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SUMMARY

Architecture compliance checking (ACC) is an approach to verify conformance of implemented program
code to high-level models of architectural design. Static ACC focuses on the modular software architecture
and on the existence of rule violating dependencies between modules. Accurate tool support is essential for
effective and efficient ACC. This paper presents a study on the accuracy of ACC tools regarding depen-
dency analysis and violation reporting. Ten tools were tested and compared by means of a custom-made
benchmark. The Java code of the benchmark testware contains 34 different types of dependencies, which
are based on an inventory of dependency types in object oriented program code. In a second test, the code
of open source system FreeMind was used to compare the 10 tools on the number of reported rule violating
dependencies and the exactness of the dependency and violation messages. On the average, 77% of the
dependencies in our custom-made test software were reported, while 72% of the dependencies within a module
of FreeMind were reported. The results show that all tools in the test could improve the accuracy of the reported
dependencies and violations, though large differences between the 10 tools were observed. We have identified
10 hard-to-detect types of dependencies and four challenges in dependency detection. The relevance of our find-
ings is substantiated by means of a frequency analysis of the hard-to-detect types of dependencies in five open
source systems. © 2016 TheAuthors. Software: Practice and Experience Published by JohnWiley & Sons, Ltd.
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1. INTRODUCTION

Software architecture is of major importance to achieve the business goals, functional requirements, and
quality requirements of a system. In practice, a variety of architectural models is used to describe how
systems are structured and how the components interact. However, the models tend to be of a high-level
of abstraction, and deviations of the software architecture arise easily during the development and evo-
lution of a system [1]. Architecture Compliance Checking (ACC) is an approach to bridge the gap be-
tween the high-level models of architectural design and the implemented program code, and to
prevent architectural erosion [2]. Knodel and Popescu defined architecture compliance as ‘a measure
to which degree the implemented architecture in the source code conforms to the planned software archi-
tecture’ [3]. The terms architecture compliance and architecture conformance are both used in literature.
Many tools and techniques are available to analyze a software system and to reconstruct,

visualize, check, or restructure its architecture [4]. In our study, we focus on tools supporting static
ACC, which analyze software without executing the code. These tools, which we label as static
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ACC-tools, focus on the modular structure in the source code. The tools identify structural
elements, such as packages and classes, and use-relations between these elements, such as an invo-
cation of a method or access of an attribute. To support ACC, the tools provide facilities to: (i)
define modular elements and rules restricting these elements and their relationships; (ii) check the
compliance to these rules; and (iii) report violations to these rules. For example, a tool should report
a violation if a method-call in the code from class A to B corresponds with a dependency from mod-
ule X to module Y in the planned architecture, while a rule exists that forbids such a dependency.
Although static ACC-tools predominantly check for the same kind of inconsistencies between the

implemented and intended modular architecture, only a few studies have compared these tools.
Previous studies have identified large differences in terminology and approach [3, 5, 6]. For instance,
the study of Passos et al. 5 identified and evaluated three techniques of static architecture checking. Fur-
thermore, they explored the effectiveness and usability of three supporting tools by executing tests,
based on a simple systemwith a basic architecture. Our research follows Passos et al. We aspire to con-
tribute to the evolution of ACC, motivated by the notion that the adoption of ACC-tools is still limited
[2, 7]. Further research is necessary to advance and improve current methods and tools 8. We focus on
the effectiveness of ACC, because it is of primary interest to practitioners and researchers. The ‘Quality
in use model’ of ISO 25010 9 defines effectiveness as ‘accuracy and completeness with which users
achieve specified goals’. In another study, we investigated the functional completeness of ACC sup-
port; more specifically, the support of semantically rich modular architectures in the context of ACC 10.
In this study, we focus on the accuracy of ACC support, which we scoped to the main question:

How accurate do ACC-tools report dependencies and violations against dependency rules?
Accuracy is relevant, because emerging trends are to use code analysis throughout the coding pro-
cess [11], and to extract and update architectural views continuously [8]. Although static analysis is
theoretically not difficult, the complexities of modern programming languages significantly impede
source code analysis [11]. Nevertheless, unlike performance, accuracy of ACC does not receive much
attention. The accuracy of dependency and violation reporting is omitted in many papers on ACC
approaches, e.g. [1, 12–18], and when discussed, it is restricted to false positives only (the definitions
of the terms false positive and false negative in this context is provided in section 4.1). To
operationalize our main question, we decomposed it into the following research questions:

RQ1 Do ACC tools find all the dependencies between modules in the software (no false negatives)?
RQ2 Do ACC tools report all the violating dependencies in the software (no false negatives)?
RQ3 Do ACC tools report non-violating dependencies as violations (false positives)?
RQ4 Do ACC tools report the exact type and location of violations and dependencies?
RQ5 Are there types of dependencies, which proved hard-to-detect by several tools?

To answer these questions, we inventoried commonly used types of dependencies that can be
established in object oriented program code. Next, we developed a custom-made test application in Java
that included these types of dependencies and an accompanying test script (wewill use the working title
‘Benchmark test’ to refer to this test software and test script). After completion, we used the Benchmark
test to assess 10ACC-tools. In addition, we selected the open source system FreeMind and used its code
to examine the same tools on their ability to report dependencies and violations accurately.

The contribution of this study is threefold.

• We present two Java-based tests, the Benchmark test and the FreeMind test, to assess the abil-
ity of a tool to detect dependencies of 34 different types. The testware of these tests is freely
available. Instructions on how to perform the tests are published as a technical report [19].
The required documents and code files are available at the following address: https://github.
com/SaccToolTests/SacctAccuracyTest.

• We present the results of the tests on 10 commercial and non-commercial ACC-tools with respect to
the accuracy of dependency detection and the exactness of the dependency and violation messages.

• We identify 10 types of dependencies that proved hard-to-detect by several tools in the tests.
Furthermore, we identify challenges in dependency detection, and we substantiate the
relevance of these challenges by means of analysis data of five open source systems.
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This paper extends earlier work [20] in which we have reported on the accuracy of dependency
analysis and violation reporting of seven ACC-tools. First, we have improved the testware of the
Benchmark test and FreeMind test, and made both sets of testware utilizable for other researchers.
Second, we extended the Benchmark test at the point of the detection of local variables, and we
retested all tools at this point. Third, we describe and illustrate the dependency types in the tests
in more detail and provide an improved definition of indirect dependencies in the context of
ACC. Fourth, we add the test results of three ACC-tools, of which two were presented at ICSE
in recent years [16, 21]. Fifth, we present more test results and explain these results more exten-
sively. Fourth, we identify 10 hard-to-detect types of dependency and four challenges in depen-
dency detection. Sixth, we present the frequencies of the hard-to-detect dependency types in five
open source systems. Seventh, we have improved the testware of the Benchmark test and FreeMind
test, and made both sets of testware utilizable for other researchers. Seventh, we extended the
Benchmark test at the point of the detection of local variables, and we retested all tools at this point.
In the remainder of this paper, the next section provides an introduction to dependency analy-

sis. Section 3 introduces the tested tools, Section 4 describes the method and results of the Bench-
mark test, and Section 5 does the same for the FreeMind test. Section 6 describes method and
results of a frequency analysis of hard-to-detect dependency types. Section 7 discusses the key
findings and discusses the identified challenges in dependency detection. Section 8 discusses
the threats to validity, and Section 9 relates our findings to other work. Section 10 concludes this
paper; it answers the research questions, summarizes the results of this study, and casts a glance at
future work.

2. DEPENDENCY ANALYSIS

Software architecture (SA) compliance checking covers a broad field, because software architecture
‘provides the framework within which to satisfy the system requirements and provides both the
technical and managerial basis for the design and implementation of the system’ [22]. Static ACC
does not cover the full width of SA, but covers the modular architecture. According to Perry and
Wolf [22], this architecture should describe the modular elements, their form (properties and relation-
ships) and rationale. In this study, we focus on the relationships between modules. Relationships are
used to constrain how the different elements may interact or otherwise may be related. In static
ACC’s center of attention are uses relations: ‘Module A uses module B if A depends on the pres-
ence of a correctly functioning B to satisfy its own requirements’ [23].
Dependency analysis is ‘the process of determining a program’s dependences’ [24]. Various types

of dependencies are distinguished in literature. Callo Arias et al. [25] consider that all types fit into
three main categories: structural dependencies, behavioral dependencies, and traceability dependen-
cies. The category of structural dependencies, dependencies among parts of a system, is of interest to
our study, because static analysis tools focus on dependencies that can be found by inspecting the
source code. For instance, Lattix’s LDM tool ‘uses a standard notion of dependency, in which a
module A depends on a module B if there are explicit references in A to syntactic elements of B’ [12].

2.1. Example of a modular architecture

A small modular architecture in UML notation, which will be used to illustrate the different types of
dependency included in our test, is shown in Figure 1. In this diagram, two modules, ModuleA and
ModuleB, are shown, each with two submodules. The classes in the submodules are related via as-
sociations, showing for instance that an instance of Class1 may know upmost one instance of
Class2. The dependency arrows (the dashed arrows) show that ModuleA1 is allowed to use
ModuleB1 and that ModuleA2 is allowed to use ModuleB. However, not all rules are visible.
The following list shows the full set of relationship rules, of which the first three rules are explicitly
visible in the diagram, while the last two are implicit:

• ModuleA1 is allowed to use ModuleB1;
• ModuleA2 is allowed to use ModuleB, so also both sub modules, ModuleB1 and ModuleB2;
• ModuleA1 is not allowed to use ModuleB2;

THE ACCURACY OF DEPENDENCY ANALYSIS IN STATIC ACC

© 2016 The Authors. Software: Practice and Experience
Published by John Wiley & Sons, Ltd.

Softw. Pract. Exper. (2016)
DOI: 10.1002/spe



• The submodules of ModuleA are allowed to use each other.
• The submodules of ModuleB are allowed to use each other.

2.2. Structural dependency types in object oriented code

Many references of different types can be established in object oriented code. Because not all
dependency types in all their variations could be included in our test, we have limited ourselves
to quite common types, as described in more detail in the method subsection of the Benchmark test.
We identified six main types of dependency: Import, Declaration, Call, Access, Inheritance, and
Annotation. For each main type, sub types may be defined. For instance, declarations of instance
variables may be distinguished from declarations of class variables.
An example of code per main dependency type is provided below. Each example contains a code

construct that causes a rule violating dependency from Class2 to Class3 or to SuperClass, all in
Figure 1.

• Import: import ModuleB.ModuleB2.Class3;
• Declaration: variable = class3.method();
• Call: variable = class3.method();
• Access: variable = class3.variable;
• Inheritance: public class Class2 extends SuperClass;
• Annotation: @Class3

2.3. Direct and indirect dependencies

In our study we have included another distinction, namely between direct and indirect dependency. In
general, a dependency between two modules is direct, if the dependency relation does not involve an
intermediate module. However, we use the term direct dependencymore specifically, namely for a de-
pendency of which the to-class (the depended-upon class) can be determined, completely based on the
knowledge of the from-class (the class that contains the dependency). All six code examples above
cause direct dependencies. For example, the dependency caused by the call statement in Class 2,
may be traced to Class3, because variable class3 in Class 2 is declared to be of type Class3.

Figure 1. Explanatory model of a modular architecture in UML notation.
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In general, a dependency relation is indirect, when the dependency exists transitively through
an intermediate module. According to this definition, many indirect dependencies are present in
program code. For example, if Class1 in Figure 1 contains a method that calls Class2.method(),
that somewhere in a scenario calls Class3.method(), then ModuleA1 depends indirectly on
ModuleB2 via ModuleB1. In static ACC, this example of an indirect dependency will not be
reported as a dependency or violation, because it should result in an overload of dependencies
and violations. To prevent an excess of dependencies and violations, we narrow the definition
of an indirect dependency in case of static ACC as follows. An indirect dependency is a depen-
dency in the from-class of which the to-class cannot be determined without the analysis of the
code of another class. Such a dependency should be reported, if a code construct in the from-
class has as immediate consequence that the to-class is used; for example in case of access of
an inherited attribute, or in case of a call of a method that causes a dependency on the return type
of the method.
In these cases, another class needs to be analyzed, or even several other classes, including super

classes. The following code examples from Class1 in Figure 1 include a rule violating indirect de-
pendency to Class3 or to SuperClass.

• Call: variable = class2.class3.method();
• Access: variable = class2.variableSuper;
• Inheritance: public class Class1 extends Class2;

3. ACC-TOOLS INCLUDED IN THE TEST

Many tools are available with some of the facilities necessary to support ACC. However, our re-
search focused on tools with explicit support of ACC. We selected publicly available tools,
which were mentioned in academic work (e.g., [4, 5, 17, 21]), were able to analyze Java, and
provided evaluation or research licenses (two vendors rejected and one did not respond). We ex-
cluded tools that focus mainly on architecture visualization, metrics, and/or architecture
refactoring.
The 10 tools included in our study are shown in Table I, which also provides an overview of

functionalities, code variants, and licensing per tool. The versions of the tools used in our tests to-
gether with an URL per tool, are described below Table I, in the footnotes.

The tools provide their support of ACC in various ways:

• Dependometer, Macker, and Sonar Architecture Rule Engine (Sonar ARE) are text-based
tools, which support relation conformance rules. These tools provide HTML-based reports
as output.

• dTangler and Lattix are based on the Dependency Structure Matrix (DSM) technique,
complemented with text-based editors to define rules. The DSM is used to sort and select mod-
ules, to define rules, and to show dependencies and violations. Lattix is also able to visualize
architectures graphically, and it provides extensive reporting facilities.

• ConQAT Architecture Analysis, JITTAC, and SAVE are strictly based on the Reflexion
Model technique [1]. These tools provide a graphical editor to define the intended archi-
tecture and to show violations (in terms of divergence and absence) after the evaluation.
In addition, ConQAT and SAVE generate textual reports at request, supportive to consis-
tency checks subsequent to software development activities. JITTAC aims at real-time
feedback during software development, and for that reason it is tightly integrated in the
Eclipse IDE. JITTAC indicates divergences to the architectural model in a diagram and
in the source code editor; not only afterwards, but also the moment an inconsistency is
programmed.

• Sonargraph Architect and Structure101 are diagram-based too, but these tools are not strictly
based on the RM-technique. To define modules and rules, these tools provide diagrams in
which the horizontal and vertical position of a module implies rules. Violations are shown in
these diagrams, but textual reports are provided in addition.
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4. BENCHMARK TEST

Two separate tests were performed with the 10 tools: the Benchmark test, and the FreeMind test.
This section describes the Benchmark test and the next section the FreeMind test. Both tests were
developed and improved iteratively. The first iteration of preparing, testing, and reporting was con-
ducted with 25 students Computer Science in the course of a specialization semester ‘Advanced
Software Engineering’. Afterwards, the authors have improved the tests and tested the tools
completely again in several iterations. The final test results are presented in this paper.

4.1. Method

To prepare our test, we inventoried references in Java code and classified common structural depen-
dencies. We use the term common in this context to indicate pretty basic code constructs supported
by Java 1.5; no specialties or constructs only recently supported by Java. The inventory was partly
based on research papers that distinguish different architectural dependency types, like [26–30] and
partly based on professional literature on Java such as 31 and the official Java Documentation
[32]. Furthermore, it was based on the knowledge of 25 students and two Java lecturers. We started
with a literature study, which resulted in an initial set of dependency types. Next, six teams of stu-
dents were tasked with the design of the test, and with the specification of variations of code con-
structs per dependency type. The results were compared and a best design was selected. The
winning team improved its design and worked out the initial version of the test. Thereafter, each
team used this initial version to test a tool. The results were interesting, but not reliable enough
for publication. Therefore, the test was enhanced and executed iteratively by the authors in two it-
erations: one for the study published as a conference paper [20] and one for this extended study. Im-
provements were made in the inventory of dependency types, the test code, the score forms, and the
instruction manual. We finished these studies with six main types of structural dependencies: Im-
port, Declaration, Call, Access, Inheritance, and Annotation. In addition, sub types were defined
for the main types Declaration, Call, Access, and Inheritance. For instance, we defined seven sub-
types of type Call. In combination with the distinction between direct and indirect dependencies,
we have distinguished 25 direct dependency types and 9 indirect dependency types. For each depen-
dency type, at least one test case was created. In total, 64 test cases were implemented in Java with
Eclipse Indigo SR2.
To measure the sensitivity (also called the true positive rate, or the recall) of the ACC tools, 64 test

cases in the test set were aimed at the detection of true positives and false negatives regarding depen-
dency detection and violation reporting. With respect to dependency detection, a true positive indi-
cates that a tool reported a dependency existing in the code, while a false negative indicates that a
tool failed to report a dependency existing in the code. With respect to violation reporting, a true pos-
itive indicates that a tool reports a violation of a defined rule, while a dependency in the code exists
that justifies the violation message. A false negative indicates that a tool failed to report a dependency
existing in the code that violates a defined rule. In this paper, we compute sensitivity in percent, as:
(number-of-true-positives / (number-of-true-positives + number-of-false-negatives)) × 100.
To measure the false positive rate of the ACC tools, 64 cases were aimed at the detection of false

positives. The test code of these test cases was identical to the first 64 test cases, so dependencies to
the same to-classes were contained. However, the from-classes, containing the code, were located in
another package; as sibling at the same hierarchical level. This way, violations of classes in the sec-
ond package, based on architectural constraints defined at the first package, should be qualified as
false positives. With respect to dependency detection, a false positive indicates that a dependency is
reported that is non-existing in the code, while a true negative indicates that a tool correctly did not
report a dependency, because it is non-existing in the code. With respect to violation reporting, a
false positive indicates that a tool reports a violation of a defined rule, while no dependency in
the code exists that justifies the violation message. A true negative indicates that correctly no vio-
lation message was reported, because no dependency in the code exists that justifies the violation
message. In this paper, we compute the false positive rate in percent, as: (number-of-false-posi-
tives / (number-of-false-positives + number-of-true-negatives)) × 100.
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Several tools report violations and dependencies only at the level of from-class, to-class, without
further detail. To be able to obtain reliable test results, but also to facilitate and simplify the test pro-
cess, we implemented a separate from-class per test case. Furthermore, we limited the number of the
dependencies to the minimum and where possible to only one dependency on the target class.
After the test preparation, the 10 ACC-tools were tested. All the tools were subjected to the same

test, described in the test script. During the first step of the test, the planned modular architecture
was entered into the tool, including the mapping of modules to source code units, and the tool’s
output of the dependency analysis (if provided) was assessed. During the second step, the rules
restricting the dependencies between modules were defined, and the output of the tool’s
conformance check was studied and compared with the expected result and with the output of
the tool’s dependency analysis. During the third step, the test results of the tools were aggregated
and compared.

4.2. Included dependency types

Twenty-five direct dependency types were included in the test and nine indirect dependency types.
For each direct and each indirect dependency type at least one separate test case was incorporated.
For a part of the dependency types, additional test cases were created with variations of the type.
This approach resulted in 34 direct and 30 indirect test cases.

4.2.1. Direct dependency types in the test. The 25 direct structural dependency types in the test are
shown in Table II, together with a code example. Each code example shows a code construct that, if

Table II. Direct dependency types in the Benchmark test.

Dependency type Example code

Import
Class import import ModuleB.ModuleB2.Class3;
Declaration
Instance variable private Class3 class3;
Class variable private static Class3 class3;
Local variable public void method() {Class3 class3; }
Parameter public void method(Class3 class3) {}
Return type public Class3 method() {}
Exception public void method() throws Class4{throw new Class4 (“…”); }
Type cast Object o = (Class3) new Object();
Call
Instance method variable = class3.method();
Instance method-inherited variable = class3.methodSuper();
Class method variable = class3.classMethod();
Constructor new Class3();
Inner class method variable = class3.InnerClass.method();
Interface method interface1.interfaceMethod();
Library class method libraryClass1.libraryMethod();
Access
Instance variable variable = class3.variable;
Instance variable-inherited variable = class3.variableSuper;
Class variable variable = Class3.classVariable;
Constant variable variable = class3.constantVariable;
Enumeration System.out.println(Enumeration.VAL1);
Object reference method(class3);
Inheritance
Extends class public class Class1 extends Class3 { }
Extends abstract class Idem, but in this case Class3 should be abstract.
Implements interface public class Class1 implements Interface1 { }
Annotation
Class annotation @Class3
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programmed within Class1 in Figure 1, would violate the intended architecture in Figure 1. This is
because the code construct includes a dependency to an element of ModuleB2, while the intended
architecture does not allow ModuleA1to use ModuleB2. In these cases, we expect ACC-tools to re-
port a violation with at least a specification of the from-class and the to-class. Most of the examples
refer to elements in Figure 1, but to keep the figure clear, some specific elements are not included,
like an enumeration, exception, and interface.

4.2.2. Indirect dependency types in the test. We included nine indirect structural dependency types
in our test, which are shown in Table III, together with a code example per type. Each code example
shows a code construct that, if programmed within Class1 in Figure 1, would violate the intended ar-
chitecture in Figure 1. Because the code construct includes a dependency to an element of ModuleB2,
while the intended architecture does not allow ModuleA1 to use ModuleB2. In these cases, we expect
ACC-tools to report a violation with a specification of the from-class and the final to-class.

4.3. Findings: accuracy of dependency detection

The test results of our Benchmark tests are shown in detail in Tables IV and V, while the most in-
teresting findings are described below. Table IV shows the results with regard to direct dependen-
cies, and Table V shows the results with regard to indirect dependencies.
As a first observation, we noted that the false positive rate is null for all 10 tested tools; thus, no

false positive dependencies were reported. For the observations regarding the sensitivity of the
tools, more text is needed. These results are described in detail in the following sub sections.

4.3.1. Direct dependencies. Direct dependencies, caused by type declaration (except local vari-
ables), method call, variable access (except constants and object references), and inheritance, were de-
tected by all tested tools, except ConQAT (which missed five type declaration dependency types) and
SAVE (which missed two type declaration, one method call, and all six variable access dependency
types). The following direct dependency types were often missing or were not reported accurately:

• Import dependencies were detected only by two tools: JITTAC and SAVE; the two tools that
analyze source files only. Import statements are not included in compiled files.

• A type declaration of an initialized local variable was detected only by the following six tools:
Dependometer, JITTAC, Lattix, SAVE, Sonargraph, and Structure101. However, a type decla-
ration of a not-initialized local variable was detected only by JITTAC and SAVE; the two tools
that analyze the source files only. Not-initialized local variables are removed in compiled files.
This is interesting, because the tools that analyze compiled files were able to detect other dec-
laration cases without initialization.

• A call of an instance method of an inner class was reported by all tools, except SAVE. However,
the tools differ considerably in the accuracy of the reported to-class. JITTAC,Macker, Sonargraph,

Table III. Indirect dependency types in the Benchmark test.

Dependency type Example code

Call
Instance method variable = class2.class3.method();
Instance method-inherited variable = class2.methodSuper();
Class method variable = class2.class3.classMethod();
Access
Instance variable variable = class2.class3.variable;
Instance variable-inherited variable = class2.variableSuper();
Class variable variable = class2.class3.classVariable;
Object reference-Reference var. variable = class2.method(class2.class3.class4);
Object reference-Return value Object o = (Object) class2.getClass4();
Inheritance
Extends-implements variations public class Class1 extends Class2 { }

public class Class2 extends SuperClass { }
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and Sonar ARE were specific and reported the outer and inner class. ConQAT, Dependometer,
dTangler, Lattix, and Structure101 were less accurate and reported only the outer class.

• Access of a constant variable was detected only by three tools: Dependometer, JITTAC, and
Sonargraph Architect. We included three test cases: one with a constant instance variable,
one with a constant class variable, and one with an interface class variable. However, the re-
sults per tool were the same over these three test cases. Tools that analyze compiled code only,
have problems with the recognition of constants, because their values are in-lined by the Java
compiler. Dependometer and Sonargraph were detecting an access of a constant variable only
with the option marked to include the source code in the analysis. Although SAVE analyzes
source code, it did not report a dependency in one of the three test cases.

• Access of an object reference in the form of a parameter value (or argument), was detected only
by three tools: Dependometer, Sonargraph, and Structure101. Another test case of this depen-
dency type, with an object reference included in an if-clause, was detected by two tools only:
Dependometer and Sonargraph.

• Dependencies of type annotation were detected only by five tools: Dependometer, JITTAC,
Lattix, Sonargraph, and Structure101.

4.3.2. Indirect dependencies. Indirect dependencies caused by method call and variable access
(except an object reference as return value), were detected by all tested tools, except SAVE, which
did not report access dependencies. Even double indirect dependencies were detected (for instance,
from Class 1 in Figure 1, via Class 2 and Class 3 to Class 4). However, the following indirect de-
pendency types were often missing or were not reported accurately:

• A call of an inherited instance method was reported accurately only by three tools: JITTAC, SAVE,
and Structure101. These tools reported an indirect dependency to the super class where the method
was actually implemented, although this method was called via a subclass. The other tools reported
a dependency to the intermediate subclass, but not to the super class where the method was imple-
mented. Consequently, these tools did not report a violation in the test cases where the subclass is
part of an allowed-to-use module, while its super class is part of a not-allowed-to-use module.

• Access of an inherited instance variable was reported accurately only by two tools: JITTAC,
and Structure101. These tools reported an indirect dependency to the super class where the var-
iable was actually implemented, although this variable was accessed via a subclass. The other
tools reported a dependency to the subclass, but not to the super class where the variable was
implemented (except SAVE, which did report no dependency at all). Consequently, these tools
did not report a violation in the test cases where the subclass was part of an allowed-to-use
module, while its super class was part of a not-allowed-to-use module.

• Access of an object reference, received as return value of a method call, was reported by only
two tools: Dependometer and Structure101.

• An inherited dependency on a super-super class or interface of the from-class, solely based on
extends/implements constructs, was not reported by any tool. We included three variations in
our test (extends-extends, extends-implements, implements-extends), but none was reported.

5. FREEMIND TEST

In addition to the Benchmark test we have conducted tests with an open source system. Two different
test were conducted, one aimed at the accuracy of dependency detection, and the other on the accu-
racy of violation and dependency reporting. The rules in these tests are defined by ourselves, in line
with the objectives of the tests, and do not represent rules defined by the developers of Freemind.

5.1. Method

5.1.1. FreeMind. We used the mind-mapping tool FreeMind. Three main packages in FreeMind, as
shown in Figure 2, were included in our tests: accessories, plugins, and freemind. The following pack-
ages were excluded from the test, because these packages were available in the source code, but not in
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the compiled code: plugins.latex.*, plugins.collaboration.*, and tests.*. We used version 0.9.0 for our
tests; retrieved on 23-08-2012 from http://freemind.sourceforge.net/wiki/index.php/Download.
We selected FreeMind, because it suited to the following criteria. First, the system needed to be writ-

ten in Java, just as the Benchmark test. Furthermore, source code files and compiled code files needed
to be present, because some tools use source code, others compiled code, while some use both. Second,
the system needed to have an uncomplicated implemented architecture, to enable a straightforward
registration in the tested tools of the modules, their assigned code files, and the rules. Because the tools
vary considerably in how modules and rules are defined, a simple one-to-one mapping between
modules and code units is needed to prevent mapping errors and subsequent bias in the test. Third,
the system needed to contain a lot of dependencies between its modules, and these dependencies
should cover a wide range of possible dependency types. Fourth, the number of classes had to be lower
than 1000, because of size constraints of some ACC-tool licenses.

5.1.2. Method: accuracy of dependency detection test. The objective of this test was to determine
how well the ACC tools were able to report dependencies of different types, just as in the Bench-
mark test, but now in a real system. For this purpose, we selected the large class ScriptingEngine
within sub package plugins.script, because it contained a considerable number of dependencies of

Figure 2. The package structure of Freemind, with dependency relations, as depicted by SAVE. Thick lines
represent more dependency relations than thin lines.
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different types. Furthermore, the class touched a diversity of object oriented specialties, including
super class, inner class, and anonymous class.

5.1.2.1. Identification of dependency causing constructs. We identified all code constructs within
class ScriptingEngine, which caused dependencies to package ‘freemind’, by manual inspection
of the code, aided by the supporting facilities of the Java editor in the Eclipse IDE. To ensure the
accuracy of our work during this step, one author made an inventory of the dependency-causing
constructs, the depended-upon classes, and the related dependency types, while another author
checked the inventory afterwards. Based on the inventory, 109 dependency-causing code constructs
were included in a score form.

5.1.2.2. Tool selection and testing. We tested all 10 tools to determine which depended-upon classes
were reported for class ScriptingEngine, by following the steps below.

1. Registration of rule: plugins.script.ScriptingEngine is not allowed to use package freemind.
2. Activation of the conformance check.
3. Study of the reported violations and dependencies.

Next, we selected the tools that were providing sufficient information to be able to trace
reported dependencies to code constructs. The tools differ considerably in the exactness of
dependency messages, as will be discussed in the result sub section. Only the following five tools
provided detailed enough information to be included in this test: JITTAC, Lattix, SAVE,
Sonargraph Architect, and Structure101. With these five tools we also went through the following
steps:

4. Tracing of the reported dependencies to the manually identified dependency constructs.
5. Scoring of the detected dependency constructs in a scoring form per tool.

5.1.2.3. Scoring. We scored mildly, meaning that we marked a dependency as detected, if one
of the reported dependency messages could be related to the dependency-causing code construct.
With a strict accuracy level in mind, the number of missed dependencies would have been much
higher.

• In case of inner class related dependencies, we scored a dependency as detected if it was re-
ported as a dependency to the outer class instead of to the inner class.

• In case of inheritance related dependencies, we scored a dependency as detected if it was re-
ported as a dependency to a sub class instead of the super class that actually implemented a
depended-upon variable or method.

• In case of dependency messages with a non-optimal accuracy, we scored all dependencies as
detected that could be related to the dependency message. For instance, if a tool reported
one dependency to class X of type declaration or access at line Y, while in the source code a
declaration construct and a type cast construct were present, both were scored to be detected.
Similarly, if a tool reported one dependency to class X of type access in method Z, while in
the source code of the method five of these access constructs were present, all five were scored
as detected.

5.1.3. Method: accuracy of reported violation and dependency messages test. The objective of this
test was to identify differences in quantity and exactness of the reported violation and dependency
messages. This test encompassed all dependencies between the three packages at top-level in the
code: freemind, plugins, and accessories. Per tool, the test was executed as follows:

1. Registration of two rules: (i) package accessories is not allowed to use package freemind; and
(ii) package plugins is not allowed to use package freemind.

2. Activation of the conformance check.
3. Study of the reported violation and dependency messages.
4. Scoring of the number and exactness of the messages.
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5.2. Findings: accuracy of dependency detection test

The first test with FreeMind concerns the accuracy of dependency detection. The test results are pre-
sented below. All 10 tools provided at least information in their violation messages on the
depended-upon to-classes per from class. Therefore, the results of the reported depended-upon
classes per tool are presented at first. Next, the results of the test at the level of the 109 identified
dependency constructs are presented. Five tools are included in these results, because only these
tools provided detailed enough information in their violation messages or dependency messages.
Finally, examples are provided of code constructs that caused hard to detect dependencies.

5.2.1. Detected depended-upon classes. Class ScriptingEngine depends-upon 17 classes, of which
most are shown in the freemind package in Figure 3. Two of these classes contain inner classes, which
are also used by ScriptingEngine, namely OptionalDontShowMeAgainDialogue and Tools. In our test,
we expected that usage of the seventeen depended-upon classes would be reported as violations. Please
note that Figure 3 provides a simplified view. There are manymore classes in package freemind, and the
shown classes are in reality included in different subpackages of freemind. Furthermore, for reasons of
readability, we have drawn no dependency arrows in the diagram, only UML inheritance relations.
Several inheritance structures are shown in the figure. For example, ScriptingEngine inherits

from three superclasses in package freemind. In our test, we expected that usage of these classes
would be reported as violations; especially in case of a call of method or in case of access of an at-
tribute inherited from one of these classes. In these cases, actual usage takes place of the super class
that implements the method or variable.
Table VI shows for each of the tested tool, which depended-upon classes in package freemind

were reported in violation reports or other views. Furthermore, it shows per class the number of
related dependency-causing constructs. The bottom row in the table shows that JITTAC was the
only tool that reported usage of all seventeen classes. Dependometer, SAVE, and Sonargraph re-
ported usage of fifteen classes, a sensitivity of 88%. Macker, Sonar ARE, and Structure101 reported
usage of fourteen classes, a sensitivity of 82%. Finally, Conquat, dTangler, and Lattix reported
usage of twelve classes, a sensitivity of 71%. On average, 82% of the classes was detected.

Figure 3. Class ScriptingEngine and its depended-upon classes in package freemind.
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All not reported classes (by all tools) were of one of the following types:

• Super class (ControllerAdapter, Hookadapter), of which methods are used via inheritance;
• Inner class (OptionalDontShowMeAgainDialogue.StandardPropertyHandler, Tools.Boolean-
Holder), which may be used in various ways: Import, Declaration, Access, Call;

• Normal class (FreeMind), of which only static constant variables are accessed.

5.2.2. Detected dependencies. Table VII shows for each of the five tools included in the de-
tailed test, how many dependencies per dependency type were reported to classes in package
freemind. All five tools detected all the dependencies of the following dependency types: (i)
method call, class method; (ii) method call, interface method; and (iii) inheritance, extends
class.

Dependencies of the other dependency types, which were not reported by one or more tools, are
per type discussed below.

• Import, class import: Lattix, Structure101, and Sonargraph missed all 10 dependencies. SAVE
missed one, because of a not-recognized inner class.

• Declaration, local variable: SAVE missed all six dependencies (in contrast to the Benchmark
test), probably because off complex initialization statements at the same line.

• Declaration, parameter: SAVE missed three out of seven dependencies (because of a not de-
tected inner class), while Sonargraph missed one.

• Declaration, type cast: SAVE missed all two dependencies (as in the Benchmark test).
• Call, instance method: JITTAC missed two dependencies, probably because these were located
within an anonymous class.

• Call, instance, inherited: Lattix missed eight out of fourteen dependencies, Sonargraph also
missed eight, and Structure101 missed all fourteen (in contrast to the Benchmark test), all in
inheritance trees up to four levels.

• Call, constructor: SAVE missed two dependencies out of three: two constructor invocations of in-
ner classes. It detected an invocation of the constructor of a normal class (as in the Benchmark test).

Table VII. Freemind test—reported dependencies per dependency type.

Dependency type
(number of constructs)

JITTAC Lattix SAVE Sonargraph Structure 101

Import
Class import (10) 10 0 9 0 0
Declaration
Local variable (6) 6 6 0 6 6
Parameter (7) 7 7 4 6 7
Type cast (2) 2 2 0 2 2
Call
Instance method (11) 9 11 11 11 11
Instance method-

inherited (14)
14 6 14 6 0

Class method (6) 6 6 6 6 6
Constructor (3) 3 3 1 3 3
Inner class method

(instance) (2)
2 2 0 2 2

Interface method (19) 19 19 19 19 19
Access
Constant variable (12) 12 0 0 12 0
Object reference (16) 0 0 10 16 16
Inheritance
Extends class (1) 1 1 1 1 1
Detected (109) 91 63 75 90 73
Sensitivity (in %) (average = 72) 83 58 69 83 67
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• Call, inner class method: SAVE missed all two instance method invocations (as in the Bench-
mark test).

• Access, constant: Lattix, Structure101 and SAVE missed all twelve dependencies (as in the
Benchmark test).

• Access, object reference: JITTAC and Lattix missed all sixteen dependencies (as in the Bench-
mark test); 15 caused by variables passed as parameter value (or argument) and one caused by
a variable used within an if statement. SAVE missed six, because of not detected inner classes.

Remind, we scored mildly, as explained in the method sub section of this test.

5.2.3. Examples of code constructs. Several examples of code constructs that caused dependencies
that were hard-to-detect in the FreeMind test, are provided in Table VIII. The first column shows
the type of the dependency with, if needed, some added details. The second column shows the ex-
ample code. The text that causes a dependency is shown in italic.

5.3. Results: accuracy of reported violation and dependency messages

The second test with FreeMind concerns the accuracy of Accuracy of reported violation and depen-
dency messages. This test encompassed all dependencies between the three packages at top-level in
the code: freemind, plugins, and accessories.
The test focuses on two functional types of messages: violation messages and dependency mes-

sages. Violation messages report on inconsistencies between the implemented architecture and the
defined architecture, with a class at the lowest level of granularity. The second type, dependency
messages provide information about the dependencies, like the dependency type and the location
of the dependency-causing code constructs in the program code. Findings regarding these two types
are presented in the following subsections.
To illustrate the difference between the two types of messages, we have included practical exam-

ples from the FreeMind test with Structure101. Three examples show messages at three different
levels of abstraction. Figure 4a shows a graphic with a violation message: a violating relation

Table VIII. Examples of code constructs within ScriptingEngine.
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(dotted) from class ScriptingEngine to package freemind. After selection of the relation, the tool
shows the message ‘ScriptingEngine uses freemind [55]’. Figure 4b shows violation messages
within the view that specifies the violating relation; it lists fourteen depended-upon classes and in-
terfaces within package freemind. Figure 4c shows examples of dependency messages. Struc-
ture101 reported 55 instances of dependencies from ScriptingEngine to freemind. These
dependencies were specified in a separate view, which listed for each dependency: the from-class

Figure 4. a) The package structure of Freemind plugins.script, as depicted by Structure101, with one vio-
lating dependency relation (red, bolt) from class ScriptingEngine to package freemind. b) Specification of
the violating relation; 14 classes and interfaces are used. c) Detailed specification of dependencies from

ScriptingEngine to freemind.
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(ScriptingEngine), from-method (e.g., evaluate), dependency type (e.g., extends), to-class (e.g.,
freemind.main.FreeMindSecurityManager), and to-method (e.g., setFinalSecurityManager).

5.3.1. Violation messages. Violation messages indicate where the implemented architecture devi-
ates from the intended architecture. The tested tools differ considerably in the way violations are
reported, for instance by means of colors in a Dependency Structure Matrix (DSM), additional sym-
bols or line styles in diagrams, textual reports, or indicated code lines in a code viewer. Most tools
offer more than one way to report violations, especially the commercial tools.

Observations regarding the accuracy of violation messages are described below.

• Reported violations versus reported dependencies

No cases were noticed, in which a tool reported a dependency to a class, but failed to report a
violation for this dependency. Because this is also true for the Benchmark test, Table IV and V
do not only show the true positive violations, but also the false negative violations per tool and
per dependency type. However, one exception applies: SAVE reported correct violations for
classes containing violating direct dependencies, even when the specific dependency of the test
case was not detected. The tool was able to do this, based on detected import statements. SAVE
did not have this advantage in case of indirect dependencies, because no import statement was
included in these cases, and in case of an inner class.

• Exactness of the violation messages

To show where a violation is present in the modular architecture, seven of the ten tools (see
Table IX) include violation messages in graphical overviews. Table IX shows also that all tools
were able to report the from-class and to-class, generally in text-based violation messages.
However, management information to indicate the severity of the violation of a rule, like the
actual number and/or strength of the underlying dependencies, is less frequently included in vi-
olation reports, while this is meaningful information. As a positive example, Structure101
shows, in Figure 4a, the number of corresponding dependency messages when a relation is se-
lected. Furthermore, it is available in JITTAC diagrams, where the number of dependencies is
shown per dependency arrow, and in SAVE diagrams, though less accurate, where the thick-
ness of a line indicates the number of dependencies.

• Number of reported messages

Because of different capabilities of the tools and different choices made by the developers, the
tools report varying numbers of violation messages at the level of from-class, to-class. This is
illustrated in Table X, which holds the numbers of violation messages per tool during the
FreeMind test (except for JITTAC and SAVE; see table footnote). The reported violations
against the rule that the freemind package should not be used, are shown for package accesso-
ries, for package plugins, and for class plugins.script.ScriptingEngine. Several tools report
more violations than depended-upon classes in their violation report. In these cases, a separate
message is created for each combination of from-class, to-class, and dependency type.

5.3.2. Dependency messages. A dependency message enables developers to resolve a violation ef-
ficiently. To do so, detailed information is needed to trace the dependencies in the code. Six tools
provide this information in separate reports or views: JITTAC, Lattix, SAVE, Sonar ARE,
Sonargraph Architect, and Structure101. Our observations regarding the exactness of the depen-
dency messages are described below.

5.3.3. Exactness of the reported location of a dependency. The tools differ in exactness of the re-
ported location of a dependency, as shown in Table IX. At the highest level of accuracy, a tool
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indicates a dependency-causing construct within a line of code, even when several dependency-
causing constructs are included in the same line. Only two tools were able to do this: JITTAC,
and Lattix. Both tools highlight the violating code constructs in the source code within an IDE’s
code editor. Table IX shows that these two tools provide the following information in dependency
messages: class-from, line, and position within line. However, Lattix did not always appoint the line
and code construct correctly.
Two other tools with code viewers, Sonar ARE and Sonargraph Architect, indicated the line cor-

rectly, but not the position within the line. Sonar ARE’s usability was restricted by the fact that per
from-class, it indicated only the first instance of a violating usage of a depended-upon class. Follow-
ing usages of the to-class were not indicated.
Several tools provided reports as well. Sonargraph Architect provided the most detailed report

with from-class, to-class, dependency type, and a correct line number. Lattix provided an informa-
tion view with dependency types and line numbers of the dependencies in the code, but here also, it
did not always specify the correct line number in the source code. SAVE and Structure101 provided
reports, which indicated the method including the violating dependency in the from-class and, in
case of method calls, also the method of the to-class.
The practical implications of the different approaches became clear during the FreeMind test, in

which reported violations needed to be traced to 109 constructs in the program code. At first, we
tried to do this based on the dependency messages in the reports or in the dependency browsers
of the tools. Sonargraph Architect provided a very useful report, which made it easy to trace the de-
pendencies in the code. It contained all the detected dependencies with type and line number. The
reports of SAVE and Structure101 required much more analysis and interpretation, with risk of mis-
interpretation in complex situations. In part, because one dependency message may abstract several
dependency-causing code constructs. In concrete terms: SAVE and Structure101 reported respec-
tively 54 and 55 messages, but these covered respectively 75 and 73 dependencies in the code. Be-
cause Lattix’s reports proved to be too inaccurate for our use, and because JITTAC did not provide
a report or dependency browser, we used the messages provided in code viewers of these tools. In
the case of Lattix, we combined different reports with the code viewer to circumvent incorrect line
numbers and positions. Finally, because Sonar ARE’s support for this test was too restrictive, we
did not include the tool in this part of the FreeMind test.

5.3.4. Exactness of the reported dependency type. Only four tools provide a dependency type (as
shown in Table IX), which differentiates between different types of usage, like declare, access, or
call. The tools differ in the exactness of the reported dependency type: the numbers of dependency
types vary per tool, and the names of these types vary as well. Consequently, different tools label a
dependency type in our classification in several ways. For example, a dependency of type ‘Call con-
structor’ in our classification was reported by Lattix as ‘Construct with Arguments’, by SAVE as
‘ACCESS’, by Sonargraph as ‘Uses new’, and by Structure101 as ‘calls’. Some types used by the
tools are very specific, while others cover many forms of code constructs. Even if two tools use the
same type-name, like access, they may cover different dependency types within our classification.

6. FREQUENCY OF HARD-TO-DETECT DEPENDENCY TYPES

The results of the Benchmark test and FreeMind test have shown that certain types of depended-
upon classes and 10 types of dependencies are not reported at all by some tools, or are reported in-
accurately. To address the relevance of these findings, we have measured the number of dependen-
cies per dependency type in five open source systems. The method and the results of this experiment
are described below.

6.1. Method

To measure the numbers of dependencies per dependency type distinguished in the Benchmark test,
we needed a tool that was able to detect and report all the types of dependencies in these tests. Be-
cause no tested tool was able to detect dependencies of all these types, we improved and extended a
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tool, HUSACCT, which we had developed in a line of research that focused on ACC support for
rich sets of module and rule types [33]. We improved the dependency analysis process in
HUSACCT version 4.0 to the level that all dependencies in the Benchmark test and FreeMind test
were detected and reported, without false positives. Because a considerable part of the not-reported
dependencies in the Benchmark test and FreeMind test were related to inheritance and inner class
constructs, we extended the analysis process and data model to detect and store these characteristics
per dependency. Furthermore, we extended the dependency report with a statistics sheet, which pre-
sents the numbers of dependencies in different ways: total, direct, indirect, total per type, total of
inheritance related dependencies, total of inner class related dependencies, et cetera. To enable
the reproduction of the experiment by other researchers, the improvements and extensions were in-
cluded in version 4.1, which is downloadable via http://husacct.github.io/HUSACCT/.
Next, we selected five open source subject systems and downloaded their source code. We used

the following selection guidelines. First, the systems had to be written in Java, because our Bench-
mark test and FreeMind test were also Java-based. Second, FreeMind was included, because it is
interesting to compare its analysis results in the FreeMind test with those of other subject systems.
Third, four other systems were selected, because they were used in published scientific experiments
of other authors, but also because of their notoriety.
The five systems, their version, download address and size are shown in Table XI, sorted on size.

The source of all the systems was downloaded on February 10, 2015 (except FreeMind, which was
downloaded already in 2012; the current location of the source is included in the table). An impres-
sion of the size per system is provided in kilo lines of code (KLOC). The given numbers show the
lines of code (including comments and blank lines) in all the files with extension ‘.java’, as mea-
sured by HUSACCT.
Finally, for each system the source code was analyzed with HUSACCT and a dependency report

was generated. The numbers of dependencies per dependency type per system were included in a
spreadsheet and averages were calculated, per system, and over the systems. These final results
are presented in the next sub section. The reported numbers of dependencies: (i) include internal
dependencies and dependencies on external systems (library objects); (ii) exclude dependencies
from a class to itself; and (iii) exclude dependencies on primitive types in case of declarations.

6.2. Results

Table XII shows the numbers of dependencies per dependency type and per system. The 10 depen-
dency types that proved hard-to-detect in our tests are included in the table; they are shown in italics.
The results are presented in three groups, visible in the first column, namely: (i) all dependencies; (ii)
inheritance related dependencies; and (iii) INNER class related dependencies. Per group and per de-
pendency type, the numbers of reported dependencies are shown per subject system, which are
sorted on size, while the last column shows the average percentage of the dependency type over
the four subject systems. The average percentage of a dependency type is calculated as the average
for this type of the four subject system specific percentages (not shown in the table).
The first group shows the numbers of all reported dependencies. The first row within this group

shows that the total number of dependencies increases with the size of the subject system, as can be
expected. Thereafter, two subdivisions are shown; one for direct versus indirect dependencies, and an-
other for the six main types (Import, Declaration, Call, Access, Inheritance, Annotation). The numbers
show that on average 84% of the dependencies are direct, while 16% are indirect in these subject

Table XI. Subject systems used in the experiment.

System Download address Size (KLOC)

Hibernate 4.2.4 https://github.com/hibernate/hibernate-orm/releases/tag/4.2.4.Final 713
Findbugs 3.0.0 https://code.google.com/p/findbugs/source/browse/?name=3.0.0 327
Struts 2.3.20 http://struts.apache.org/download.cgi#struts2320 277
Ant 1.9.4 http://archive.apache.org/dist/ant/source/ 267
Freemind 0.9.0 http://sourceforge.net/projects/freemind/files/freemind/0.9.0/ 87
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systems. Furthermore, that Import statements cause 10% of the dependencies, while Declaration, Call,
Access, Inheritance, and Annotation statements caused respectively 20, 39, 26, 3, and 2%.
The second group shows the numbers of inheritance related dependencies, which are caused by:

(i) access of an inherited variable; (ii) call of an inherited method; and (iii) inheritance by means of
an extends or implements statement. The numbers show that on average 12% of the dependencies is
inheritance related, of which 3% of type access, 6% of type call, and 3% of type inheritance.
The third group shows the numbers of inner class related dependencies. A dependency was

marked as such, if the from-class or to-class is an inner class (or if both classes are). The numbers
show that on average 9% of the dependencies is inner class related.

6.2.1. Frequency of hard-to-detect types of dependency. Ten dependency types, shown in italics in
Table XII, were hard-to-detect by several tools in our tests. The hard-to-detect types in the first
group of Table XII represent 39% of all dependencies in the four systems: Import (10%), Declara-
tion, local variable (7%), Access, constant variable (1%), Access, object reference, direct (14%),
Access, object reference, indirect (5%), and Annotation (2%).
The hard-to-detect types in the second group, inheritance related dependencies, total to 8% on average of

the dependencies in the four systems: Access of an inherited variable, indirect, (2%), Call of an inherited
method, indirect (4%), and Inheritance, indirect (2%). The total of 8% may be added to the total of hard-
to-detect dependencies in the first group, which makes 47% of potentially hard-to-detect dependencies,
because there is no overlap between the types of hard-to-detect dependencies in the first and second group.
The third group concerns inner class related dependencies, of which all instances in our test were

hard to detect by several tools. Nine percent of all dependencies fall within this group. However,
this number may not be added to the sum of the hard-to-detect dependencies of the other groups,
because there may be an overlap.

6.3. Comparison results of FreeMind test

Finally, we compared the average analysis result of the four subject systems in Table XII with the
results of the FreeMind system as a whole, and with the class plugins.script.ScriptingEngine, on
which the FreeMind test focused. Table XIII shows that the distribution of the 44,146 dependencies
in the FreeMind system over the dependency types differs only a little from the average distribution
in the reference systems, the other four subject systems. Main difference is that the FreeMind

Table XII. Number of dependencies per dependency type.

Dependencies Type Hibern. Findbugs Struts Ant %

All All 401,356 128,876 122,877 88,943 100
- Direct 319,530 115,070 102,332 76,350 84
- Indirect 81,826 13,806 20,545 12,593 16
Import 39,670 15,988 12,528 8,422 10
Declaration 69,372 28,621 22,764 18,282 20
- Local var. 22,976 10,167 8,316 5,076 7
Call 155,051 43,271 51,874 37,208 39
Access 115,224 35,276 29,804 20,388 26
- Constant variable 4,589 1,695 920 1,923 1
- Object ref. direct 54,797 21,541 16,223 12,233 14
- Object ref. indirect 28,218 5,675 5,244 3,047 5
Inheritance 8,610 3,066 4,665 2,368 3
Annotation 13,429 2,654 1,242 2,275 2

Inheritance
related

All 47,608 8,731 19,219 10,291 12
Access 19,200 1,956 5,043 1,961 3
- Inh. var. indirect 10,941 1,252 3,294 1,008 2
Call 19,798 3,709 9,511 5,962 6
- Inh. meth. indirect 17,186 2,861 5,431 4,657 4
Inheritance 8,610 3,066 4,665 2,368 3
- Indirect 3,839 1,641 2,779 1,205 2

Inner class rel. All 16,650 14,283 12,343 10,739 9
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system contains 12% inner class related dependencies, while the reference systems on average con-
tain 9% inner class related dependencies.
The dependencies shown for class plugins.script.ScriptingEngine are the dependencies included in

the FreeMind test, so limited to dependencies to classes and interfaces in the package freemind. The
numbers in Table XIII show that ScriptingEngine contains relatively more indirect dependencies to
package freemind, more call dependencies, and more inheritance related dependencies; especially
more calls of inheritedmethods. On the other hand, the class contains relatively less declaration depen-
dencies, and no annotation dependencies nor indirect dependencies of type access of an inherited var-
iable. In total, ScriptingEngine contains relatively more hard-to-detect dependencies: 41% in group
one, 15% in group two, and 11% in group 3, compared to respectively 39, 8, and 9%.
HUSACCT reported dependencies for all 109 dependency-causing constructs in class

ScriptingEngine to package freemind. However, HUSACCT reported 126 dependencies, 17 more,
because one construct may cause more than one dependency. The extra dependencies are of the fol-
lowing types: seven instances of Access, object reference, return value (indirect), six instances of
Call, instance method, inherited (four direct, two indirect), and four instances of Inheritance, indi-
rect. For example, construct ‘extends MindMapHookAdapter’ causes not only a direct inheritance
dependency to class MindMapHookAdapter, but also four extra indirect inheritance dependencies
to classes and interfaces higher up in the inheritance hierarchy.

7. DISCUSSION

In this section, we discuss the key findings, answer the research questions, and discuss identified
challenges and their implications.

7.1. Key findings

In our opinion, all tested tools provide useful functionality to perform an architecture compliance
check. However, our tests show that all 10 tools could improve the accuracy regarding dependency
and violation reporting, though in varying degrees. A summarizing overview of the findings of our
tests is provided in Table XIV, which shows a relative comparison of the tools with respect to the tested
characteristics. The subsections below elaborate on these findings and answers the research questions.

Table XIII. Dependency types of ScriptingEngine compared to freemind and other systems.

Dependencies Type
Scripting
engine

Scripting
engine %

Freemind
%

Reference
systems %

All All 126 100 100 100
- Direct 92 73 86 84
- Indirect 34 27 15 16
Import 10 8 11 10
Declaration 15 12 21 20
- Local var. 6 5 7 7
Call 61 48 40 39
Access 35 28 25 26
- Constant v. 12 9 1 1
- Object ref. direct 16 13 15 14
- Object ref. indirect 7 6 4 5
Inheritance 5 4 3 3
Annotation 0 0 0 2

Inheritance
related

All 27 21 10 12
Access 2 2 2 3
- Inh. var. indirect 0 0 1 2
Call 20 16 5 6
- Inh. meth. indirect 15 12 4 4
Inheritance 5 4 3 3
- Indirect 4 3 1 2

Inner class rel. All 14 11 12 9
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Although this study includes a tool test regarding ACC support, we do not advise on a ‘best’ tool.
To remain objective, we refrained from this. Accuracy is only one of several qualities that should be
considered in the course of a selection process of an ACC-tool. For instance, some tools offer only a
limited set of functionality, while others provide a rich set as shown in Table I, especially the com-
mercial tools.

7.1.1. Accuracy of dependency detection and violation reporting. Our study shows that all 10 tools
were able to detect dependencies established by basic constructs, like method calls and type decla-
ration. However, the test results show also that significant numbers of dependencies were not re-
ported, even by the best scoring tool. Consequently, the answer to research question RQ1 (Do
ACC tools find all the dependencies between modules in the software?) is negative. Numerous false
negatives were identified, so all tools may improve on the sensitivity regarding dependency detec-
tion. The answer to RQ2 is also negative, because we found no differences in the sets of reported
dependencies and reported violations. If a tool was able to detect a dependency, then it was also
able to report the dependency if it violated an architectural rule. With regard to false positives,
the tested tools performed well; no tool reported false positives. Consequently, the answer to re-
search question RQ3 is negative.
The Benchmark test showed that no tool in the test was able to detect all included dependency

types, although several tools performed well. On the average, the 10 tools detected 77% of the de-
pendency types in the test-software: 83% of the 25 direct types and 60% of the 9 indirect types. The
10 tools differ considerably in their ability to detect all types of dependencies included in our test.
JITTAC and Structure101 detected the most direct and indirect dependency types; both 31 out of 34
types (91%). On the other side, ConQAT and SAVE detected a total of respectively 21 and 18 de-
pendency types (62 and 53%). Table XIV summarizes the results, based on the following scales:
Direct dependencies * = 0–79%, ** = 80–89%, *** = 90–100%; Indirect dependencies: * = 0–
59%, ** = 60–79%, *** = 80–100%.
The FreeMind test delivered results regarding the accuracy of dependency detection at the level

of depended-upon classes and at the more detailed level of dependency constructs within the code.
First, all tools were able to report violations at the level of ‘from-class makes use of to-class’. How-
ever, only one of the 10 tools (JITTAC) reported usage of all seventeen classes used by class
ScriptingEngine, while the least well-performing tools reported 12 classes only. On average, the
10 tools were able to report 82% of the 17 depended-upon classes. Table XIV summarizes the re-
sults, based on the following scales: Detected classes * = 0–79%, ** = 80–89%, *** = 90–100%.
Second, none of the tools was able to detect dependencies for all 109 constructs within class

ScriptingEngine to package ‘freemind’. On the average, 78 of 109 dependencies (72%) were
reported. However, the five tools within this test (the other five tools did not report detailed
enough information at the level of dependencies) differed considerably in their performance.
JITTAC and Sonargraph performed relatively well and reported respectively 91 dependencies
(83.4%) and 90 dependencies (82.6%), while SAVE reported 75 dependencies (69%), Struc-
ture101 73 (67%), and Lattix 63 (58%). These numbers will not be higher for the other tools,
as far as we were able to ascertain, based on the reported depended-upon classes in the viola-
tion reports of these tools. Table XIV summarizes the results, based on the following scales:
Detected dependencies: * = 0–59%, ** = 60–79%, *** = 80–100%.

7.1.2. Exactness of violation and dependency messages. The FreeMind test revealed that the 10
tools differ considerably in the way violations and dependencies are reported, how many messages
are reported, and how much information is reported in the messages. Consequently, the answer to
research question RQ4 is diverse, a few ACC tools report the type and location of violations and
dependencies quite exactly, but most tools not. The relevance of facilities to relate dependencies
and violations to code is observed in a study [34] where professional architects of five systems have
been using an ACC-tool.
All tools, except Dependometer, Macker, and Sonar ARE, provide diagrams in which violations

are shown at the level of packages and classes. Some of these tools even provide an indication of the
quantity of underlying dependencies, by means of a number or by the thickness of a line. In our
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opinion, such an indication of the severity of a violation is relevant information for architects and
management; information that also should be included in violation reports. Table XIV summarizes
the results. In case graphical support is provided, two asterisks are shown.
We regard the exactness of a dependency message to be high, if the message helps to locate the

dependency causing code construct accurately in the source code. Four tools (ConQAT,
Dependometer, dTangler and Macker) only provide information on the from-class and the used
to-class. The other tools provide more information: SAVE and Structure101 provide also the names
of the invoking method at the from-side and the invoked method at the to-side, while JITTAC,
Lattix, Sonar ARE, and Sonargraph Architect indicate the line number. JITTAC and Latix even in-
dicate the position of the dependency-causing construct in the line. Table XIV summarizes the re-
sults. One asterisk is shown, in cases where only from-class, to-class information is provided. Two
asterisks are shown, in cases where also method from, method to information is provided. Three as-
terisks are shown, in cases where the line number is provided, and/or the position of the dependency
causing construct in a line. For reason of usability issues, described in Section 5, we have valued
Lattix and Sonar ARE with two instead of three asterisks.

7.1.3. Hard-to-detect dependency types and their frequency in open source systems. The answer to
research question RQ5 is positive: yes, there are hard-to-detect types of dependencies. We identified
10 dependency types of which several tools failed to report instances of dependencies. Analysis of
the number of dependencies per type in open source systems has yielded interesting data. The av-
erage distribution of dependencies in four reference systems over the six main types (import, dec-
laration, call, access, inheritance, annotation) is respectively 10, 20, 39, 26, 3, and 2%. Below is
a summary of the findings related to hard-to-detect types of dependencies.

• The 10 hard-to-detect types of dependencies in our test account for at least 47% of the depen-
dencies in the reference systems. Inner class related dependencies, also hard-to-detect, are not
included in this percentage, because there may be an overlap with the already included
dependencies.

• A considerable fraction of the dependencies within the reference systems is inheritance related,
namely 12% on average, while 3% of the dependencies is inheritance related and indirect.

• A considerable fraction of the dependencies within the reference systems is inner class related,
namely 9% on average.

• A considerable fraction of the dependencies within the reference systems is indirect, namely
16% on average. In the Benchmark test, only 60% of the indirect dependencies were detected,
on average.

7.2. Challenges in dependency detection

Based on the results of the Benchmark test and FreeMind test, we have identified challenges in de-
pendency detection. Analysis of the most common shortcomings in dependency detection revealed
the challenges, which are discussed below.

C1: Report dependencies accurately in case of inheritance structures
The test results show that inheritance structures frequently hamper the accuracy of depen-
dency detection. This finding is relevant, because our analysis of four reference systems
showed that 12% of all reported dependencies were inheritance related. Furthermore, three
hard-to-detect types of dependency are inheritance related. Together, these three types ac-
count for 8% of all the reported dependencies.
The results of the Benchmark test show that only three of the 10 tools were reporting a de-
pendency on the super class in case of a call of an inherited method, or in case of access of
an inherited variable. These three tools reported a dependency of these types as a depen-
dency to the super class where the method is actually implemented, while the other seven
tools reported a dependency to the addressed subclass, but not to the super class where
the method was implemented. Moreover, the results of the FreeMind test show that many
method calls of inherited instance methods were not detected at all (43%, on average);
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neither as dependency on the addressed subclass, nor as dependency on the super class
where the method is actually implemented.
The relevance for ACC is considerable. In case of a compliance check, the seven tools will
fail to report a violation if the used subclass is part of an allowed-to-use module, while the
super class that has implemented the called method or accessed variable, is part of a not-
allowed-to-use module. In such cases, a strong dependency stays unnoticed.
Finally, no tool reported indirect inheritance dependencies. Again, the relevance for ACC is
considerable, because no tool reported a violation in case the super class of the from-class
was part of an allowed-to-use module, while the super class of this parent super class in
the inheritance hierarchy was part of a not-allowed-to-use module. This appears as inconsis-
tent behavior of the tools, because all tools reported a violation in case the first super class of
the from-class was part of a not-allowed-to-use module. In our opinion, a violating indirect
inheritance relation should be reported, because it marks a strong dependency, and changes
may have substantial consequences.

C2: Report dependencies accurately in case of inner classes
The test results show that inner classes also may hamper the accuracy of dependency detec-
tion. This finding is relevant, because our analysis of four reference systems showed that 9%
of all reported dependencies were inner class related.
The results of the FreeMind test show that four tools reported no dependency at all on inner
classes, while fourteen violating dependencies on inner classes were present in the code of
class ScriptingEngine. In the majority of these cases, a dependency to the outer class instead
of the inner class is reported, with as consequence a diminished traceability to the related
code constructs in the source code. Furthermore, dependencies between inner classes of
the same outer class will not be reported.

C3: Report relevant object references
The results of the Benchmark test show that seven tools had problems with the detection of
dependencies of type ‘Variable access, object reference’. Dependencies of this type are fre-
quently included in the code as parameter values (arguments), or reference variables within
if clauses.
Our analysis of four reference systems showed that 14% of all reported dependencies were
of this type.
The results of the FreeMind test show the practical implications: two of the five tools in this
test missed all sixteen dependencies of this type. These sixteen missed object references rep-
resented 15% of the 109 dependency causing constructs in class ScriptingEngine.
In our opinion, it is a good practice to filter out object and type references, which precede
method calls and variable access. Most tools (including HUSACCT) do, because a depen-
dency message for such a reference doubles with the dependency on the same type for the
call or access. However, a reference needs to be reported in case of standalone references,
e.g. when an object is passed as a parameter value.

C4: Report information that is missing in compiled files
We encountered several situations where tools failed to report dependencies accurately, just
because information in source files is removed from the compiled files. Tools that analyze
compiled files only, were not able to report dependencies of three dependency types: (i) de-
pendencies caused by import statements; (ii) dependencies caused by declaration statements
of not initialized local variables; and (iii) dependencies caused by access of constant vari-
ables (instance and class).
Import dependencies were reported by only two tools in the Benchmark test. In our opinion,
import statements should be reported, because they cause coupling, although weak.
Reporting import dependencies enhances the accuracy of violation reporting in these cases
where a tool fails to report dependencies of specific types. In a number of situations in the
Benchmark test, SAVE missed a dependency of a specific type, but reported a correct vio-
lation message at class level, merely based on the import statement.
Finally, the exactness of the messages with respect to the line number is diminished if a tool
does not make use of source code. For example, in the FreeMind test, the line numbers of
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dependencies reported by Lattix (which makes use of compiled files only) were by far not as
accurate as the line numbers reported by Sonargraph (which makes use of source files, in
addition to compiled files).

8. THREATS TO VALIDITY

To discuss the validity of the results of our laboratory experiments, we make use of the four validity
threats, as described and defined by Wohlin et al. [35].

8.1. Construct validity

Construct validity is concerned with the relation between theory and observation. The experiment
should be suitable to answer the research question, which in our case means that the experiments
should be suitable to answer the main question ‘How accurate do ACC-tools report dependencies
and violations against dependency rules?’ We have ensured the construct validity in several ways.
First, by starting with an inventory of common dependency types in object oriented code, on which
we have based the test cases of the Benchmark test. The set of dependency types included in our
Benchmark test is no random set, but a carefully chosen set of 34 types. It is large enough to assess
the sensitivity of the tools, but we do not claim that our classification of dependency types is com-
plete, or that our test cases cover all types of dependency causing code constructs. We have covered
a wide range of common code constructs, but dependencies may be established in other ways. For
instance, we have no variables with generic types in our test cases, and we have included only one
type of annotation.
Second, we have taken care that the code constructs in each test case of the Benchmark test are

specific for the related dependency type. Furthermore, we have taken care that false negatives could
not be caused by code constructs that were not specific to the related dependency type.
Third, to answer research questions RQ1 – RQ3, we have scored for each test case not only the

ability of a tool to report a dependency, but also the ability to report a violation.
Fourth, we have complemented the Benchmark test with the FreeMind test, and we have cross-

checked the results of both tests, as described under the results of the FreeMind test.

8.2. Internal validity

Internal validity is threatened, if certain influences have affected the results, without the researcher’s
knowledge. In the context of our experiments, the internal validity may be threatened by inclusion
of problematic or very uncommon code constructs in the Benchmark test or FreeMind test.
In our opinion, the strict design of our custom-made Benchmark test strengthens the internal va-

lidity. In this test, each test case is specific for one dependency type, and each test case has one sep-
arate from-class in the test code. This approach proved to be valuable, especially to test tools that
provide only messages with a low level of exactness: with no more information than the from-class
and to-class. Another aspect in favour of the internal validity of the Benchmark test is that all test
cases were detected by at least one tool, except in case of indirect ‘Inheritance, extends-implements
variations’ (although two of the three cases represented quite common situations).
The FreeMind test adds to the internal validity, because it contains several code variations not

included in the Benchmark test. We used it to validate and extend the Benchmark test. The
FreeMind test showed in several cases that a tool might fail to detect a dependency in a complex
real life application, while it is able to detect a dependency of the same type in a simpler situation
within the same application, or in the relatively simple code of the Benchmark test application.

8.3. Conclusion validity

Conclusion validity reflects on the relationship between the treatment and the outcome of the exper-
iment. In favour of conclusion validity, no statistical operations were needed to interpret the results
of our experiments. The research questions could be answered straightforwardly, based on the re-
sults of the Benchmark test and FreeMind test. Please, remind that we scored mildly, as described
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before, with as consequence that the presented numbers of detected dependencies could be too high
in case of tools that report message with a non-optimal accuracy.
To secure the validity of the identified challenges in dependency detection, we have substantiated

each challenge by means of data and arguments.

8.4. External validity

External validity reflects the extent to which the experiment results may be generalized. Because we
did not work with a randomized selection of tools, our study can be characterized as a quasi-
experiment, according to Wohlin et al. [35]. Consequently, our findings may not be generalized to
other tools, even though we tested 10 tools in a small market. Also, be aware that our findings
may not be generalized to newer versions of the tested tools; the performance of the tools may im-
prove. Furthermore, our findings are limited to Java code analysis and should not be generalized to
tools that analyze code of other programming languages.

8.5. Comparison of the frequency of dependencies per type

In favor of the internal, external and conclusion validity, we have compared the frequency of depen-
dencies per type in the FreeMind system and its class ScriptingEngine to the average of four refer-
ence systems. In our opinion, this comparison confirms that the FreeMind system and its class
ScriptingEngine are suitable for research on the accuracy of dependency detection. The system as
a whole contains dependencies of many different types and in proportion to the average percentages
of the reference systems. The same applies for class ScriptingEngine, although one should keep in
mind that this class contains 10% more hard-to-detect dependencies than the reference systems on
average. Even so, the wide variety of dependency-causing constructs, including a set of complex
constructs, makes it an appropriate subject class for the test.
However, limitations apply to the validity of the analysis results of the four reference systems and

FreeMind. First, the external validity is limited, because the reference systems are all open source,
and the sample size is small. Second, with respect to conclusion validity, we cannot guarantee that
all dependencies in the reference systems are reported and that all dependencies of a type are re-
ported. We have ensured the validity of the analysis results by upgrading HUSACCT to the level
(and beyond) that all test cases in the Benchmark test and all dependencies in ScriptingEngine were
reported. However, because many code variations are possible, some variations may not be re-
ported. Furthermore, deficiencies may be present in HUSACCT itself or in the included open source
(ANTLR based) lexer and parser functionality. For instance, a small percentage of the classes is
skipped by the parser, because of unexpected (and often erroneous) code in these classes.

9. RELATED WORK

Callo Arias et al. [25] state that dependency analysis approaches that identify structural dependencies
have a high degree of accuracy. Our research outcome shows that it is appropriate to be aware of the
limitations of the tools used. Practitioners and academics rely on tools for their work. It is not hard
to get impressed by the output of these tools, but it is hard to get an impression of what is missing in
the output of a tool. Our study demonstrates that the tested tools will not always provide a 100%
accurate output. Other comparative tool studies also show that static analysis tools and techniques
are not always accurate. For instance, Sutton and Maletic compared four tools that reverse engineer
C++ source code into UML models [36]. The numbers of recovered classes and relationships dif-
fered by about 20% and much more for attributes, operations, and generalizations.
Rutar et al. [37] compared five bug finding tools for Java, and they reported false positives, false

negatives, redundant warnings and only 15–33% overlap between the tools. Compared to the set of
bug finding tools, the ACC-tools in our test perform better, with no false positives and no redun-
dancy, but with differences in output and quite a number of false negatives.
According to Binkley [11], source code analysis is impeded by the complexities of modern program-

ming languages. Barowski and Cross [38] pay special attention to dependencies on virtual members and
on synthetic methods in their paper on the extraction and use of class dependency information for Java.
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Our study confirms that their special attention is justified, because these types of dependencies (on super
classes and inner classes) are involved in many unreported dependencies and violations.
Another topic in their paper is source file versus class file based dependency extraction, and they

describe some differences between both forms. For their own tool, they choose for class file based
extraction. We do not object to this choice, but we advise, based on our study, to include source
code too in the analysis of ACC-tools. In order to optimize the accuracy of the tool with respect
to import statements, constant variables, local variables, and the exact position of a dependency-
causing construct in the source code.
The FreeMind system has been used in several other scientific studies. We compared our analysis

results with these studies, but we did not find overlap, except for comparison on the number of pack-
ages and classes of FreeMind version 0.9.0. Emanuel and Surjawan analyzed all versions of
FreeMind to illustrate the use of their revised Modularity Index [39]. Their counts of version 0.9.0
match our counts quite closely. We counted 58 packages and 853 classes (including inner classes,
but excluding anonymous classes), which is around 10% more than their counts. The difference
may be explained by the fact that Emanuel and Surjawan analyzed compiled code, while we analyzed
source code with inclusion of test files. Zoller and Schmolitzky used Freemind 0.9.0 also in a study
[40], however they counted only 445 classes. On the other side, Arlt et al. counted 1,362 classes
41, much more than reported in the other studies. Summarizing, we noted large difference in class
counts, while the counted numbers of NCLOC differed not more than 25% between the three studies.
With respect to our analysis data of the four reference systems, we found some interesting stud-

ies. Tempero et al. focused on the use of inheritance in Java systems in two empirical studies [42,
43] of more than 90 open-source systems. They found high levels of use of inheritance, with about
three out of four types being defined using inheritance. Furthermore, they found that the inheritance
structures are used actively, also for what we typified as access of an inherited variable or call of an
inherited method. In line with their research, our study has revealed a high percentage of inheritance
related dependencies in the four reference systems. On average, 9% of the dependencies are caused
by access of inherited variables and calls of inherited methods.
Tempero conducted another large study [44] to investigate whether the advice is followed to avoid

non-private fields. It is good practice to prevent usage of attributes of other classes, because it compro-
mises encapsulation [45]. The results of his study indicate that it is not uncommon (albeit not that terribly
common) to declare non-private fields. In line with his findings, our study shows that access of an attri-
bute of another class accounts for about 5% of the dependencies in the four reference systems.
Dyer et al. conducted a large-scale empirical study on the adoption of Java language features [46].

With respect to annotations, these results showed that annotations were among the most used new
features of the last three Java versions. However, they noted a relative lack of custom annotations.
In line with their work, our study showed that annotations with a reference to another type (internal
or external) accounted for 2% of the dependencies in the four reference systems.

10. CONCLUSION

ACC relies on the support of tools to define modules and rules, analyze the code, check the com-
pliance, and report violations to the rules. In this study, we have investigated to which extent static
ACC-tools report dependencies and violations accurately. We classified 34 common dependency
types, prepared a Benchmark test, and tested 10 tools based on this Benchmark test. In addition,
we have tested these tools based on the program code of open source system FreeMind, which
we used to test the ability of the tools to report all depended-upon classes, all dependency-causing
constructs, and all the information needed by the tool-user to locate dependency-causing constructs
in the source code.

10.1. Answers to the research questions

We started our study with the following question in mind: How accurate do ACC-tools report de-
pendencies and violations against dependency rules? This main question was decomposed into four
research questions, which are answered as follows:
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RQ1: Do ACC tools find all the dependencies between modules in the software (no false negatives)?
No, the 10 tools detected on average 77% of the dependency types in the Benchmark test; 83%
of the 25 direct types, and 60% of the 9 indirect types. Furthermore, the tools detected on av-
erage 72% of the 109 constructs with dependencies in a class of FreeMind. All 10 tools were
able to detect dependencies established by basic constructs, like method calls and type decla-
ration. However, our study showed also that relevant numbers of violating dependency con-
structs were not reported. For example, in the FreeMind test, the tool with the lowest scores
missed 46 out of 109 constructs, while even the best scoring tool missed 18 constructs. Con-
sequently, all tools may improve the accuracy of dependency detection.The tools differ consid-
erably in their ability to detect all types of dependencies. For instance, in the Benchmark test,
JITTAC and Structure101 detected 91% of all dependency types, while ConQAT and SAVE
detected respectively 62 and 53%. In the FreeMind test, JITTAC, and Sonargraph Architect
reported dependency messages for respectively 83% of the 109 violating code constructs,
while Structure101 and Lattix detected 67 and 58% respectively.

RQ2: Do ACC tools report all the violating dependencies in the software (no false negatives)?
No, during the tests no cases were noticed, where a tool detected a dependency, but failed
to report it in case it violated an architectural rule. Consequently, the answer to the previ-
ous research question details the answer to this one too.

RQ3: Do ACC tools report non-violating dependencies as violations (false positives)?
No, during the Benchmark test no false positives were detected. No tool interpreted
allowed dependencies in the program code as violating dependencies. In addition, nearly
no errors in the violation messages were identified during the tests; only a few messages
contained incorrect information.

RQ4: Do ACC tools report the exact type and location of violations and dependencies?
The answer to this research question is diverse. Only four tools provide a dependency type
that differentiates between types of usage, like declare, access, or call. The number and
names of dependency types vary per tool. Furthermore, only a few tools report the location
of dependencies exactly. All tools report violations to dependency rules at the level of
from-class, to-class, but at this level of abstraction, one message may represent several de-
pendencies. Six tools also provide dependency details in reports or IDE plug-ins, but not
always precisely enough to localize dependencies discretely.

RQ5: Are there types of dependencies, which proved hard-to-detect by several tools?
Yes, based on our tests, we identified 10 hard-to-detect types of dependencies, which were
each missed by several tools. To substantiate the relevance of our findings, we performed
an analysis of the number of dependencies per dependency type in five open source sys-
tems. The analysis results revealed that the hard-to-detect types of dependencies account
for at least 47% of the dependencies in the reference systems.

10.2. Challenges

Because significant percentages of false negatives were revealed per tool during the Benchmark test
and FreeMind test, we have analyzed the test results in detail. As an outcome, we have identified
and described four challenges in dependency detection. In summary, the test results revealed that
the most common shortcomings in dependency detection, encountered in our study, have to do
with: (i) inheritance structures; (ii) inner classes; (iii) object references; and (iv) missing information
in compiled files.
Our tests have shown that inheritance structures and inner classes hamper the accuracy of vi-

olation reporting in many cases. A dependency caused by usage of inherited methods or vari-
ables is often not reported, and if reported, than mostly as a dependency on the accessed
subclass only and not on the super class that implements the method or variable. Furthermore,
usage of an inner class is frequently not reported at all, and if reported, it is most often reported
as a dependency on the outer class instead of the inner class, which diminishes the traceability in
the source code.
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10.3. Future work

Benchmark test are relevant to advance the state of the arts of tools. We have developed and applied
initial tests to benchmark tools on the accuracy of dependency detection and reporting. The testware
of our Benchmark test and FreeMind test is available at the following address: https://github.com/
SaccToolTests/SacctAccuracyTest. Future work can be based on these tests and be aimed at the
development and application of more comprehensive benchmark tests for a larger set of dependency
types, a wide variety of tools, or a wide variety of programming languages.
Research on the performance and improvement of dependency analysis is relevant for practi-

tioners and academics, because dependency analysis supplies the data not only for ACC, but also
for architecture reconstruction, metrics, and architecture restructuring advice.
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