [30] L. van Moergestel, E. Puik, D. Telgen, and J.-J. Meyer, “Embedded

[5] J. Wind and A. Rangaswamy, “Customerization: The next revolution in autonomous agents in products supporting repair and recycling,” Pro-
mass customization,” Journal of Interactive Marketing, vol. 15, no. 1, ceedings of the International Symposium on Autonomous Distributed
pp. 13 — 32, 2001. Systems (ISADS 2013) Mexico City, pp. 67-74, 2013.

[6] K. H. Hall, R. J. Staron, and P. Vrba, “Experience with holonic and [31] M. Dastani, “2apl: a practical agent programming language,” Au-
agent-based control systems and their adoption by industry,” in Holonic tonomous Agents and Multi-Agent Systems, vol. 16, no. 3, pp. 214-248,
and Multi-Agent Systems for Manufacturing, ser. Lecture Notes in 2008.

Computer Science, V. Mak, R. William Brennan, and M. Pchouek, Eds. [32] F. Bellifemine, C. G., and D. Greenwood, Developing multi-agent
Springer Berlin Heidelberg, 2005, vol. 3593, pp. 1-10. systems with Jade. John Wiley & Sons Ltd., 2007.

[7]1 V. Marik and D. McFarlane, “Industrial adoption of agent-based tech- ~ [33] L.Braubach, A. Pohkahr, and W. Lamersdorf, “Jadex: A short overview,”
nologies,” IEEE Intelligent Systems, vol. 20, no. 1, pp. 27-35, 2005. Proceedings of the Main Conference Net.ObjectDays, 2004.

[8] S. HU, “Paradigms of manufacturing - a panel discussion,” 3rd Confer- ~ [34] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
ence on Reconfigurable Manufacturing, 2005. R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”

[9] Y. Koren and M. Shpitalni, “Design of reconfigurable manufacturing in ICRA Workshop on Open Source Software, 2009.
systems,” Journal of Manufacturing Systems, vol. 29, no. 4, pp. 130 — [35] L. v. Moergestel, J.-J. Meyer, E. Puik, and D. Telgen, “The role of agents
141, 2010. in the lifecycle of a product,” CMD 2010 proceedings, pp. 28-32, 2010.

[10] M. Mehrabi, A. Ulsoy, and Y. Koren, “Reconfigurable manufacturing [36] L. van Moergestel, E. Puik, D. Telgen, M. Kuijl, B. Alblas, J. Koelewijn,
systems: Key to future manufacturing,” Journal of Intelligent Manufac- J-I. Meyer et al., “A simulation model for transport in a grid-based
turing, vol. 11, no. 4, pp. 403—419, 2000. manufacturing system,” in Proc. of the Third International Conference

[11] K. Stecke, “Flexibility is the future of reconfigurability. paradigms of on Intelligent Systems and Applications (INTELLI 2014). IARIA, 2014,
manufacturinga panel discussion,” in 3rd Conference on Reconfigurable pp. 1-7.

Manufacturing, 2005. [37] L. v. Moergestel, E. Puik, D. Telgen, J.-J. Meyer et al., “A study on

[12] H. ElMaraghy, “Flexible and reconfigurable manufacturing systems transport and load in a grid-based manufacturing system,” International
paradigms,” International Journal of Flexible Manufacturing Systems, Journal on Advances in Software, VOl: 8, no. 1 & 2, pp. 27-37, 2015.
vol. 17, no. 4, pp. 261-276, 2005. [38] L. v. Moe{gestgl, J.-J. Meyejr, E. Pulk, and.D. Telgen, “Agent—l?ased

[13] A. Gunasekaran, “Agile manufacturing: a framework for research and maHUfaCtur{“g in a production grid: Adapting a production grid to
development,” International journal of production economics, vol. 62, the production paths,” Proceedings of the International Conference on
no. 1, pp. 87-105, 1999. Agents and Artificial Intelligence (ICAART 2014), vol. 1, pp. 342-349,

[14] S. L. Koh and L. Wang, “Overview of enterprise networks and logistics 2014. .)
for agile manufacturing,” in Enterprise Networks and Logistics for Agile ~ [391 L. van Moergestel, E. Puik, D. Telgen, and J.-J. Meyer, “Production
Manufacturing, L. Wang and S. L. Koh, Eds. Springer London, 2010, scheduling in an agile agent-based production grid,” in Web Intelligence
pp. 1-10. and Intelligent Agent Technology (WI-IAT), 2012 IEEE/WIC/ACM Inter-

[15] U. Rauschecker, D. Stock, M. Stohr, and A. Verl, “Connecting factories national Conferences on, vol. 2, 2012, pp. 293-298.
and related it environments to manufacturing clouds.” International ~ 1401 D. Telgen, L. van Moergestel, E. Puik, P. Muller, A. Groenewegen,
Journal of Manufacturing Research, vol. 9, no. 4, pp. 389-407, 2014. D. van der Steen, D. Koole, P. de Wit, A. van Zanten, and J.-J.

[16] D. C. Mcfarlane and S. Bussmann, “Developments in holonic production Mey.er, “Comblmng performance a.nd‘ ﬂex1b111t.y for rms with a hybrid
planning and control,” Production Planning & Control, vol. 11, no. 6, architecture,” in Ad-vances in Artificial Intelligence, 16th Portuguese
pp. 522-536, 2000. Conference on Artificial Intelligence, local proceedings. 1EEE, 2013,

[17] A. Giret and V. Botti, “Engineering holonic manufacturing systems,” pp- 388-399.

Computers in Industry, vol. 60, no. 6, pp. 428 — 440, 2009, collaborative
Engineering: from Concurrent Engineering to Enterprise Collaboration.
[18] N. P. Suh, Axiomatic Design: Advances and Applications (The Oxford

(19]

Series on Advanced Manufacturing).
2001.

M. Wooldridge and N. Jennings, “Intelligent agents: Theory and prac-
tice,” The Knowledge Engineering Review, vol. 10, pp. 115-152, 1995.

Oxford University Press, USA,

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

