### **TRANSPORTATION OF LIVING QUARTERS** BEHALF OF TOMBUA LANDANA PROJECT ANGOLA, WEST AFRICA



By: ANDREW HARYANTO 1525985 FENNY WIYONO 1525983

Accomplished as Final Thesis Report

CIVIL ENGINEERING FACULTY OF NATURE AND SCIENCE HOGESCHOOL UTRECHT THE NETHERLANDS 2007





### Approval

### FINAL THESIS ABOUT TRANSPORTATION OF LIVING QUARTERS BEHALF OF TOMBUA LANDANA PROJECT ANGOLA, WEST AFRICA

| Discipline    | Name                       | Signature | Date |
|---------------|----------------------------|-----------|------|
| Tutor I       | ir. Frans van Heerden      |           |      |
| Tutor II      | ir. Rene Camerik           |           |      |
| Supervisor I  | ing. Pieter van Greuningen |           |      |
| Supervisor II | ing. Hans de Gruyter       |           |      |

i

International Bachelor in Civil Engineering





#### SUMMARY

The oil mining increased along with the higher demand of energy in the world. Fulfilling this requirement, Chevron Corporation and several other companies, intends to explore a new oil field by installing a new offshore oil platform in block 14, Angola, West Africa called as the Tombua Landana project.

The complete platform itself consists of several parts. One of them is the Living Quarters (LQ) which is built in Houston, USA. It is functioned as the accommodation for offshore workers during their working period over there. In this project Heerema Marine Contractors (HMC) as the Transportation and Installation Contractors is responsible to transport the LQ safely and on schedule.

For this project, the internship students were responsible to design the support structures which are called grillages and seafastenings to secure the LQ during the transportation. The students did the internship project as group so that the design can be optimized better than individually. During the internship, the students studied literatures such as the HMC's standard criteria, AISC code (American Institute Steel Construction), offshore manuals, and discussed the design with the internal experts. The students worked four days in the office and one day in the school per week for 5 months.

There are many aspects that must be considered for transporting LQ since the sea parameters influence to the transportation as static and dynamic loads. The main idea of the design is to transfer the loads from LQ through the support structure to the barge's strong points in a proper way. The transferred load must be less than the capacity of the barge otherwise the engineer must redesign the support structures. In the end, the support structure must be friendly fabricated and suitable for load-out phase, transportation phase, and installation phase.

By doing this internship, the students gained a lot of knowledge about offshore engineering, experiences as employees in the Dutch-International company, applied the theoretical lessons from school in a real project, and got familiar with the work atmosphere in the Netherlands where they can free to ask anything.

ii





#### PREFACE

Thanks to Jesus Christ, for his grace and his faithfulness so this final thesis report can be accomplished in time. The report is used as one of the graduation requirements for Double Bachelor's Degree Program in Hogeschool Utrecht both with Gadjah Mada University and Petra Christian University.

Therefore, the author would say thank to:

- ing. Pieter van Greuningen as the supervisor 1 from Heerema Marine Contractors.
- **2.** ing. Hans de Gruyter as the supervisor 2 from Heerema Marine Contractors.
- 3. Ir. Frans van Heerden as the supervisor 1 from the Hogeschool Utrecht.
- 4. Ir. Rene Camerik as the supervisor 2 from the Hogeschool Utrecht.
- 5. All of Tombua Landana project team member.
- 6. Other staff from Heerema Marine Contractors.
- **7.** Prof. Ir. Siti Malkamah, M.Sc., Ph.D., as the teacher from Gadjah Mada University, Yogyakarta, Indonesia.
- **8.** Dra. Lisa Setyawati, M.Ed., as the head of International Affairs and Cooperation Petra Christian University.
- 9. Our family in Indonesia who support us faithfully.
- 10. Our international classmates, Shenny, Maria, Suwanda, Eric and Natie.

Finally, the authors realize that this final thesis is still not perfect yet. Therefore, the authors expect some recommendation from the readers to make it better.

iii

Utrecht-Leiden, 12<sup>th</sup> June 2007

Andrew Haryanto (hi\_i\_m\_andrew@yahoo.com) Fenny Wiyono (sephine\_fenc@yahoo.com)





### LIST OF CONTENTS

| APPROVAL PAGE                                                                                                                                                                                                                         |                                              |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|
| ABSTRACT                                                                                                                                                                                                                              |                                              |  |
| PREFACE                                                                                                                                                                                                                               |                                              |  |
| LIST OF CONTENTS                                                                                                                                                                                                                      | iv                                           |  |
| LIST OF TABLES                                                                                                                                                                                                                        | vi                                           |  |
| LIST OF FIGURES                                                                                                                                                                                                                       | vii                                          |  |
| LIST OF ABBREVIATIONS                                                                                                                                                                                                                 | ix                                           |  |
| LIST OF DEFINITIONS                                                                                                                                                                                                                   | X                                            |  |
| CHAPTER 1 INTRODUCTION1.1. Project Description1.2. Objectives1.3. Boundary Conditions1.4. Benefit of Internship Project                                                                                                               | 1<br>3<br>3<br>5                             |  |
| <ul> <li>CHAPTER 2 LIVING QUARTERS AND BARGE</li> <li>2.1. Living Quarters</li></ul>                                                                                                                                                  | 6<br>8<br>9<br>10<br>12                      |  |
| CHAPTER 3 TRANSPORTATION ASPECTS<br>3.1. Transportation Descriptions<br>3.2. Transportation Forces<br>3.3. Sea Parameters                                                                                                             | 14<br>16<br>17                               |  |
| CHAPTER 4 GRILLAGE AND SEAFASTENINGS DESIGN 4.1. Grillage 4.1.1. Grillage Concept Design 4.1.1.1. Wing Plate 4.1.1.2. End Stiffeners 4.1.1.3. Welds 4.1.2. Grillage Calculations 4.2. Seafastening 4.2.1. Seafastening Concept Design | 19<br>19<br>24<br>26<br>27<br>29<br>29<br>30 |  |

iv





| 4.2.2. Seafastening Calculations                | 32 |
|-------------------------------------------------|----|
| 4.3. Barge Capacity Checks                      | 32 |
| 4.3.1. Local Capacity Check                     | 32 |
| 4.3.2. Web Frame Capacity Check                 | 33 |
| 4.3.3. Rail Girder Capacity Check               | 33 |
|                                                 |    |
| CHAPTER 5 TRANSPORTATION AND INSTALLATION PHASE |    |
| 5.1. Transportation Phase                       | 36 |
| 5.1.1. Load-Out                                 | 36 |
| 5.1.2. Sailing Overseas                         | 40 |
| 5.1.2.1. Ballast Arrangement                    | 41 |
| 5.1.2.2. Bollard Pull                           | 42 |
| 5.1.2.3. Tug Boat                               | 45 |
| 5.1.2.4. Towing Equipments                      | 45 |
| 5.2. Installation Phase                         | 48 |
|                                                 |    |
| CHAPTER 6 CONCLUSION AND SUGGESTIONS            |    |
| 6.1. Conclusions                                | 51 |
| 6.2. Suggestions                                | 52 |
|                                                 |    |
| REFERENCES                                      | 53 |
|                                                 |    |
| LIST OF FORMULAS                                | 54 |
|                                                 |    |
| LIST OF APPENDIXES                              | 72 |





### LIST OF TABLES

| 2.1. | Ballast Tank Capacity          | 11 |
|------|--------------------------------|----|
| 3.1. | Noble Denton Motion Criteria   | 17 |
| 4.1. | Fillet Weld Minimum Size (AWS) | 28 |
| 5.1. | Tug Efficiency                 | 44 |
| 5.2. | Towline Breaking Load (MBL)    | 47 |

vi





### LIST OF FIGURES

| 1.1.  | Offshore Oil Platforms                     | 2  |
|-------|--------------------------------------------|----|
| 1.2.  | Typical Transport Layout                   | 2  |
| 1.3.  | Transportation Routes and Place's Inset    | 4  |
| 2.1.  | Living Quarters                            | 6  |
| 2.2.  | Living Quarters on the Main Platform       | 7  |
| 2.3.  | Thialf                                     | 7  |
| 2.4.  | Living Quarters and Its Dimensions         | 8  |
| 2.5.  | Strong Points of Living Quarters           | 9  |
| 2.6.  | Crowley-411                                | 9  |
| 2.7.  | General Plan of Crowley-411                | 10 |
| 2.8.  | Ballast Tanks Configuration of Crowley-411 | 11 |
| 2.9.  | Living Quarters on the Crowley-411 Layout  | 13 |
| 3.1.  | Transportation Routes                      | 15 |
| 3.2.  | Barge Motion                               | 16 |
| 4.1.  | Grillage Beam                              | 19 |
| 4.2.  | Shim Plate                                 | 20 |
| 4.3   | Load Distribution of Living Quarters       | 21 |
| 4.4.  | Grillage Beam Layout                       | 22 |
| 4.5   | Roll to Starboard Forces                   | 23 |
| 4.6.  | Pitch to Bow Forces                        | 23 |
| 4.7.  | Wing Plate                                 | 25 |
| 4.8.  | End Stiffener                              | 27 |
| 4.9.  | Fillet Weld                                | 28 |
| 4.10. | Seafastening Layout                        | 30 |
| 4.11. | Roll Brace                                 | 31 |
| 4.12. | Pitch Stopper                              | 31 |
| 4.13. | Concept of Load Distribution               | 33 |
| 4.14. | . Typical Rail Girder                      | 34 |
| 4.15. | Rail Girder                                | 34 |

## HOGESCHOOL UTRECHT



| 5.1.  | Skid Beam                                                 | 6 |
|-------|-----------------------------------------------------------|---|
| 5.2.  | Trailers Moving a Module                                  | 7 |
| 5.3.  | Delta Yard 3                                              | 8 |
| 5.4.  | First Phase                                               | 9 |
| 5.5.  | Second Phase                                              | 9 |
| 5.6.  | Cross Section of Grillages and Trailer (HMC's Proposal) 4 | 0 |
| 5.7.  | Trim Condition (Starboard View) 4                         | 1 |
| 5.8   | List Condition (Stern View) 4                             | 2 |
| 5.9.  | Wind Load 4                                               | 3 |
| 5.10. | Wind Direction to the Cargo                               | 3 |
| 5.11. | Main Tow Bridle with Recovery System 4                    | 6 |
| 5.12. | Emergency Towing Gear 4                                   | 6 |
| 5.13. | Barge and Its Tug Boat 4                                  | 7 |
| 5.14. | Living Quarters Installation                              | 0 |





#### LIST OF ABBREVIATIONS

| AISC             | American Institute of Steel Construction                 |
|------------------|----------------------------------------------------------|
| AWS              | American Welding Society                                 |
| BP               | Bollard Pull                                             |
| C.o.G.           | Centre of Gravity                                        |
| DEC              | Delta Engineering Cooperation                            |
| DSME             | Daewoo Shipbuilding and Marine Engineering               |
| EPCI             | Engineering, Procurement, Construction, and Installation |
| ft.              | foot                                                     |
| HMC              | Heerema Marine Contractors                               |
| H <sub>sig</sub> | Significant wave height                                  |
| kN               | Kilonewton                                               |
| LOA              | Length Over All                                          |
| LWL              | Length on water line.                                    |
| m                | meter                                                    |
| mm               | millimeter                                               |
| m/s              | meter per second                                         |
| MBL              | Minimum Breaking Load                                    |
| mT               | metric ton                                               |
| N/A              | Not Applicable                                           |
| PG               | Plate Girder                                             |
| T <sub>e</sub>   | Tug Efficiency                                           |
| TPR              | Towline Pull Required                                    |
| ULC              | Ultimate Load Capacity                                   |
| WF               | Wide Flange                                              |

ix





#### LIST OF DEFINITIONS

| Ballast       | A heavy substance such as water, sand or iron placed in     |  |
|---------------|-------------------------------------------------------------|--|
|               | special compartments of a vessel or structure to influence  |  |
|               | its weight or stability.                                    |  |
| Barge         | A flat-bottomed boat, to serve special purpose such as      |  |
|               | transporting platform modules.                              |  |
| Bollard       | To fix a mooring rope of a vessel                           |  |
| Bollard Pull  | The pulling force of a tug boat                             |  |
| Bow           | The forward part of the hull of a ship or boat, the point   |  |
|               | that is most forward when the vessel is underway            |  |
| Brace         | A diagonal connection (a beam or pipe) to give a            |  |
|               | construction more stability or to restrain a structure from |  |
|               | sideways motion                                             |  |
| Breaking load | Certified minimum breaking load of wire rope, chain or      |  |
|               | shackles.                                                   |  |
| Bridle        | A span of chain, wire, or rope that can be secured at both  |  |
|               | ends to an object and slung from its center point.          |  |
| Bulkhead      | A watertight division-construction to create different      |  |
|               | compartments in a barge or structure so that it will be     |  |
|               | ballasted accurately                                        |  |
| Cargo         | The item to be transported by a barge.                      |  |
| C.o.G.        | (Centre of Gravity) the theoretical point in the cross-     |  |
|               | section of a body in which the resultant of the gravity     |  |
|               | forces is acting                                            |  |
| Deck          | The general term for a working area on an offshore          |  |
|               | platform or of a barge                                      |  |
| Draft         | The vertical distance from the waterline to the bottom of   |  |
|               | the hull.                                                   |  |
| Dry Weight    | The weight of the object without allowances for             |  |
|               | inaccuracies, contingencies, and rigging                    |  |

х

# HOGESCHOOL UTRECHT



| Girder                                              | A large support beam used in construction, normally of       |  |
|-----------------------------------------------------|--------------------------------------------------------------|--|
|                                                     | iron or steel.                                               |  |
| Grillage                                            | Steel construction that is functioned to secure the cargo to |  |
|                                                     | the barge deck, improve the distribution of the weight of    |  |
|                                                     | the cargo into the supporting underground (land or barge)    |  |
| Heave                                               | Linear vertical (up/down) motion                             |  |
| Hull                                                | The body of a ship or boat                                   |  |
| Lift weight                                         | The design weight which is included the allowance for        |  |
|                                                     | dynamic amplification (shock load)                           |  |
| Load-out                                            | To put large cargo from construction-site (quay) onto        |  |
|                                                     | vessels or barges, by use of skid beams or trailers (or      |  |
|                                                     | lifting)                                                     |  |
| Pitch                                               | The rotation of the barge about the transverse (side-to-     |  |
|                                                     | side) axis                                                   |  |
| Portside (PS)                                       | Looking towards the bow end of the ship it is the left site  |  |
| Quay                                                | A solid embankment or structure parallel to a waterway       |  |
|                                                     | used for loading and unloading ships.                        |  |
| Rigging                                             | All lifting equipment which consists of grommets, slings,    |  |
|                                                     | shackles, and spreaderbars.                                  |  |
| Roll                                                | The rotation of the barge about the longitudinal             |  |
|                                                     | (front/back) axis                                            |  |
| Scow                                                | Any of various flat-bottomed boats with sloping ends         |  |
| Seafastening                                        | Steel structures to provide and secure the shipload          |  |
| Shackle                                             | An open or closed link of various shapes with extended       |  |
|                                                     | legs; each leg has a transverse hole to accommodate a pin    |  |
|                                                     | and to fix a sling to a padeye.                              |  |
| Skid                                                | A metal runner for transporting load over the structural     |  |
|                                                     | element below.                                               |  |
| Sling                                               | A length of cable laid steel wire with eyes on both ends     |  |
| used to make the connection between the lift points |                                                              |  |
|                                                     | structure to be lifted and the crane hook                    |  |

xi

# HOGESCHOOL UTRECHT



| Starboard (SB)        | When looking towards the bow end of the ship: the right      |  |
|-----------------------|--------------------------------------------------------------|--|
|                       | side                                                         |  |
| Stern                 | End of the ship in which direction it is usually not sailing |  |
|                       | (normally the propellers are fitted to this end)             |  |
| Surge                 | Linear longitudinal (front/back) motion                      |  |
| Sway                  | Linear lateral (side to side) motion                         |  |
| Towing equipment      | All towing equipment on the towing boat and the towed        |  |
|                       | object used to effect the towage.                            |  |
| Towline pull required | (TPR) The towline pull computed to hold the tow or a         |  |
|                       | cargo by a towage or a voyage.                               |  |
| Trim                  | The longitudinal out-of-level situation of a vessel or barge |  |
| Tugboat (tug)         | A boat used to maneuver, primarily by towing or pushing      |  |
|                       | other vessels in harbors, over the open sea or through       |  |
|                       | rivers and canals.                                           |  |
| Tugger line           | Steering line                                                |  |
| Yaw                   | The rotation of the barge about the vertical (up-down)       |  |
|                       | axis                                                         |  |





### CHAPTER 1 INTRODUCTION

#### **1.1. Project Description**

The development of oil and gas offshore mining has been increased along with the development of industries in the world. One of the countries that had been developed rapidly for its oil and gas mining is Angola, West Africa. Angola is the second of the largest oil producing countries in Africa, after Nigeria. Situated in the lower Congo Basin, offshore Angola, there is block 14 where nine major oil offshore fields were discovered since 1997: Kuito (1997), Benguela (1998), Belize (1998), Landana (1998), Lobito (2000), Tomboco (2000), Tombua (2001), Gabela (2002), Negage (2002).

Those nine major oil offshore fields were discovered by Chevron Texaco which is one of the largest energy companies in the world and its partners (Sonangol P&P, TotalFinaElf, AGIP, and Petrogal). One of those fields which was explored is Tombua and Landana field and the project was named Tombua Landana. This project will be Chevron Texaco's third deepwater offshore project in West Africa. For executing the Tombua Landana project, Chevron Texaco has awarded Daewoo Shipbuilding and Marine Engineering (DSME) an EPCI (Engineering, Procurement, Construction, and Installation) contract for the platform including the pipelines. In this project, DSME has asked Heerema Marine Contractors (HMC) as the subcontractor for the transportation and installation of the platforms while Noble Denton was chosen as a warranty surveyor.

The oil platform is needed for oil and gas mining. It is a large structure which is functioned as the house of workers and machinery to drill and then produce oil and natural gas in the ocean. Different oil platform are illustrated in Figure 1.1. The oil platform for Tombua Landana project is compliant piled tower platform which is built on steel jackets anchored directly onto the seabed. This kind of platforms is economically feasible for installation in water depths up to about 3000 feet (910m).

## **U** HOGESCHOOL UTRECHT





Figure 1.1. Type of Offshore Oil Platforms

In the oil offshore mining platform itself, of course, an accommodation is needed for the workers to live in. Its specific name is Living Quarters (LQ) which is built by Delta Engineering Corporation (DEC) in Delta yard, Houston, USA. To transport it to the offshore site a barge is needed. During the transport, the LQ will have to be supported and restraint against movement. The structures, those are required for this purpose, called "grillage" and "seafastening" (Figure 1.2.).



Figure 1.2. Typical Transport Layout





This internship project is focused on the transportation of LQ from Houston, USA to Angola, West Africa (Figure 1.2.), including the design of grillage and seafastening. The transportation is a part of the whole phases and relates to another phase. In this internship project, installation and load-out must be considered as well.

#### 1.2. Objectives

The objective of this project is to transport LQ from Houston, USA to Angola, West Africa safely, on schedule, and friendly fabricated. Fulfilling these requirements, the steel structures are needed to keep the cargo (Living Quarters) in its fixed position during the transportation within consideration to the sea parameters during the departure window.

#### **1.3.** Boundary Conditions

Since there are plenty of factors involved during the transportation of the cargo, the boundary conditions must be measured before doing the next steps. The boundary conditions for this internship project are mentioned below:

- 1. The transportation forces are determined according to Noble Denton criteria or are supplied by specialist marine engineers.
- 2. The applicable codes and standards according to American Standard for Steel Construction (AISC).
- 3. The calculation method, based on Heerema Standard Criteria.
- 4. The cargo specifications are determined by the client (DSME).

3

5. The trailers arrangements are determined by Mammoet and Delta Engineering Corporation (DEC). Heerema Marine Contractors (HMC) has a review function.







4

Figure 1.3. Transportation Routes and Place's Inset





#### **1.4.** Benefit of the Internship Project

• For students

This project can give a new experience where students can apply their knowledge that they already got during their study. Students can learn how to apply the American standard in a real project and get familiar with the real work atmosphere in Netherlands, by cooperation with internal experts in their fields.

• For company

The final thesis report can be used as a reference for the project.

5

• For academic purpose

This report can be used as basic knowledge for other research, related with offshore platforms transportation projects.





# CHAPTER 2

### Living Quarters and Barge

### 2.1. Living Quarters

The cargo which is transported in this project is called Living Quarters (LQ) (Figure 2.1). LQ is the accommodation for the workers during their work on an offshore platform. It is designed and built by Delta Engineering Corporation (DEC) in Delta Engineering yard, Houston, USA. There is a certain reason why the LQ is built in Houston instead of Angola. Insufficient equipment and expertise in Angola caused the LQ is constructed in Houston and furthermore the oil company (Chevron Texaco) has cooperated with the fabricator (DEC) because of their specialization for constructing LQ.



Figure 2.1. Living Quarters

LQ is a relatively small part compared to the main platform but it plays an important role. It will be placed all together with the other constructions to form a complete oil drilling platform (Figure 2.2.). The installation of LQ will be done by Thialf, Heerema's crane vessel (Figure 2.3.). In this internship project, the general part of the installation phase will be discussed.







Figure 2.2. Living Quarters on the Main Platform



Figure 2.3. Thialf





#### 2.1.1. Living Quarters Specifications

LQ is a steelwork construction building which has four stories (Figure

2.4.). It is made from high grade steel, Fe510. It can accommodate 120 beds.



Figure 2.4. Living Quarters and Its Dimensions

There are twelve strong points in the LQ that function to transmit its weight to the structural elements below (strong points of the barge). These strong points are located in the row A and row C. Each row has six strong points that can be seen in Figure 2.5. These strong points will also be used for considering grillage and seafastening design.

#### 2.2. Barge

The cargo transportation needs a ship called barge to across through the sea. A barge is a flat bottomed ship, used for transportation of heavy goods. Most of them are not self propelled and need to be pulled by tug boats. The barge, used for this project, is Crowley-411 (Figure 2.6.). Both the barge and the tug boat are provided by Crowley Maritime Corporation.







Figure 2.5. Strong Points of Living Quarters



Figure 2.6. Crowley-411

#### 2.2.1. Crowley-411 Specifications

There are many parts of the barge with different names as shown in Figure 2.7. The front side of the barge is called bow while the end of the barge is called stern. The right side of the barge is called starboard while the left side of the barge is called portside. The barge has three longitudinal bulkheads, seven transverse bulkheads and two side shells. Between two transverse bulkheads there are four transverse webframes which have 10ft (3.048m) spacing. The barge specifications are described below:

| Length | :400 ft   | (121.92m) |
|--------|-----------|-----------|
| Width  | : 99.5 ft | (30.328m) |





| Height                        | : 20 ft    | (6.096m) |
|-------------------------------|------------|----------|
| Frame spacing                 | : 10 ft    | (3.048m) |
| Longitudinal Bulkhead spacing | : 29.25 ft | (8.915)  |
| Transverse Bulkhead spacing   | : 50 ft    | (15.24m) |



Figure 2.7. General Plan of Crowley-411

There are points which are called bulkhead columns in the barge. They are located at the intersections between longitudinal bulkheads or side shells and transverse bulkheads or transverse web frames. These points are considered as the strong points of the barge. Each of them is able to hold a load up to 2857 kN, depending on its position and construction details. The detailed capacity can be shown in sheet 5.7, Appendix A

#### 2.2.2. Ballast Tanks

There are two kinds of ballast tanks, side ballast tanks and centre ballast tanks. For Crowley-411, there are four side ballast tanks and eight center ballast tanks. The configuration of the ballast tanks has influences to the load-out, transportation, and installation phase. For this project, the installation phase is used as a consideration for the grillage and seafastening design.

There are three conditions of filling the ballast tanks, full tanks (95-100% filled), slack tanks (5-95% filled), and empty tanks (1-5% filled). The condition of each tank depends on the requirements. For this project the condition for tank 2 and tank 7 are full tanks while the others are empty. One advantage of full tank condition compared to slack tank is that the ballast water does not give dynamic





forces to the barge which is caused by motion during transportation. On the portside it will be filled 100% while on the starboard it will be filled 95% (Figure 2.8.). It is done because the LQ centre of gravity (C.o.G.) is more to the starboard, so that is needed to fill the tanks on the portside with more water to keep the stability of the barge.



Figure 2.8. Ballast Tanks Configuration of Crowley-411

Each ballast tank has a certain capacity (tones) as shown in the Table 2.1.:

| Tank no. | Capacity (mT) |  |  |
|----------|---------------|--|--|
| 1        | 1925          |  |  |
| 2P       | 583           |  |  |
| 2S       | 583           |  |  |
| 2C       | 1825          |  |  |
| 3        | 2725          |  |  |
| 4        | 2724          |  |  |
| 5        | 2725          |  |  |
| 6        | 2725          |  |  |
| 7P       | 586           |  |  |
| 7S       | 586           |  |  |
| 7C       | 1811          |  |  |
| 8        | 1917          |  |  |

Table 2.1. Ballast Tank Capacity

P = Portside S = Starboard C = Centre





#### 2.3. Living Quarters Position on the Barge

There are many aspects, which must be considered for locating the LQ on the barge. The strong points of the cargo, the weight of the cargo and its C.o.G., the strong points of the barge, and the configuration of ballast tanks must be taken into account before determining its location on the barge. Furthermore the LQ C.o.G. will be used for the transportation analysis.

To optimize the distribution load, the strong points of the LQ will be located on the barge as symmetrically as possible (for portside-starboard direction). The loads will be distributed from the strong points of the LQ to the maximum strong points of the barge (bulkhead columns). The transferred load must be less than the bulkhead columns capacity. Beside that the LQ's C.o.G. should be located as near as possible to the barge's C.o.G. in order to minimize the use of ballast. The other consideration is the unavailability of pumps in the barge. Once the ballast tanks are filled with water, their condition can not be changed anymore during sailing across the sea. So, the ballast tanks condition must be valid not only for the transportation phase but also for the installation phase. The overview of the general installation phases is described more detailed in Chapter 4.

In this project, the ballast arrangement is done by the marine engineer based on the LQ layout on the barge which is located 200ft from the bow (Figure 2.9.). This layout is not the final layout since there are still any possibilities to change it from the client (Daewoo Shipbuilding and Marine Engineering / DSME) and the Mammoet as the company who provides the trailers. Nevertheless, until now the shown layout is still valid. The final layout of LQ (sheet 4.6, Appendix A) on the barge will be done by Heerema Marine Contractors (HMC), approved by DEC.

### HOGESCHOOL UTRECHT





Figure 2.9. Living Quarters on the Crowley-411 Layout





#### **CHAPTER 3**

#### **Transportation Aspects**

#### **3.1.** Transportation Descriptions

The party who is responsible for the transportation of the living quarters (LQ) is Heerema Marine Contractors (HMC). This company is responsible from post load-out until the installation of the LQ. Although HMC is only responsible for the transportation and installation, HMC takes part in all the phases (during LQ construction). HMC still makes contact with DEC (Delta Engineering Corporation) during LQ construction. It is done in order to ensure that the LQ design is suitable with the grillage and seafastening design.

In order to maintain the transportation schedule flexible, large departure window of LQ has been considered. It allows the barge to depart anytime between August 30<sup>th</sup>, 2008 and October 10<sup>th</sup>, 2009. There are four routes (Figure 3.1.) that can be used for LQ transportation:

- 1. Via Northerly Route
- 2. Via North of Cuba and Atlantic great circle (North Great Circle)
- 3. Via Direct route
- 4. Via Southerly route

Person who has the right to decide about the transportation route is the captain of the tug boat. He is the one who knows a lot about the sea conditions and moreover he has a lot of experiences.











#### **3.2.** Transportation Forces

Transportation forces are generated when the cargo is transported offshore on the barge. They consist of static and dynamic forces and also the accelerations that depend on the weight, geometry, support conditions of the cargo, and the environmental conditions that are encountered during transportation. The types of motions that can happen to a barge are shown in Figure 3.2.



Figure 3.2. Barge Motion

There are two types of motion on the barge, translation and rotation. Translation itself consists of heave, surge, and sway. Among them, heave is the most critical. The vertical force of heave motion together with the moment caused by roll motion is used for calculating dynamic load. This dynamic load influences the load on each LQ strong points. The second motion is rotation which consists of roll, pitch, and yaw. Among them, roll is the most critical motion while yaw is the less one. Generally the horizontal force of roll motion is bigger than the horizontal force of pitch motion. The horizontal force of roll motion is used for

# **U** HOGESCHOOL UTRECHT



calculating transverse seafastenings (roll braces) while the horizontal force of pitch motion is used for calculating longitudinal seafastenings (pitch stoppers).

In order to minimize the risks and secure the transportation from the fabrication yard to the offshore site, it is important to plan the transportation carefully. All possibilities that may be happened during the transportation must be taken into consideration. It is done to avoid the undesirable incidents. Since transportation forces are generated by the motion of the barge, the environmental conditions such as winds, waves, and currents must be taken into account. These criteria are according to Noble Denton for large barges in the open sea (Table 3.1.).

|               | Single amplitude              |       |       |  |
|---------------|-------------------------------|-------|-------|--|
|               | (10 second full cycle period) |       |       |  |
| Туре          | Roll                          | Pitch | Heave |  |
| Small barges  | 25°                           | 15°   | 5 m   |  |
| Large barges  | 20°                           | 12.5° | 5 m   |  |
| Small vessels | 30°                           | 15°   | 5 m   |  |

**Note:** Small barge: L<76m or B<23m

Large barge: L≥76m LOA and B≥23m

Small vessel: L<76m or B<23m

Ref. Noble Denton Criteria

#### 3.3. Sea Parameters

The transportation of heavy cargo from fabrication yard to offshore site is a risky operation. The sea parameters influence the stability of the barge, the design of grillage and seafastening, and the cargo itself. Therefore they must be taken into account in order to get a sufficient safe operation. The data required for transportation analysis is known as Metocean (Meteorological and Oceanographic) data which is prepared by Noble Denton as a warranty surveyor. The most important parts are the wind and the wave current along the transportation route.

# **U** HOGESCHOOL UTRECHT



However, at certain locations, it is needed to consider the extreme condition that can happen at a certain period. Since the departure from Houston, close to the Gulf of Mexico, the extreme conditions that may happen are such as, tropical cyclones and winter storms. Therefore the transportation schedule must aware these conditions as well. For design purposes, the extreme conditions are predicted within 100 years of return periods.

Heerema also considers about sea condition while deciding to use a barge instead of a vessel. In this case, the sea condition is relatively more stable and more predictable than Indian Ocean. Surely that the distance between Houston and Angola is not as far as from South Korea to Angola, so it is more efficient for using the barge and tug combination than using a vessel. Moreover the depth of the quay in Delta yard is only 5m. That depth is not sufficient for the vessel to enter the quay.





#### **CHAPTER 4**

#### **Grillage and Seafastening Design**

#### 4.1. Grillage

Grillage is a common type of structures in offshore engineering which is designed to withstand all vertical forces either from the static loads or dynamic loads. The design is generally directed to simplicity the fabrication process, rather than necessarily minimizing the weight. Moreover, all grillage design shall allow for the incorporation of shim plates to ensure the levelness of the supports to account local deviations and the shape of the barge.

#### 4.1.2. Grillage Concept Design

Grillage is made from high grade steel Fe 510, which has  $345N/mm^2$  of yield stress. It consists of five plate girders, two beams of PG 380 x 1524 x 38 x 28.58 and three beams of PG 190 x 1524 x 38 x 25.4 which is known as a parallel beam (Figure 4.1.). This concept of parallel beam connection is to support one beam directly on the top flange of the other in order to get a better load distribution in relation to the structural capacity of the barge. To attach one beam to another welding are used. For this project, there are six grillage beams that are typical.



Figure 4.1. Grillage Beam

## **U** HOGESCHOOL UTRECHT



There are several steps to design the grillage, as follows:

First, find the general information about the living quarters (LQ). It is included the LQ center of gravity (C.o.G.) position (sheet 5.1, Appendix A), the LQ strong points position, and also the LQ weight. These data are provided by Delta Engineering Corporation (DEC) as the fabricator and consultant for Tombua Landana LQ. There are two kinds of LQ weights, dry weight and lift weight which is included 5% of contingency. The load design is according to dry weight since grillage is only used during the transportation,

Second, determine the location of the shim plates (Figure 4.2.) Shim plates are plates with certain thickness and certain quality of steel. They are used as a transfer point between LQ and the grillage. The main aim of shim plates attachment is for transferring static and dynamic loads to the grillage. The LQ drawings are necessary for finding the best possible shim plate location. It is proposed to locate the shim plate exactly below the strong points of the LQ to prevent eccentricity between the centre of a column and the shim plate itself. It means that there is no shear force, deflection, and moment through the LQ beam.



Figure 4.2. Shim Plate

Third, calculate the load distribution from the LQ to its strong point. It is determined by DEC as the consultant and contractor of LQ. DEC sent the detail





forces of static load of LQ which can be used as the load distribution reference, either for static load distribution or dynamic load distribution. According to this reference, HMC (Heerema Marine Contractors) can design the grillage with the actual load distribution. Figure 4.3. shows the percentage load of each strong point.



Figure 4.3. Load Distribution of Living Quarters

Fourth, determine the position of LQ relatives to the barge. This step is not a simple thing to do since the designer must realize about several aspects as mentioned below:

- a. The LQ layout affects the ballast arrangements in order to maintain the stability of the barge.
- b. The LQ layout affects the design of grillage beam. The grillage beam must be able to transfer the load from LQ to the barge frames, so the LQ position on the barge must consider about the barge's strong points including the plate capacity as well. Otherwise the barge will collapse because of overloading from LQ. Sheet 4.7, Appendix A shows the layout of grillage beam for this project.





c. Related to point "b", the grillage beam also influences the load-out process. Especially when the load-out process uses the trailer to transport the LQ onto the barge. The grillage beam configuration must give sufficient free space between grillage and the trailer wheels. The minimum required free space is 1ft (3.048m). The grillage layout is shown in Figure 4.4. and for more information about relation between LQ grillage beam layout and the trailer is shown in Figure 5.6. and appendix B.



Figure 4.4. Grillage Beam Layout

Fifth, calculate the actual forces. There are two kinds of loads, static and dynamic load. Static loads state for the dead load while LQ is loaded onto the barge. Dynamic loads occur when the loaded barge is sailing. The dynamic load is influenced by barge motions, such as heave, roll, and pitch. Actually, dynamic loads are complicated loads, since the position of LQ relatives to the barge has affects as well. See Figure 4.5. for roll to starboard forces and Figure 4.6. for pitch to bow forces. The complete calculation is shown in Appendix B.

# **U** HOGESCHOOL UTRECHT





Figure 4.5. Roll to Starboard Forces



Figure 4.6. Pitch to Bow Forces

Sixth, design the grillage beam. As mentioned before, the grillage beam must transfer the LQ load to the strong points of barge. There are some strong points of the barge; they are:

- a. intersection between longitudinal bulkhead and transverse bulkhead
- b. intersection between rail girder and transverse bulkhead
- c. intersection between longitudinal bulkhead and transverse web frame
- d. intersection between rail girder and transverse web frame
- e. Side shell

Every strong point has its own capacity and has to govern the transferred load from grillage support. When the barge capacity is not strong enough, the designer has to redesign the grillage beam. It can change of the grillage beam location or the configuration of the grillage beam itself.

Seventh, check the grillage beam capacity. Checking is always needed to be done in order to ensure that the construction is strong enough. This kind of checking is about strength checking of the grillage beam profile that is compared


to the allowable stress. The ratio between occurred stress and allowable stress according to AISC (American Institute of Steel Construction) is called Unity Check (U.C.). The U.C. must be less than 1. The formula as follows:

 $U.C. = \frac{occured \ stress}{allowable \ stress} \leq 1.0$ 

The occurred stress is:  $\sigma_c = \sqrt{\tau_{\perp}^2 + {\tau_{\parallel}}^2}$ 

The allowable stresses according to AISC code are:

| b. Axial tension $: 0.60 \text{ Fy } (\text{N/mm}^2)$ c. Shear $: 0.40 \text{ Fy } (\text{N/mm}^2)$ d. Bending $: 0.66 \text{ Fy } (\text{N/mm}^2)$ e. Combined $: 0.66 \text{ Fy } (\text{N/mm}^2)$ | a. Axial compression | $: 0.60 \text{ Fy} (\text{N/mm}^2)$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------|
| c. Shear $: 0.40 \text{ Fy (N/mm^2)}$ d. Bending $: 0.66 \text{ Fy (N/mm^2)}$ e. Combined $: 0.66 \text{ Fy (N/mm^2)}$                                                                               | b. Axial tension     | : 0.60 Fy (N/mm <sup>2</sup> )      |
| d. Bending         : 0.66 Fy (N/mm²)           e. Combined         : 0.66 Fy (N/mm²)                                                                                                                 | c. Shear             | : 0.40 Fy (N/mm <sup>2</sup> )      |
| e. Combined $: 0.66 \text{ Fy} (\text{N/mm}^2)$                                                                                                                                                      | d. Bending           | : 0.66 Fy (N/mm <sup>2</sup> )      |
|                                                                                                                                                                                                      | e. Combined          | : 0.66 Fy (N/mm <sup>2</sup> )      |

Eighth, design the wing plate, end stiffener, and welding details for the grillage beam.

#### 4.1.1.1. Wing Plate

The grillage beams end on the rail girders and the longitudinal bulkheads. There are two possibilities of the end of the grillage beam, whether it will use wing plate or end stiffener. Before deciding to use wing plate or end stiffener, the capacity of the longitudinal bulkhead and rail girder must be compare to the reaction force of the grillage beam first. If the capacity less than the vertical reaction, wing plate must be attached in the end of the grillage beam. In the other words if the capacity more than the vertical reaction, it is only need end stiffener.

The wing plate (Figure 4.7.) is attached on the bulkhead or web frame. The main purpose of the wing plate is for spreading the vertical reaction of a grillage beam to the bulkhead plate or web frame and giving the resistance through the uplift dynamic force. Since the wing plate stands on the plate, the designer has to consider the frame profile underneath the wing plate and its weld size. Designing wing plate which stands on massive plate such as longitudinal





bulkhead is different when it stands on the rail girder beams, though they have to hold the same vertical reaction.



Figure 4.7. Wing Plate

There are several factors that must be taken into account while calculating the wing plate, such as:

- a. Dimensions of the shim plate. The wider it is the effective area of the wing plate becomes less.
- b. The throat size of the weld, both weld to web and weld to barge deck.
- c. Grillage beam profile since the wing plate is attached from the deck till the top flange of grillage beam. In the other hand, the width of wing plate is influenced by shim plate width and the vertical reaction.
- d. Plate buckling. The buckling capacity check must be done by engineer to make sure that wing plate will not collapse due to buckling forces through the plate thickness.

For more detailed calculation and the cross section of the wing plate, see sheet 4.29-43, Appendix A. The design of the wing plate is not based only on the reaction force but also on the uplift dynamic force. The weld resistance underneath the deck has to be checked against the uplift dynamic force (sheet 4.44-45, Appendix A). The purpose of this checking is to ensure that the welding underneath the deck is strong enough. In some cases, while the uplift force is



occurred in the end stiffener, the welding underneath the deck cannot hold it. It means in that place, the wing plate must be attached to against the uplift force so the grillage beam still stands with a proper connection to the deck.

Wing plate can be attached in two ways, depends on how much free space between wing plate and trailer wheels is available. First, when the sufficient free space is available, the wing plate can be attached before load-out. It means that the wing plate attachment is done during grillage preparation. Second when the required minimum free space is unavailable, the wing plate will be attached after load-out. It means, during load-out, the grillage beam only has end stiffener to spread the vertical static load. More information about the end stiffener is explained in the next paragraph.

For this project, wing plate will be attached in the end of grillage beam on the longitudinal bulkhead because its capacity is less than the vertical reaction of the grillage beam. Wing plate will be attached in the end of grillage beams except for detail A and E (sheet 4.29 and 4.42, Appendix A).

## 4.1.1.2. End stiffeners

It has already stated before that if the capacity of the longitudinal bulkhead or rail girder more than the vertical reaction, only end stiffener is needed (Figure 4.8.). For this project, end stiffeners will be attached in the end of the grillage beam for detail A and E (sheet 4.29 and 4.42, Appendix A). Its vertical reaction is less than the capacity of the longitudinal bulkhead and the rail girder.





Figure 4.8. End Stiffener

Not likely wing plate that functions to spread the vertical reaction, end stiffener functions to prevent web buckling, maintain the shape of the beam and its rigidity. That is why it is still needed to attached end stiffener although the unity check is less than 1.

## 4.1.1.3. Welds

Welding is one of the most common methods that are used for joining two steel sections. In this project, the welding procedure including the allowable stresses is based on American Welding Society (AWS) structural welding code. There are many types of welds, such as groove welds, fillet welds, plug welds, etc. It will use fillet weld as shown in Figure 4.9. There are many types of welds, such as groove welds, fillet welds, plug welds, etc. In this case, fillet welds will be used. When calculating the strength of fillet welds, the throat size should be used since it is a critical part of the welds. The welds will also be treated as if it is a perfect triangle.





Figure 4.9. Fillet Weld

There is the minimum value for weld which depends on the thicker plate to be joined (Table 4.1.) and the maximum value depends on the thinner plate to be joined. These values are based on AWS.

| Tabl | le 4.1. | Fillet | Weld. | Minimum | Size | (AWS) |
|------|---------|--------|-------|---------|------|-------|
|      |         |        |       |         |      |       |

| Thickness of thicker                     | Minimum leg size |
|------------------------------------------|------------------|
| plate to be joined                       | of fillet weld*  |
| thru $1/2$ in                            | $^{3}/_{16}$ in  |
| over $1/2$ in thru $3/4$ in              | $^{1}/_{4}$ in   |
| over $^{3}/_{4}$ in thru $1^{1}/_{2}$ in | $^{5}/_{16}$ in  |
| over $1^{1/2}$ in thru $2^{1/4}$ in      | $^{3}/_{8}$ in   |
| over $2^{1/4}$ in thru 6 in              | $^{1}/_{2}$ in   |
| over 6 in                                | $^{5}/_{8}$ in   |

\* Do not need exceed the thickness of the thinner plate

There are many different parts that need to be joined by welding as mentioned below:

- 1. Welds between the flange and the web of grillage beam
- 2. Welds between two grillage beams
- 3. Welds between stiffeners and the web of grillage beam
- 4. Welds between wing plate and the web of grillage beam





- 5. Welds between wing plate and the deck of the barge
- 6. Welds between seafastening and the plate which is attached to the LQ beam
- 7. Welds between seafastening and the plate which is attached to the seafastening beam

Grillage beam is a plate girder so it is needed to join the flange and the web. The length of this weld is continuous along the beam. The connection between two grillage beams is welded on both sides of the web. In this case, the top flanges of these two beams are level. It make the welds can be designed as simple as possible. Because of the throat size needed for all welds under the minimum value, all the throat size of the welds can be made the same. Moreover, it can make the execution easier. The throat size is 13.5mm which is based on the minimum value while the leg size is 19.05mm. The detail calculation can be seen in sheet 4.28, Appendix A.

Ninth, check the barge capacity. There are couples of checks for barge capacity, depend on where the grillage beam ends. First, check the capacity of the bulkhead columns. The reactions of the grillage beam must be less than the capacity of the bulkhead columns. Second, check the capacity of the plates below the grillage beam whether they are strong enough to hold all the reaction forces from the grillage beams or not. If the grillage beam ends at rail girder, the capacity of the rail girder itself must be checked.

#### 4.1.2. Grillage Calculations

See sheet 4.1-4.76, Appendix A.

## 4.2. Seafastening

Seafastening is defined as steelwork installed after load-out to restrain the cargo for horizontal roll and pitch forces. It is a temporary structure which made from tubular steel tube (Fe 510, Fy =  $345N/mm^2$ ). It will be removed after arrived at installation site so it is designed for ease of fitting and removal.





#### 4.2.1 Seafastening Concept Design

Seafastening should be located under the LQ strong columns in order to get optimum load distribution. Moreover, it can prevent the LQ beam from deflection. The seafastening layout is shown in Figure 4.10 and sheet 4.11, Appendix A. The length depends on the web frame spacing. The minimum angle of the seafastening is 20°. If the angle is less than 20°, the construction process will more difficult. The welder needs a certain sufficient space for doing welding and attaching to the roll brace.



Figure 4.10. Seafastening Layout

There are two kinds of seafastening, transverse seafastening (roll brace) and longitudinal seafastening (pitch stopper) (Figure 4.11. and Figure 4.12.). Transverse seafastening will hold the horizontal force in starboard-portside direction which is caused by pitch motion while longitudinal seafastening will hold the horizontal force in bow-stern direction which is caused by roll motion. Transverse seafastening uses 10.75in of tubular steel pipe while the longitudinal seafastening uses 12in of tubular steel pipe.







Figure 4.11. Roll Brace



Figure 4.12. Pitch Stopper

The concept design of seafastening is almost the same with the grillage concept design. The load from LQ will be transferred through the seafastening roll brace and then transferred to seafastening beam. Then the vertical load is transferred to the strong point of barge. The vertical reaction from seafastening beams must be less than the capacity of the local barge frame. If the capacity less than the vertical reaction, the seafastening can be extended until get better load





distribution. The other way that can be done is to attach more seafastening which will increase the cost of course because it will cause more work for removal.

#### 4.2.2. Seafastening Calculations

See sheet 4.77-4.95, Appendix A.

#### 4.3. Barge Capacity Checks

The barge should have adequate size and strength to ensure that it can hold all reaction forces caused by static and dynamic loads. There are many kinds of barge capacity checks that should be done, such as local capacity check (bulkhead column capacity check), web frame capacity check (plating capacity check), and rail girder capacity check.

#### 4.3.1. Local Capacity Check

Local capacity check is the checking in the bulkhead columns of the barge. The checking uses 'Bulkhead Column Capacity' spreadsheet which determines the maximum allowable load on the bulkhead column. Parameters to be entered are barge specifications and frame properties. Then the result is compared to the vertical reaction caused by the vertical load. The reaction forces must be less than the bulkhead column capacities. If the vertical reaction is more than the bulkhead column capacity, the shim plate can be move a little bit in order to get better load distribution. The other way that can be done is by adding more LQ strong columns so the vertical reaction will be less.

Figure 4.13. shows the illustration of load distribution from strong points of LQ to the strong points of the barge (bulkhead columns). It can be seen that the ends of the grillage beam locate on different plates of the barge, on row 2 and row 3. The bulkhead column capacities in row 2 and row 3 are different. The capacity in row 2 is less than row 3 (sheet 5.7, Appendix A).





Figure 4.13. Concept of Load Distribution

## 4.3.2. Web Frame Capacity Check

Not only the bulkhead columns, but also web frame must be checked. It must be checked for its plating capacity which is got from the 'Plating Capacity' spreadsheet (sheet 4.100, Appendix A). It determines the maximum allowable load on plate under compression. Then the result is compared with the vertical reaction of the grillage beam. Parameters to be input are the plate's support type and plate specifications.

## 4.3.3. Rail Girder Capacity Check

In spite of longitudinal bulkhead, the barge also has rail girder in the longitudinal direction. The barge is equipped with rail girder. which functions as a track for the crane. If the support of grillage beam is located on the rail girder, its capacity must be checked (sheet 4.42, Appendix A). It must be ensured that the rail girder will not collapse due to overloading of the vertical reaction from the grillage beam. The rail girder is a 24x12" profile which made by cutting the 36WF160 profile (Figure 4.14.).







Figure 4.14. Typical Rail Girder

Since it is a honey-comb profile (Figure 4.15.), it has only 10in of effective width with 235  $N/mm^2$ , so the rail girder capacity check will be done as below:



Figure 4.15. Rail Girder

```
F_{eff} = 254 x 0.6 F_y x t_w
```

In which:

$$Fy = 235 \text{ N/mm}^2$$
$$t_w = 16.5 \text{mm}$$





$$\begin{split} F_{e\!f\!f} &= 254 mm x 0.6 x 235 N \,/\, mm^2 x 16.5 mm \\ F_{e\!f\!f} &= 590931 N \\ F_{e\!f\!f} &= 591 k N \end{split}$$

For grillage beam ends on rail girder, instead of longitudinal bulkhead, needs to compare the vertical reaction force and the rail girder capacity first. In case that the reaction force is more than rail girder capacity, it means that wing plate has to be designed to spread the force. If the rail girder capacity already governs the forces, it means that only end stiffener which is needed. For instance, compare between detail D and detail C (see sheet 4.38-4.43, Appendix A).





# CHAPTER 5

## **Transportation and Installation Phase**

## 5.1. Transportation Phase

Heerema Marine Contractors (HMC) is responsible for the transportation of living quarters (LQ) from hand-over until arriving at the installation site. The transportation phases are defined into three mains steps. They are load-out phase, sailing phase, and installation phase. Each phase has detailed compulsory activities. For that reason HMC needs to determine the necessary activities in each step.

### 5.1.1. Load-out

Load-out means transferring cargo onto barge for transporting it to its final location. The fabricator, Delta Engineering Corporation (DEC), is responsible for this phase. HMC only stands as the witness, to check and proof that everything is in good condition. There are two kinds of load-out:

• By skidding (Figure 5.1.)

Push and pull strand jacks (skidding by pull-push method, using cable strand jacks to pull on to the transport barge).



Figure 5.1. Skid Beam





• Using trailers (Figure 5.2.)

Use a mobile train of self-powered skid with continuous support of pneumatic tires, roll onto the barge.



Figure 5.2. Trailers Moving a Module

In fact, the load-out process is a complex process. Therefore, there are pre load-out activities which are done before the cargo was moved onto the barge. Here are some of the activities:

1. General check

Covering the visually check of LQ and obtain the weight report.

2. Lift points check

Doing the general review of the lift points completion according to as-built drawing and checking them which may damage slings.

3. Installation of main lift rigging

The main purpose of this step is to ensure that slings can be connected to padeyes without any obstacles during the process. Several things that must be done are:

- a. check slings to avoid the damage,
- b. check slings identification marking with rigging drawings,
- c. check slings are laid down according to drawing,
- d. check sling tie-downs per lashing drawing,

International Bachelor in Civil Engineering





- e. check no obstructions in the vicinity of lift points,
- f. check if shackle safety pins are installed,
- g. check no sharp edges on structure which may damage the slings,
- h. check if all protective wood is in place and secured.
- 4. Installation aids:
  - a. lift points
  - b. protection on roof of LQ
  - c. safe access to lift points for sling removal
  - d. lift off guides
  - e. tugger line attachments
  - f. safe access to working areas
  - g. guides and bumper system

When a barge is loaded, it has an inclination between bow and stern. If this inclination is too big it can lead to a failure operation. Preventing the failure, the barge level must be kept the same as the dockside level, which means that ballasting or de-ballasting is required. Besides ballast preparation, grillage also has to be attached before load-out.

The LQ load-out of Tombua Landana project is done in Delta yard as shown below (Figure 5.3.):



Figure 5.3. Delta Yard





The available space in Delta yard is less than the required space of 400ft barge. The actual condition makes the stern load-out can not be done directly. Therefore LQ load-out will be done twice as described below:

1. Move the LQ from Delta yard to first barge which has 250ft long. It will be done in the stern to bow direction (Figure 5.4.).



Figure 5.4. First Phase

2. Turn the first barge stern to Crowley barge stern and then move the LQ to Crowley barge. It is also done in stern to bow direction (Figure 5.5.).



Figure 5.5. Second Phase



The complete phases which are proposed by Mammoet, as the supplier of the trailers can be seen in Appendix C.

Mammoet has a discussion with HMC during determining the most applicable position for LQ load-out. As written in chapter 4, there is a relation between grillages layout and the trailer's position. The cross section of grillages and trailer from HMC proposal is shown in Figure 5.6. When this report was written, HMC was still waiting for the confirmation from Mammoet due to the difference proposal of grillage-trailer layout between them.



Figure 5.6. Cross Section of Grillages and Trailer (HMC's Proposal)

## 5.1.2. Sailing overseas

Since the transportation is performed through the sea, the sea parameters must be taken into account. They influence the stability of barge and the cargo during transportation. Maintaining barge and cargo stability needs several things to be prepared well before. For once it sails, nothing can be done anymore. This





sub-chapter describes any factors which must be designed in order to keep everything in a safe condition.

### 5.1.2.1. Ballast Arrangement

The C.o.G. of the cargo is not always located at centre of gravity (C.o.G.) of the barge. When the cargo is located onto barge which has certain weight and centre of buoyancy, there will be an inclination between bow-stern (trim) and portside-starboard (list) which cause instability of the barge. Therefore ballast arrangement is needed to maintain this inclination small (slight trim). Figure 5.7. and Figure 5.8. show the trim and the list. The other purpose of ballast arrangement is to get certain value of draft. The required draft of Crowley-411 is 40% of the barge depth. One thing should be realized is that trim and list are different with pitch and roll. Pitch and roll are part of barge's motions due to sea parameters while trim and list are adjusted angle of barge due to ballast arrangement.

The ballast arrangement must give the optimal trim, list, and draft. It means that the barge needs to submerge into the water to maintain its stability. When the barge does not have sufficient draft, it tends to sway which will affect the stability of the barge. In the other hand, when the barge has more draft, it is more stable but the consequences are that the bollard pull will get more stress and bigger propulsion is needed.

It will be a difference case for list. It can be imagined when the barge has over list to starboard, for instance, both of the tug boat and the barge will tend to move to the starboard direction. It means that the captain has to maintain the direction line quite often otherwise the tug boat and the barge will run into circle direction.



Figure 5.7. Trim Condition (Starboard View)





Figure 5.8. List Condition (Stern View)

# 5.1.2.2. Bollard Pull

It has been stated before that the barge is non-propelled so a tug boat is needed to pull it. The pulling force of a tug boat is called bollard pull. A sufficient bollard pull is required in order to overcome the sea conditions which give loads to the barge and the tug boat itself. Bollard pull of the towing barge should be sufficient enough to maintain zero speed against the wind velocity, current velocity, and other sea state parameters. The criteria, used to calculate bollard pull, is based on Noble Denton criteria which has 20m/s of wind velocity, 0.5 m/s of current velocity, and 5m of significant wave height (Ref. to Noble Denton Criteria).

There are tree kinds of environmental loads on the barge and its cargo which will be taken into account for calculating the bollard pull:

Wind load

Wind is an important environmental parameter that influences the design of the floating offshore structure. It acts on both the cargo and barge itself that will contribute as a load which depends on the size of the barge and cargo (Figure 5.9.). There are different shapes of cargo being transported by HMC such as solid box and open truss.





Figure 5.9. Wind Load

To calculate the wind force, the barge and the cargo must be taken into accounts which are considered as solid boxes. Their dimensions influence the shape coefficient. There are several things that must be known before determining shape coefficient (Figure 5.10.), such as:

- ratio between the greater dimension of the member and the lesser dimension of the member (l/w),
- ratio between the dimension of the member normal to the wind and the dimension of the member in the direction of the wind (b/d),
- ratio between the member height and the dimension of the member normal to the wind must be known first (h/b).



Figure 5.10. Wind Direction to the Cargo

Hull resistance

The hull resistance of a ship is the resistance of a ship when it is sailing on the water. The hull resistance is a result of the friction of the water along the hull, the pressure distribution along the hull depending on its shape, and the waves that are generated by the ship. The friction will be



higher along with the current velocity. In this project the current velocity is only 0.5m/s or 1.0m/s so the hull resistance is quite small and it has no significant influence to the required bollard pull. For Crowley-411 there is a scow at the end of the ship and the hull resistance is 0.2mT (sheet 4.110, Appendix A).

• Wave drift load

Since the transportation performs across the sea, the wave holds an important role. It contributes the largest load to the environment loads. That is why it is needed to calculate this load accurately. The small change in input will cause totally different result. The slope of the bow to the water surface is 48 degrees and from the calculation the wave resistance is 20.9mT (sheet 4.110, Appendix A).

By sum up the wind resistance, the hull resistance, and the wave resistance, the total towline pull required can be obtained. There is a tug efficiency since many aspects influenced it. This efficiency depends on the required bollard pull, the sea state parameters, and the towing speed (Table 5.1.), which is determined by using formula as below:

TPR = 
$$\sum (BP \times T_e/100)$$

Where: T<sub>e</sub>

= the tug efficiency (%)

(BP x Te/100) = the contribution to the towline pull requirement of each tug

| <b>Continuous Bollard Pull</b> | <b>T</b> <sub>e</sub> (%) |                |                         |
|--------------------------------|---------------------------|----------------|-------------------------|
| (BP), tonnes                   | Calm                      | $H_{sig} = 2m$ | $H_{sig} = 5m$          |
| $BP \le 30$                    | 80                        | 50 + BP        | BP                      |
| 30 < BP < 90                   | 80                        | 80             | 30 + [0.75 x (BP - 30)] |
| BP > 90                        | 80                        | 80             | 75                      |

Table 5.1. Tug Efficiency



In this case, it requires 32.62mT of TPR to pull the barge. But since the tug efficiency is only 53.35%, the required bollard pull become 61.14mT (sheet 4.110, Appendix A).

# 5.1.2.3. Tug Boat

Tug boat is a boat, used to pull the non-propelled barge. The tug selection should fulfill the minimum bollard pull requirements. The tug boat that will be used is called "Invader" with a capacity of 150,000lbs (68mT) (Appendix D). It is provided by Crowley Maritime Corporation.

# 5.1.2.4. Towing Equipments

Since the barge is pulled by a tug boat, the tug boat must be facilitated with towing equipments. To arrange these equipments, the worst sea state characteristics of the route should be considered. In this project, the barge which has a wide bow is pulled from the forward end of the barge via suitable bridles. The components of these equipments are:

- Towline connections, including towline connection points, fairleads, bridle legs, and bridle apex (Figure 5.11.)
- Intermediate pennant
- Bridles recovery system
- Emergency towing gear (Figure 5.12.) and Appendix E







Figure 5.11. Main Tow Bridle with Recovery System



Figure 5.12. Emergency Towing Gear

The towing barge should be equipped with towing winch where its minimum breaking load (MBL) is based on the actual continuous static bollard pull (BP) as shown in Table 5.2.





| <b>Bollard Pull (BP)</b> | Benign Areas | Other Areas        |
|--------------------------|--------------|--------------------|
| $BP \le 40$ tonnes       | 2 x BP       | 3 x BP             |
| $40 < BP \le 90$ tonnes  | 2 x BP       | (3.8 - BP/50) x BP |
| BP > 90 tonnes           | 2 x BP       | 2 x BP             |

Since the routes of LQ transportation have extremes (tropical cyclone in the Gulf of Mexico, Caribbean seas, West Indies and winter storms in the Gulf of Mexico), the towline breaking load is computed for other areas.

> $MBL = (3.8 - BP/50) \times BP$ = (3.8 - 68/50) × 68 = 165.92 mT

There is ultimate load that the bridle can hold:

ULC =  $1.25 \times MBL$ =  $1.25 \times 165.92$ = 207.4 mTULC = MBL + 40= 165.92 + 40= 205.92 mT→ ULC = min (207.4; 205.92) = 205.92 mT

There is a certain length of towline, used to pull the barge as shown in Figure 5.13.



Figure 5.13. Barge and Its Tug Boat

Towline length  $> \frac{BP}{MBL} \times 1800$  metres Where: BP = Bollard pull (mT) MBL = Minimum Breaking Load (mT)





Towline length = BP/MBL x 1800 m = 68/205.92 x 1800 m= 594.41 m

In case of towline failure, an emergency towing gear should be provided to recover the bridle. This equipment is preferably located at the bow of the barge and should consist of a spare bridle or towing pennant, fitted with a floating rope and buoy, allowing it to be picked up without any difficulties. The other way to cope with towline failure is by providing at least one anchor. It is attached to a chain cable or wire, which is arranged for release manually.

#### 5.2. Installation Phase

LQ installation (Figure 5.14.) is done in second phase of installation. The second phase is scheduled to be accomplished in the end of December 2008. The Thialf takes the installation for the Tombua Landana project. The installation use only single crane, for the one Thialf crane's capacity (7000mT) is already sufficient for the weight of LQ (1622mT). For the LQ installation, there are three main activities, they are pre-installation, installation and post installation. Since there are plenty of detailed steps, it is decided that only the main steps will be described in this final thesis report.

- 1. Pre-installation activities
  - a. Pre-lift activities on Thialf

Consist of preparation for fender, mooring and tugger lines.

- b. Pre-installation activities on top sides platform
- c. Pre-lift activities on Crowley 411
   Confirm if Crowley 411 is ready to commence installation operations and safe to enter
- d. Pre-lift activities on tugboats
- e. Pre-lift activities on LQ

Need to check the condition in LQ to be sure that LQ is clear of any items that can obstruct installation.





- 2. Installation activities
  - a. move the barge to its position according to the drawing installation
  - b. check the environmental conditions, such as wind and waves
  - c. check the rigging layout according to the drawing (sheet 1, Appendix F)
  - d. cut LQ seafastenings
  - e. attach tugger lines / steering lines
  - f. lift-off LQ
  - g. Install LQ
  - h. Transfer personnel to the platform in order to monitor operations and for de-rigging.
- 3. Post-installation activities
  - a. release shackles, remove slings and transfer to SSCV deck
  - b. Helideck completion
  - c. Removal of LQ rotation wire guides
  - d. Remove padeyes
  - e. Remove guides and bumpers
  - f. Demobilize personnel back to the SSCV
  - g. Move-out SSCV and sail to another project location.





Figure 5.14. Living Quarters Installation





### **CHAPTER 6**

#### **Conclusions and Suggestions**

#### 6.1. Conclusions

Transportation of offshore oil platform is influenced by the sea parameters, such as wave, wind, and current in the sea. They have significant influences to the transportation of the platform. Therefore it is needed steel structures to secure the platform during the transportation. For this project, the platform which is transported is Living Quarters. To transport it, six grillages are needed, eight roll braces as transverse seafastenings, and two pitch stoppers as longitudinal seafastenings.

There are six grillage beams which function to withstand all the vertical force caused by static and dynamic loads. Each of the grillage beam has 20ft long. It is a parallel beam which consists of three PG 190x1524x38x25.4 and two PG 380x1524x38x28.58. The connection between each beam uses fillet weld with leg size of 19.05mm. The wing plates and the end stiffeners are attached in the end of the grillage beams in order to spread the load and to maintain the rigidity of the beam itself. To withstand all the horizontal forces caused by static and dynamic loads, seafastenings are needed. The roll braces are 10.75in diameter of tube steel and attached from Living Quarters beam to the barge deck. The pitch stoppers are plate with 1in. thick which is connected to Living Quarter's beam and grillage beam.

Since the barge is not self-propelled, it needs a tug boat to pull it by using 61.14mT of bollard pull. The tug boat which will use for this project is called "Invader" tug boat which is provided by Crowley as the provider of the barge as well.





### 6.2. Suggestions

- 1. The Moses analysis for knowing the dynamic forces during transportation must be done, instead of using Noble Denton criteria.
- It is better to have a 3D model which contents cargo, grillage, seafastening, and barge in one model. Although it takes time to develop a 3D model, it gives more accurate results for the design.
- 3. Organizing some courses for the internship students will make the learning process goes faster.
- 4. Choosing the unit system, Imperial or Metric in the preliminary design will be better, especially when designing for the American client.





### REFERENCES

- Straathof, A. Offshore Technology: Introduction Courses for the T&I 'Junior' Engineer. Netherlands: Heerema Marine Contractors (HMC).
- Blodgett, Omer W. (1966, June). Design of Welded Structures. Cleveland, Ohio: The James F. Lincoln Arc Welding Foundation.
- Standard Symbols for Welding, Brazing, and Nondestructive Examination. Miami, Florida: American welding Society (AWS).

Table Profile. Netherlands: Heerema Marine Contractors (HMC).

Standard Criteria. Netherlands: Heerema Marine Contractors (HMC).

www.hmc-insite.com (HMC Intranet)

www.wikipedia.org





# LIST OF FORMULAS

| 1. | Plate Girder Properties | 55 |
|----|-------------------------|----|
| 2. | Transportation Forces   | 59 |
| 3. | Plating Capacity        | 63 |
| 4. | Bollard Pull            | 66 |

Source: HMC's IPEX Manual





# 1. PLATE GIRDER PROPERTIES

The spreadsheet 'PLATE GIRDER PROPERTIES' calculates the section properties of plate girders built-up from a maximum of 15 sections. The calculated section properties are equivalent to the SACS nomenclature. Different units for input and output can be selected, allowing for automatic unit conversion.

## Validity of the spreadsheet

The spreadsheet is only valid for open plate girders, with no more than one web in any horizontal cross-section. A web is defined as a part with a larger height (Z) than breadth (Y), a flange is defined as a part with a height equal or smaller than the breadth.

Sections that **can** be entered:



Please note that the spreadsheet has the following **imperfections**:

Flanges should not protrude beyond the widest flange. The widest flange should not be given an offset  $e_y$ . Plate sections should be stacked on top of each other. The Az shear area is calculated using the mean web thickness at the intersection with the flanges.

Sections that CAN NOT be entered:

#### Input: entering sections and co-ordinate system.

The origin of the co-ordinate system used by the spreadsheet is positioned at the bottom of the plate girder at the centre line of the widest flange. Sections (webs





and flanges) of the plate girder should be entered from top to bottom. The spreadsheet will stack each successive section below its predecessor and shift the co-ordinate origin to the bottom of the last section, in the centre of the web or flange with the largest breadth. See figure below.

Sections with a C.o.G **not** on the Z-axis can be offset by entering the positive or negative distance,  $e_y$ , towards the Z-axis, i.e. the distance between the C.o.G's of the subject section and the widest one. **Therefore, the widest section should not be given an offset.** 



#### Unit conversion

Plate girder properties can be entered and calculated in several units; Millimetres, centimetres, meters and inches. The plate girder weight per length can be calculated in kN/m, kg/m, mT/m, lb/ft, lb/inch and lb/yard. When different input and output units are selected the spreadsheet will automatically make the proper conversion.

Selecting the units is done by clicking once on the appropriate button from one of the menus (**Input**, **Output** and **Weight**) situated on the right hand side of the spreadsheet.

#### Output and calculations

The output properties are with respect to Y-Z coordinates parallel to the input axes but with their origin at the plate girder C.o.G. (See figure below.) This co-ordinate system is identical to that of SACS-IV. Also the calculated properties are conform the SACS-IV nomenclature.





### Dimensions

Maximum breadth of the plate girder,  $\mathbf{Y}$  , equals the width of the widest section.

Plate girder total height, Z.

Plate girder unit weight is:  $\rho_{steel} * g * Ax$ , where  $\rho_{steel} = 7850 \text{ kg/m}^3$  and g = 9.81 m/s<sup>2</sup> or converted to the appropriate dimensions.

#### Areas

$$Ax = \sum (b * h)_{all}$$
$$Ay = \sum (b * h)_{flanges}$$
$$Az = t_{mean} * h_{tot} = t_{mean} * Z$$

Note that the spreadsheet uses the mean web thickness to calculate the shear area's:

$$t_{mean} = \frac{\sum (b^*h)_{webs}}{\sum h_{webs}} \text{. Hence: } Az \neq \sum (b^*h)_{webs}$$

#### Distances to neutral axis

$$e_{y} = \frac{\sum (e_{y,input} * b * h)}{Ax} + Y/2$$
, from left outer fibre.  

$$Z - e_{z} = \frac{\sum (e'_{z} * b * h)}{Ax}$$
, where e'\_z is from the top outer fibre to the C.o.G of the subject section. Hence e\_z is the distance between the plate girder C.o.G and bottom outer fibre.

#### Moments of inertia and torsional constant

 $I_{y} = \sum \left(e^{2}_{z,i} * b * h + \frac{b * h^{3}}{12}\right), \text{ where } e_{z,i} \text{ is the distance between the plate girder}$ C.o.G and the C.o.G of the subject section  $(e_{z,i} = (Z - e_{z}) - e'_{z}).$ 

$$I_{z} = \left(\sum \left(e^{2}_{y,input} *b*h + \frac{h*b^{3}}{12}\right)\right) - \left(\frac{\sum e_{y,input} *b*h}{\sum b*h}\right)^{2} *Ax \text{, i.e. } I_{z} \text{ equals the}$$

moment of inertia w.r.t. the Z-axis through the C.o.G of the widest section minus the product of the total area and the square of the distance between the input- and output- Z-axis

$$I_T = \frac{1}{3} * \sum l * t^3$$
, where the thickness t is the smallest of either h or b.

International Bachelor in Civil Engineering



The torsional constant (or torsional resistance)  $I_T$  does not include a correction factor acc. Föppl, ref. Technische Formelsammlung by K Gieck, Aufl. 27, Sect. P21.

## Section modulii

$$W_{y,bottom} = \frac{I_y}{e_z}$$
 and  $W_{y,top} = \frac{I_y}{Z - e_z}$ ,  $W_{y,min}$  is the smaller one of these two

$$W_{z,left} = \frac{I_z}{e_y}$$
 and  $W_{z,right} = \frac{I_z}{Y - e_y}$ ,  $W_{z,min}$  is the smaller of these two. Therefore,

due to the definition of Y, **the sections should not protrude beyond the widest one.** 

$$W_T = \frac{I_T}{t_{\text{max}}}$$
, where  $t_{\text{max}}$  is the largest section thickness. (Not presented in output)

Radii of gyration

$$r_y = \sqrt{\frac{I_y}{Ax}}$$
 and  $r_z = \sqrt{\frac{I_z}{Ax}}$ 

## Statical moments

The statical moment can be used to determine the shear stress acting between two adjacent sections. It is calculated by multiplying the area under consideration and the distance between its C.o.G and the plate girder C.o.G:

$$S_{y} = \sum (b*h*|(Z-e_{z}) - \frac{\sum b*h*e'_{z}}{\sum b*h})$$

The shear stress at a section can be calculated using the equation  $\tau = \frac{D * S_y}{b * I}$ 

Note that the statical moment, listed on the right hand side of a row in the input table, can be used to derive the shear stress between the section mentioned on that row and the secton just below.



You can obtain the  $S_{y,max}$  by dividing the section that contains the plate girder C.o.G into two sections, separated along the (output) Y-axis.





# 2. TRANSPORTATION FORCES

The spreadsheet 'TRANSPORTATION FORCES' calculates the static and dynamic transportation forces and accelerations. Parameters to be entered are transportation criteria, cargo specifications and barge or ship information. **Input and output of the spreadsheet are consistent with the Bartran axis system. Angles and moments, however, are according to the Right Hand Rule!** 



### Transportation criteria

Input:

The single amplitude angle for roll,  $\theta_{roll}$  in degrees. The full cycle period for roll,  $T_{roll}$  in seconds. The single amplitude for pitch,  $\theta_{pitch}$  in degrees. The full cycle period for pitch,  $T_{pitch}$  in seconds. The single amplitude for heave,  $A_{heave}$  in meters. The full cycle period for heave,  $T_{heave}$  in meters.

The spreadsheet will automatically detect the Noble Denton criteria ('General guidelines for marine transportations' 0014/NDI/JR - dec. 1986, section 5.2.1) and will prompt so on the sheet.

| Noble Denton Chteria are. |                            |       |       |  |
|---------------------------|----------------------------|-------|-------|--|
|                           | Single amplitude           |       |       |  |
|                           | (10 sec full cycle period) |       |       |  |
| Туре                      | Roll                       | Pitch | Heave |  |
| Small barges              | 25°                        | 15°   | 5 m   |  |
| Larger barges             | 20°                        | 12.5° | 5 m   |  |
| Small vessels             | 30°                        | 15°   | 5 m   |  |

Noble Denton Criteria are:

Note that the 5 m heave at a 10 sec. cycle period accounts for a vertical accelerations of 0.2 g.




# Cargo specifications

A suitable name for the cargo can be entered for reference purposes.

# Input:

The weight of the cargo, *W* in kN. The mass moment of inertia about the roll axis,  $M_o I_x$  in Tm<sup>2</sup>. The mass moment of inertia about the pitch axis,  $M_o I_y$  in Tm<sup>2</sup>. The x - co-ordinate of the cargo centre of gravity,  $x_{coG}$  in m. The y - co-ordinate of the cargo centre of gravity,  $y_{coG}$  in m. The z - co-ordinate of the cargo centre of gravity,  $z_{coG}$  in m.

# Barge / ship information

The name or description of the barge / ship can be entered for reference purposes.

Input:

The x - co-ordinate of the centre of rotation,  $x_{COR}$  in m. (Usually  $x_{COR}$  is a few meter shorter than half the barge length)

The centre of rotation is on the waterlevel:  $z_{CoR}$  = meandraft in m.

Note that by default the centre of rotation in y - direction is at half breadth of the barge.

# Transportation forces and accelerations

The calculated transportation forces and accelerations are a combination of dynamic forces and static forces on the centre of gravity of the cargo. The spreadsheet calculates the vertical force, the horizontal force, the moments and the heave in the centre of gravity of the cargo. These forces and moment are calculated for roll to starboard and portside, and pitch to stern and bow. **Note: the output forces are exerted by the module on the barge, their workpoint is the module C.o.G**. An example is given below for roll to starboard, roll to portside and pitch are calculated in a similar fashion. Shown is the stern of a barge with cargo:







# Roll

Static forces:

$$F_{v,static} = -W * \cos(\theta_{roll}) \text{ kN}$$
  
$$F_{h,static} = -W * \sin(\theta_{roll}) \text{ kN}$$

Dynamic forces:

$$F_{v,dynamic} = \frac{W}{9.81} * y_{CoG} * \left(\theta_{roll} * \left(\frac{2\pi}{T_{roll}}\right)^2\right) \text{kN}$$

$$F_{h,dynamic} = \frac{W}{9.81} * (z_{CoG} - z_{CoR}) * \left(-\theta_{roll} * \left(\frac{2\pi}{T_{roll}}\right)^2\right) \text{kN}$$

$$M_{roll} = M_o I_x * \left(\theta_{roll} * \left(\frac{2\pi}{T_{roll}}\right)^2\right) \text{kNm}$$

$$H_{roll} = \frac{W}{9.81} * \left(A_{heave} * \left(\frac{2\pi}{T_{heave}}\right)^2\right) \text{kN}$$

Combined forces:

$$F_{v,SB} = F_{v,static} + F_{v,dynamic} \text{ kN}$$
  
$$F_{h,SB} = F_{h,static} + F_{h,dynamic} \text{ kN}$$

## Pitch

Below the forces acting at a module, and exerted on the barge, are shown for pitch to bow:



Static forces: 
$$F_{v,static} = -W * \cos(\theta_{pitch}) \text{ kN}$$
  
 $F_{h,static} = W * \sin(\theta_{pitch}) \text{ kN}$ 

# HOGESCHOOL UTRECHT



Dynamic forces:  $F_{v,dynamic} = \frac{W}{9.81} * (x_{CoG} - x_{CoR}) * \left( -\theta_{pitch} * \left( \frac{2\pi}{T_{pitch}} \right)^2 \right) \text{ kN}$   $F_{h,dynamic} = \frac{W}{9.81} * (z_{CoG} - z_{CoR}) * \left( \theta_{pitch} * \left( \frac{2\pi}{T_{pitch}} \right)^2 \right) \text{ kN}$   $M_{pitch} = M_o I_y * \left( \theta_{pitch} * \left( \frac{2\pi}{T_{pitch}} \right)^2 \right) \text{ kNm}$   $H_{pitch} = \frac{W}{9.81} * \left( A_{heave} * \left( \frac{2\pi}{T_{heave}} \right)^2 \right) \text{ kN}$ 

Combined forces:

 $F_{v,stern} = F_{v,static} + F_{v,dynamic} \text{ kN}$  $F_{h,stern} = F_{h,static} + F_{h,dynamic} \text{ kN}$ 





# 3. PLATING CAPACITY

The spreadsheet 'PLATING CAPACITY' calculates the maximum allowable load on plates under compression. The critical buckling stress due to compression is based on the Priest – Gilligan curve as described in O.W. Blodgett's 'Design of welded structures', June 1966.

### Buckling resistance of plates under linear compression

The spreadsheet calculates the buckling resistance for plates supported in several ways. A selection box with various support types is placed on the right side of the spreadsheet. By default the 'four sides supported' loadcase is selected. Implemented support types are:



Depending on the support type, the following plate factor is used.

| 1. | One side supported, one side free:  | k = 0.425                                                                       |
|----|-------------------------------------|---------------------------------------------------------------------------------|
| 2. | One side fixed, one side free:      | k = 1.277                                                                       |
| 3. | Two sides supported:                | $\mathbf{k} = 4$                                                                |
| 4. | One side supported, one side fixed: | k = 5.42                                                                        |
| 5. | Two sides fixed:                    | k = 6.97                                                                        |
| 6. | Four sides supported:               | k = 4 for $\alpha \ge 1.0$ . For $\alpha \le 1.0$ : $k = (\alpha + 1/\alpha)^2$ |
|    |                                     |                                                                                 |

### Input:

- Modulus of elasticity, default value is  $E = 2.1 \times 10^5 N / mm^2$
- Poisson's ratio, default value is v = 0.3.
- Thickness of the plate, t in mm.
- Length of the plate, a in mm.
- Width of the plate, b in mm. (Loaded side). ( $\alpha = a/b$ )
- Yield stress,  $\sigma_v$  in  $N/mm^2$ .





Calculation:

• The critical stress determination is based on the Priest – Gilligan curve as can be found on sheet 2.12-6 of 'Design of Welded Structures' by Omar W. Blodgett. This is done by determining the points B and C of the curve and selecting the proper portion of the curve.

Point B is found at a  $\frac{b/t}{\sqrt{k}} = \frac{3820}{\sqrt{\sigma_y}}$ , where  $\sigma_y$  is entered in pound per square inch (psi).

Point C is found at a  $\frac{b/t}{\sqrt{k}} = \frac{5720}{\sqrt{\sigma_y}}$ ,  $\sigma_y$  in psi.

By comparing the calculated factor and the factors for points B and C the proper portion of the curve is selected.

• Using the selected portion the critical stress can be calculated:

For the portion A – B:  $\sigma_{cr} = \sigma_y$ , in  $N/mm^2$ .

For the portion B – C:  $\sigma_{cr} = 1.8\sigma_y - \frac{\sqrt{\sigma_y^3}}{4770} * \frac{b/t}{\sqrt{k}}$ , where  $\sigma_{cr}$  and  $\sigma_y$  are in psi. For the portion C - D:  $\sigma_{cr} = 0.75 * \frac{k * \pi^2 * E}{12 * (1 - v^2)} * \left(\frac{t}{b}\right)^2$  in N/mm<sup>2</sup>.

• At the calculated critical stress the middle portion of the plate would be expected to buckle. However, the over-all plate will not collapse since the portion of the plate along the supported sides could still be loaded up to the yield point before ultimate collapse. This portion of the plate, the '*effective width*', can be determined by finding the ratio b/t at the point where  $\sigma_{cr} = \sigma_y$ , point B of the Priest – Gilligan curve. The plate factor k is limited to a maximum of 4, i.e. a two sides supported plate or a four sides supported plate with a  $\geq$  b:

$$\frac{b_{eff}}{t} = \frac{3820}{\sqrt{\sigma_y}} * \sqrt{k} , \sigma_y \text{ in psi.}$$

- The effective width is calculated by multiplying the factor  $b_{eff} / t$  by the plate thickness.
- The maximum allowable load for the plate is:

$$F = \left\{ b_{eff} * t * (0.6 * \sigma_y) + (b - b_{eff}) * t * 0.6 * \sigma_{cr} \right\} * 10^{-3} \text{ in kN.}$$
  
(0.6 to account for allowable stresses according to AISC)

The maximum specific allowable load is F/b in kN/m.





Output:

- The critical stress, and the portion of the Priest Gilligan curve that is used.
- The k-factor depending on the type of support and plate shape factor  $\alpha = a/b$ .
- The effective width  $b_{eff}$  in mm.
- The maximum allowable load F in kN.
- The maximum allowable specific load in kN/m.





# 4. BOLLARD PULL

# Wind Load

$$F_{wind} = \frac{1}{2} \rho_a \left[ V. \frac{1 + 0.137.\ln\left(\frac{z}{10}\right) - 0.047\ln\left(\frac{1}{10}\right)}{1 - 0.047\ln\left(\frac{1}{10}\right)} \right]^2 \times A \times C_s \times C_t \times C_y$$

## With:

Fwind : wind force [kN]

ρa : density of air 1.225 [kg/m3]

- V : 1-minute mean wind velocity at reference height 10 m [m/s]
- Z : height above sea surface [m]
- A : longitudinal projected area [m2]
- C<sub>s</sub> : shape coefficient, user defined or see Table 5.5. [-]
- Ct : truss coefficient, 0.6 for double-sided open truss work, 1 for solid bodies[-]
- $C_{\gamma}$  : shielding coefficient, subject to engineering judgement (default 1.0) [-]

# HOGESCHOOL UTRECHT



| Table 5.5 Shape coefficient C for three-dimensional bodies placed on a horizontal surface                                                                                                                                                                                                                                   |                                                                                                                   |        |           |              |                       |               |                  |      |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------|-----------|--------------|-----------------------|---------------|------------------|------|----|
| EXAMPLE A                                                                                                                                                                                                                                                                                                                   |                                                                                                                   |        | EXAMPL    | E B          |                       |               |                  |      |    |
| Plan shape                                                                                                                                                                                                                                                                                                                  | $\frac{1}{w}$                                                                                                     | b<br>d |           |              | C for he              | ight / breadt | h ratio <u>h</u> |      |    |
|                                                                                                                                                                                                                                                                                                                             |                                                                                                                   |        | Up to 1   | 1            | 2                     | 4             |                  | 6    |    |
| -di -                                                                                                                                                                                                                                                                                                                       |                                                                                                                   | ≥ 4    | 1.2       | 1.3          | L4                    | 1.5           |                  | 1.6  |    |
|                                                                                                                                                                                                                                                                                                                             | ≥ 4                                                                                                               | ≤ 1/4  | 0.7       | 0.7          | 0.75                  | 0 75          |                  | 0.75 |    |
| d_                                                                                                                                                                                                                                                                                                                          |                                                                                                                   | 3      | 1.1       | 1.2          | 1.25                  | 1.35          |                  | 1.4  |    |
| ┝┿ <u>╔</u> ╪                                                                                                                                                                                                                                                                                                               | 3                                                                                                                 | 1/3    | 07        | 0 75         | 0 75                  | 0.75          |                  | 0.8  |    |
| . v.                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                 | 2      | 1.0       | 1.05         | 11                    | 1.15          |                  | 1.2  |    |
| <br><br>                                                                                                                                                                                                                                                                                                                    |                                                                                                                   | 0 5    | 0.75      | 0.75         | 0.8                   | 0.85          |                  | 0.9  |    |
| 4                                                                                                                                                                                                                                                                                                                           |                                                                                                                   | 1.5    | 0.95      | 1.0          | 1.05                  | 1.1           |                  | 1.15 | -  |
|                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                 | 2/3    | 0.8       | 0.85         | 09                    | 0.95          |                  | 1.0  |    |
| Plan shape                                                                                                                                                                                                                                                                                                                  | 1<br>w                                                                                                            | b<br>d | C for hei | ght / breadt | h ratio $\frac{h}{b}$ |               |                  |      |    |
|                                                                                                                                                                                                                                                                                                                             |                                                                                                                   |        | Up to 0.5 | 1            | 2                     | 4             | 6                | 10   | 20 |
|                                                                                                                                                                                                                                                                                                                             | $ - \frac{a^{d}}{b} = 1 \qquad 1 \qquad 0.9 \qquad 0.95 \qquad 1.0 \qquad 1.05 \qquad 1.1 \qquad 1.2 \qquad 1.4 $ |        |           | 14           |                       |               |                  |      |    |
| <ul> <li>b = the dimension of the member normal to the wind.</li> <li>d - the dimension of the member measured in the direction of the wind.</li> <li>l = the greater horizontal dimension.</li> <li>w = the lesser horizontal dimension of a member.</li> <li>Example A: l = b, w = d. Example B: w = b, l = d.</li> </ul> |                                                                                                                   |        |           |              |                       |               |                  |      |    |

## Hull Resistance

$$R_{Hull} = R_F + R_{TR} + R_W + R_{VP} + R_{APP} + R_{All}$$

With:

- $R_{Hull}$  = resistance due to friction
- $R_{TR}$  = Resistance due to submerge stern
- $R_W$  = Wave making resistance
- $R_{VP}$  = Viscous pressure resistance





 $R_{APP}$  = Appendage resistance

 $R_{All}$  = Additional roughness resistance

Friction resistance

$$R_{F} = \frac{\rho_{w} \times V^{2} \times S \times 0.075}{[\log_{10}(R_{n}) - 2]^{2}}$$

With:

| R <sub>F</sub> | = Resistance due to friction [kN]             |
|----------------|-----------------------------------------------|
| $\rho_{\rm w}$ | = Water density 1.025 [mT/m]                  |
| S              | = Projected longitudinal wet hull surface     |
|                | $=2 \times L \times T \ [m^3]$                |
| R <sub>n</sub> | = Reynolds number                             |
|                | _ <u>V.L</u>                                  |
|                | - v                                           |
| ν              | = Kinematic viscosity of water 1E-6 $[m^2/s]$ |

Resistance due to submerged stern

$$R_{TR} = \frac{1}{2} \times \rho_{w} \times V^{2} \times A_{TR} \times C_{D-TR}$$

With:

| $R_{TR}$ = Resistance due to submerged stern [kN]                      |              |
|------------------------------------------------------------------------|--------------|
| $\rho_{\rm w}$ = Water density 1.025 [mT/m]                            |              |
| $A_{TR}$ = Submerged area of stern                                     |              |
| $= B \times T [m^2]$                                                   |              |
| C <sub>D-TR</sub> = Drag coefficient for stern resistance, approximate | ely by 0.213 |
| which is an upper estimation                                           |              |

Wave making resistance

$$R_{w} = Q \times F_{nB}^{6} \times \rho_{w} \times g \times B^{2} \times T$$

$$Q = 0.18367 \times \left(1 - C_p\right)^{-0.32144} \times \left(\frac{B}{L}\right)^{0.562} \times \left(\frac{B}{T}\right)^{0.22314} \times \left(\frac{L}{L_{ENTR}}\right)^{0.673}$$

With:

| = Wave making resistance [kN]          |
|----------------------------------------|
| = Water density 1.025 [mT/m]           |
| = Gravitational acceleration $[m/s^2]$ |
| = Froude number                        |
|                                        |





$$= \frac{V}{\sqrt{g \times B}}$$
C<sub>p</sub> = prismatic coefficient  

$$= \frac{\nabla}{L \times A_m}$$

$$\nabla$$
 = Displacement  

$$= L \times B \times T - \frac{1}{2}L_{ENTR} \times B \times T$$
 (for no scow barge)  

$$= L \times B \times T - L_{ENTR} \times B \times T$$
 (for scow barge)







$$A_{m} = \text{Cross sectional area of midship} = B \times T [m^{2}] L_{ENTR} = \text{Bow length} = max \left(\frac{T}{\tan \alpha}, 1\right) [m]$$

Viscous pressure resistance

$$R_{VP} = P \times \rho_{w} \times V^{2} \times B \times T$$
$$P = 0.11712 \times \left(\frac{T}{L}\right)^{0.78203} \times \left(1.05 - C_{PST}\right)^{-1.0366} \times \left(0.02 + 0.95\frac{H_{VA}}{T_{A}}\right)^{0.21336}$$

With:

 $R_{VP}$  = Viscous pressure resistance [kN]

- $\rho_w$  = Water density 1.025 [mT/m]
- C<sub>PST</sub> = Prismatic coefficient of aft-ship, approximately by 0.5 for barges with scow end and 1 for barges without scow end
- $H_{VA}/T_A$  = Ratio indicating pressure loss at stern, approximately by 1 for barges with scow and 0 for barge without scow end

# HOGESCHOOL UTRECHT





Appendage resistance

$$R_{APP} = 0$$

With:

R<sub>ALL</sub>: Resistance of appendages [kN]

Note: The appendage resistance is neglected because it is only give small contribution to the total hull resistance.

### Additional resistance

$$R_{ALL} = 7.3 \times R_F$$

With:

 $R_{ALL}\!\!:$  Additional resistance for full size hull roughness, fouling and corrosion [kN]

## Wave Drift Load

$$F_{wave} = C_1 \cdot g \cdot H_s^{2} \cdot B \cdot e^{C2.T} \cdot \left[ C_3 + (1 - C_3) \times (1 - \cos(\alpha))^{\sqrt{2}} \right]$$

Using:

$$C_1 = 1.6183.10^3 \frac{L}{B} - 3.3304.10^{-5} L \left(\frac{L}{B} - 10\right) - 4.802.10^{-3}$$

$$C_2 = 0.33 - 2.7066.10^{-3} L + 6.1392.10^{-6} L^2$$

Barge with a scow stern (slope at stern)

$$C_3 = 1 - 0.1401.T + 0.5412.10^{-3}.L.T + 0.2736.10^{-2}.T^2$$

Barge with a no scow stern (vertical stern)





# $C_3 = 1 - 0.1036.T + 0.31457.10^{-3}.L.T + 0.3519.10^{-2}.T^2$

# With:

| F <sub>wave</sub> | : Wave drift force [kN]                          |
|-------------------|--------------------------------------------------|
| g                 | : Gravitational acceleration [m/s <sup>2</sup> ] |
| Hs                | : Significant wave height [m]                    |
| В                 | : Width of barge [m]                             |
| Т                 | : Draft of barge [m]                             |
| L                 | : Length of barge at waterline [m]               |
|                   |                                                  |

 $\alpha$  : Slope of bow w.r.t. water surface [deg]





# LIST OF APPENDIXES

- Appendix A Heerema Marine Contractors (HMC) Report
- Appendix B Transportation Forces Calculation
- Appendix C Load-out Phases
- Appendix D Invader Tug
- Appendix E Emergency Towing Gear
- Appendix F Installation Phases





# APPENDIX A

# HEEREMA MARINE CONTRACTORS (HMC) REPORT



DEME DAEWOO SHIPBUILDING & MARINE ENGINEERING CO.,LTD.

Daewoo Shipbuilding & Marine Engineering Tombua Landana Compliant Piled Tower Transportation & Installation

Living Quarters (LQ) Grillage and Seafastening Design

Prepared by : Heerema Marine Contractors Nederland B.V. Vondellaan 55 2332 AA Leiden The Netherlands

Job No. : I/0310 HMC Doc No. : Client Doc No. :

| Rev. | Date     | Prep.       | Description  | Check | Appr.<br>Proj. | Appr.<br>Eng. | Appr.<br>Client |
|------|----------|-------------|--------------|-------|----------------|---------------|-----------------|
| A    | May 2007 | AHa &<br>FW | For Approval |       |                |               |                 |

 JOB NO.
 : I/0310

 COMP'D BY
 : AHa & FW

 CALC. NO
 :

 DATE
 : May 2007

| 1.0                                                                                                   | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.1                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>2.0</li> <li>2.1</li> <li>2.2</li> <li>2.3</li> <li>2.4</li> <li>2.5</li> <li>2.6</li> </ul> | GENERAL INFORMATION<br>Weight and C.o.G. Information<br>References<br>Material Information<br>Allowable Stresses<br>Computer Programs Used<br>Drawings / Sketches                                                                                                                                                                                                                                                                             | <b>2.1</b><br>2.1<br>2.2<br>2.2<br>2.2<br>2.2<br>2.2                                                                                                              |
| <b>3.0</b><br>3.1<br>3.2                                                                              | SUMMARY AND CONCLUSIONS<br>Summary<br>Conclusions                                                                                                                                                                                                                                                                                                                                                                                             | <b>3.1</b><br>3.1<br>3.1                                                                                                                                          |
| <b>4.0</b><br>4.1<br>4.2<br>4.3<br>4.4                                                                | CALCULATIONS<br>Load Distribution<br>SACS Models<br>Grillage Design<br>4.3.1 Beam capacity check<br>4.3.2 Plate girder<br>4.3.3 Grillage beam connection<br>4.3.4 Wing plate<br>4.3.5 Uplift capacity check<br>4.3.6 Stiffener<br>4.3.7 End stiffener<br>Seafastening Design<br>4.4.1 Pitch stopper<br>4.4.2 Roll brace<br>4.4.3 Plate connection to the deck<br>4.4.4 Plate connection to the deck<br>4.4.5 Seafastening beam capacity check | 4.0<br>4.1<br>4.6<br>4.20<br>4.20<br>4.24<br>4.28<br>4.29<br>4.24<br>4.28<br>4.29<br>4.44<br>4.46<br>4.73<br>4.77<br>4.80<br>4.84<br>4.86<br>4.89<br>4.93<br>4.96 |
| 4.5                                                                                                   | <ul> <li>4.5.1 Capacity of bulkhead columns at transverse webframes</li> <li>4.5.2 Capacity of bulkhead columns at transverse bulkhead</li> <li>Bollard Pull</li> </ul>                                                                                                                                                                                                                                                                       | 4.96<br>4.102<br>4.110                                                                                                                                            |
| <b>5.0</b><br>5.1<br>5.2<br>5.3<br>5.4<br>5.5                                                         | APPENDICES<br>Weight and C.o.G information<br>Transportation forces<br>Distribution load for seafastening<br>Standard seafastening design<br>Barge strength in SACS model                                                                                                                                                                                                                                                                     | <b>5.0</b><br>5.1<br>5.2<br>5.5<br>5.6<br>5.7                                                                                                                     |

2

 JOB NO.
 : I/0310

 COMP'D BY
 : AHa & FW

 CALC. NO
 :

 DATE
 : May 2007

### 1.0 INTRODUCTION

Client : DSME Project : Tombua Landana

| Location        | : Cabinda Block 14, Angola                         |
|-----------------|----------------------------------------------------|
| Report contents | : Living Quarters Grillage and Seafastening Design |
| Barge           | : Crowley C-411                                    |

### 1.1 General

Cabinda Gulf Oil Company (CABGOC), a Chevron Corporation affiliate, on behalf of itself and several other companies, intends to install a new Drilling and Production Platform (DPP) in Block 14, offshore Angola, West Africa, called the Tombua Landana DPP Project. They have awarded DSME (Daewoo Shipbuilding & Marine Engineering) an EPIC contract for the platform including pipelines consisting of a Compliant Piled Tower (CPT) and Topsides with process and drilling facilities.

The Platform will be located about 60 miles offshore from the Company operated Malongo shore base in approximately 1,214 feet (370 m) of water.

The offshore installation is scheduled to be performed in two phases

### Phase I: Late 2007 – Early 2008

Transportation and Installation of Levelling Pile Template (LPT), 4 Levelling Piles (LP), the Tower Base Template (TBT) and 12 Foundation Piles (FP).

### Phase II: Late 2008 – Early 2009

Completion of the Substructure which includes Transportation and Installation of Tower Bottom Section (TBS), Tower Top Section (TTS), barge bumpers (4x), boat landing (2x) followed by the Topsides Installations which include Transport and Installation of the Module Support Frame (MSF). The MSF supports the West, Centre and East Modules (WM, CM & EM). The second phase is completed with the installation of the Living Quarter (LQ), Flare, and ship loose items as required.

Heerema Marine Contractors BV has been contracted by Daewoo Shipbuilding & Marine Engineering CO. LTD. to transport the substructure elements and topside modules to location and perform the installation offshore.

### 2.0 GENERAL INFORMATION

Grillage and seafastening design is according to Noble Denton criteria for the large barge; due to the marine engineer have not done the motion analysis yet.

The static load distribution is based on Delta Engineering report and the dynamic load distribution is assumed the same. Once HMC gets the update report, the design must be checked in advance.

The horizontal load distribution is done by SACS model input for designing the transverse seafastening (see 4.78)

### 2.1 Weight and C.o.G. Information

According to the latest weight report 13 April 2007 the total Reported Lift Weight of the LQ is:

Weight = 3.650.320 lb (16242.98 kN)



The C.o.G relative to centre of module is: (see 5.1)

| X: | 17267.24 | mm from stern                                         |
|----|----------|-------------------------------------------------------|
| Y: | 7778.75  | mm from starboard                                     |
| Z: | 9177.35  | mm in vertical direction, from bottom of module steel |

| 2.2 | References     |                                                         |                                |
|-----|----------------|---------------------------------------------------------|--------------------------------|
|     | AISC           | "ASD Manual of Steel Construction"                      | 9 <sup>th</sup> edition, 1989  |
|     | ANSI / AWS     | "Structural Welding Code"                               | 16 <sup>th</sup> edition, 1998 |
|     | Noble Denton   | Report 0014/NDI, "General Guidelines for                | 1986                           |
|     |                | Marine Transportation"                                  | 41.                            |
|     | Blodgett, O.W. | "Design of welded structures",<br>ISBN 0118839527       | 12 <sup>th</sup> edition, 1982 |
|     | Straathof, Aad | "Introduction Courses for the T&I<br>'Junior' Engineer" |                                |

### 2.3 Material Information

| Item         | Material type | Yield stress          |
|--------------|---------------|-----------------------|
| Grillage     | High grade    | 345 N/mm <sup>2</sup> |
| Seafastening | High grade    | $345 \text{ N/mm}^2$  |
| Barge        | Low grade     | $235 \text{ N/mm}^2$  |

### 2.4 Allowable Stresses

÷ )

### 2.5 Computer Programs Used

| SACS     | Structural Finite Element Modelling program |
|----------|---------------------------------------------|
| MS Excel | Spreadsheet calculation program             |
| IPEX     | In-house developed spreadsheet suite        |

### 2.6 Drawings / Sketches

- LQ on the Crowley C-411 lay-out
- Grillage lay-out
- Seafastening lay-out

# 3.0 SUMMARY AND CONCLUSIONS

### 3.1 Summary

| Grillage detail   | Load case U.C | Reference  |
|-------------------|---------------|------------|
| Grillage beam PG  | 0.42          | Sheet 4.20 |
| 380x1524x38x28.58 |               |            |
| Grillage beam PG  | 0.5           | Sheet 4.22 |
| 190x1524x38x25.4  |               |            |
| Wing plates       | 0.89          | Sheet 4.37 |

| Seafastening detail         | Load case U.C | Reference  |
|-----------------------------|---------------|------------|
| Pitch stopper               | 0.74          | Sheet 4.81 |
| Roll brace                  | 0.83          | Sheet 4.84 |
| Seafastening beam WF 30x132 | 0.4           | Sheet 4.94 |

| Barge capacity            | Load case U.C | Reference   |
|---------------------------|---------------|-------------|
| Bulkhead column at row 25 | 0.97          | Sheet 4.99  |
| Bulkhead column at row 26 | 0.41          | Sheet 4.105 |

### 3.2 Conclusions

- Grillage and seafastening are strong enough to withstand the load
- Barge strength is sufficient

 JOB NO.
 : 1/0310

 COMP'D BY
 : AHa & FW

 CALC. NO
 :

 DATE
 : May 2007

2<sup>211</sup>)

| 4.0 | CALCULATIONS                                               | 4.0   |
|-----|------------------------------------------------------------|-------|
| 4.1 | Load Distribution                                          | 4.1   |
| 4.2 | SACS Models                                                | 4.6   |
| 4.3 | Grillage Design                                            | 4.20  |
|     | 4.3.1 Beam capacity check                                  | 4.20  |
|     | 4.3.2 Plate girder                                         | 4.24  |
|     | 4.3.3 Grillage beam connection                             | 4.28  |
|     | 4.3.4 Wing plate                                           | 4.29  |
|     | 4.3.5 Uplift capacity check                                | 4.44  |
|     | 4.3.6 Stiffener                                            | 4.46  |
|     | 4.3.7 End stiffener                                        | 4.73  |
| 4.4 | Seafastening Design                                        | 4.77  |
|     | 4.4.1 Pitch stopper                                        | 4.80  |
|     | 4.4.2 Roll brace                                           | 4,84  |
|     | 4.4.3 Plate connection to the deck                         | 4,86  |
|     | 4.4.4 Plate connection to LO beam                          | 4.89  |
|     | 4.4.5 Seafastening beam capacity check                     | 4.93  |
| 4.5 | Barge Capacity Check                                       | 4.96  |
| 110 | 4.5.1 Capacity of bulkhead columns at transverse webframes | 4.96  |
|     | 4.5.2 Capacity of bulkhead columns at transverse bulkhead  | 4.102 |
| 4.6 | Bollard Pull                                               | 4.110 |

2

### 5.0 APPENDICES

| 5.1 | Weight and C.o.G information       | 5.1 |
|-----|------------------------------------|-----|
| 5.2 | Transportation forces              | 5.2 |
| 5.3 | Distribution load for seafastening | 5.5 |
| 5.4 | Standard seafastening design       | 5.6 |
| 5.5 | Barge strength in SACS model       | 5.7 |

x

1

.\_\_/



| JOB NO.   | : | Î / D310       |
|-----------|---|----------------|
| COMP'D BY | : | Fenny          |
| CALC. NO. | : | RT 400 - RP 01 |
| DATE      |   | 30 May 2007    |



Row A (B-U)/8 × FV, Heave = 30 ft 5 3/4 in / 56 ft × 3268 - 1778, 68 kr

SHEET NO .: 4.3

| JOB NO.   | 1/0310   |      |
|-----------|----------|------|
| COMP'D BY | Fenny    |      |
| CALC. NO. | RT 400 - | RPOI |
| DATE      | 30 May - | 2007 |

 FH
 ± 0:54 g
 = 8832 KN
 (see sheet 54.)

 Moment
 =
 28 168 KNm

 Total moment
 =
 8832 X g. 177 + 28 168 = 109 222 KNm

DISTRIBUTION OVER ROW.



R = 109 222 / (56 × 0,3048) \* 6308,93 KN

| -     | FV, static<br>(KN) | FV, Heave<br>(KN) | ( KN )<br>Enih | Z Dyn max<br>(KN) | Fvi max<br>(FN) | FV, MIN<br>(KN) |
|-------|--------------------|-------------------|----------------|-------------------|-----------------|-----------------|
| ROW C | 9402,40            | 1489 , 32         | 6398 , 93      | 9668 / 2G         | 15290 , 66      | - 485, 86       |
| ROW A | 8040.58            | 1778 , 68         | 6398 ,93       | 8177.61           | 17018,19        | 662,97          |

### LOAD DISTRIBUTION PER EACH SUPPORT

There are transverse reafactenings in the ROW 1.3,6.8 of Uving Ruarters. These seafastenings can be used as Roll Relief for Grillage design since the strong points of LQ are only in the ROW 1.2,4.5,7.8, the Roll relief is only can be used in the ROW 1 & 8





|       | DATE 30-APR-2007 TIME 12:54:15 |                                        |                         |              |                                        |                          |                           |        |  |
|-------|--------------------------------|----------------------------------------|-------------------------|--------------|----------------------------------------|--------------------------|---------------------------|--------|--|
| ***** | ****                           |                                        |                         |              |                                        |                          |                           |        |  |
|       |                                |                                        | REA                     | CTION FORCES | AND MOMENTS                            |                          |                           |        |  |
| JOINT | LOAD                           | ************************************** | kips *****<br>FORCE (Y) | FORCE (Z)    | ************************************** | in-kip ***<br>MOMENT (Y) | ***********<br>MOMENT (Z) | %      |  |
| 100   | z                              | 0.488                                  | 44,644                  | 156.395      | D.000                                  | 0.000                    | 0.000                     | 4,24   |  |
| 103   | z                              | -1.778                                 | -26.219                 | 114,932      | 0.000                                  | 0.000                    | 0.000                     | 3,14   |  |
| 104   | Z                              | 80.861                                 | 24.355                  | 501.344      | 0.000                                  | 0.000                    | 0.000                     | 13,69  |  |
| 107   | z                              | 25.532                                 | -33.745                 | 366,252      | 0.000                                  | 0.000                    | 0.000                     | 10     |  |
| 108   | z                              | 3.413                                  | 11,501                  | 386,201      | 0.000                                  | 0.000                    | 0.000                     | 10,55  |  |
| 111   | z                              | -29.721                                | -12.725                 | 296.879      | 0.000                                  | 0.000                    | 0.000                     | 8 : H  |  |
| 11.6  | z                              | -3,280                                 | 55,800                  | 158.577      | 0.000                                  | 0.000                    | 0,000                     | 4.33   |  |
| 119   | Ż                              | 32,144                                 | -54,405                 | 236.193      | 0.000                                  | 0.000                    | 0.000                     | 6145   |  |
| 131   | z                              | 10.357                                 | -12.294                 | 291.607      | 0.000                                  | 0,000                    | 0.000                     | Fr. 56 |  |
| 136   | z                              | 4.030                                  | 9.475                   | 357,757      | 0.000                                  | 0,000                    | 0.000                     | 9.22   |  |
| 137   | z                              | -51.577                                | -22.190                 | 355.217      | 0.000                                  | 0.000                    | 0.000                     | 2.2    |  |
| 142   | z                              | -70,469                                | 15,802                  | 440.487      | 0.000                                  | 0.000                    | 0.000                     | 12,03  |  |
|       |                                |                                        |                         |              |                                        |                          | $\Sigma^{T}$              | 100    |  |

Tombua Landana - Static Reactions at Transport Supports

| JOB NO.   | : | I/0310        |  |
|-----------|---|---------------|--|
| COMP'D BY | : | Fenny         |  |
| CALC. NO. | : | QT 400 - RP01 |  |
| DATE      | : | 20 May 2007   |  |

Ð = 31,13 ξθ - Fax. Ŧν

FV - FH tan o

Roll relief for C-1 = 0,46 FH tan & 7,57 % = 185,72 KM C-8 : 0,46 FH tan 0 19,72% = 483,75 KH A-1 : 0154 FH tan & 7157 % - 218.02 КЧ A-8 . 0154 FH tan 0 19.72% = 567.89 KM

| PISTRIBUTION LOAD. | Force / strong point                                                                                                                  | ROIL TOLIOF                                                                                                                                                                                                                           | force / strong point                                                                                                                                                                                                                                              |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (%)                | ( KH)                                                                                                                                 | ( ( ( ( )                                                                                                                                                                                                                             | (Incl toll relief, KH)                                                                                                                                                                                                                                            |
| 3, 14              | 1014, 06                                                                                                                              | 185.72                                                                                                                                                                                                                                | 828 , 3Y                                                                                                                                                                                                                                                          |
| о                  | 3231.49                                                                                                                               | -                                                                                                                                                                                                                                     | 3231 + 49                                                                                                                                                                                                                                                         |
| £ , 11             | 2619,40                                                                                                                               | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                           | 2619 .40                                                                                                                                                                                                                                                          |
| 7.96               | 2572 .88                                                                                                                              | -                                                                                                                                                                                                                                     | 2572 , 88                                                                                                                                                                                                                                                         |
| 9, 70              | 3134, 12                                                                                                                              | -                                                                                                                                                                                                                                     | 3134 , 12                                                                                                                                                                                                                                                         |
| б. Ц5              | 2083,96                                                                                                                               | 483, 75                                                                                                                                                                                                                               | 1600 . 21                                                                                                                                                                                                                                                         |
| 4, 27              | 1379 - 89                                                                                                                             | 218,02                                                                                                                                                                                                                                | 1161.87                                                                                                                                                                                                                                                           |
| 13, 69             | 4423,42                                                                                                                               | -                                                                                                                                                                                                                                     | 4423,42                                                                                                                                                                                                                                                           |
| (D , 55            | 3407,50                                                                                                                               | e e e e e e e e e e e e e e e e e e e                                                                                                                                                                                                 | 3407,50                                                                                                                                                                                                                                                           |
| g, 17              | 3156 / 53                                                                                                                             | -                                                                                                                                                                                                                                     | 3156, 53                                                                                                                                                                                                                                                          |
| 12 , 03            | 3886, 47                                                                                                                              | ~                                                                                                                                                                                                                                     | 3886,47                                                                                                                                                                                                                                                           |
| ц. 33              | 1399 , 14                                                                                                                             | 567 .89                                                                                                                                                                                                                               | 831,26                                                                                                                                                                                                                                                            |
|                    | рістянецтіон цогр.<br>(%)<br>3, 14<br>10<br>8, 11<br>7, 96<br>9, 90<br>6, 45<br>4, 27<br>13, 69<br>10, 55<br>9, 97<br>12, 03<br>4, 33 | PISTRIBUTION LOAD.<br>(%)Force / strong point<br>(KH)3.141014,0610 $3231.49$ 8.11 $2619.40$ 7.96 $2572.88$ 9.70 $3134.12$ 6.45 $2083.96$ 4.27 $1379.89$ 13.69 $4423.42$ 10.55 $3407.50$ 9.97 $3156.53$ 12.03 $3686.47$ 4.33 $1399.14$ | pistreleution loap.<br>(%)Force / strong point<br>(KN)Roll relief<br>(KN)3, 141014, 06 $105.72$ 103231.49-8, 112619.40-7, 962572.88-9, 903134, 12-6, 452083.96483.954, 271379.89216, 0213, 694423.42-10, 553407.50-9, 973156.53-12, 033886.447-4, 331399.14567.89 |

SHEET NO :: 4 5

 $\Theta$ 6 € ⊗ © 9 9 ଡ଼ 3 ✐ 0 ©-6 6 @ 4  $\bigcirc$  $(\mathbf{O})$ 



-500;









# ISOMETRIC GRILLAGE I





•

MEMBER Z SHEAR & Y MOMENT DIAGRAM FOR LOAD CONDITION 1

### GRILLAGE 1





# ISOMETRIC GRILLAGE 2



REACTION FZ

LC LIST


t

ISOMETRIC GRIUNGE 3

.

÷.

,

i.



REACTION FZ

LC LIST



## GRILLAGE 3









ı









Ą

ISOMETRIC GRIUAGE & UPUFT

ŝ



REACTION FZ LC LIST

JOB NO. : <u>T/0310</u> COMP'D BY : <u>Fenny</u> CALC. NO. : <u>Q T 400 - R 101</u> DATE : <u>30<sup>14</sup> May</u> 107

4.3 GRILLAGE DEFIGN 4.31 GRILLAGE DEFIGN 4.31 GRILLAGE DEFIGN 4.31 GRILLAGE DEFIGN M. Max = 2062 A3 KNm (GRILLAGOI)  $\longrightarrow$  see sheet 412  $\therefore$  wax = 3591. 01 kN (GRILLAGOI)  $\longrightarrow$  see sheet 416 - (ACCE BENDING $G = \frac{M}{W} = \frac{2062.33 \text{ KM}}{3.04 \text{ KM}} = 67.65 \text{ M/mm}^2$ U.C.  $= \frac{67.65}{0.66 \text{ BUT}} = 0.297 \longrightarrow 0.K$ Check Shear  $T = \frac{V.5}{19 \text{ KM}} = \frac{2591.61}{2.32 \text{ KM}} = 10^3 \text{ KM}$ 

| Project       | Tombua Landana  |       |   |  |  |  |  |
|---------------|-----------------|-------|---|--|--|--|--|
| Subject       | Living Quarters |       |   |  |  |  |  |
| Job / Bid no. | o. I/0310       |       |   |  |  |  |  |
| Date          | 30-May-07       | Sheet | 1 |  |  |  |  |

| lategirder Description |         |         |        |       |       |          |  |
|------------------------|---------|---------|--------|-------|-------|----------|--|
|                        | Section | Section | Offset | Axial | Shear | Statical |  |
| section                | breadth | height  | ey     | area  | area  | moment   |  |
| no                     | [mm]    | [mm]    | [mm]   | [mm²] | [mm²] | [mm³]    |  |
| 1                      | 380.0   | 38.0    | 0.0    | 14440 | 1087  | 1.07E+07 |  |
| 2                      | 28.6    | 1448.0  | 0.0    | 41413 | 41413 | 1.07E+07 |  |
| 3                      | 380.0   | 38.0    | 0.0    | 14440 | 1087  | 0.00E+00 |  |
| 4                      | 0.0     | 0.0     | 0.0    | 0     | 0     | 0.00E+00 |  |
| 5                      | 0.0     | 0.0     | 0.0    | 0     | 0     | 0.00E+00 |  |
| 6                      | 0.0     | 0.0     | 0.0    | 0     | 0     | 0.00E+00 |  |
| 7                      | • 0.0   | 0.0     | 0.0    | 0     | 0     | 0.00E+00 |  |
| 8                      | 0.0     | 0.0     | 0.0    | . 0   | 0     | 0.00E+00 |  |
| 9                      | 0.0     | 0.0     | 0.0    | 0     | 0     | 0.00E+00 |  |
| 10                     | 0.0     | 0.0     | 0.0    | 0     | 0     | 0.00E+00 |  |
| 11                     | 0.0     | 0.0     | 0.0    | 0     | 0     | 0.00E+00 |  |
| 12                     | 0.0     | 0.0     | 0.0    | 0     | 0     | 0.00E+00 |  |
| 13                     | 0.0     | 0.0     | 0.0    | 0     | 0     | 0.00E+00 |  |
| 14                     | 0.0     | 0.0     | 0.0    | 0     | 0     | 0.00E+00 |  |
| 15                     | 0.0     | 0.0     | 0.0    | 0     | 0     | 0.00E+00 |  |
|                        | 380     | 1524    |        | 70293 | 43586 |          |  |

## PLATE GIRDER PROPERTIES

## **Section Properties**

| Areas:                                     | AX               | 70293    | [mm²]              |
|--------------------------------------------|------------------|----------|--------------------|
|                                            | AY<br>AZ         | 28880    | [mm²]              |
|                                            | HZ_              | 40000    | [[1]]]]]           |
| Dimensions:                                | Y                | 380.0    | [mm]               |
|                                            | Z                | 1524.0   | [mm]               |
|                                            |                  |          |                    |
|                                            | Weight           | 5.4      | [kN/m]             |
|                                            | (Example offers) | 762.0    | fmml               |
| Distances to neutral axis:                 | ez (From bottom) | 702.0    | []]]]]]]]          |
|                                            | Z-ez             | 762.0    | [mm]               |
|                                            | ey (From left)   | 190.0    | [mm]               |
|                                            | Y-ey             | 190.0    | [mm]               |
| Section moduli:                            | Wy.min           | 3.04E+07 | [mm³]              |
|                                            | Wy max           | 3.04E+07 | [mm <sup>3</sup> ] |
|                                            | Wz min           | 1.84E+06 | [mm <sup>3</sup> ] |
|                                            | Wz may           | 1.84E+06 | [mm <sup>3</sup> ] |
|                                            | ¥¥Z,IIIAA        | 1.072.00 | finin 1            |
| Moments of inertia:                        | ly               | 2.32E+10 | [mm^4]             |
|                                            | ĺz               | 3.50E+08 | [mm^4]             |
| Torsional constant (torsional resistance): | lt               | 2.52E+07 | [mm^4]             |
|                                            |                  |          |                    |
| Radii of gyration:                         | ry               | 574.3    | [mm]               |
|                                            | rz               | 70.6     | [mm]               |
|                                            |                  |          |                    |

Note: -Torsional Constant / Resistance is only valid for open girders

Last Revision: May 98

| JOB NO.   | : <u>1/0310</u> |
|-----------|-----------------|
| COMP'D BY | : Andrew. M.    |
| CALC. NO. | · RT400-R102    |
| DATE      | : 23rd May '02  |



|                               | ł            | PLATEG                                 | IRDER PI | KUPEK HES                                   |                  |                                |                              |
|-------------------------------|--------------|----------------------------------------|----------|---------------------------------------------|------------------|--------------------------------|------------------------------|
| Plategirder I                 | Description  | `````````````````````````````````````` |          |                                             |                  |                                | 7                            |
|                               | Section      | Section                                | Offset   | Axial                                       | Shear            | Statical                       | 1                            |
| section                       | breadth      | height                                 | ev       | area                                        | area             | moment                         |                              |
| no                            | [mm]         | ៣៣                                     | [mm]     | [mm²]                                       | [mm²]            | [mm³]                          |                              |
| 1                             | 190.0        | 38.0                                   | 0.0      | 7220                                        | 965              | 5.36E+06                       |                              |
| 2                             | 25.4         | 1448.0                                 | 0.0      | 36779                                       | 36779            | 5.36E+06                       |                              |
| 3                             | 190.0        | 38.0                                   | 0.0      | 7220                                        | 965              | 0.00E+00                       |                              |
| 4                             | 0.0          | 0.0                                    | 0.0      | 0                                           | 0                | 0.00E+00                       | 7                            |
| 5                             | 0.0          | 0.0                                    | 0.0      | 0                                           | 0                | 0.00E+00                       | 1                            |
| 6                             | 0.0          | 0.0                                    | 0.0      | 0                                           | 0                | 0.00E+00                       | 1                            |
| 7                             | 0.0          | 0.0                                    | 0.0      | 0                                           | 0                | 0.00E+00                       | ]                            |
| 8                             | 0.0          | 0.0                                    | 0.0      | 0                                           | • 0              | 0.00E+00                       | ]                            |
| 9                             | 0.0          | 0.0                                    | . 0.0    | 0                                           | 0                | 0.00E+00                       |                              |
| 10                            | 0.0          | 0.0                                    | 0.0      | 0                                           | 0                | 0.00E+00                       |                              |
| 11                            | 0.0          | 0.0                                    | 0.0      | 0                                           | 0                | 0.00E+00                       |                              |
| 12                            | 0.0          | 0.0                                    | 0.0      | 0                                           | 0                | 0.00E+00                       |                              |
| 13                            | 0.0          | 0.0                                    | 0.0      | 0                                           | 0                | 0.00E+00                       |                              |
| 14                            | 0.0          | 0.0                                    | 0.0      | 0                                           | 0                | 0.00E+00                       |                              |
| 15                            | 0.0          | 0.0                                    | 0.0      | 0                                           | 0                | 0.00E+00                       |                              |
|                               | 190          | 1524                                   |          | 51219                                       | 38710            |                                |                              |
| <b>Section Prop</b><br>Areas: | perties      |                                        |          |                                             | AX<br>AY<br>AZ   | 51219<br>14440<br>38710        | [mm²]<br>[mm²]<br>[mm²]      |
| Dimensions:                   |              |                                        |          |                                             | Y<br>Z           | 190.0<br>1524.0                | [mm]<br>[mm]                 |
|                               |              |                                        |          |                                             | Weight           | 3.9                            | [kN/m                        |
| Distances to i                | neutral axis | :                                      |          | ez (From bo<br>Z-ez<br>ey (From lef<br>Y-ey | ittom)<br>it)    | 762.0<br>762.0<br>95.0<br>95.0 | [mm]<br>[mm]<br>[mm]<br>[mm] |
| Section modu                  | ıli:         |                                        |          |                                             | Wy,min<br>Wy,max | 1.89E+07<br>1.89E+07           | [mm³]<br>[mm³]               |

Wz,min

Wz,max

ly

Ιz

lt

ry

rz

4.78E+05 [mm<sup>3</sup>]

4.78E+05 [mm<sup>3</sup>]

1.44E+10 [mm^4]

4.54E+07 [mm^4]

1.49E+07 [mm^4]

530.2 [mm]

29.8 [mm]

## 

Note: -Torsional Constant / Resistance is only valid for open girders

Torsional constant (torsional resistance):

Last Revision: May 98

Radii of gyration:

Moments of inertia:

| JOB NO.   | : | t / | 0310 | *****  |
|-----------|---|-----|------|--------|
| COMP'D BY | : | fen | ny   |        |
| CALC. NO. | : | &T  | 400  | - RP01 |
| DATE      | : | 30  | May  | 2007   |
|           |   |     |      |        |



L - 10 th - 3048 mm

Chear force between Flange and Web.

$$T = \frac{V.C}{Iy tw}$$

$$= \frac{3294.05 10^{3} 1.07.107}{2.22 10^{10} 28.50}$$

$$= \frac{72.16}{10} \frac{N/mm^{2}}{10}$$

| JOB NO.          | :   | [/0310         |
|------------------|-----|----------------|
| COMP'D BY        | ;   | Ŧenny          |
| CALC NO          | •   | RT 400 - RP 01 |
| DATE             | •   | 30 May 2007    |
| (JP) ( ) ( ) ( ) | • • |                |

 $U.C. = \frac{53.16}{0.11.345}$ = 0.39 < 1  $\longrightarrow$  0.K.  $\frac{Weld}{L} = \frac{F}{2 a \cdot l}$  $53.16 = \frac{3294.05}{2 a \cdot 3048}$ 

$$10 = a\sqrt{2} = 14,37 \text{ mm}$$

a = 10,16 mm

min W = 3/8 in (9.53 mm) Max W = 28.58 mm (1.13 in) A = 0.53 in (13.47 mm)

GRILLAGE 2

shear force (F) = 2055.93 KH (see sheet 4.14)

Length - 10 Ft = 3049 mm

shear force between flange and web

$$T = \frac{V \cdot C}{Jy + W}$$

$$= \frac{2655 \cdot 02 \cdot 10^3 \cdot 1.07 \cdot 107}{2.32 \cdot 10^{-10} \cdot 28.58}$$

$$= \frac{46 \cdot 09 \quad N/mm^2}{10}$$

| JOB NO. : E / 0310                                                                        | SHEET NO.: 4.26                              |
|-------------------------------------------------------------------------------------------|----------------------------------------------|
| COMP'D BY : Fenny                                                                         |                                              |
| CALC. NO. : QT 400 - RP 01                                                                |                                              |
| DATE : 30 May 2007                                                                        |                                              |
|                                                                                           |                                              |
|                                                                                           | nan sana ang ang ang ang ang ang ang ang ang |
| $U.C = \frac{U6.09}{0.4345}$                                                              |                                              |
| $= 0.33 < 1 \rightarrow 0.K$                                                              |                                              |
| Weld                                                                                      |                                              |
|                                                                                           |                                              |
| $T = \frac{f}{2ak}$                                                                       |                                              |
| $46.09 = \frac{2855.93.10^{-3}}{2 a 3046}$                                                |                                              |
| at - 10, 16 mm                                                                            |                                              |
| min 10 = 3/6 in (0.53 mm) 2 10 = 0.75 in (10.05                                           | mm)                                          |
| max W = 28.58 mm (1.13 in) a = 0.53 in (13.44)                                            | 7 mm)                                        |
|                                                                                           |                                              |
| <u>GRILLAGT 3</u>                                                                         |                                              |
| chear Force (F) : 3591. B1 KH (SPO sheet 416)                                             |                                              |
| L : 10 Ft : 3048 mm                                                                       |                                              |
| chear force between flange and web                                                        |                                              |
| $\tau = \frac{V \cdot S}{Jy \cdot W}$                                                     |                                              |
| $\frac{3591.81}{2.32} \cdot \frac{10^3}{10} \cdot \frac{1.07}{28.58} \cdot \frac{107}{2}$ |                                              |
| = 57,96 N/mm <sup>2</sup>                                                                 |                                              |

$$u_{c} = \frac{57,96}{014 - 345}$$
  
= 0142 - 21 - > 0.4

| JOB NO.   | ; | 1 /0310         |
|-----------|---|-----------------|
| COMP'D BY | : | Fenny           |
| CALC. NO. | : | RT 400 - R.P.01 |
| DATE      | : | 20 May 2007     |

weld

$$T = \frac{F}{2.a l}$$
57.06 =  $\frac{3591.61.10^{3}}{2.a.3048}$ 

a 10, 17 mm

| win lo  | * | 249 in   | ( raia 52. Q) | ) | $\omega$ . | 0.75 in | ( 19,00 mm)  |
|---------|---|----------|---------------|---|------------|---------|--------------|
| mark 10 | × | 28,58 MM | ( 1.13 in )   | ) | a :        | 0.5% in | ( 13. 47 mm) |

Note Fillot weld of PG 190 x 1524 x 38 x 25.4 is the same as fillet weld of PG 380 x 1524 x 38 x 28.58

Fillet Weld Minimum size (AWG)

| Thickness of thicker plate to be joined | Minimum leg size of fillet weld * |
|-----------------------------------------|-----------------------------------|
| 0 - 1/2 in                              | 3/16 in                           |
| 1/2 in - $3/4$ in                       | Vy In                             |
| 3/4 in - 11/2 in                        | slig in                           |
| $1^{1/2}$ in - 21/4 in                  | 3/8 أ11                           |
| 21/4 in $-$ G in                        | 1/2 in                            |
| > 6 in                                  | 5/8 în                            |

\* Do not need exceed the thickness of the thinner plate

| JOB NO.   | : | I 10310        |
|-----------|---|----------------|
| COMP'D BY | : | Fenny          |
| CALC. NO. | : | RT 400 - RP 01 |
| DATE      | : | 30 May 2007    |



| JOB NO.   | $\Sigma/0310$    |
|-----------|------------------|
| COMP'D BY | ·: Andrew H.     |
| CALC. NO. | : O.T.400 - RPO] |
| DATE      | : Rat May 'or    |
|           |                  |



| JOB NO.   | : <u>T/0310</u>            |  |
|-----------|----------------------------|--|
| COMP'D BY | : Andrew, H.               |  |
| CALC. NO. | : QT400-RP01               |  |
| DATE      | : 24 <sup>10</sup> May '07 |  |
|           |                            |  |

$$\frac{V(log plate}{D} = \frac{190 + 2.62 \pm 2.252}{2} = 508 \text{ mm}$$

$$\frac{V(log plate}{D} = \frac{190 + 2.62 \pm 2.252}{2} = 508 \text{ mm}$$

$$\frac{V(log plate}{D} = \frac{190 + 2.62 \pm 2.252}{2} = 508 \text{ mm}$$

$$\frac{V(log plate}{D} = \frac{190 + 2.62 \pm 2.252}{2} = 508 \text{ mm}$$

$$\frac{V(log plate}{D} = \frac{190 + 2.62 \pm 2.252}{2} = 508 \text{ mm}$$

$$\frac{V(log plate}{D} = \frac{190 + 2.62 \pm 2.252}{2} = 508 \text{ mm}$$

$$\frac{V(log plate}{D} = \frac{190 + 2.62 \pm 2.252}{2} = 508 \text{ mm}$$

$$\frac{V(log plate}{D} = \frac{190 + 2.62 \pm 2.252}{2} = 508 \text{ mm}$$

$$\frac{V(log plate}{D} = \frac{190 + 2.62 \pm 2.252}{2} = 508 \text{ mm}$$

$$\frac{V(log plate}{D} = \frac{190 + 2.62 \pm 2.252}{2} = 508 \text{ mm}$$

$$\frac{V(log plate}{D} = \frac{190 + 2.62 \pm 2.252}{2} = 508 \text{ mm}$$

$$\frac{V(log plate}{D} = \frac{190 + 2.62 \pm 2.252}{2} = 508 \text{ mm}$$

$$\frac{V(log plate}{D} = \frac{190 + 2.62 \pm 2.252}{2} = 508 \text{ mm}$$

$$\frac{V(log plate}{D} = \frac{190 + 2.62 \pm 2.252}{2} = 508 \text{ mm}$$

$$\frac{V(log plate}{D} = \frac{190 + 2.62 \pm 2.252}{2} = 508 \text{ mm}$$

$$\frac{V(log plate}{D} = \frac{190 + 2.62 \pm 2.252}{2} = 508 \text{ mm}$$

$$\frac{V(log plate}{D} = \frac{190 + 2.62 \pm 2.252}{2} = 508 \text{ mm}$$

$$\frac{V(log plate}{D} = \frac{190 + 2.62 \pm 2.252}{2} = 508 \text{ mm}$$

$$\frac{V(log plate}{D} = \frac{190 + 2.62 \pm 2.252}{2} = 508 \text{ mm}$$

$$\frac{V(log plate}{D} = \frac{190 + 2.62 \pm 2.252}{2} = 508 \text{ mm}$$

$$\frac{V(log plate}{D} = \frac{190 + 2.62 \pm 2.252}{2} = 508 \text{ mm}$$

$$\frac{V(log plate}{D} = \frac{190 + 2.62 \pm 2.252}{2} = 508 \text{ mm}$$

| JOB NO.   | I/0310         |
|-----------|----------------|
| COMP'D BY | Andrew. H.     |
| CALC. NO. | : QT400 - RP01 |
| DATE      | : 24" Man'02   |

| V16 : 50                                                             | = <u>311,02</u><br>655 71,20*                 |           | 964,95 mm    |
|----------------------------------------------------------------------|-----------------------------------------------|-----------|--------------|
| $16 = \frac{11p - 0rs \sqrt{n/d}}{5m \theta}$                        | 500-(0,5.320,55)<br>Sin 21,20°                |           | 363,10 mm    |
| Derign Calculation=<br>Description of loads                          |                                               |           |              |
| 1. Uniform lood<br>Q = Fir<br>RWP                                    | = <u>1352,0</u><br>2.500.10 <sup>-2</sup>     | 2         | 1321.5 KM/m  |
| 2. Plate load<br>Fp = Q.b                                            | = 1352,8.350.10-3                             | <b>52</b> | 466.02 kH    |
| 3. Direct bearing<br>Fb = 0, SFr - Fn                                | = (0, 5.1352, 8) = 466,02                     | ţ         | 210,38 KM    |
| 4. Strut force<br>$T_a = \frac{F_p}{\sin e}$                         | - <u>166702</u><br>Sh 71,20                   | 1         | 4 92,80 M    |
| 5. $theritantal Component$<br>$F_{t} = \frac{F_{t}}{T_{th}} P$       | - <u>466102</u><br>tao 2120                   | *.        | 150,67 KM    |
| Plate Design                                                         |                                               |           |              |
| 6. Acting stress in plate stad<br>$\frac{1}{10} = \frac{Fa}{Sb. tp}$ | = <u>402,08.10<sup>2</sup></u><br>311,02.25,4 | ÷         | 62:32 M/mm2  |
| 7. Allawable stress in stender n<br>s1 = <u>OA-USVIE</u><br>tr       | $= \frac{0,7.363,10112}{25.2}$                | <u>.</u>  | 35<br>VI     |
| $F_{-}(C_{c})$                                                       | = 26,51 Ksi                                   | 3         | 106,30 "Imma |

8. Stress ratio 
$$\frac{1}{186, 38} = \frac{62,25}{186, 38} = \frac{0,32}{132}$$

|          |          | 4 22     |
|----------|----------|----------|
| CLICET N | n ·      |          |
| SHELLIN  | <b>U</b> | ******** |

| JOB NO.   | : <u>J/0310</u> |
|-----------|-----------------|
| COMP'D BY | : Andrew . 4.   |
| CALC. NO. | : OT 400-RPD1   |
| DATE      | : 24th May '07  |

Weld design A. Weld to web herefth of web, tw 1410 mm 9. Vertical  $f_{vureld,v} = \frac{F_p \sqrt{2}}{2.a_{w,vb}} + \frac{F_b \sqrt{2}}{2a_{w,lw}} = \left(\frac{466.02\sqrt{2}}{2.8.964.95} + \frac{210.38\sqrt{2}}{2.8.410}\right) \cdot 10^3 = 55.08 \frac{1}{2.8}$ 10 Horizontal 150,67.103 0 8.9(400 = 10,28 M/m Avered, n = <u>Ft</u> 11. Shear in Funded triveld = (friveld, v2 + triveld, h= (55,882 + 10,192 = 56, 81 M/m 12 Stress ratio = 56,81 Ucz - Irweld = 0,41

- 13. Vertical  $f_{vuidd, v_2} = \frac{\overline{F_p}}{2^{ab. v/a}} = \frac{266,02.10^3}{2.12.320,55} = 59,10 \text{ Mm}$
- 14. Horizontal

$$fruid h_2 = \frac{f_1 \sqrt{2}}{2 a_0 \cdot h/d} = \frac{150,67 \sqrt{2} \cdot 10^3}{2 \cdot 12 \cdot 320.55} = 28,46 \text{ M/m}$$

15. Shear in weld  $f_{\text{Weld,b}} = \sqrt{f_{\text{Weld,v}_2}^2 + f_{\text{hweld,h}^2}} = \sqrt{59.10^2 + 90.16^2} = 65.60 \text{ mm}$ 

| 16. Stress ratio<br>$U_{5} = \frac{1}{0.41 \text{ Fyield}}$                                                                  | N | 65,60      | = <u>0,7</u>  |
|------------------------------------------------------------------------------------------------------------------------------|---|------------|---------------|
| <u>Check bearing on the deck</u><br><u>Frimax</u> = 1352,8 kM<br><u>Fy barge</u> = 235 M/mm2<br>plate thick, bargetp = 11 mm |   |            |               |
| $\sqrt{E} = \frac{F_{v,max}}{2 VV_{p} \cdot t_{p}}$                                                                          | n | 1352,8.103 | = 121,05 t/m  |
| Stress ratio<br>UC = JC<br>0.6 Fy borge                                                                                      | R | 0,6.225    | = <u>0.86</u> |

| JOB NO.   | : <u>T/0310</u> |
|-----------|-----------------|
| COMP'D BY | Andrew H.       |
| CALC. NO. | QT400-RP01      |
| DATE      | · 24th May '07  |
| DAIL      | •               |



| JOB NO.   | I/0310          |
|-----------|-----------------|
| COMP'D BY | : Andrew. H.    |
| CALC. NO. | : QT-400 - RP01 |
| DATE      | : 21th May 'of  |

$$\begin{split} & W_{b} : \underbrace{\Omega}_{GFb} & : \underbrace{-\frac{622,15}{G_{FF} - 212^{12}}}_{G_{FF} - 212^{12}} & W(2.5) \text{ mm} \\ & W_{b} = \underbrace{W_{b} - 0.5 \, V.61}_{SFb - b} & \underbrace{-\frac{956 \cdot (6/5.459), 517}{Srh - 54, 23^{12}}}_{Srh - 54, 257} & 689.17 \text{ mm} \\ \hline \\ & W_{b} = \underbrace{W_{b} - 0.5 \, V.61}_{Sh - b} & \underbrace{-\frac{956 \cdot 7, 16}{Srh - 54, 23^{12}}}_{Srh - 54, 257} & = 689.17 \text{ mm} \\ \hline \\ & \underbrace{Dercription - 0.4 \, loads}_{G_{a} - \frac{47}{Sub_{b}}} & = \underbrace{-\frac{2657, 16}{a_{a} - 370, 10^{2}}}_{Srh - 54, 257} & = 1286, 82 \, \frac{110}{m} \\ \hline \\ & \Omega. - \frac{47}{Sub_{b}} & = \underbrace{-\frac{2657, 16}{a_{a} - 370, 10^{2}}}_{Srh - 51, 268} & = 1286, 82 \, \frac{110}{m} \\ \hline \\ & \Omega. - \frac{47}{Sub_{b}} & = \underbrace{-\frac{2657, 16}{a_{a} - 370, 10^{2}}}_{Srh - 51, 268} & = 1286, 82 \, \frac{110}{m} \\ \hline \\ & R. - \frac{4}{Sub_{b}} & = 1306, 95, 800, 10^{-1} & = 1109, 46 \, \text{kH} \\ \hline \\ & S. Direct bearng \\ & \overline{T}_{b} = 0.56 & = 1306, 95, 800, 10^{-1} & = 1109, 46 \, \text{kH} \\ \hline \\ & S. Direct bearng \\ & \overline{T}_{b} = 0.56 & = 1306, 95, 800, 10^{-1} & = 1109, 46 \, \text{kH} \\ \hline \\ & S. Direct bearng \\ & \overline{T}_{b} = 0.56 & = 1306, 95, 800, 10^{-1} & = 1109, 46 \, \text{kH} \\ \hline \\ & S. Direct bearng \\ & \overline{T}_{b} = 0.56 & = 1306, 95, 800, 10^{-1} & = 1288, 49 \, \text{kH} \\ \hline \\ & A. Artus force \\ & \overline{T}_{a} = \frac{4}{50} & \frac{1003, 46}{Sm - 51, 20^{12}} & = 1288, 49 \, \text{kH} \\ \hline \\ & \overline{T}_{b} = \frac{7}{50} & \frac{1003, 46}{Sm - 51, 20^{12}} & = 1218, 49 \, \text{kH} \\ \hline \\ & \overline{T}_{c} = \frac{7}{50} & \frac{1003, 46}{Sm - 51, 20^{12}} & = 1218, 49 \, \text{kH} \\ \hline \\ & \overline{T}_{c} = \frac{7}{50} & \frac{1003, 46}{Sm - 51, 20^{12}} & = 1218, 49 \, \text{kH} \\ \hline \\ & \overline{T}_{c} = \frac{7}{50} & \frac{1003, 46}{Sm - 51, 20^{12}} & = 66 \, \frac{1216, 400, 105}{Sm - 51, 20^{12}} & = 66 \, \frac{7}{50, 10} \, \frac{1003}{Sm - 51} & = 152, 36 \, \frac{10}{M_{mm}} \\ \hline \\ & \overline{T}_{c} = (C_{c}) & = 91, 69 \, \frac{157}{Sm} & = 152, 36 \, \frac{M_{mm}}{M_{mm}} \\ \end{array}$$

8. Stress ratio  $\frac{tr}{VC_1} = \frac{81,22}{152,36} = \frac{0.53}{152,36}$ 

JOB NO. : 1/0310 COMP'D BY : And can) . H. CALC. NO. : OT 400- RP01 : 24 May 07 DATE

.

$$f_{vureld,v} = \frac{F_{p}\sqrt{2}}{2.a_{w},w_{b}} + \frac{F_{b}\sqrt{2}}{2a_{w},w_{b}} = \frac{(109,48\sqrt{2})}{2.8,102,10} + \frac{219,12\sqrt{2}}{2.8,102} + \frac{29,12\sqrt{2}}{2.8,100} + \frac{100}{2}$$

10. Horizontal

$$f_{\text{wedd},h} = \frac{FE}{2aw.wlb} = \frac{712,40.10^2}{2.8.1182,09} = 37,64 \text{M}_{\text{m}}$$

11. Shear in Funded

12. Stress ratio

$$Uc_2 = \frac{f_{viveld}}{O_{2}iF_{vield}} = \frac{103.71}{0.41.345} = 0.75$$

13. Vertical

$$f_{v_{widd},v_{2}} = \frac{\overline{F_{p}}}{2^{a_{b},w_{d}}} = \frac{1109,76.10^{3}}{2.12.959,55} = 60,06 \frac{N_{o}}{2}$$

14. Horizontal

15. Shear in weld  

$$f_{\text{Wweld,b}} = \sqrt{f_{\text{Wweld,v}_2}^2 + f_{\text{hweld,h}^2}} = \sqrt{60,86^2 + 55,27^2} = 82,21 \frac{11}{100}$$

| JOB NO.   | : <u>I/0310</u> |
|-----------|-----------------|
| COMP'D BY | : Andraw M.     |
| CALC. NO. | : OT403-201     |
| DATE      | : 24" May '07   |

16. Stress ratio UC3 = trueld, b 0,4 Fyreld  $=\frac{82,21}{0,4,345}$ = 0,82 Check bearing on the deck FV.max = 2657,16 KM Fy barge = 235 M/mm2. platethick.bargetpi = 11 mm.  $= \frac{2637,16,10^{\circ}}{2,500,11}$ = 126,081/m  $T_{c} = \frac{F_{v,max}}{2W_{o,th}}$ Stress ratio UC . Je 0,6Fy borge = <u>126,08</u> 0,6.235 = 0,89

| JOB NO.   | <u>. T/0310</u> |
|-----------|-----------------|
| COMP'D BY | : Andren). H.   |
| CALC. NO. | : QT400-RP01    |
| DATE      | : 2415 May '02  |

$$\frac{V_{diag}plate}{D}$$
To deck from PG 130 × 1524 × 38 × 25.4  
Detril Detril D  
To deck from PG 130 × 1524 × 38 × 25.4  
Detril Detril D  
To deck from D  
To de

.

| JOB NO.   | I/0310          |
|-----------|-----------------|
| COMP'D BY | Andraw. H.      |
| CALC. NO. | · QT-400 - RP01 |
| DATE      | : 24th Man' 07  |

| Velb: Cor of                                                                  | *2         | - 140,92<br>Car 82,72                    | ş        | 1108, M | har an       |
|-------------------------------------------------------------------------------|------------|------------------------------------------|----------|---------|--------------|
| $\frac{1}{2} = \frac{1}{2m} = \frac{1}{2m} = \frac{1}{2}$                     | ř          | 20,6,6- (015.547,49)<br>En 63,20°        | •        | 513.19  | for the      |
| Design Calculation=<br>Description of loads                                   |            |                                          |          |         |              |
| 1. Uniform lood<br>Q = Fin<br>Q = Fin                                         | Û.         | 945,60<br>2.726,8.10-2                   | 4        | 6-1,92  | r st /<br>/m |
| 2. Plate Load<br>Fp = Q.b                                                     | ¢.         | 641,92.570,6.60                          | 44       | 341.42  | k pol        |
| 3. Direct bearing<br>Tb: 0,5Fr-Fp                                             | <b>5</b> 1 | (0.5.641.92)- 721.42                     | 1        | 101,42  | ia fot       |
| 4. Strut force<br>$F_a = \frac{F_p}{5mp}$                                     | 31         | 371,42                                   | 2.<br>13 | 414 22  | K11          |
| s. $+$ lorizontal Component<br>$F_t = \frac{F_p}{+a_1 \Phi}$                  | ÷          | 271.42<br>Jan 63,42 °                    | -        | 182, 48 | kot          |
| Plate Design                                                                  |            |                                          |          |         |              |
| 6. Acting stress in plate struct<br>$f_{c} = \frac{F_{a}}{s_{b} \cdot t_{p}}$ | Ŧ          | -1:4, 22.13 <sup>2</sup><br>190, 92.25,4 | <b>9</b> | 33,22   | H/mm 2       |
| 7. Allowable stress instander ne<br>$sl = \frac{OP - lb VR}{br}$              | دی<br>=    | 0,7.516,19 V12<br>25.4                   | Į.       | 49      |              |
| 8. Stress ratio to                                                            | 5          | 24,51 Ksi                                | 5        | 173,32  | H/Mmz        |

$$UC_1 = \frac{tr}{Feller} = \frac{33,22}{133,32} = 0,13$$

SHEET NO: 440

JOB NO. : T/0310COMP'D BY : <u>Andrey</u>. <u>4</u>. CALC. NO. : <u>O.T. GOO-RPD1</u> DATE : <u>29<sup>46</sup> May'07</u>

1.

- S. Vertical  $f_{uveld,v} = \frac{F_p \sqrt{2}}{2.a_{uv} v_b} + \frac{F_b \sqrt{2}}{2.a_{uv} l_{uv}} = \frac{(271.42\sqrt{2})}{2.6(100.07)} + \frac{101.42\sqrt{2}}{2.9(101)} \cdot \frac{10}{2} = 35.96 \text{ M}$
- 10. Horizontal

$$f_{\rm weld,h} = \frac{f_{\rm E}}{2 \, \omega \, {\rm wlb}} = \frac{183,38.10^3}{2.8.100.09} = 10,34 \, M_{\rm re}$$

11. Shear in Funded

12. Stress ratio

$$U_{C_{2}} = \frac{f_{V_{u}}}{O_{2}} + \frac{f_{V_{u}}}{O_{1}} + \frac{37,21}{O_{1}} = \frac{37,21}$$

- 13. Vertical  $f_{vudd}, v_2 = \frac{F_p}{2^{ab}, v_d a} = \frac{371, 42.15^3}{2.0.547, 49} = 412, 39$  M/m
- 14. Horizontal

$$fruidding = \frac{f_1 \sqrt{2}}{2 ab. \sqrt{d}} = \frac{103, 30.0^3 \sqrt{2}}{2.8.547, 49} = 29.61 M/m$$

15. Shear in wold  

$$f_{vweld,b} = \sqrt{f_{vweld,v_2}^2 + f_{hweld,h^2}} = \sqrt{g_{2,39}^2 + 2g_{,61}^2} = 51,71 \frac{1}{m_{m_1}}$$

| JOB NO.   | : 5/0310       |
|-----------|----------------|
| COMP'D BY | : Andrau . K.  |
| CALC. NO. | : OT403-201    |
| DATE      | : 29th May 'of |

16. Stress ratio  $U_{c_{3}} = \frac{4veld.b}{04F_{yreld}} = \frac{51.71}{0.4.2.45} = 0.37$   $\frac{Check bearing on the deck}{7V.max} = 945.68 kM$   $F_{y} barge = 235 M/mm^{2}$  plote thick, barge.tp = 16.5 mm  $U_{c} = \frac{F_{v.max}}{2Wp.tp} = \frac{945.60.10^{3}}{2.436.6.16r^{5}} = 30.9 M/m^{2}$   $M_{c} = \frac{50.9}{0.6F_{y}barge} = \frac{30.9}{0.6.255} = 0.28$ 

| JOB NO.   | : 210310        |
|-----------|-----------------|
| COMP'D BY | · Andrew. R.    |
| CALC. NO. | : OT-100 - RP01 |
| DATE      | : 24th May 07   |



- only need for end sliftner - for one stiller coloculation deball E, see sheet 4.73

| JOB NO.   | : <u>F10310</u> |
|-----------|-----------------|
| COMP'D BY | · Andrew. H     |
| CALC. NO. | : QTM00 - RPO1  |
| DATE      | : RISH May '07  |



| JOB NO.   | : <u>I/0310</u> |
|-----------|-----------------|
| COMP'D BY | : Andrews. 4    |
| CALC. NO. | : Q 7400 - RP01 |
| DATE      | : 21" May '07   |



| JOB NO.   | : | L/0310         |
|-----------|---|----------------|
| COMP'D BY | : | Fenny          |
| CALC. NO. | : | QT 400 - RP 01 |
| DATE      | : | 30 May 2007    |

| 43 | G STIFFENER                      |       |             |          |         |      |            |
|----|----------------------------------|-------|-------------|----------|---------|------|------------|
|    | Stiffened webs and Flanges Under | Conce | ntrated For | ces      |         |      |            |
|    | GRILLAGE I PORt I                |       |             |          |         |      |            |
|    | Input Data                       |       |             |          |         |      |            |
|    | Compressive Force                | R     | 1161 .87    | KM       | 2G1, 20 | kips | (sheet 4.5 |
|    | Enhancement Factor (for Pbf)     |       | 1, 33       |          |         |      |            |
|    | Web thickness                    | tw    | 28,58       | mm       | 1, 12   | מו   |            |
|    | flange thickness                 | tf    | 38          | mm       | 1,50    | in   |            |
|    | overall member depth             | d     | 1524        | mm       | 60      | in   |            |
|    | Flange Breadth                   | bf    | 380         | mm       | 14,96   | Ìn   |            |
|    | Root radius / weld size          | r     | 19,05       | linin    | 0,75    | ìn   |            |
|    | Unbraced length of flange        | ١     | 3048        | mm       | 120     | in   |            |
|    | End distance                     | Ĝ     | 1175,45     | рт       | 46, 28  | in   |            |
|    | Stiff bearing length             | Н     | 1324        | MM       | 52, 13  | in   |            |
|    | yield chress                     | Ŧy    | 345         | $N/mm^2$ | 50      | ŧsī  |            |
|    | Include One - third overstress?  | yes   |             |          |         |      |            |
|    | Factored load                    | Pbf   | 1549,16     | кИ       | 348, 27 | lbf  |            |
|    | Web depth                        | h     | 1448        | mm       | 57,01   | ìn   |            |
|    | clear web depth                  | de    | 1409,9      | 10M      | 55, 51  | Ìn   |            |
|    | (d-dc)/2                         | K     | 57,05       | Μm       | 2,25    | in   |            |

| JOB NO.   | : ., | 1/0310         |
|-----------|------|----------------|
| COMP'D BY | :    | Fenny          |
| CALC. NO. | :    | QT 400 - RP 01 |
| DATE      | :    | 30 May 2007    |



| JOB NO.   | : | 1/0310         |
|-----------|---|----------------|
| COMP'D BY | : | Fenny          |
| CALC. NO. | : | RT 400 - RP 01 |
| DATE      | : | 30 May 2007    |

KILY Web Clipping (Buckling)  

$$\rightarrow$$
 concentrated load is applied pare than a differce d/2 from the end of the member  $R \cdot cq_1 \leq tw^2 (1+3) (\frac{W}{4}) (\frac{4w}{4t})^{1/5} \sqrt{\frac{1}{4y} - \frac{1}{4t/4w}}$   
 $\cdot 1661 \cdot 24$  kips  
 $\cdot 5366 \cdot 17 \text{ KM} > 1161 \cdot 87 \text{ KM} (R)$   
 $\text{UC} \cdot c_1 \text{IU} \rightarrow \text{No} \quad cherense required$   
KILS Oldeway web buckling  
 $\frac{dc/4w}{t/2f} = 6.2 > 1.7 \rightarrow \text{No} \quad chippener required}$   
KILC Compression duckling of the web  
 $\frac{1100 \text{ tw}^3 \sqrt{7y}}{100 \text{ tw}^3} = 118 \cdot 51 \text{ Im}$   
 $\cdot 301 \cdot 7 \text{ two } > 1409.0 \text{ mm} (d_c)$   
 $chippener required$ 

| JOB NO.   | : | E / 0310       |
|-----------|---|----------------|
| COMP'D BY | : | Fenny          |
| CALC. NO. | : | RT 400 - RP 01 |
| DATE      | : | 30 MCIY 2007   |

| Stiffened webs and Flanges Und | er Con | centrated For | ces   |         |      |             |
|--------------------------------|--------|---------------|-------|---------|------|-------------|
| GRILLAGE 1 Part 2              |        |               |       |         |      |             |
| Input Data                     |        |               |       |         |      |             |
| Compressive Force              | R      | 44 23, 42     | КM    | 994,42  | kips | (sheet u.5) |
| Enhancement Factor (for Pbf)   |        | 1, 33         |       |         |      |             |
| Web thickness                  | tw     | 28,58         | mm    | 1, 12.  | ìn   |             |
| tiange thickness               | tf     | 39            | mm    | 1,50    | in   |             |
| overall member depth           | d      | 1524          | mm    | 60      | ìb   |             |
| Flange Breadth                 | bf     | 390           | ក្រាក | 14,96   | Ìh   |             |
| Root radius / weld size        | ٢      | 19,05         | ហារា  | 075     | Ìn   |             |
| Unbraced length of flange      | ł      | 3048          | mm    | 12.0    | in   |             |
| End distance                   | ę      | 630,24        | юIŊ   | 24,81   | Ìn   |             |
| Stiff bearing length           | Н      | 1324          | mn    | 52, 13  | in   |             |
| yield stress                   | Fy     | 345           | N/mm² | 50      | ⊧sī  |             |
| Include One -third overstress? | yes    |               |       |         |      |             |
| Factored load                  | Pbf    | 5897,89       | КN    | 1325.90 | lbf  |             |
| Web depth                      | h      | 1448          | mm    | 57,01   | in   |             |
| clear web depth                | dc     | Щ09, 9        | m     | 55, 51  | İn   |             |
| (d - dc)/2                     | K      | 571 05        | mm    | 2,25    | in   |             |

| JOB NO.   | : | E / 0310       |
|-----------|---|----------------|
| COMP'D BY | : | Fenny          |
| CALC. NO. | : | QT 400 - RP 01 |
| DATE      | : | 30 May 2007    |



UC = 0,46

No chiffener required

.
| JOB NO.   | : 1/0310         |
|-----------|------------------|
| COMP'D BY | : Fenny          |
| CALC. NO. | : QT 400 - RP 01 |
| DATE      | 30 May 2007      |

K 1.4 Web Crippling (Buckling)  
→ concentrated toad is applied less than a distance d/2 from the end of the member  

$$R = 34 \text{ tw}^2 (1+3 (\frac{N}{d})(\frac{4w}{4})^{1/5}) \sqrt{\frac{4}{5} + \frac{4}{5}}$$
  
 $= 947.59 \text{ kpc}$   
 $= 4215.08 \text{ kN} < 4423.42 \text{ kN} (R)$   
 $Wc = 1.05 \rightarrow \text{criffence Required}$   
K 1.5 Sideway web buckling

$$\frac{dc/4w}{1/bf} = 6.2 > 1.7 \rightarrow \text{ND stiffener required}$$

## K.I.G Compression Buckling of the Web

¥.1\*\*

$$\frac{4100 \text{ tw}^3 \sqrt{Fy}}{Pbf} = 31.14 \text{ in}$$
  
: 791.06 mm < 1409.9 mm (dc)

stiffener required



| JOB NO.   | : | I / 0310       |
|-----------|---|----------------|
| COMP'D BY | : | Fenny          |
| CALC. NO. | : | RT 400 - RP 01 |
| DATE      | : | 30 May 2007    |

## Stiffened Webs and Flanges Under Concentrated Forces

GRILLAGE 2 PORt 1

Input bata

| Compressive Force             | R   | 3407.50 | K4N               | 766,04   | kips | (cheet 45) |
|-------------------------------|-----|---------|-------------------|----------|------|------------|
| Enhancement Factor (for Pbf)  |     | 1, 33   |                   |          |      |            |
| Web thickness                 | ţw  | 28,58   | <sup>የ</sup> በከካ  | 1, 12    | Ìh   |            |
| Flange thickness              | ff  | 38      | mm                | 1.50     | in   |            |
| cverall member depth          | d   | 1524    | т                 | 60       | 'n   |            |
| Flange Breadth                | bf  | 390     | mm                | 14,96    | ìn   |            |
| Root radius / weld size       | Г   | 19,05   | mm                | 0.75     | In   |            |
| Unbraced length of flange     | l   | ३०५८    | mm                | 12.0     | in   |            |
| End distance                  | ę   | 3001 04 | mm                | 11.81    | ÌŊ   |            |
| Chilf bearing length          | Н   | 1324    | mm                | 52, 13   | in   |            |
| view stress                   | Ŧy  | 345     | N/mm <sup>2</sup> | 50       | Fri  |            |
| Include One-third overstress? | yes |         |                   |          |      |            |
| Factored load                 | Pbf | 4543,33 | ۴N                | 1021, 38 | lbf  |            |
| Web depth                     | h   | 1448    | nin               | 57,01    | In   |            |
| clear web depth               | dc  | 1409, 9 | നന                | 55, 51   | Ìn   |            |
| (d-dc)/2                      | K   | 571 05  | mnı               | 2,25     | in   |            |

| JOB NO.   | : /0310         |
|-----------|-----------------|
| COMP'D BY | : Fenny         |
| CALC. NO. | :RT 400 - RP 01 |
| DATE      | 30 May 2007     |



UC · 0136 → HO stiffener required

| JOB NO.   | : | 1 / | 10310 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|-----------|---|-----|-------|----------------------------------------|
| COMP'D BY | : | Fer | ny    |                                        |
| CALC, NO. | : | QT  | 400 - | RP 01                                  |
| DATE      | : | 20  | May   | 2007                                   |

KI.4 Web Crippling (Buckling)  

$$\rightarrow$$
 concentrated (and it applied left than a dictored dig from the end of the member  
 $R + 24 \text{ twild} (1+3)(\frac{4}{4!})^{1/5} \sqrt{\frac{2}{4!} - \frac{44}{1!}}$   
 $= 943 \cdot 59 \text{ kips}$   
 $= 4215 \cdot 26 \text{ kM} > 3403 \cdot 5 \text{ kM} (R)$   
 $402 \cdot 6 \text{ RI} \rightarrow 100 \text{ shippenell} \text{ resulted}$   
KI.5 Aldeway web buckling  
 $\frac{dc}{1/4m} = 6.2 > 1.3 \rightarrow 100 \text{ triffener feasilited}$   
KI.6 Compression Buckling of the Web  
 $\frac{4000 \text{ tw}^3 \sqrt{24!}}{\text{RE}} = 40.43 \text{ in}$   
 $= 1026.42 \text{ man } < 1409.9 \text{ mm} (d_6)$   
 $= 1026.92 \text{ man } < 1409.9 \text{ mm} (d_6)$   
 $= 1026.92 \text{ man } < 1409.9 \text{ mm} (d_6)$ 

SHEET NO: 4 54

## Stiffoned Webs and Flanges Under Concentrated Forces

GRILLAGE Z Part 2

Input Data

| Compressive Force              | R   | 3156. 53 | KN    | 709.62 | kips (sheet 45) |
|--------------------------------|-----|----------|-------|--------|-----------------|
| Enhancement Factor (for Pbf)   |     | 1, 33    |       |        |                 |
| Web thickness                  | tw  | 28.58    | mm    | 1, 12  | Ìh              |
| Flange thickness               | tf  | 38       | mm    | 1,50   | ìn              |
| cvcrall member depth           | d   | 1524     | mm    | 60     | ìb              |
| Flange Breadth                 | bf  | 380      | μim   | 14,96  | in              |
| Root radius / weld size        | Г   | 19,05    | mn    | 075    | ìn              |
| Unbraced length of flange      | l   | 3048     | m     | 12.0   | aí              |
| End distance                   | Ģ   | 782.64   | nm    | 30, 81 | Ìŋ              |
| stiff bearing length           | Н   | 1324     | mm    | 52, 13 | ai              |
| yield stress                   | Ŧy  | 345      | N/mm² | 50     | i24             |
| Include One -third overstress? | yes |          |       |        |                 |
| Factored load                  | Pbf | 4208, 71 | КN    | 946.16 | lbf             |
| Web bepth                      | h   | १५५८     | mm    | 57,01  | in              |
| clear web depth                | dc  | 1409.9   | mm    | 55, 51 | İn              |
| (d-dc)/2                       | K   | 571 05   | mm    | 2,25   | in              |

| JOB NO.   | : | 1 / 0310       |
|-----------|---|----------------|
| COMP'D BY | : | Fenny          |
| CALC. NO. | : | QT 400 - RP 01 |
| DATE      | : | 30 May 2007    |



| JOB NO.   | :. | I / 0310       |
|-----------|----|----------------|
| COMP'D BY | :. | Ŧenny          |
| CALC. NO. | :. | RT 400 - RP 01 |
| DATE      | :. | 20 May 2007    |

K 1.4 Web Crippling (Buckling)  
→ concentrated load is applied less than a distance d/2 from the end of the member  
R = 69.5 tw<sup>2</sup> (1+3 (
$$\frac{H}{d}$$
)( $\frac{4w}{4f}$ )<sup>1/5</sup>)  $\sqrt{4y}$  tf/tw  
= 1661. 24 Fips  
= 6366. 19 KN > 2156.53 KN (R)  
UC = 6.36 → Ho stiffener required  
K 1.5 Sideway web buckling  
 $\frac{dc/4w}{1/bf}$  = 6.2 > 1.9 → Ho stiffener required  
K.1.6 Compression Buckling of the web  
 $\frac{4000 \text{ tw}^2 \sqrt{4y}}{8 \text{ tf}}$  = 43.64 in

SHEET NO: 4. 57

- 1108,56 mm < 1409.9 mm

No (fiffener rewuired



## Stiffoned webs and Flanges Under Concentrated Forces

GRILLAGE 3 PARt 1

Input Data

| Compressive Force              | R   | 3886, 47       | FM                | 873, 71    | kips (sheet 4.5) |
|--------------------------------|-----|----------------|-------------------|------------|------------------|
| Enhancement Factor (for Pbf)   |     | 1, 33          |                   |            |                  |
| Web thickness                  | tw  | 28,58          | mm                | 1, 12      | ìb               |
| flange thickness               | tf  | 38             | mm                | 1.50       | ìn               |
| overall member depth           | d   | 1524           | mm                | 60         | ίŊ               |
| Flange Breadth                 | bf  | 380            | mm                | 14,96      | ìn               |
| Root radius / weld size        | Г   | 19,05          | mm                | 075        | ìn               |
| Unbraced length of flange      | ۱   | 3048           | mm                | 120        | jIJ              |
| End distance                   | Ð   | 147, 64        | юm                | 5,81       | ÌŊ               |
| Stiff bearing length           | Н   | 1324           | mm                | 52, 13     | in               |
| yield stress                   | Ŧy  | 345            | N/mm <sup>2</sup> | 50         | 124              |
| Include One -third overstress? | yes |                |                   |            |                  |
| Factored load                  | Pbf | 5181,96        | кN                | 11 GY - 95 | lbf              |
| Web beeth                      | h   | 1448           | mn                | 57,01      | Ìn               |
| clear web depth                | dc  | Щ <i>0</i> 9,9 | mm                | 55, 51     | in               |
| (d - dc)/2                     | K   | 571 05         | mm                | 2,25       | in               |

| JOB NO.   | : | t / 0310       |
|-----------|---|----------------|
| COMP'D BY | : | Fenny          |
| CALC. NO. | : | RT 400 - RP 01 |
| DATE      | : | 30 May 2007    |



JOB NO. : <u>† / 0310</u> COMP'D BY : <u>Fenny</u> CALC. NO. : <u>&T 400 - RP 01</u> DATE : <u>30 May 2007</u>

K 1.4 Web Chippling (Buckling)  

$$\rightarrow$$
 concentrated load is applied less than a distance d/2 from the end of the member  
 $R = 34 \text{ tw}^2 (1+3(\frac{H}{d})(\frac{tw}{H})^{1/5}) \sqrt{\frac{1}{49} \cdot \frac{H}{4w}}$   
 $= 949, 00 \text{ kM}^2$   
 $= 4215 \cdot 06 \text{ km} > 3006 \cdot 47 \text{ kM} (R)$   
 $UC = 0, 92 \rightarrow \text{ No chippense resoluted}$   
K 1.5 Sideway web buckling  
 $\frac{dc}{1/54} = 6.2 > 1.9 \rightarrow \text{ Ho chippense resoluted}$   
K.1.6 Compression Buckling of the Web  
 $\frac{4100 \text{ tw}^3 \sqrt{4u}}{84} = 35.45 \text{ in}$   
 $= 900.36 \text{ km} < 1409.9 \text{ km} (dc)$   
 $\text{Ho chippense resoluted}$   
 $\frac{1}{536}$ 

.

| JOB NO.   | :     | <u>t</u> / 0310 |
|-----------|-------|-----------------|
| COMP'D BY | :     | ‡enny           |
| CALC. NO. | • ••• | QT 400 - RP 01  |
| DATE      | :     | 30 May 2007     |

## Stiffoned webs and flanges Under Concentrated Forces

GRILLAGE 3 PARt 2

Input Data

| Compressive Force             | R   | 1600,21   | FN                | 359,74 | kips | ( sheet | 4.5) |
|-------------------------------|-----|-----------|-------------------|--------|------|---------|------|
| Enhancement factor (for Pbf)  |     | 1, 33     |                   |        |      |         |      |
| Web thickness                 | tw  | 28,58     | mm                | 1, 12  | ìn   |         |      |
| flange thickness              | tf  | 38        | mm                | 1,50   | in   |         |      |
| cverall member depth          | d   | 1524      | mm                | 60     | ìh   |         |      |
| Flange Breadth                | bf  | 380       | шm                | 14,96  | ìn   |         |      |
| Root radius / weld size       | Г   | 19,05     | mm                | 0.75   | ìn   |         |      |
| Unbraced length of flange     | l   | 3048      | mm                | 120    | ìn   |         |      |
| End distance                  | e.  | 2161,92   | m                 | 65.g   | ÌŊ   |         |      |
| Stiff bearing length          | Н   | 1324      | ៣ព                | 52, 13 | ัก   |         |      |
| yield ctress                  | Fy  | 345       | N/mm <sup>2</sup> | 50     | ŧsi  |         |      |
| Include One -third overstrem? | yes |           |                   |        |      |         |      |
| Factored load                 | Pbf | 2133.61   | кH                | 479,65 | lbf  |         |      |
| web beath                     | h   | 1448      | m                 | 57,01  | in   |         |      |
| clear web depth               | de  | 14 09 , 9 | tom               | 55, 51 | in   |         |      |
| (d-dc)/2                      | K   | 571 05    | Mm                | 2,25   | in   |         |      |

| JOB NO.   | : 1 / 0210       |
|-----------|------------------|
| COMP'D BY | : Fenny          |
| CALC. NO. | : RT 400 - RP 01 |
| DATE      | 30 May 2007      |



| JOB NO.   | : 1/0310       |
|-----------|----------------|
| COMP'D BY | Fenny          |
| CALC. NO. | RT 400 - RP 01 |
| DATE      | 20 May 2007    |

k 1.4 Web Clippling (Buckling)  
→ concentrated load is applied motethan a distance dl2 from the end of the member  
R : 
$$e_{1.5} tw^2 (1+3) (\frac{H}{d}) (\frac{tw}{4})^{1/5} \sqrt{\frac{1}{3}y - \frac{1}{6}/tw}$$
  
=  $1861 \cdot 24$  kpc  
=  $6366 \cdot 19 tri > 1600 \cdot 21$  kN (R)  
UC :  $0.19 \rightarrow 10$  cheftener: teauired  
k 1.5 Stdeway web buckling  
 $\frac{dc}{1/bt} = 6.2 > 1.7 \rightarrow 10$  (fiften er: teauired  
k.1.6. Compression Buckling of the Web  
 $\frac{400 tw^3 \sqrt{Hy}}{Rt} = 86.09$  in  
:  $2186 \cdot 93$  mm > 1409.9 mm (dc)  
stiffen er: teauired



| JOB NO.   | : | E / | 0310  | •••• bbat et 10-1 marga passan beau |
|-----------|---|-----|-------|-------------------------------------|
| COMP'D BY | ; | Fen | лу    | 1)avea()+())3+(1),474] meanstroom   |
| CALC. NO. | : | QT  | 400 · | - R.P. 01                           |
| DATE      | : | 20  | Мау   | 2007                                |



#### Check shear

H/tw = 1524 / 28.58 + 53.33

| Tupe       | thear force | T = V.S / (tw t) | a    | a/H  | Tall       | u.c. |                          |
|------------|-------------|------------------|------|------|------------|------|--------------------------|
|            | ( 44 )      | ( H/mm 2)        | (mm) |      | $(H/mm^2)$ |      |                          |
| GRILIAGE I | 3294.05     | 53.36            | 2434 | 1,60 | 137,90     | 0,39 | No stiffener<br>required |
| GRILIOGE 2 | 2855 ,93    | 46, 26           | 2764 | 1.61 | 134, 45    | 0134 | No stiffenet<br>required |
| GRIIIAGE 3 | 3591,81     | 58, 19           | 2916 | 1.91 | 134. 45    | 0143 | Ho chefener              |

# Table Alco

( allowable shear stress in web of plate gird

| Туре       | shear force<br>(KN) | TI = V.C (tw 1)<br>(N/mm <sup>2</sup> ) | Tall = 0:4 Fy<br>( H/mm <sup>2</sup> ) | μ. ο | •                     |
|------------|---------------------|-----------------------------------------|----------------------------------------|------|-----------------------|
| GRIIIAGQ I | 3294,05             | 53, 36                                  | 138                                    | 0139 | No stiffener required |
| GRIIIABE 2 | 2855.93             | 46, 26                                  | 138                                    | 0,34 | No stiffener required |
| GRILLAGE 3 | 3591 - 81           | 58,19                                   | 138                                    | 0142 | No shffener required  |

| JOB NO.   | : | t / 0310       |
|-----------|---|----------------|
| COMP'D BY | : | Fenny          |
| CALC. NO. | : | RT 400 - RP 01 |
| DATE      | : | 30 May 2007    |

#### TRANSVERSE Intermediate stiffeners

 $dw/tw = 1446 / 28.56 = 50.67 < 260 \rightarrow No$  (fiffener required

#### Bearing chiffeners

actual bending stress in GIRDER:

| Туре           | Moment<br>(KNM) | C = M/W<br>(M/mm <sup>2</sup> ) | ( N/mm²) | uc   |    |           |          |
|----------------|-----------------|---------------------------------|----------|------|----|-----------|----------|
| Grillabo (     | 2062.93         | 67.82                           | 227, 6   | 0130 | Но | chiffener | reauired |
| <br>GRIIIABE Z | 1603.91         | 53,91                           | 227.6    | Oizy | No | (tiffener | resuited |
| GRIII050 3     | 224, 13         | 7,37                            | 227,6    | 0.03 | Но | chffener  | required |

### check if bearing stiffeners are needed at the point of load :

compressive stress at web toe of einder fillet.

N = 423 mmK = tf + W = 38 + 19,05 = 57,1 mm

GRIIIAGE I 
$$O = \frac{R}{tw(H+2k)} \leq 0.75 \text{ Fy}$$

$$= \frac{3294.05 10^3}{28.50 (423.+2.57.1)} \leq 0.75.345$$

= 214.63 H/mm<sup>2</sup> < 258.64 H/mm<sup>2</sup>

UC: 
$$\frac{214,63}{256,64}$$
  
 $0,83 \rightarrow No$  (fiftener required)

$$\frac{R}{W (H+2k)} \leq 0.75 \text{ Fy}$$

$$= \frac{2855.93 \text{ 10}^{-3}}{28.58 (423 + 2.57, 01)} \leq 0.75 345$$

$$= 186.08 \text{ M/mm}^2 \leq 258.64 \text{ M/mm}^2$$

| JOB NO.   | : | t / 0310      |
|-----------|---|---------------|
| COMP'D BY | : | Fenny         |
| CALC. NO. | : | RT 400 - RP01 |
| DATE      | : | 20 May 2.007  |

 $u.c = \frac{186.08}{258.64}$ , 0, 72 -> No stiffener required cellage 3:  $O = \frac{P}{W(N+2k)} \leq 0.75 \text{ Fy}$  $= \frac{3591.61 10^3}{28.58 (423 + 2 57.1)} \leq 0.75 345$ = 234.03 N/mm<sup>2</sup> < 258,64 N/mm<sup>2</sup> UC 258, 64

= 0.90 -> No stiffener required

stiffener bimensions



= 227,6 H/mm<sup>2</sup>

| Type       | chear force<br>(KN) | A = R/Jall<br>(mm <sup>2</sup> ) | 25 tw<br>(mm)   | A web<br>(mm ²) | As<br>(mm 2) | ts = As /2bs<br>(mm) |
|------------|---------------------|----------------------------------|-----------------|-----------------|--------------|----------------------|
| 6Rilla59 1 | 3294.05             | 14472.68                         | <b>२</b> 14, 38 | 20413.27        | (3358.68     | 38.01                |
| GRIIIQEE 2 | 2855.93             | 12 547 +76                       | 714, 38         | 20413, 27       | - 7865 . 50  | - 22.36              |
| GRINABE 3  | 3591.81             | 15780.91                         | 714,38          | 20 413, 27      | - 4632 , 35  | - 13 , 18            |

To prevent local stiffener buckling

| $\frac{bs}{ts}$ | 4 | R<br>T    |   |    |   |          |  |
|-----------------|---|-----------|---|----|---|----------|--|
| 175,71<br>ts    | 5 | 95<br>V50 |   |    |   |          |  |
| ŧ٢              | ≽ | 12.08     | > | ts | : | 28,58 Mm |  |

| JOB NO.   | ; | 1 / 0310       |
|-----------|---|----------------|
| COMP'D BY | : | Fanny          |
| CALC. NO. | : | QT 400 - RP 01 |
| DATE      | : | 30 May 2007    |

A web + stiffener = 25 tw tw + 2 bc. ts

= 914,38 28,6 + 2 175,71 28,58

- 30 456, 99 mm 2

| Туре       | chear foice<br>(FN) | Jactual = V/A webt stitf<br>(H/mm2) | Jall = 0166 Fy<br>(H/Mm 2) | u.c  |    |
|------------|---------------------|-------------------------------------|----------------------------|------|----|
| ERIIIOED   | 3294,05             | 108, 15                             | 227.6                      | 0,48 | 0¢ |
| GRIllabo 2 | 2855.93             | 98, 77                              | 227.6                      | ощ   | OK |
| 6R110583   | 3591.81             | 117, 93                             | 227,6                      | 0152 | OK |

check stiffener profile area as a column

$$Ix = \frac{45 \text{ bf}^{3}}{12} + \frac{(25 \text{ tw} - 45) \text{ tw}^{3}}{12}$$

$$= \frac{26.56 \cdot 360^{2}}{12} + \frac{(25 \text{ 28}.58 - 28.58) \text{ 28}.58^{2}}{12}$$

$$\Gamma_{X} = \sqrt{\frac{3x}{A}}$$

$$= \sqrt{\frac{1220202481}{20406009}}$$

· 65.84 mm

| JOB NO.   | :  | [ /  | 03(0 |   | •••••• |       |
|-----------|----|------|------|---|--------|-------|
| COMP'D BY | ;  | - en | ny   |   |        | ***** |
| CALC. NO. | :6 | 2T   | 400  |   | RP     | 01    |
| DATE      | :  | 50   | May  | } | 2.00   | 27-   |



SHEET NO: 4 68

- = 3294,05 103 /2 . 42 175.71
- = 144 701 440, 2 Nmm

| JOB NO.       : $1 / 0310$ COMP'D BY :       Fenny         CALC. NO.       : $KT + 400 - RP 0$ DATE       :       30 May 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | SHEET NO.: <u>469</u> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|
| $T_{\parallel} = \frac{F}{2aL}$ $\frac{3294.05 \cdot 10^{3}}{2 a \cdot 1409.9}$ $= 1462 \cdot 10 / a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                       |
| $T_{\perp} = \frac{M}{2.a L^2}, \frac{14440.2}{2.a 440.2}, \frac{1440.2}{2.a 440.2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                       |
| <u>Check</u> shear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                       |
| $T_{11} = 1168.19 / a$<br>138 = 1168.19 / a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 Tall = 014 Fy * | 138 N/mm 2            |
| a: 8.5 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                       |
| $T_{1} = 36.4 / a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                       |
| 138 - 36,4 /a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                       |
| a = 0126  mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                       |
| $\frac{Check}{T_{1}} = \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}} \frac{1}{T_{1}$ |                   |                       |
| $138 = \sqrt{(1168.19/a)^2 + (36.40/a)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                       |
| a = B.5 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                       |
| → a = 6,47 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                       |

 $W = a \sqrt{z} = 11.98 \text{ mm}$  W = 0.95 in (19.05 mm) W = 0.95 in (19.05 mm) W = 0.53 in (13.5 mm)W = 0.53 in (13.5 mm)

| JOB NO.   | : | E / | 0310  |       |
|-----------|---|-----|-------|-------|
| COMP'D BY | : | Fer | INY   |       |
| CALC. NO. | : | RT  | 400 - | RP 01 |
| DATE      | : | 30  | мαу   | 2007  |

| GRILLAGE 2                                         |                                         |
|----------------------------------------------------|-----------------------------------------|
| Length of fillet weld = $dW - 2W = 1$              | 448 - 2.19.05 = 1409.9 mm               |
| F = 2855.93 KN                                     |                                         |
| $M = F/2 \times 1/2 bs$                            |                                         |
| 2855.03 10 3 /2 1/2 145.71                         |                                         |
| - 125 455 650 Mmm                                  |                                         |
| $T_{\parallel} = \frac{F}{2aL}$                    |                                         |
| $\frac{2855.93}{2} \frac{10^{3}}{1409.9}$          |                                         |
| 1012. OI /a                                        |                                         |
| $t_1$ , $\frac{M}{2aL^2}$                          |                                         |
| 125 455 650<br>2 a 1409.9 <sup>2</sup>             |                                         |
| = 31.56 / a                                        |                                         |
| Check shear                                        |                                         |
| T/ - 1012.01 /a                                    | ; Tall = 014 Fy = 138 N/mm <sup>2</sup> |
| 138 1012.81 10                                     |                                         |
| a i Arzy mm                                        |                                         |
| TL , 31,56 /a                                      |                                         |
| 138 - 31,56 /a                                     |                                         |
| a : 0,23 mm                                        |                                         |
| Check combine stress                               |                                         |
| $T_{c} = \sqrt{T_{\perp}^{2} + T_{\parallel}^{2}}$ |                                         |

 $138 = \sqrt{(1012)81/a)^2 + (31.56/a)^2} \longrightarrow A = 7.34 \text{ mm}$ 

| JOB NO.   | t / 0310       | SHEET NO: 4 71 |
|-----------|----------------|----------------|
| COMP'D BY | : Fenny        |                |
| CALC. NO. | RT 400 - RP 01 |                |
| DATE      | 30 May 2007    |                |

 $\rightarrow a = 7.34$ W = 10.36W min = 3/6 inW max = 28.58 mm 0 = 0.75 In (19.05 mm)a = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.753 In (13.5 mm)0 = 0.755 In (13.5 mm)0 = 0.755 In (13.5 mm)0 = 0.755 In (13.5 mm)0 = 0

#### 612111a6e 3

Lenoth of Fillet weld - dw - 260 - 1448 - 2 19.05 - 1409.9 mm

- F = 3591 . 81 FN
- M . F/2 . 1/2 bs
  - = 3591, 81 12 103 1/2 175.71
  - · 157 781 478,7 Hmm
- $T_{II} = \frac{F}{2 a L}$   $= \frac{3591.61}{2} \frac{10^{3}}{2 a 1409.9}$   $= \frac{157}{2} \frac{781}{4} \frac{478.7}{2 a 1409.9}$   $= \frac{157}{2} \frac{781}{4} \frac{478.7}{2 a 1409.9}$

#### check shear

| τ <sub>ll</sub> | <b>N</b> / | 1273.98 /a | τı  | τ. | 39,69    | 1 a |
|-----------------|------------|------------|-----|----|----------|-----|
| 138             | :          | 1273,78 /a | 138 | r  | 39, 69   | 1a  |
| a               | ¥          | d.23 Mm    | а   | ~  | 0,29 inm |     |

check combined cites

| Tc       | ÷ | V T1 2 + T/ 2            |         |      |
|----------|---|--------------------------|---------|------|
| 136      | r | $\sqrt{(1293.98/a)^2}$ + | ( 39,69 | /a)² |
| 138<br>A |   | 1274 /a<br>9, 23 mm      |         |      |

| JOB NO.   | : | 1 / 0310       |
|-----------|---|----------------|
| COMP'D BY | : | Fenny          |
| CALC. NO. | : | RT 400 - RP 01 |
| DATE      |   | 20 May 2007    |

| $\rightarrow$ | a      | 2  | 9.23 mm         |                        |
|---------------|--------|----|-----------------|------------------------|
|               | ω      | τ. | a vz. 13.06 min |                        |
|               | W Min  | z  | 3/8 in          | $\left. \right\rangle$ |
|               | 10 max | 4  | 28,58 mm        | )                      |

| IJ | ۴. | 0.75 in  | ( 19,05 mm) |
|----|----|----------|-------------|
| a  | •  | 0, 53 in | (13,5 mm)   |

R

END STIFFENER ( DETAIL A & E)

bs



Check if bearing chiffener are needed at the girder end :

- N 423 mm
- K = tf + W = 38 + 19,05 = 57,1 mm

vertical reaction (R) = 558, 48 KN (shor output)

 $\sigma = \frac{R}{tw(N+K)} \leq 0.75 \text{ fy}$  $= \frac{558.48 \cdot 10^{3}}{25.4 (423 + 57.1)} \leq 259 \text{ H/mm}^{2}$ 45.80 N/mm<sup>2</sup>  $\leq 259$  N/mm<sup>2</sup>

uc : 0118 / 259 = -> no stiffener required





SHEET NO .: 4. 93

· 12. 25.4 25.4 · 7741 .92 mm 2

| JOB NO.   | :    | t / | 0310 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|-----------|------|-----|------|----------------------------------------|
| COMP'D BY | 1 ~~ | ter | iny  |                                        |
| CALC. NO. | :    | QT  | 400  | - RP 01                                |
| DATE      | :    | 30  | May  | 2.007                                  |

A stittener = A tot - A wee =  $-5209 \cdot 22 \text{ mm}^2$ ts : A stitt / 2 bs =  $-5209 \cdot 22 / 2 \cdot 02.3$ = -32.13 mm

To prevent local stittener buckling

 $\frac{bc}{ts} \leq \frac{95}{\sqrt{ty}}$   $\frac{82,30}{ts} \leq \frac{95}{\sqrt{50}}$   $ts \gg 6,13 \text{ mm} \implies ts = 25,40 \text{ mm}$  A weg + stittener = 25 tW + tW + 2 bs ts = 25, 25,4 + 2 bs 2,3, 25,4  $= 2030g + 84 \text{ mm}^{2}$   $C \arctan = \frac{R}{A} \text{ weg + stitte}$   $= 558,48 + 10^{3} / 2030g + 84$   $= 27,5 \text{ N/mm}^{2}$   $H c = C \arctan / Catt$ 

= 24,74 /(0,66 345)

· 0,12 (OK)

Check shiftener profile area as a column  $I_{X} = \frac{t_{5} \ bf^{3}}{12} + \frac{(12 \ t_{W} - t_{5}) \ t_{W}^{3}}{12}$   $= \frac{25.4 \ 190^{3}}{12} + \frac{(12 \ 25.4 \ -25.4) \ 25.4^{3}}{12}$ 

· 14 890 762, 14 mm 4

| JOB NO.   | : | 1/  | 0310  |       |
|-----------|---|-----|-------|-------|
| COMP'D BY | : | Fen | กy    |       |
| CALC. NO. | : | RT  | 400 - | RP 01 |
| DATE      | • | 30  | Мау   | 2007  |

82.3 mm

 $T_X = \sqrt{\frac{T_X}{A}} = \sqrt{\frac{14099762.14}{20309.84}} = 27.09 \text{ mm}$ Slenderness ratio  $\frac{K \times Le}{\Gamma x} , \frac{0.65 \ 1448}{27.09} - 34.75$ K = 0,65 -> allowable compressive stress 26490 pci = 182, 64 N/mm<sup>2</sup>  $F = \sigma \times A$ = 182, 64 x 20309.84 \* 3 709 433 N - 3709,433 KN > 558,48 KN (OK) Beaking Stress in center stiffener J = F/A 556, 48, 10<sup>3</sup> 20309, 84 27,5 < 0,75 Fy (259 N/mm<sup>2</sup>) (04) Fillet weld rize joining stiffener to the seam web Ŧ/2 М 6 Lonoth of fillet weld = dw - 2w = 1448 - 2 19,05

- 1409, 9 mm

| JOB NO.   | : 1 / 0310      |
|-----------|-----------------|
| COMP'D BY | : tenny         |
| CALC. NO. | : RT 400 - RP 0 |
| DATE      | 30 May 2007     |

| F    | ÷              | 558, 48 KN                           |    |      |     |   |
|------|----------------|--------------------------------------|----|------|-----|---|
| М    | :              | F/2 1/2 bs                           |    |      |     |   |
|      | ×              | 508, 48. 10 <sup>3</sup> / 2         | 42 | 82,3 |     |   |
|      | 5              | 11 490 726 Nmm                       |    |      |     |   |
| τη   | °,             | F<br>2aL                             |    |      |     |   |
|      | ,              | 556,48 10 <sup>3</sup><br>2 a 1409.9 |    |      |     |   |
|      | :              | 198,06 / a                           |    |      |     |   |
| τı   | 7              | M<br>2. a L <sup>2</sup>             |    |      |     |   |
|      | 73             | 11 490 726<br>2 11 1409.9 2          |    |      |     |   |
|      | *:             | 2. 89 /a                             |    |      |     |   |
| Chec | <del>;</del> ( | hear                                 |    |      |     |   |
| t    | - //           | - 198,06 / a                         |    |      | τı  | 2 |
| 13   | B              | <del>,</del> 198.06/a                |    |      | 138 | ٦ |
|      | a              | ' 1.44 mm                            |    |      | a   | 5 |
|      |                |                                      |    |      |     |   |

#### check combine stiess

| Tc  | $, \sqrt{t_{//}^2 + t_{\perp}^2}$                                                   |     |                       |                    |                          |
|-----|-------------------------------------------------------------------------------------|-----|-----------------------|--------------------|--------------------------|
| 138 | $\sqrt{(198.06/a)^2 + (2.89/a)^2}$                                                  | ) 2 |                       |                    |                          |
| ۵   | ÷ 1.44                                                                              |     |                       |                    |                          |
| >   | a : 1.44 mm<br>10 : 2.03 mm<br>10 min : 1/8 in (9.53 mm)<br>10 max : 25.4 mm (1 1n) |     | : a<br>a <sup>:</sup> | 0175 In<br>0153 in | (19,05 mm)<br>( 13,5 mm) |

2.89/a

2.39/a

0102 prim



| JOB NO.   | : <u>10310</u> |
|-----------|----------------|
| COMP'D BY | . Andres H.    |
| CALC. NO. | : OT400-RP01   |
| DATE      | · 10th May     |

4.4 Seatastaning Concept design. Considerations: O COd of LQ & located 200' from bow @ Roll braces are connected to rows: 1, 3, 6, 8 of Lo 3 The will be connected to a becam for transforming the load to web frame 3 There are 8 roll bracer, I in each side. A. Load defribution Roll foroes 0=100 KH/m  $\Delta$ 15,009m 9,32 m 9,507 m 19,72% (see sheet 5.5) 35,12% د ا 37.6% 3 a 2. Roll forcer for each support FL = 8832 kH (see sheet 5.4) Fh in row A= 54%. 0032 = 4000, 56 kil FL ~ 19W C = 464, 0132 = 4024, 018K-1 Design is loased on max. load dist. In row 3A Fh (31) = 4000, 56.37,6% = 100 8, 02 KM

| JOB NO.   | : I/0310      |
|-----------|---------------|
| COMP'D BY | : Andraw .K.  |
| CALC. NO. | : OT 100-RP01 |
| DATE      | . Wt May      |



| JOB NO.   | · 5/0310            |
|-----------|---------------------|
| COMP'D BY | : Andrew. M.        |
| CALC. NO. | : <u>67400-RP21</u> |
| DATE      | : <u>25 Marji 2</u> |



JOB NO. : f(0310)COMP'D BY : Andrew H. CALC. NO. :  $Q = 400 - RP0^{1}$ DATE :  $25^{th}$  Mon'OF



| JOB NO.   | : | I10310       |
|-----------|---|--------------|
| COMP'D BY | ; | Andrews, H   |
| CALC. NO. | : | 07400-E.PO1  |
| DATE      | : | 25th Prom 67 |

Check weld to 20 beam  

$$W = \otimes Imm$$
  
 $l = 35" = 000 mm$   
 $\overline{C_1} = \frac{\overline{The}}{W.l}$   
 $= \frac{3021.10^3}{91.003}$   
 $= 161,02$  M/ment  
Unity check  
 $U = \frac{\overline{C_4}}{0.5} \overline{C_3}$   
 $= 161,82$ 

 $= \frac{161,82}{2,6,245}$ = 0,78  $\pm 1.00$  k!



$$UC = \frac{159,3}{0.66,2.45}$$
  
- 0,69 <1,0 - 0k!

| 1.4.2 ROLL BRA | <u>vce</u> |                 |                                      |  |
|----------------|------------|-----------------|--------------------------------------|--|
| Buckling check | k for axi  | ally loaded     | pipes (according Alsc wso 9th, 1989) |  |
| Buckling leng  | (h         | KxL             | 3896, OL MM                          |  |
| Axial decign   | load       | Fax             | 2111,4 KH                            |  |
| yield strens   | ,          | Ŧy              | 345 N/mm 2                           |  |
| TUBE PROPE     | RTIES      |                 |                                      |  |
| $O \cdot D$ .  | 10.75      | in              | 273,05 mm                            |  |
| wŧ             | 0, 718     | ĨŊ              | 18,24 mm                             |  |
| G              | 77,01      | lbs/ft          | 114,60 \$g/m                         |  |
| A              | 22, 63     | in <sup>2</sup> | 14599 Mm <sup>2</sup>                |  |
| W              | 53,23      | ìn <sup>3</sup> | 872 345.5 mm <sup>3</sup>            |  |
| Ţ              | 286.13     | in <sup>4</sup> | 1,2 10 <sup>8</sup> mm 4             |  |
| ٢              | 3,56       | in              | 90,32 Mm                             |  |
| calculation    | Results    |                 |                                      |  |
| slenderners    |            | KL/r            | 43, 16                               |  |
| Cc             |            |                 | 106, 97                              |  |
| Allowable      | tress      |                 | 173, 54 N/mm <sup>2</sup>            |  |
| Actual str     | N 91       | Fax /A          | 144, 62 N/mm <sup>2</sup>            |  |
| U.C.           |            |                 | $D_1 B_3 \longrightarrow D_k$        |  |

Dimensions of Welded and Seamless Steel Pipe (ASA B36.10)\* (Listed by Schedule Numbers)

| Nom. Pine       | Ontside          |                  |                 |                 | Z             | Jominal Wall T  | hickness (all in | inches)         |             |       |          |
|-----------------|------------------|------------------|-----------------|-----------------|---------------|-----------------|------------------|-----------------|-------------|-------|----------|
| Size            | Diameter         | Sched            | Sched           | Sched           | Sched         | Sched           | Sched            | Sched           | Sched       | Sched | Sched    |
|                 |                  | 10               | 20              | 30              | 40            | 60              | 80               | 100             | 120         | 140   | 160      |
| 1/8             | 0.405            | £                | 1               | F               | 0.068         | 1               | 0.095            | ł               | ł           | ŧ     | *        |
| 1/4             | 0.540            | ł                | ,               | ŧ               | 0.088         | 1               | 0.119            |                 | ŀ           | ,     | 1        |
| 3/8             | 0.675            | t                | ł               | ŧ               | 160.0         | 1               | 0.126            | ,               | F           | ŧ     | ,        |
| 1/2             | 0.840            | r                | ł               | ŧ               | 0.109         | 1               | 0.147            | ,               | ŧ           | ŧ     | 0 187    |
| 3/4             | 1.050            | 1                | t               | I               | 0.113         | 1               | 0.154            | ł               | 2           | 1     | 0.218    |
|                 | 1.315            | 1                | 3               | ı               | 0.133         | ł               | 0.179            | 1               | 1           | ł     | 0.250    |
| 1 1/4           | 1.660            | ţ                | r               | r               | 0.140         | 3               | 161.0            | ŀ               | F           | ł     | 0.250    |
| 1 1/2           | 1.900            | ı                | •               | ŀ               | 0.145         | 1               | 0.200            | ,               | I           | ŧ     | 0.281    |
| 5               | 2.375            | •                | 1               | ł               | 0.154         | 1               | 0.218            | ı               | ŧ           | ŧ     | 0.343    |
| 2 1/2           | 2.875            | I                | 1               | t               | 0.203         | 1               | 0.276            | ,               | ł           | ŧ     | 0.375    |
| ŝ               | 3.500            | 8                | ı               | ı               | 0.216         | ł               | 0.300            | ł               | I           | ı     | 0.438    |
| 3 1/2           | 4.000            | 1                | 1               | ,               | 0.226         | F.              | 0.318            | 1               | I           | ŀ     | •        |
| 4               | 4.500            | 1                | 1               | •               | 0.237         |                 | 0.337            | 1               | 0.438       | t     | 0.531    |
| 5               | 5.563            | ſ                | ł               | 1               | 0.258         | 2               | 0.375            | t               | 0.500       | t     | 0.625    |
| 9               | 6.625            | I                | 1               | 1               | 0.280         | £               | 0.432            | 1               | 0.562       | t     | 0.718    |
| ~               | 8.625            | 1                | 0.250           | 0.277           | 0.322         | 0.406           | 0.500            | 0.593           | 0.718       | 0.812 | 0.906    |
| 10              | 10.750           | 1                | 0.250           | 0.307           | 0.365         | 0.500           | 0.593            | 0.718           | 0.843       | 1.000 | 1.125    |
| 12              | 12.750           | F                | 0.250           | 0.330           | 0.406         | 0.562           | 0.687            | 0.843           | 1.000       | 1.125 | 1.312    |
| 4               | 14.000           | 0.250            | 0.312           | 0.375           | 0.438         | 0.593           | 0.750            | 0.937           | 1.093       | 1.250 | 1.406    |
| 16              | 16.000           | 0.250            | 0.312           | 0.375           | 0.500         | 0.656           | 0.843            | 1.031           | 1.218       | 1.438 | 1.593    |
| 18              | 18.000           | 0.250            | 0.312           | 0.438           | 0.562         | 0.750           | 0.937            | 1.156           | 1.375       | 1.562 | 1.781    |
| 20              | 20.000           | 0.250            | 0.375           | 0.500           | 0.593         | 0.812           | 1.031            | 1.281           | 1.500       | 1.750 | 1.968    |
| 24              | 24.000           | 0.250            | 0.375           | 0.562           | 0.687         | 0.968           | 1.218            | 1.531           | 1.812       | 2.062 | 2.343    |
| 30              | 30.000           | 0.312            | 0.500           | 0.625           | ŀ             | 1               | 1                | 5               |             | ŧ     | )<br>} F |
| All dimensions  | s given in inch  | es.              |                 |                 |               |                 |                  |                 |             |       |          |
| The decimal th  | vicknesses liste | id for the respe | ctive pipe size | represent their | nominal or av | erape wall dim. | ensions. For to  | erances on wall | thicknesses |       |          |
| see appropriate | material spec    | ifications.      | Υ.Τ.            | X               |               | 0               |                  |                 | (0200010100 |       |          |

\* A.S.A. = American Standard Association

| JOB NO.   | : | ī/  | 0310 | ,  |      | 49594        |
|-----------|---|-----|------|----|------|--------------|
| COMP'D BY | : | Fen | ny   | ., |      |              |
| CALC. NO. | : | QT  | 400  | ~~ | RP ( | 21           |
| DATE      | : | 2.0 | Мау  |    | 200  | <del>}</del> |

### 4.4.3. PLATE CONNECTION TO THE DECK



```
PROPERTIES
```

| weld length brace - plate =  | 600 mm                                                                              |
|------------------------------|-------------------------------------------------------------------------------------|
| weld length plate - deck =   | $900 \text{ mm} \longrightarrow \text{eff} -900 - \frac{1}{2} 268 + 766 \text{ mm}$ |
| weld length plate - web =    | 919.2 min                                                                           |
| weld cize to brace =         | 12.7 mm                                                                             |
| weld clec to deck .          | 19.05 mm                                                                            |
| weld nze to web              | 12,7 mm                                                                             |
| Horizontal length. Li        | 3336.8 mm                                                                           |
| vertical length, l2 -        | 2015 mm                                                                             |
| plate thickness =            | 25, 4 mm                                                                            |
| ty -                         | 345 mm                                                                              |
| fy barge =                   | 235 mm                                                                              |
| seatastening beam properties | : profile = WF 268 × 770 × 25.4 × 15.6                                              |
|                              | plate 25.4 mm                                                                       |
| Roll brace                   | : 10.45 IN 0.D 0.718 WT                                                             |
| JOB NO.   | : | 1/  | 0310  | van baad bas pavaand seveld san b |
|-----------|---|-----|-------|-----------------------------------|
| COMP'D BY | : | ‡6ı | ny    |                                   |
| CALC. NO. | : | QT  | 400 - | RP 01                             |
| DATE      | • | 30  | May   | 2007                              |



$$T_{\parallel} = \frac{F_{ax}}{10 L} = \frac{2111 \cdot 4 \cdot 10^3 \sqrt{2}}{4 \cdot 12.07 \quad 600} = 97.96 \quad \text{M/mm}^2$$
  
U.C =  $\frac{T_{\parallel}}{0.4 \text{ Fy}} = \frac{97.96}{0.4 \cdot 345} = 0.71 \quad (0.4)$ 

SHEET NO .: 4. 87

| JOB NO.   | : I / 0310       |
|-----------|------------------|
| COMP'D BY | : Fenny          |
| CALC. NO. | : QT 400 - RP 01 |
| DATE      | : 30 May 2007    |

\* Check B-B deck-weld

 $T_{1/2} = \frac{F_{H}}{10 L} = \frac{1807,38 10^{3} \sqrt{2}}{2 19.05 766} = 87.58 \text{ M/mm}^{2}$ 

$$u.c = \frac{T_{//}}{o_{1}4 F_{y}} = \frac{87.58}{o_{1}4 235} = 0.93 \quad (0.F).$$

\* check 3-3 plate - web

$$\frac{F_V}{U + U} = \frac{1091, 43, 10^2}{2} \sqrt{2} = 84.49 \text{ N/mm}^2$$

 $u.c. = \frac{T_{H}}{o_{14} + y} = \frac{64.49}{o_{14.345}} = o_{161} (o.k).$ 

| JOB NO.   | : | I / | 0310  | ***** |
|-----------|---|-----|-------|-------|
| COMP'D BY | : | Fen | iny   | ****  |
| CALC. NO. | : | QT  | 400 - | RP 01 |
| DATE      | : | 30  | May   | 2007- |



coatactening beam properties

PROFILE WF 268 X 990 X 25.4 X 15.6 Plate 25.4 mm

Roll brace 10, 75 00 0, 718 WT

Forcer : Fax . 2111,4 KH

FH = 1009, 30 KM

FV . 1001. 43 KM

SHEET NO .: 4 89

| JOB NO.   | : | I / 0310       |
|-----------|---|----------------|
| COMP'D BY | : | Fenny          |
| CALC. NO. | : | 8T 400 - RP 01 |
| DATE      | : | 30 May 2007    |

Check X-x brace weld - plate  

$$T_{H} = \frac{Fax}{10 L} = \frac{2111.4 \cdot 10^{3} \cdot \sqrt{2}}{4 \cdot 12.7 \cdot 500} = 117.56 \text{ H/mm}^{2}$$

$$U.C. = \frac{T_{H}}{0.4 \text{ Fy}} = \frac{117.56}{0.4 \cdot 345} = 0.85 \quad (0.11)$$
Check B-B brace weld - Web  

$$T_{H} = \frac{Fv}{10 L} = \frac{1091.38 \cdot 10^{3} \sqrt{2}}{2 \cdot 12.7 \cdot 932} = 65.2 \text{ H/mm}^{2}$$

$$U.C. = \frac{T_{H}}{0.4 \text{ Fy}} = \frac{65.2}{0.4 \cdot 345} = 0.47 \quad (0.11)$$

Spafactening Ream



 $\longrightarrow$  all the reaction force in row 3 and row 6 less than the bulkhead capacity (026 KM)



Check Shor 
$$T-T$$
  
w = 3/16 " (according to Delta drign)  
- 4.36 mm  
L = 1' - 3.3/0"  
- 12 - mm  
 $T_{a} = \frac{4}{2} \frac{1}{2} \frac{1}$ 

the wild size should be : 16,6 mm

- thicker plate " 25.4 mm

SHEET NO .: 4 92

| JOB NO.   | $\pm 1/0310$                                | SHEET NO .: 4.93                       |
|-----------|---------------------------------------------|----------------------------------------|
| COMP'D BY | 1: Andrew. H                                |                                        |
| CALC. NO. | : Q-T-400-RP01                              |                                        |
| DATE      | : 29th May '07                              |                                        |
| 0         |                                             | 00000000-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 |
| 44.5 _    | Sealastening Beam Capacity Check            |                                        |
|           | · Bram WA 260 × 770 × 25,4 × 15,6 / WF      | 30 × 132                               |
|           | Check according to scatastening in column 6 |                                        |
|           | $\frac{2,34}{1,2m}$                         |                                        |
|           | ↓<br>A<br>Fr                                |                                        |
|           |                                             |                                        |
|           | (G) (B)                                     |                                        |
|           | For predestening layout, see sheet 4.77     |                                        |
|           |                                             |                                        |
|           | Wymm : 6,16. 10° mm 3                       |                                        |
|           | Ashear 12012 month                          |                                        |
| R         | elliption and moments-                      |                                        |
|           | Fr: 662,25 KM                               |                                        |
|           | M - 662 05 1 )                              |                                        |
|           |                                             |                                        |
|           | t ADELA ESTM                                |                                        |
|           |                                             |                                        |
|           |                                             |                                        |

JOB NO. :  $\boxed{\frac{10310}{\text{comp'd BY}}}$ :  $\underbrace{\frac{10310}{\text{And rus. H}}}$ CALC. NO. :  $\underbrace{\frac{07400}{\text{RP01}}}$ DATE :  $\underbrace{29^{\text{H}}}{\frac{109}{\text{May}'07}}$ 

• 
$$T_{0} := \frac{M}{w_{ymn}} = \frac{739.7.10^{5}}{6.16.10^{6}}$$
  
= 12g H/mm<sup>2</sup>  
 $u_{C} := \frac{T_{0}}{0.66F_{1}} = \frac{129}{0.35.245}$   
= 12.52 (21.0)  
•  $T_{v} := \frac{F_{v}}{A_{shear}} = \frac{662.25.10^{3}}{12012}$   
= 55.12 M/mm<sup>2</sup>  
 $u_{C} := \frac{T_{v}}{0.4F_{y}} = \frac{55.13}{0.4.345}$   
= 0.44 (21.0)

· Conclusion: the scatestering beam in sufficient

SHEET NO .: 4.94

| Project       | Tombua Landana  |       |   |  |  |  |
|---------------|-----------------|-------|---|--|--|--|
| Subject       | Living Quarters |       |   |  |  |  |
| Job / Bid no. | 1/0310          |       |   |  |  |  |
| Date          | 30-May-07       | Sheet | 1 |  |  |  |

### PLATE GIRDER PROPERTIES

| Plategirder D                         | Description       | 1                   |                 |                      |                                      |                                              |                                                          |
|---------------------------------------|-------------------|---------------------|-----------------|----------------------|--------------------------------------|----------------------------------------------|----------------------------------------------------------|
|                                       | Section           | Section             | Offset          | Axial                | Shear                                | Statical                                     |                                                          |
| section                               | breadth           | height              | ey              | area                 | area                                 | moment                                       |                                                          |
| no                                    | [mm]              | [mm]                | [mm]            | [mm²]                | [mm²]                                | [mm³]                                        |                                                          |
| 1                                     | 268.0             | 25.4                | 0.0             | 6807                 | 396                                  | 2.53E+06                                     |                                                          |
| 2                                     | 15.6              | 719.2               | 0.0             | 11220                | 11220                                | 2.53E+06                                     |                                                          |
| 3                                     | 268.0             | 25.4                | 0.0             | 6807                 | 396                                  | 0.00E+00                                     |                                                          |
| 4                                     | 0.0               | 0.0                 | 0.0             | 0                    | 0                                    | 0.00E+00                                     |                                                          |
| 5                                     | 0.0               | 0.0                 | 0.0             | 0                    | 0                                    | 0.00E+00                                     |                                                          |
| 6                                     | 0.0               | 0.0                 | 0.0             | 0                    | 0                                    | 0.00E+00                                     |                                                          |
| 7                                     | 0.0               | 0.0                 | 0.0             | 0                    | · 0                                  | 0.00E+00                                     |                                                          |
| 8                                     | 0.0               | 0.0                 | 0.0             | 0                    | 0                                    | 0.00E+00                                     |                                                          |
| 9                                     | Ò.O               | 0.0                 | 0.0             | · 0                  | 0                                    | 0.00E+00                                     |                                                          |
| 10                                    | 0.0               | 0.0                 | 0.0             | 0                    | 0                                    | 0.00E+00                                     |                                                          |
| 11                                    | 0.0               | 0.0                 | 0.0             | 0                    | 0                                    | 0.00E+00                                     |                                                          |
| 12                                    | 0.0               | 0.0                 | 0.0             | 0                    | 0                                    | 0.00E+00                                     |                                                          |
| 13                                    | 0.0               | 0.0                 | 0.0             | 0                    | 0                                    | 0.00E+00                                     |                                                          |
| 14                                    | 0.0               | 0.0                 | 0.0             | 0                    | 0                                    | 0.00E+00                                     |                                                          |
| 15                                    | 0.0               | 0.0                 | 0.0             | 0                    | 0                                    | 0.00E+00                                     |                                                          |
|                                       | 268               | 770                 |                 | 24834                | 12012                                |                                              |                                                          |
| Dimensions:                           |                   |                     |                 |                      | AY<br>AZ<br>Y<br>Z                   | 13614<br>12012<br>268.0<br>770.0             | [mm <sup>2</sup> ]<br>[mm <sup>2</sup> ]<br>[mm]<br>[mm] |
|                                       |                   |                     |                 |                      | Weight                               | 1.9                                          | [kN/m]                                                   |
| Distances to                          | neutral axis      | 5:                  |                 | ez (From bo          | ottom)                               | 385.0                                        | [mm]                                                     |
|                                       |                   |                     |                 | Z-ez                 | 212                                  | 385.0                                        | [[[]]]                                                   |
|                                       |                   |                     |                 | ey (From lei<br>Y-ey | π)                                   | 134.0                                        | [mm]                                                     |
| Section modu                          | ii:               |                     |                 |                      | Wy,min<br>Wy,max<br>Wz,min<br>Wz,max | 6.16E+06<br>6.16E+06<br>6.10E+05<br>6.10E+05 | [mm³]<br>[mm³]<br>[mm³]<br>[mm³]                         |
| Moments of i                          | nertia:           |                     |                 |                      | ly<br>Iz                             | 2.37E+09<br>8.17E+07                         | [mm^4]<br>[mm^4]                                         |
| Torsional cor                         | nstant (torsi     | ional resista       | ance):          |                      | lt                                   | 3.84E+06                                     | [mm^4]                                                   |
| Radii of gyration:ry309.0[mmrz57.4[mm |                   |                     |                 |                      |                                      |                                              | [mm]<br>[mm]                                             |
| Note: -Torsional Co                   | nstant / Resistar | nce is only valid f | or open girders |                      |                                      |                                              |                                                          |

cheet 4.95

.



JOB NO. : 7 1020 COMP'D BY : Andrew 4 CALC. NO. : 07400-RPD1 RISt Man of DATE Activated areas at load out  $\mathcal{O}$ · forget where 1: H = 254 mm k= 191 25,0 - man in room A, - tw, (MISE) - 11 (DE4+5.44.4) 5 5216 Buch \* Transverse 11 + 102,5 ×2 + 205 mm k = 19 mm As = the (M+5K) = 11 ( Post 5.19) - 3300 mm2 Capacily of as area : (AHAI). 0,66. Syidd + ( 5236 + 3200). 0,66. 235 : 1323, 93 bH 2 during transportation b : 802 mm k = 15 mm W= 11 mm Az ( ( H+2,5 k ) 2 = (11.(300+2, 5.13)).218645 mm Add caparity (WP) : Az. 0,66 Tyield · 18645. 0,66. 235 · 2091, 84 km Total Caracity - 1323,93 + 2001, PG = 4215,92 611

SHEET NO .: 4.97

| SHEET | NO  | 4.98                           |
|-------|-----|--------------------------------|
|       | 140 | at strest to your support of a |

| JOB NO.   | : <u>I/0310</u> |
|-----------|-----------------|
| COMP'D BY | : Andraw.4      |
| CALC. NO. | . QT-100 - RP01 |
| DATE      | : 21 May 207    |



.

| JOB NO.   | : <u>I/0310</u> |
|-----------|-----------------|
| COMP'D BY | : Condeas H     |
| CALC. NO. | : QT400-2401    |
| DATE      | : 21 May '07    |

SHEET NO .: 4.99

Amon Aconsverse sea fastening in column 6

| ged       Living Quarters         i <sup>2</sup> Mario       i/0310         s       30-May-07         Sheat       PLATING CAPACITY         UCKLING RESISTANCE OF PLATES UNDER COMPRESSION         Support type:       Four sides supported         Modulus of elasticity:       210000         Poisson's ratio:       0.3 [-]         Plate thickness:       11 [rm]         Plate length:       762 [rm]         Plate thickness:       141.0         Plate factor k:       4.165         Design stress:       141.0         Design stress:       141.0         Section of curve:       C - D         Critical stress:       83 [N/mm²]         Design subsocific allowable load:       966 [kN]         Design specific allowable load:       966 [kN]         Design specific allowable load:       1036 [kN/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Project      | Tombua landana              |                      |                | 4                |         |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------|----------------------|----------------|------------------|---------|----------|
| IV0310       Binet         B       30-May-07       Sheet         PLATING CAPACITY         UCKLING RESISTANCE OF PLATES UNDER COMPRESSION         Support type:       Four sides supported         Modulus of elasticity:       210000       [N/mm <sup>2</sup> ]         Poisson's ratio:       0.3 [-]         Plate thickness:       11 [mm]         Plate thickness:       11 [mm]         Plate thickness:       11 [mm]         Plate thickness:       235 [N/mm <sup>2</sup> ]         Plate thickness:       235 [N/mm <sup>2</sup> ]         Plate thickness:       141.0 [N/mm <sup>2</sup> ]         Plate factor k:       4.165         Design stress:       141.0 [N/mm <sup>2</sup> ]         b(eff)/t:       41.4         Effective width:       455.2 [mm]         Design allowable load:       966 [kN]         Design allowable load:       966 [kN]         Design specific allowable load:       1036 [kN/m]         Supported       Supported         Image: supported       Supported         Supported       Supported         Supported       Supported         Supported       Supported         Supported       Supported         Supported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Subject      | Living Quarters             |                      |                | -                |         |          |
| B 30-May-07 United<br>PLATING CAPACITY<br>UCKLING RESISTANCE OF PLATES UNDER COMPRESSION<br>Support type: Four sides supported<br>Modulus of elasticity: 210000 [N/mm <sup>2</sup> ]<br>Poisson's ratio: 0.3 [-]<br>Plate thickness: 11 [rm]<br>Plate length: 762 [rm]<br>Plate length: 762 [rm]<br>Plate sides: 235 [N/mm <sup>2</sup> ]<br>Plate factor k: 4.165<br>Design stress: 141.0 [N/mm <sup>2</sup> ]<br>b(eff)/t: 41.4<br>Effective width: 455.2 [mm]<br>Section of curve: C - D<br>Critical stress: 83 [N/mm <sup>2</sup> ]<br>Design allowable load: 966 [kN]<br>Design specific allowable load: 1036 [kN/m]<br>LOAD<br>LOAD<br>LOAD<br>LOAD<br>LOAD<br>Cate. Act. To Blodgetts Design of Weided Structures, Prinet-Gilligen surve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ob / Bid no. | 1/0310                      | Phant                |                |                  |         |          |
| PLATING CAPACITY         UCKLING RESISTANCE OF PLATES UNDER COMPRESSION         Support type:       Four sides supported         Modulus of elasticity:       210000       [N/mm?]         Poisson's ratio:       0.3       [-]         Plate thickness:       0.3       [-]         Plate factor k:       932.5       [mm]       (Loaded)         Yield stress:       0.35       [N/mm?]       (Loaded)         Design stress:       1.16       [N/mm?]       [[K/m]         Design allowable load:       966       [KN]       [[K/m]         Design specific allowable load:       1036       [[K/m]       [[K/m]         Supported       Supported       762 [mm]       [[m]       [[m]       [[m]         Design specific allowable load:       Supported       [[K/m]       [[m]       [[m]       [[m]       [[m]       [[m]       [[m]       [[m]       [[m]<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /ate         | 30-May-07                   | Sneet                |                |                  |         |          |
| PERtified Our Additional Price Coll Additional Price Coll Additional Price Coll Additional Price Coll Additional Price Coll Processions         Support type: Four sides supported         Modulus of elasticity:       210000 [N/mm²]         Poisson's ratio:       0.3 [-]         Plate thickness:       11 [mm]         Plate thickness:       11 [mm]         Plate length:       932.5 [mm]         Plate factor k:       4.165         Design stress:       141.0 [N/mm²]         b(eff)/t:       41.4         Effective width:       41.52.2 [mm]         Design stress:       83 [N/mm²]         Design allowable load:       966 [kN]         Design specific allowable load:       1036 [kN/m]         Vulce for the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of the price of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                             |                      |                | CITY             |         |          |
| UCKLING RESISTANCE OF PLATES UNDER COMPRESSION         Support type:       Four sides supported         Modulus of elasticity:       210000 [N/mm³]         Poisson's ratio:       0.3 [-]         Plate thickness:       11 [mm]         Plate length:       932.5 [mm]         Plate width:       932.5 [mm]         Plate factor k:       4.165         Design stress:       141.0 [N/mm³]         b(eff)/t:       414.4         Effective width:       455.2 [mm]         Design allowable load:       966 [kN]         Design allowable load:       966 [kN]         Design specific allowable load:       1036 [kN/m]         Vietat stress:       83 [N/mm²]         Design specific allowable load:       1036 [kN/m]         Upported       Supported         Vietat stress       932.5 [mm]         UOAD       932.5 [mm]         Cate Ace. To Blodgetts Design of Weided Structures, Pritet-Dilligen curve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                             |                      |                |                  |         |          |
| Support type:       Four sides supported         Modulus of elasticity:       210000       [N/mm7]         Poisson's ratio:       0.3 [-]         Plate thickness:       11 [mm]         Plate elength:       762 [mm]       (Loaded)         Yield stress:       235 [N/mm7]       (Loaded)         Plate width:       4.165       (Design stress:       141.0 [N/mm7]         b(eff)t:       41.4       Effective width:       4.55.2 [mm]       (Loaded)         Section of curve:       C - D       83 [N/mm7]       Design stress:       8.3 [N/mm7]         Design allowable load:       966 [KN]       1036 [kN/m]       1036 [kN/m]         Design specific allowable load:       1036 [kN/m]       762 [mm]       040         Upported       Supported       Supported       762 [mm]       762 [mm]         UDAD       932.5 [mm]       040       932.5 [mm]       040       040         Upported       Supported       Supported       1040       1040       1040       1040       1040       1040       1040       1040       1040       1040       1040       1040       1040       1040       1040       1040       1040       1040       1040       1040       1040       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BUCKLIN      | G RESISTANCE OF I           | PLATES UND           | ER CO          | <b>MPRESSION</b> |         |          |
| Modulus of elasticity:       210000 [N/mm²]         Poisson's ratio:       0.3 [-]         Plate thickness:       11 [mm]         Plate thickness:       762 [mm]         Plate width:       932.5 [mm]       (Loaded)         Yield stress:       235 [N/mm²]         Plate factor k:       4.165         Design stress:       141.0 [N/mm²]         b(eff)/t:       41.4         Effective width:       455.2 [mm]         Section of curve:       C - D         Critical stress:       83 [N/mm²]         Design allowable load:       966 [kN]         Design specific allowable load:       1036 [kN/m]         V       11 mm thick plate         Supported       Supported         V       932.5 [mm]         CtoAD       762 [mm]         V       932.5 [mm]         Cts. Ace. To Biodgett's Design of Welded Structures, Priest-Gilligen curve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | Support type:               | Fou                  | r sides s      | supported        |         |          |
| Modulas of eationly,       0.3 [-]         Poisson's ratio:       0.3 [-]         Plate thickness:       11 [mm]         Plate length:       762 [mm]         Plate width:       932.5 [mm]         Used Stream       235 [N/mm²]         (Loaded)       141.0 [N/mm²]         Design stress:       141.0 [N/mm²]         b(eff)/t:       41.4         Effective width:       455.2 [mm]         Section of curve:       C - D         Critical stress:       83 [N/mm²]         Design allowable load:       966 [kN]         Design specific allowable load:       1036 [kN/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Modulus of plastic          | sityr                |                | 210000           | [N/mm²] |          |
| Plate hickness:<br>Plate length:<br>Plate length:<br>Plate width:<br>Vield stress:<br>Plate actor k:<br>Design stress:<br>b(eff)/t:<br>Effective width:<br>Section of curve:<br>C - D<br>Critical stress:<br>Bas [N/mm <sup>2</sup> ]<br>Design allowable load:<br>Design specific allowable load:<br>1036 [kN/m]<br>Design specific allowable load:<br>1036 [kN/m]<br>Curve:<br>C - D<br>Critical stress:<br>C - D<br>C -                                                                                                                                                                                                                         |              | Poisson's ratio             | Jily.                |                | 0.3              | [-]     |          |
| Plate length:<br>Plate length:<br>Plate width:<br>Supported<br>Calc. Acc. To Blodget's Design of Welded Structures, Priest-Gilligen curve.<br>Calc. Acc. To Blodget's Design of Welded Structures, Priest-Gilligen curve.<br>Calc. Acc. To Blodget's Design of Welded Structures, Priest-Gilligen curve.<br>Calc. Acc. To Blodget's Design of Welded Structures, Priest-Gilligen curve.<br>Calc. Acc. To Blodget's Design of Welded Structures, Priest-Gilligen curve.<br>Calc. Acc. To Blodget's Design of Welded Structures, Priest-Gilligen curve.<br>Calc. Acc. To Blodget's Design of Welded Structures, Priest-Gilligen curve.<br>Calc. Acc. To Blodget's Design of Welded Structures, Priest-Gilligen curve.<br>Calc. Acc. To Blodget's Design of Welded Structures, Priest-Gilligen curve.<br>Calc. Acc. To Blodget's Design of Welded Structures, Priest-Gilligen curve.<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD)<br>(LOAD                                                                                                                                                                                                                                                                                                                      |              | Plate thickness             |                      |                | 11               | [mm]    |          |
| Plate width:<br>Plate width:<br>Yield stress:<br>Plate factor k:<br>Design stress:<br>b(eff)/t:<br>Effective width:<br>Section of curve:<br>C - D<br>Critical stress:<br>Design allowable load:<br>Design specific allowable load:<br>1036 [kN]<br>Design specific allowable load:<br>1036 [kN/m]<br>Cato. Acc. To Blodgett's Design of Welded Structures, Priest-Gilligen curve.<br>Cato. Acc. To Blodgett's Design of Welded Structures, Priest-Gilligen curve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | Plate length:               |                      |                | 762              | [mm]    |          |
| Yield stress:       235 [N/mm²]         Plate factor k:       4.165         Design stress:       141.0 [N/mm²]         b(eff)t:       41.4         Effective width:       455.2 [mm]         Section of curve:       C - D         Critical stress:       83 [N/mm²]         Design allowable load:       966 [kN]         Design specific allowable load:       966 [kN]         Design specific allowable load:       966 [kNm²]         Vield       11 mm thick plate         Supported       Supported         Vield       Supported         Vield       932.5 [mm]         Cate. Acc. To Blodgett's Design of Welded Structures, Priest-Gilligen curve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | Plate width:                |                      |                | 932.5            | [mm]    | (Loaded) |
| Plate factor k:       4.165         Design stress:       141.0 [N/mm²]         b(eff)t:       41.4         Effective width:       455.2 [mm]         Section of curve:       C - D         Critical stress:       83 [N/mm²]         Design allowable load:       966 [kN]         Design specific allowable load:       966 [kN]         Design specific allowable load:       966 [kN]         1036 [kN/m]       1036 [kN/m]         Critical stress:         Supported         1       nm thick plate         Supported       Supported         932.5 [mm]       0         Cate. Acc. To Blodgett's Design of Welded Structures, Priest-Gilligen curve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | Yield stress:               |                      |                | 235              | [N/mm²] |          |
| Design stress:<br>Design stress:<br>b(eff)/t:<br>Effective width:<br>Section of curve:<br>C - D<br>B3 [N/mm <sup>2</sup> ]<br>Design allowable load:<br>Design specific allowable load:<br>Design specific allowable load:<br>1036 [kN/m]<br>LOAD<br>LOAD<br>11  mm thick plate<br>Supported<br>11  mm thick plate<br>Supported<br>1036 [cmm]<br>1036 [cmm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | Plate factor k              |                      |                | 4.165            |         |          |
| b(eff)/t:<br>Effective width:<br>Section of curve:<br>C - D<br>Critical stress:<br>B3 [N/mm²]<br>Design allowable load:<br>Design specific allowable load:<br>1036 [kN/m]<br>LOAD<br>LOAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | Design stress:              |                      |                | 141.0            | [N/mm²] |          |
| Effective width:<br>Section of curve:<br>Critical stress:<br>Design allowable load:<br>Design specific allowable load:<br>Design specific allowable load:<br>LOAD<br>LOAD<br>11 mm thick plate<br>Supported<br>Supported<br>Supported<br>Supported<br>Cat. Acc. To Blodgett's Design of Welded Structures, Priest-Gilligan curve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | b(eff)/t:                   |                      |                | 41.4             | -       |          |
| Section of curve:<br>Critical stress:<br>Design allowable load:<br>Design specific allowable load:<br>LOAD<br>11 mm thick plate<br>Supported<br>Supported<br>Supported<br>LOAD<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | Effective width:            |                      |                | 455.2            | [mm]    |          |
| Critical stress:<br>Design allowable load:<br>Design specific allowable load:<br>LOAD<br>LOAD<br>1036 [kN/m]<br>LOAD<br>11 mm thick plate<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>CoAD<br>COAD<br>CoAD<br>CoAD<br>CoAD<br>COAD<br>CoAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD<br>COAD |              | Section of curve:           |                      |                | C - D            |         |          |
| Design allowable load:<br>Design specific allowable load:<br>LOAD<br>LOAD<br>11 mm thick plate<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | Critical stress:            |                      |                | 83               | [N/mm²] |          |
| Design specific allowable load: 1036 [kN/m]<br>LOAD<br>11 mm thick plate<br>Supported<br>Supported<br>032.5 [mm]<br>Catc. Acc. To Blodgett's Design of Welded Structures, Priest-Gilligan curve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Design allowable            | load:                |                | 966              | [kN]    |          |
| LOAD<br>11 mm thick plate<br>Supported<br>032.5 [mm]<br>Calc. Acc. To Blodgett's Design of Welded Structures, Priest-Gilligan curve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | Design specific a           | llowable loa         | d:             | 1036             | [kN/m]  |          |
| LOAD<br>11 mm thick plate<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>CoAD<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Su                                                                                                                                                                                                                                                                              |              | <b>-</b>                    |                      |                |                  |         |          |
| LOAD<br>11 mm thick plate<br>Supported<br>LOAD<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                             |                      |                |                  |         |          |
| 11 mm thick plate         Supported         Supported         LOAD         932.5 [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                             | LOAD                 |                |                  |         |          |
| 11 mm thick plate       762 [mm]         Supported       Supported         Image: Calc. Acc. To Blodgett's Design of Welded Structures, Priest-Gilligan curve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                             | ↓ ↓<br>▼ ▼           | •              | <b>↓</b> ↓ ↓     |         |          |
| 11 mm thick plate       762 [mm]         Supported       Supported         Image: Design of Welded Structures, Priest-Gilligan curve.       The support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                             |                      |                |                  |         |          |
| Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported<br>Supported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                             | 11 mm                | thick pla      | te               |         |          |
| Supported<br>Supported<br>LOAD<br>932.5 [mm]<br>Calc. Acc. To Blodgett's Design of Welded Structures, Priest-Gilligan curve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                             |                      |                |                  | 7       | 762 [mm] |
| LOAD<br>932.5 [mm]<br>Calc. Acc. To Blodgett's Design of Welded Structures, Priest-Gilligan curve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | Supported                   |                      |                | Supported        |         |          |
| LOAD<br>932.5 [mm]<br>Calc. Acc. To Blodgett's Design of Welded Structures, Priest-Gilligan curve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                             |                      |                |                  |         |          |
| LOAD<br>932.5 [mm]<br>Calc. Acc. To Blodgett's Design of Welded Structures, Priest-Gilligan curve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                             |                      |                |                  |         |          |
| LOAD<br>932.5 [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | <u>Î Î Î</u>                | <u> </u>             | <u> </u>       | <u> </u>         |         |          |
| Calc. Acc. To Blodgett's Design of Welded Structures, Priest-Gilligan curve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                             | LOAD                 |                |                  |         |          |
| Calc. Acc. To Blodgett's Design of Welded Structures, Priest-Gilligan curve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                             |                      | -              |                  |         |          |
| Calc. Acc. To Blodgett's Design of Welded Structures, Priest-Gilligan curve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 4                           | — 932.5 [mm          | 1              |                  | 1       |          |
| Calc. Acc. To Blodgett's Design of Welded Structures, Priest-Gilligan curve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                             |                      |                |                  |         |          |
| Calc. Acc. To Blodgett's Design of Welded Structures, Priest-Gilligan curve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                             |                      |                |                  |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | Calc. Acc. To Blodgett's De | sign of Welded Struc | ctures, Priest | -Gilligan curve. |         |          |

1

| Project       | Tombua landana                |                         |                          |                |          |
|---------------|-------------------------------|-------------------------|--------------------------|----------------|----------|
| Subject       | Living Quarters               |                         |                          |                |          |
| Job / Bid no. | 1/0310                        |                         | -                        |                |          |
| Date          | 30-May-07 s                   | heet                    |                          |                |          |
|               |                               |                         |                          |                |          |
|               |                               | PLATING C               | APACITY                  |                |          |
|               |                               |                         | COMPRESSION              |                |          |
| BUCKLING      | S RESISTANCE OF F             | LATES SIDER             |                          |                |          |
|               | Support type:                 | Four sid                | les supported            |                |          |
|               |                               |                         |                          |                |          |
|               | staduine of election          | 4. <i>n</i>             | 210000                   | [N/mm²]        |          |
|               | Modulus of elastic            | ty.                     | 0.3                      | [-]            |          |
|               | Plate thickness               |                         | 11                       | [mm]           |          |
|               | Plate length:                 |                         | 762                      | [mm]           |          |
|               | Plate width:                  |                         | 2800.35                  | [mm]           | (Loaded) |
|               | Yield stress:                 |                         | 235                      | [N/mm²]        |          |
|               |                               |                         |                          |                |          |
|               | Plate factor k:               |                         | 15.580                   | (N. 1. /       |          |
|               | Design stress:                |                         | 141.0                    | [N/mm-]        |          |
|               | b(eff)/t:                     |                         | 41.4                     | [mm]           |          |
|               | Effective width.              |                         | 400.2                    | [11:11]        |          |
|               | Section of curve:             |                         | C - D                    |                |          |
|               | <b>Critical stress:</b>       |                         | 34                       | [N/mm²]        |          |
|               |                               |                         | 4000                     | TLARI          |          |
|               | Design allowable              | load:                   | 1236                     | [KN]<br>[kN/m] |          |
|               | Design specific al            | Iowable load:           | ·+-+ I                   | Franni         |          |
|               |                               |                         |                          |                |          |
|               |                               |                         |                          |                |          |
|               |                               | LOAD                    |                          |                |          |
|               |                               |                         |                          | _              |          |
|               | ¥¥                            | <u>¥ ¥ ¥</u>            | <u> </u>                 | 1 7            |          |
|               |                               |                         |                          |                |          |
|               |                               | 11 mm thic              | k plate                  |                |          |
|               |                               |                         | 0                        |                | 62 [mm]  |
|               | Supported                     |                         | Supported                |                |          |
|               |                               |                         |                          |                |          |
|               |                               |                         |                          |                | ,        |
|               |                               | <u>+ + +</u>            | <b>† † ′</b>             | <b></b>        |          |
|               |                               |                         |                          | 1              |          |
|               |                               | LOAD                    |                          |                |          |
|               |                               | 200 25 [mm]             |                          |                |          |
|               | 2                             | ັ້ງທາງ ເບັນອີ           | r                        |                |          |
|               |                               |                         |                          |                |          |
|               |                               |                         |                          |                |          |
|               | Calc. Acc. To Blodgett's Desi | gn of Welded Structures | , Priest-Gilligan curve. |                |          |
|               | Calc. Acc. To Blodgett's Desi | gn of Welded Structures | , Priest-Gilligan curve. |                |          |

| JOB NO.   | : 1/0310         |
|-----------|------------------|
| COMP'D BY | . Fenny          |
| CALC. NO. | : QT 400 - RP 01 |
| DATE      | . 30 May 2007    |

#### 4. 2 CAPACITY OF BULKHEAD COLUMNS AT TRANSVERSE BULFHEAD

potall B

crossing of transverse builthead with longitudinal builthead



9,5

10 = 19.05 mm b = 350 mm twp = 25.4 mm t shimplate = 25.4 mm h = 63.4 mm  $\Gamma = 63.4 \text{ mm}$ F = 63.4 mm

WF 190 X 1524 X 38 X 25.4



1. Activated areac at loadout (without wing plate) Longitudinal Н ÷ 254 mm ĸ ųų mm ÷ mm tw H. v  $(H + 5K) = 5236 \text{ Mm}^2$ tw Aι ÷ TRANIVETTE Ν inin 305 z 19.05 mm ĸ Ţ 9.5 mm tw £ tw (H+5K) - 3800 mm<sup>2</sup> Az

| OB NO. : $\frac{1}{030}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SHEET NO .: 4.103                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| COMP'D BY :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
| CALC. NO. : RT 400 - RP 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| DATE : <u>20 May 2007</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n na kana kana kana kana kana kana kana |
| Capacity section a-a at load out = $(A_1 + A_2)$ , 0.6 Fy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |
| = 1274, 08 KN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
| 2 Additional area during transportation<br>longitudinal, beneath 2 wing plates b = 350 mm<br>N = 350 mm<br>k = 19 mm<br>tw = 11 mm<br>A3 = tw - (N + 2,5K) = 4372,5 mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |
| Additional capocity: A3 x 0.6 Fy x 2 = 1356.35 KN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |
| Total capacity during transportation = 2630.43 KN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |
| Capacity at rection B-B and $\kappa - \kappa$<br>Here is a superverse superverse superverse superverse superverse is a superverse in the superverse is a superverse superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a superverse is a super | heαd                                    |
| VI2 WELL = VI2 V 235114 - 1211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
| assume 45° load distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| $a \sim 26.55 \text{ mm} \longrightarrow \text{Fcr} = 224 \text{ N/mm}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |
| $b : 1004.3 \text{ mm} \longrightarrow \text{Fcr} : 224 \text{ N/mm}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |
| $c : 336.95 \text{ mm} \longrightarrow Fcr : 26 \text{ M/mm}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |

| C | Ľ | 336.95   | мm           | > | Fcr | ; | 2G | $N/mm^2$   |
|---|---|----------|--------------|---|-----|---|----|------------|
| d | ÷ | 1060, 85 | ,M <b>in</b> | > | Fcr |   | 31 | $M/mm^{2}$ |

| JOB NO.   | : | t /  | 0310  |         |
|-----------|---|------|-------|---------|
| COMP'D BY | : | £6ui | Ŋ     |         |
| CALC. NO. | : | RT   | 400 - | - RP 01 |
| DATE      | : | 30   | May   | 2007    |

Capacity plate a - at section p-b, without wing plates LOADED area  $(127 + 0.5 762) \times 11 = 5588 \text{ Mm}^2$  $0.6 \text{ Fy} \times (508 - 27) \times \text{tw} = 448.04 \text{ kN}$ DIG For x 27 X tw = 30, 23 KN + Fmax; a, at loadout = 487, 27 KN - at section 2-2, with wins plates = 1059.05 KH DIG FY X LIS WEFF X tw 016 FCT X (481,75+ 015 X 762 - 15 W EFF) X tw = 265.88 KN + Fmax; a, at transport = 1324, 90 KΝ Capacity plate b - at section B-B, without wing plates 016 Fy x 015 W EFF x tw = 353, 02 KN 0.6 For x b x tw = 12.01, 51 KN + Fmax; b, at loadout = 1234, 52 KN - at section 3-7. with wine plates 016 Fy x 015 W EFF x tw = 353.02 KM 016 For x (b + 350) x tw 2000,99 KN + Fmax; b, at tiansport = 2353.99 KN Capacity plate c  $DIG Fy \times DIS W eff \times tW = 263.3$ ΚN 0.6 for x c x tw = 49,02 KN +

Fmax; c, at transporter 312, 30 KN

| JOB NO.   | ; | t / 0310       |
|-----------|---|----------------|
| COMP'D BY | : | Fenny          |
| CALC. NO. | : | RT 400 - RP 01 |
| DATE      | : | 30 May 2007    |

| Capacity             | plate             | <u>e</u> d          |                  |        |       |                |          |      |              |        |    |          |    |
|----------------------|-------------------|---------------------|------------------|--------|-------|----------------|----------|------|--------------|--------|----|----------|----|
| DIG FY               | ×                 | 015 W1              | <del>8</del> 44  | ×      | tw    | T.             | 263,3    | K1   | (            |        |    |          |    |
| 0.6 FCF              | ×                 | d                   |                  | x      | tw    | :              | 185, 48  | ۴١   | <del>\</del> | -      |    |          |    |
|                      |                   | Fmax                | ; d .            | at tro | ነካናዋሪ | ort =          | 440 · 76 | k.   | М            |        |    |          |    |
| Capacity             | sect              | tion B-1            | 3                |        |       |                |          |      |              |        |    |          |    |
| without              | wing              | pates               | :                | Fmax   | ۶.    | 2 X            | 467,27   | t    | zx           | 312,3  | ų  | 1509,13  | КH |
| with w               | ing P             | lates               | ÷                | Fmax   | 7     | 2 X            | 1324.9   | 4    | 2 X          | 312,3  | y, | 3274.40  | КN |
| Capa city<br>Without | sec<br>Win        | tion 7-1<br>g plati | 62 %<br><u>9</u> | Fmax   | ŧ     | 2 x            | 1634, SZ | ;    | 2 ×          | 448,76 | ** | 4166, 57 | КŅ |
| with v               | лид               | plater              | \$               | Fma×   | . :   | 2 <sup>y</sup> | 2353.99  | ť    | 2 X          | 44076  | •  | 5605·51  | КH |
| U.C. =               | <del>-</del><br>Ŧ | - allouab           | <u>4</u><br>10   |        |       |                |          |      |              |        |    |          |    |
| -1.                  |                   | 1352.8<br>3274 14   | 0                |        |       | ( ce           | e choet  | 4.(0 | ).           |        |    |          |    |
| رتى                  | 1                 | 01413               | 2                | < 1    |       | >              | 0.4      |      |              |        |    |          |    |

.

SHEET NO .: 4 105

| Project       | Tombua landana                              |                      |                 |                      |          |
|---------------|---------------------------------------------|----------------------|-----------------|----------------------|----------|
| Subject       | Living Quarters                             |                      |                 |                      |          |
| Job / Bid no. | I/0310                                      |                      |                 |                      |          |
| Date          | 30-May-07 Sheet                             |                      |                 |                      | <u></u>  |
|               |                                             |                      | CITV            |                      |          |
|               | PLAII                                       | NG CAFA              |                 |                      |          |
| BUCKLIN       | G RESISTANCE OF PLATES U                    | NDER COM             | PRESSION        |                      |          |
|               | -                                           |                      |                 |                      |          |
|               | Support type:                               | our sides si         | upporteu        |                      |          |
|               |                                             |                      |                 |                      |          |
|               | Modulus of elasticity:                      |                      | 210000          | [N/mm²]              |          |
|               | Poisson's ratio:                            |                      | 0.3             | [-]                  |          |
|               | Plate thickness:                            |                      | 11              | [mm]                 |          |
|               | Plate length:                               |                      | 762             | [mm]                 | (Loodod) |
|               | Plate width:                                |                      | 481.75          | [mm]<br>[NJ/mages 21 | (Loadeu) |
|               | Yield stress:                               |                      | 235             | [IN/mm-]             |          |
|               | Plate factor k:                             |                      | 4.000           |                      |          |
|               | Desian stress:                              |                      | 141.0           | [N/mm²]              |          |
|               | b(eff)/t:                                   |                      | 41.4            |                      |          |
|               | Effective width:                            |                      | 455.2           | [mm]                 |          |
|               | Section of curve:                           |                      | B - C           |                      |          |
|               | Critical stress:                            |                      | 224             | [N/mm <sup>2</sup> ] |          |
|               |                                             |                      |                 | -                    |          |
|               | Design allowable load:                      |                      | 745             | [kN]                 |          |
|               | Design specific allowable l                 | oad:                 | 1547            | [kN/m]               |          |
|               |                                             |                      |                 |                      |          |
|               |                                             |                      |                 | ·                    |          |
|               | LOAI                                        | ט                    |                 |                      |          |
|               |                                             |                      |                 |                      |          |
|               |                                             | V                    |                 |                      |          |
|               |                                             |                      | *               |                      |          |
|               | 11 m                                        | m thick plat         | e               | 7                    | 62 [mm]  |
|               |                                             |                      | Supported       | (<br>                | 02 [mm]  |
|               | Supported                                   |                      | Supponed        |                      |          |
|               |                                             |                      |                 |                      |          |
|               |                                             |                      |                 |                      |          |
|               |                                             |                      | ` <b>†</b> '    |                      |          |
|               |                                             | t                    |                 |                      |          |
|               | LOA                                         | <i>,</i>             |                 |                      |          |
|               | <b>₄</b>                                    | om]                  |                 |                      |          |
|               |                                             | -                    |                 | I                    |          |
|               |                                             |                      |                 |                      |          |
|               |                                             |                      | ~ ***           |                      |          |
|               | Calc. Acc. To Blodgett's Design of Welded S | Structures, Priest-( | Gilligan curve. |                      |          |

| Project       | Tombua landana                     |                          |                  |                                             |                                        |
|---------------|------------------------------------|--------------------------|------------------|---------------------------------------------|----------------------------------------|
| Subject       | Living Quarters                    |                          |                  |                                             |                                        |
| iob / Bid no. | I/0310                             |                          | -                |                                             |                                        |
| Date          | 30-May-07 Sheet                    |                          |                  | <u> </u>                                    |                                        |
|               | DI                                 |                          | CITY             |                                             |                                        |
|               | F                                  |                          | (OTT)            |                                             |                                        |
| BUCKLIN       | G RESISTANCE OF PLAT               | ES UNDER CO              | <b>WPRESSION</b> |                                             |                                        |
|               | 0                                  | Fourcidoc                | supported        |                                             |                                        |
|               | Support type:                      | rour sides :             | supported        |                                             |                                        |
|               |                                    |                          |                  |                                             |                                        |
|               | Modulus of elasticity:             |                          | 210000           | [N/mm²]                                     |                                        |
|               | Poisson's ratio:                   |                          | 0.3              | [-]                                         |                                        |
|               | Plate thickness:                   |                          | 11               | [mm]                                        |                                        |
|               | Plate length:                      |                          | 686              | [mm]<br>[mm]                                | (Loodod)                               |
|               | Plate width:                       |                          | 481.75           | [MM]<br>[N]/mama2]                          | (Loaded)                               |
|               | Yield stress:                      |                          | 235              | [IN/IIII14]                                 |                                        |
|               | Plata factor k:                    |                          | 4.000            |                                             |                                        |
|               | Design stress:                     |                          | 141.0            | [N/mm²]                                     |                                        |
|               | b(eff)/t·                          |                          | 41.4             |                                             |                                        |
|               | Effective width:                   |                          | 455.2            | [mm]                                        |                                        |
|               | - ·· ·                             |                          | P C              |                                             |                                        |
|               | Section of curve:                  |                          | 224              | [N/mm²]                                     |                                        |
|               | Critical stress:                   |                          | 227              | formu 1                                     |                                        |
|               | Design allowable load              | 4:                       | 745              | [kN]                                        |                                        |
|               | Design specific allow              | able load:               | 1547             | [kN/m]                                      |                                        |
|               |                                    |                          |                  |                                             |                                        |
|               |                                    |                          |                  |                                             |                                        |
|               |                                    | LOAD                     |                  |                                             |                                        |
|               | <u> </u>                           |                          |                  |                                             |                                        |
|               |                                    | ¥                        | <u>↓</u> ↓ ↓     | <u>ــــــــــــــــــــــــــــــــــــ</u> |                                        |
|               |                                    |                          | -                |                                             |                                        |
|               |                                    | 11 mm thick pla          | ite              |                                             |                                        |
|               |                                    |                          |                  | 6                                           | 86 [mm]                                |
|               | Supported                          |                          | Supported        |                                             |                                        |
|               |                                    |                          |                  |                                             |                                        |
|               |                                    |                          |                  |                                             |                                        |
|               |                                    | <b>A A</b>               | <u>↑</u> ↑       | ⋠♥                                          |                                        |
|               |                                    |                          |                  | 1                                           |                                        |
|               |                                    | LOAD                     |                  |                                             |                                        |
|               |                                    |                          |                  |                                             |                                        |
|               | 481                                | l.75 [mm]                |                  | 1                                           |                                        |
|               | 1                                  |                          |                  | ,                                           |                                        |
|               |                                    |                          |                  |                                             |                                        |
|               | Asta Asta Ma Disabastila Dastan at | Wolded Structures Price  | t-Gillioan curve |                                             | ······································ |
|               | Calc. Acc. To Blodgett's Design of | Weided Structures, Files | - Onnyan ourve.  |                                             |                                        |
|               | Allowable stress according to AISC | 2                        |                  |                                             |                                        |

٦

| Project       | Tombua landana                |                                  | _                 |                |          |
|---------------|-------------------------------|----------------------------------|-------------------|----------------|----------|
| Subject       | Living Quarters               | ······                           |                   |                |          |
| Job / Bid no. | 1/0310                        |                                  |                   |                |          |
| Date          | 30-May-07                     | Sheet                            |                   |                |          |
|               |                               |                                  |                   |                |          |
|               |                               | PLATING CAPA                     | ACTIY             |                |          |
|               | PESISTANCE OF                 | PLATES LINDER CO                 | MPRESSION         |                |          |
| DUCKLING      |                               |                                  |                   |                |          |
|               | Support type:                 | Four sides                       | supported         |                |          |
|               |                               |                                  |                   |                |          |
|               | the tables of strengths       | \$4. <i>u</i>                    | 210000            | [N]/mm2]       |          |
|               | Modulus of elastic            | aty:                             | 210000            | [-]            |          |
|               | Poisson's ratio.              |                                  | 9.5               | ímml           |          |
|               | Plate length.                 |                                  | 762               | [mm]           |          |
|               | Plate width:                  |                                  | 2800.35           | [mm]           | (Loaded) |
|               | Yield stress:                 |                                  | 235               | [N/mm²]        | · · ·    |
|               |                               |                                  |                   |                |          |
|               | Plate factor k:               |                                  | 15.580            | r) ( 21        |          |
|               | Design stress:                |                                  | 141.0             | [N/mm²]        |          |
|               | b(eff)/t:                     |                                  | 41.4              | [mm]           |          |
|               | Effective width:              |                                  | 595.1             | [imi]          |          |
|               | Section of curve:             |                                  | C - D             |                |          |
|               | Critical stress:              |                                  | 26                | [N/mm²]        |          |
|               |                               |                                  | <u>م</u> ر سو سو  | F83. F3        |          |
|               | Design allowable              | load:                            | 8//               | [KN]<br>[kN/m] |          |
|               | Design specific a             | llowable load:                   | 313               | [KN/m]         |          |
|               |                               |                                  |                   |                |          |
|               |                               |                                  |                   |                |          |
|               |                               | LOAD                             |                   |                |          |
|               |                               |                                  |                   |                |          |
|               | <u>↓</u> <u>↓</u>             | <u>+ + +</u>                     | <u>* * *</u>      | ,,             | <b></b>  |
|               |                               |                                  |                   |                |          |
|               |                               | 9.5 mm thick pla                 | ite               |                |          |
|               |                               |                                  |                   | 7              | '62 [mm] |
|               | Supported                     |                                  | Supported         |                |          |
|               |                               |                                  |                   |                |          |
|               |                               |                                  |                   |                |          |
|               | A A A                         | ↑ ↑ ↑                            | ↑ ↑ ·             |                |          |
|               |                               |                                  |                   | 1              |          |
|               |                               | LOAD                             |                   |                |          |
|               |                               |                                  |                   |                |          |
|               | 4                             | 2800.35 [mm]                     | -                 |                |          |
|               |                               |                                  |                   |                |          |
|               |                               |                                  |                   |                |          |
|               | Calc. Acc. To Blodgett's Des  | ign of Welded Structures, Priest | t-Gilligan curve. |                |          |
|               | Allowable stress according to | AISC                             |                   |                |          |

| Tombua landana                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Living Quarters                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1/0310                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 30-May-07 Sheet                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PLATING C.                      | APACITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RESISTANCE OF PLATES UNDER      | COMPRESSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Support type: Four side         | des supported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Modulus of elasticity:          | 210000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [N/mm²]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Poisson's ratio:                | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Plate thickness:                | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Plate length:                   | 686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [mm]<br>[ 1 (lasted)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Plate width:                    | 2800.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [mm] (Loaded)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Yield stress:                   | 235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [N/mm~j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Plate factor k:                 | 18.724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Design stress:                  | 141.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [N/mm²]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| b(eff)/t:                       | 41.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Effective width:                | 393.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Section of curve:               | C - D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Critical stress:                | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [N/mm²]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                 | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Design allowable load:          | 947<br>328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [KN]<br>[kN/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Design specific allowable load: | 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [Kiwan]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| LOAD                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 | · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9.5 mm thic                     | k plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5.5 mm uno                      | . Friers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 686 [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Supported                       | Supported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 | <u>+</u> +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 | <b>_</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>←</b> <u>28</u> 00.35 [mm] − |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 | Tombua landana<br>Living Quarters<br>//0310<br>30-May-07 Sheet<br>PLATING C<br>PLATING C<br>PLATING C<br>SRESISTANCE OF PLATES UNDER<br>Support type: Four sid<br>Modulus of elasticity:<br>Poisson's ratio:<br>Plate thickness:<br>Plate length:<br>Plate width:<br>Yield stress:<br>Plate factor k:<br>Design stress:<br>b(eff)/t:<br>Effective width:<br>Section of curve:<br>Critical stress:<br>Design allowable load:<br>Design specific allowable load:<br>1000<br>9.5 mm thic<br>Supported | Tombua landana         Living Quarters         I/0310         30-May-07         Sheet         PLATING CAPACITY         Four sides supported         Modulus of elasticity:         Poisson's ratio:       0.3         Plate thickness:       9.5         Plate ength:       686         Plate width:       2800.35         Yield stress:       235         Plate factor k:       18.724         Design stress:       141.0         b(eff)/t:       41.4         Effective width:       393.1         Section of curve:       C - D         Critical stress:       31         Design allowable load:       947         Design specific allowable load:       338         LOAD       9.5 mm thick plate         Supported       Supported |

| Project       | PROJECT                  |             |          |       |       |   |
|---------------|--------------------------|-------------|----------|-------|-------|---|
| Subject       | SUBJECT                  |             |          |       |       |   |
| Job / Bid no. | JOBNO                    |             |          | ~)    | 4.410 | _ |
| Date          | 25-Apr-07                |             |          | Sheet | 4.1/0 |   |
|               | BOLLARD PULL FOR         | SEAGOING BA | RGES     |       |       |   |
|               | INPUT                    |             |          |       |       |   |
|               | Barge:                   | BARGE       |          |       |       |   |
|               | Cargo:                   | CARGO       |          |       |       |   |
|               | Environmental conditions |             |          |       |       |   |
|               | Wind Speed               | 20.0        | [m/s]    |       |       |   |
|               | Sign. Wave Height        | 5.0         | [m]      |       |       |   |
|               | Current Speed            | 0.5         | [m/s]    |       |       |   |
|               | Barge specification      |             |          |       |       |   |
|               | Overall Length:          | 121.92      | [m]      | •     |       |   |
|               | Waterline length:        | 114.43      | [m]      |       |       |   |
|               | Beam (moulded):          | 30.33       | [m]      |       |       |   |
|               | Depth:                   | 6.10        | [m]      |       |       |   |
|               | Draught (mean):          | 2.44        | [m]      |       |       |   |
|               | Bow slope:               | 48          | [deg]    |       |       |   |
|               | Scow end at stern:       | У           | [YES/no] |       |       |   |
|               | Wind Input               |             |          |       |       |   |

| Description | Туре      |          | Length<br>[m] | Width<br>[m] | Height<br>[m] | Start Height<br>[m] |
|-------------|-----------|----------|---------------|--------------|---------------|---------------------|
| Barge       | Solid Box | -        | 121.92        | 30.33        | 7.01          | 0                   |
| LQ          | Solid Box | •        | 33.53         | 17.07        | 23.96         | 5.16                |
|             | Solid Box | <b>•</b> |               |              |               |                     |
|             | Solid Box | ▼        |               |              |               |                     |
|             | Solid Box | •        |               |              |               |                     |
|             | Solid Box | •        |               |              |               |                     |
|             | Solid Box | -        |               |              |               |                     |
|             | Solid Box | -        |               |              |               |                     |

#### OUTPUT

| Required bollard pull    | 61.1 | [mT] |
|--------------------------|------|------|
| Tug efficiency           | 53   | [%]  |
| Towline pull requirement | 32.6 | [mT] |
| Wind resistance:         | 11.5 | [mT] |
| Wave resistance:         | 20.9 | [mT] |
| Hull resistance:         | 0.2  | [mT] |

Bollard Pull Tool version 2.1

| roject        | PROJE             | ECT                  |                                        |                  |       |         |
|---------------|-------------------|----------------------|----------------------------------------|------------------|-------|---------|
| Subject       | SUBJE             | CT                   |                                        |                  |       |         |
| lob / Bid no. | JOBN              | <u> </u>             |                                        | Phoe             |       |         |
| Date          | 25-Apr-(          | )7                   |                                        | Sneet            | 4.1   | [[      |
|               | BOLL/<br>DETAI    | ARD PULI<br>LED INPL | L FOR SEAGOING BARGES<br>JT AND OUTPUT |                  |       |         |
|               | Hull Re           | sistance Ca          | alculation                             |                  |       |         |
|               | ρ <sub>w</sub>    | 1.025                | [mT/m <sup>3</sup> ]                   |                  |       |         |
|               | S                 | 558                  | [m <sup>2</sup> ]                      |                  |       |         |
|               | v                 | 1.0E-06              | [m²/s]                                 | _                | o 40  | F1 & 17 |
|               | R <sub>n</sub>    | 5.7E+07              | 6                                      | R⊭               | 0.16  | [KN]    |
|               | Α <sub>ĩR</sub>   | 0                    | [m <sup>2</sup> ]                      | R <sub>TR</sub>  | 0.00  | [KN]    |
|               | C <sub>D-TR</sub> | 0.213                | [-]                                    | Rw               | 0.00  | [KN]    |
|               | F <sub>nB</sub>   | 0.029                | [-]                                    | R <sub>VP</sub>  | 0.20  | [KN]    |
|               | Am                | 74                   | [m2]                                   | R <sub>APP</sub> | 0.00  | [KN]    |
|               | L <sub>entr</sub> | 2.18                 | [m]                                    | KALL             | 1.18  |         |
|               | $\nabla$          | 8307                 | [m3]                                   | Rhull            | 1.55  | [kN]    |
|               | CP                | 0.981                | [-]                                    |                  |       |         |
|               | Q                 | 7.84                 |                                        |                  |       |         |
|               | C <sub>PST</sub>  | 0.500                | [-]                                    |                  |       |         |
|               | $H_{VA}/T_A$      | 1                    | [-]                                    |                  |       |         |
|               | Ρ                 | 0.011                |                                        |                  |       |         |
|               | Wave D            | rift Forces          |                                        |                  |       |         |
|               | C <sub>1</sub>    | 0.025035             | 166                                    |                  |       |         |
|               | C <sub>2</sub>    | 0.100671             | 828                                    | FWAVE            | 205.3 | [kN]    |
|               | <u> </u>          | 0.825553             | 069                                    |                  |       |         |

#### F<sub>wind</sub> C<sub>shape</sub> $\mathbf{C}_{\text{truss}}$ $\mathbf{C}_{\mathsf{shielding}}$ Description Area [kN] [-] [-] [-] [m2] 1 1 27.6 Barge 213 0.7 1 1 85.5 0.75 409 LQ Total 113.1

Bollard Pull Tool version 2.1

 JOB NO.
 : 1/0310

 COMP'D BY
 : AHA & FW

 CALC. NO
 :

 DATE
 : May 2007

#### 5.0 APPENDICES

| 5.1 | Weight and C.o.G information       | 5.1   |
|-----|------------------------------------|-------|
| 5.2 | Transportation forces              | . 5.2 |
| 53  | Distribution load for seafastening | 5.5   |
| 54  | Standard seafastening design       | 5.6   |
| 55  | Barge strength in SACS model       | 5.7   |
| 0.0 |                                    |       |

|                 |            |                 |                                       |                                          | i              | AT               |                              | Project No.  | 6305               |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|-----------------|------------|-----------------|---------------------------------------|------------------------------------------|----------------|------------------|------------------------------|--------------|--------------------|----------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| D. A            |            | Teerro I        | op Post                               | STRUCTION                                |                | 41               | 13/07                        | Hem No.      | ALL                |                                        |                                          | 1179/2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
| KEV U           |            | L STUER P       | U16. U104                             |                                          | <u> </u>       | 14               |                              | -Revision    | 8                  | VBU<br>Acro                            |                                          | PVO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
|                 |            |                 |                                       |                                          |                |                  |                              | Ву           | JS.                | 1997<br>Deviation                      | ment Pr                                  | niect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
|                 |            |                 |                                       |                                          |                |                  |                              | Unit.        | 1 omuua-L          | апонна глехвор                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                 |            | ICICLIT I CEM   |                                       | RAVITY                                   |                |                  |                              | P.O. No.     | <u> </u>           |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                 | A.         | CENDEL / CEN    | SHEFT                                 |                                          |                |                  |                              | linquiry No. | <u> </u>           |                                        |                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
|                 |            | UM 18           | ,                                     |                                          |                |                  |                              | Sheet        | 1 1                | <u></u>                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                 |            |                 |                                       |                                          |                |                  |                              | Doc No.      | <u> </u>           |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                 | 10100      | 201             |                                       | lant                                     |                | hilling an       | d Production                 | Platform     |                    |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| lent Chev       | tion (CABG |                 |                                       | ile:                                     | Offs           | hore Ang         | ola, Block 14                |              |                    |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| arvića: ALL     |            |                 | E                                     |                                          | I              |                  |                              |              |                    |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                 |            | 1               | - Madel Ma                            |                                          |                |                  | T                            |              |                    |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| imper of Units: |            | 1               | and a standard and a stand            |                                          |                |                  | 1                            |              |                    |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | £                |
| ervice; ALL     |            | Im              | attuiactuion                          |                                          |                |                  | .1                           |              |                    |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | darman and       |
|                 |            |                 |                                       | an an an an an an an an an an an an an a |                | 02433            | ATA                          |              | 317 ( <i>m</i> . 1 |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                 |            |                 | <u></u>                               | ECTH                                     | AAT            | ED               | % CON                        | TINGENCY     |                    | REMARKS                                | ·                                        | WEIGHT S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IAIUS            |
|                 |            | TYPE            |                                       | EO LIN<br>Mari                           | inan.<br>Kuni  | Ť                | ALLC                         | WANCE        |                    |                                        | 1                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>         |
| •               |            |                 |                                       | VVCI                                     | 1-2(-)         | 4.<br>           |                              |              |                    |                                        |                                          | O (ESTIMATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )                |
|                 | TA /1-D)   | DRY             |                                       |                                          |                |                  | <del> </del>                 |              | +                  |                                        |                                          | VENDOR I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VFO.             |
| WEIGHT DA       | 14 (LB)    | LIFT            |                                       | 3,65                                     | 0,             | 320              | <u> </u>                     | 2            |                    |                                        |                                          | D CERTIFIED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) <u> </u>       |
|                 |            | OPERAT          | ING                                   | 3177                                     | 10,            | 450              | <u></u>                      |              |                    | ì                                      |                                          | O WEIGHED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INFO.            |
|                 |            | TEST            |                                       |                                          | 1              |                  | <u> </u>                     |              |                    |                                        |                                          | in all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - "              |
|                 |            |                 |                                       |                                          |                |                  |                              |              |                    |                                        |                                          | A= 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                |
|                 |            |                 |                                       |                                          | ·              |                  | 1                            |              |                    |                                        |                                          | - mel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | All'             |
| 1.              |            | `               | <u>A</u>                              |                                          |                |                  | <b>&gt;</b>                  |              |                    | i                                      |                                          | Ba 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 111              |
|                 |            |                 |                                       |                                          |                |                  |                              | ٠            | ιA                 | l.                                     |                                          | c= 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 72               |
|                 |            | X               |                                       |                                          |                |                  |                              |              | . 😰                | •.                                     |                                          | First.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -, 13 4          |
| *               |            |                 |                                       |                                          |                |                  |                              |              | Ľ                  |                                        |                                          | x= 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 175              |
|                 |            |                 | ŀ                                     | C OF G                                   |                |                  |                              |              | - Y                |                                        |                                          | 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6-11             |
|                 |            |                 | A                                     | 00.0                                     |                |                  |                              |              | 1                  |                                        |                                          | Y= 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 A.             |
| ~  <del> </del> |            |                 | Ψ                                     |                                          |                |                  |                              |              | ŀ                  |                                        |                                          | - 30/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 131              |
|                 |            |                 |                                       |                                          |                |                  |                              |              |                    |                                        |                                          | <u> 22 70 1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2. 197           |
| →               |            |                 |                                       |                                          |                |                  |                              |              |                    |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| <u>+ +  </u>    | <u></u>    |                 |                                       |                                          |                |                  | *****                        |              |                    |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                 | •          |                 | PLAN                                  | l                                        |                |                  |                              |              |                    |                                        |                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
|                 |            |                 |                                       |                                          |                |                  |                              |              |                    |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                 |            |                 |                                       |                                          |                |                  |                              |              |                    |                                        |                                          | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| T I             |            |                 | 0                                     | COF G.                                   |                |                  |                              |              |                    |                                        |                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
|                 |            |                 | - W                                   |                                          |                |                  |                              | ∬ s∪         | PPORT S            | STEEL                                  |                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| N               |            |                 |                                       |                                          |                |                  |                              |              |                    |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                 |            |                 |                                       | ากผ                                      |                |                  |                              |              |                    |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                 |            |                 | ELEVAI                                | MON                                      |                |                  |                              |              |                    |                                        |                                          | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
|                 |            |                 |                                       |                                          |                |                  |                              |              |                    |                                        |                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| 1400-000-       |            |                 |                                       |                                          |                |                  |                              |              |                    |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| NOIE:           | NSIONS     | IN FEET. INCHES | 5.                                    |                                          |                |                  |                              | NUCLIENCE    |                    |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| 2) ALL LAWE     | IN SOME    | IDENTIFYING IT  | EMS ABOVE                             | E TO HELP                                | OR             | ENT TH           | IEX & YL                     | IMENSIONS    | •                  |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                 |            |                 | o an an an an an an a                 | ****                                     | AAAF           | IGH73            | HECK                         | ST           |                    |                                        | <u>n se se s</u>                         | <u>e na state de la s</u> econda de la seconda seconda de la seconda seconda de la second<br>Seconda de la seconda de la sec | <u>.</u>         |
|                 | 7.CE 914 M |                 |                                       | 45 <u>7788000000</u><br>I                | -21 <b>8 1</b> | 44.000 (CA10.00) | 15.10                        | UIDED IN     | 1F                 | NOT INCLU                              | DED A                                    | ND APPLICA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BLE -            |
|                 |            |                 |                                       |                                          |                |                  | LINCA<br>MARTIN              | CUT DATA     | "                  | ESTIN                                  | NATED                                    | WEIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
|                 | Ť          | TEM             |                                       | APPI                                     | <u>LIC</u> A   | BLE              | AVE!                         |              | -                  |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| FACT            | ORY SK     | D/ STEEL WOF    | ١K                                    | 1YES                                     |                | INO              | KIYES_                       |              |                    |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| Thui            |            | ROOFING         | , , , , , , , , , , , , , , , , , , , | ZYES                                     |                | INO              | AYES                         |              |                    |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                 | HERMAN     | INSULATION      |                                       | ZYES                                     |                | NO               | LIVES                        |              | <u></u>            |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                 | DOVI OF    | ID INSTRUMEN    | TS                                    | <b>Z</b> YES                             |                | NO.              | /YES                         |              |                    |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| rAWI3           | TODVIC     | KID ELECTRIC    | S                                     | Z YES                                    | Ľ              | 1HO              | 1/1YES                       |              |                    |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| FAU             | TODVIC     | KID PIPEWOR     | K                                     | YES                                      |                | ]NO              | YES                          |              | _                  |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| FAC             | ATEND      | AS / LADDERS    |                                       | <b>VES</b>                               |                | )NO              | <b>VES</b>                   |              |                    | ······································ |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| P1              |            |                 |                                       |                                          | FI             | NALW             | EIGHT DA                     | TA           |                    |                                        | ONANA                                    | ENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
|                 |            | TEM             |                                       | ME                                       | ETH            | OD               | 1                            | VEIGHT       |                    | <u>`</u>                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                 | 0.61.0     |                 |                                       | L YES                                    | . IL           | ] NO             |                              | LBS          |                    |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                 | UALL       | AD INDICATOR    |                                       | YES                                      | T              | ) NO             |                              | LBS          |                    |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| CR              | ANE LU     | TDIICK COALE    |                                       | YES                                      | T              | )NO              | 1                            | LBS          |                    |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| CE              | KILED      | INVONOUNE       | •                                     | TYES                                     | Ē              | NO               |                              | LBS          | <u> </u>           |                                        | an an an an an an an an an an an an an a | 1217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ann              |
|                 | LUA        |                 |                                       |                                          |                |                  | Revision                     |              |                    |                                        | \$1.25 X                                 | pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| No.             | CODATE N   | lingual for Ef  | C and Cli                             | ent Approv                               | val            |                  |                              |              | <u>.</u>           |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PVC              |
| A               | 312/05     | ISSUED IN EL    | seinn                                 |                                          |                |                  |                              |              |                    |                                        | <u></u>                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ' <u>-</u> -     |
| В               | 11/29/05   | Issued to "De   | 201011                                |                                          |                |                  |                              | ·····        |                    |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                 |            |                 |                                       |                                          |                |                  |                              |              |                    | ALCONIC CONTRACTOR                     |                                          | Lauran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L <sub>int</sub> |
| 1               |            | 1               |                                       |                                          |                |                  | and the second second second |              |                    |                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |

JOB NO. : <u>I/0310</u> COMP'D BY : <u>Andrew</u>. <u>H</u> CALC. NO. : <u>D.T.400-RP01</u> DATE : <u>23<sup>cd</sup> April 107</u>



SHEET NO.: 52

| JOB NO.   | : I/0310         |
|-----------|------------------|
| COMP'D BY | : Andrew . H.    |
| CALC. NO. | : 10-T-100-EP01  |
| DATE      | : 23rd Apr: 1'07 |

| 2                 |                                                                         |               |
|-------------------|-------------------------------------------------------------------------|---------------|
| Relative to 2.0.5 | $8_1 = 30ft + 1,313 m$                                                  | = 9177, 34 mm |
|                   | $\Delta_2 = 5.771 \text{ or } 1524 + 6096$<br>= $3177,34 + 1524 + 6096$ | = 16797,34 mm |
| M A La delabel A: |                                                                         |               |
| Moque croan or    | × 16×2 m CP 3                                                           |               |
| L = 10 1 + +      | 16 ft + 121 in                                                          | = 10,76 m     |
| 13 = 56 H + 5     | 22 ft                                                                   | = 23,77 m     |
| )( :: )( )( +:    | n 2,6                                                                   | r 23,96 m     |
|                   |                                                                         |               |
| Moment of Inertic | ŧ                                                                       |               |
| Satety tactor     | = 1,3                                                                   |               |
|                   |                                                                         |               |
| MoIr = to · k/e   | eight. $SF.(B^{n+H^{2}})$                                               |               |
| = 1. 16           | 55176.1,3. (23,772 +2)                                                  | 3,962)        |
| - 2094            | 02,82 Tmi                                                               |               |
|                   |                                                                         |               |
| Moty = 1/2. When  | ght. SF. (C+1H?)                                                        |               |

$$= \frac{1}{16} \cdot 1655, 76 \cdot 15^{2} \cdot (30, 76^{2} + 23, 56^{2})$$
  
= 392502, 72 T m<sup>2</sup>

| sheet | Ç | ų |
|-------|---|---|
|-------|---|---|

| Project       | Tombua La          | andana           |                                       |                  |                                    |
|---------------|--------------------|------------------|---------------------------------------|------------------|------------------------------------|
| Subject       | Living Qua         | rters            |                                       |                  |                                    |
| Job / Bid no. | I/0310             |                  |                                       |                  |                                    |
| Date          | 30-May-07          | Sheet            | 1                                     |                  |                                    |
|               |                    |                  |                                       |                  |                                    |
|               |                    | TRANS            | PORTATIO                              | N FOR            | CES                                |
| Tranchorta    | tion Criteria      |                  |                                       |                  |                                    |
| Delly         | 20                 | [dog]            | (single ampl                          | ituda)           | 1                                  |
| ROII.         | 20                 | [uey]<br>[c]     | (full cycle pe                        | rind)            |                                    |
|               | 70                 | [0]              | (iun ofoio pe                         |                  |                                    |
| Pitch:        | 12.5               | [deg]            | (single ampl                          | itude)           |                                    |
|               | 10                 | [s]              | (full cycle pe                        | riod)            | These criteria are                 |
|               |                    |                  |                                       |                  | according to Noble Denton,         |
| Heave:        | 5                  | [m]              | (single ampl                          | itude)           | for large barges.                  |
|               | 10                 | [s]              | (full cycle pe                        | riod)            |                                    |
| ·             |                    |                  | -                                     |                  |                                    |
| Cargo spec    | cification:        |                  | CARGO                                 |                  |                                    |
|               | Weight:            |                  |                                       |                  | 16242.98 [KN]                      |
|               | Mass mom           | ent of inertia   | a about roll axi                      | s, Molx          | c: 204403 [I·m²]                   |
|               | Mass mom           | ent of inertia   | about pitch a                         | xis, Mo          | oly: 372503 [T⋅m²]                 |
|               | X coord (fro       | om stern):       |                                       |                  | 60.96 [m]                          |
|               | Y coord (fro       | om centerlin     | e):                                   |                  | 0.756 [m]                          |
|               | Z coord (fro       | om bottom b      | arge):                                |                  | 76.797 [m]                         |
| Barge/Ship    | informatio         | ו:               | BARGE                                 |                  |                                    |
|               |                    |                  | e e e e e e e e e e e e e e e e e e e |                  |                                    |
|               | X - coordina       | ate of the ce    | nter of rotation                      | n:               | 00.96 [m]                          |
|               | mean drait         | or barge:        |                                       |                  | 2.44 [m]                           |
| Forces and    | Acceleratio        | ns (Static       | + Dvnamic ) (                         | exerted          | I by module on barge:              |
| r or ooo ana  |                    |                  |                                       |                  |                                    |
| Roll to SB    |                    | Fv:              | -15091                                | [kN]             | -0.93 g                            |
|               |                    | Fh:              | -8831                                 | [kN]             | -0.54 g                            |
|               |                    | Moment:          | 28168                                 | [kN·m]           | ]                                  |
|               |                    | Heave: (±)       | 3268                                  | [kN]             | 0.20 g                             |
|               |                    | <b>F</b>         | 15126                                 | (LAN)            | 0.95 a                             |
| Roll to PS    |                    | FV:              | -10400                                | [KIN]<br>[ENI]   | -0.95 g                            |
|               |                    | ru.<br>Moment    | -28168                                | [kN·m]           | 0.04 g                             |
|               |                    | Heaver (+)       | 3268                                  | [kN]             | 0.20 a                             |
|               |                    | 10010. (±)       | 0200                                  | []               |                                    |
| Pitch to ster | n                  | Fv:              | -15858                                | [kN]             | -0.98 g                            |
|               |                    | Fh:              | -5563                                 | [kN]             | -0.34 g                            |
|               |                    | Moment:          | -32083                                | [kN m]           |                                    |
|               |                    | Heave: (±)       | 3268                                  | [kN]             | 0.20 g                             |
|               |                    | <b>E</b>         | 45050                                 | ff., k 13        | 0.00 -                             |
| Pitch to bow  | 1                  |                  | -15858                                | [KIN]            | -U.98 g                            |
|               |                    | rn:<br>Momenti   | 6000<br>20000                         | [KIN]<br>TENL-~1 | 0.54 g                             |
|               |                    |                  | 32003                                 | [KIN'II]<br>[kN1 | 0.20 g                             |
|               | tinatae and forces | are according to | the Bartran axis evel                 | em Mome          | ents according to Right Hand Rule. |

Last Revision: May 98

#### ISOMETRIC

.

ł

|  | 1318 773 | 740.503 |
|--|----------|---------|

REACTION FZ

LC LIST





CROWLEY 407







## APPENDIX B

# TRANSPORTATION FORCES CALCULATION

SHEET NO .:

| JOB NO.   | I/0310          |
|-----------|-----------------|
| COMP'D BY | : Andrew. 4     |
| CALC. NO. | QT400-RP01      |
| DATE      | : 23" April '07 |



| JOB NO.   | : <u>T/0310</u>   |
|-----------|-------------------|
| COMP'D BY | : Andrew . H.     |
| CALC. NO. | : 07400-EPOI      |
| DATE      | : 23 rd Apr. 1'07 |

| 2                  |                                                         |           |
|--------------------|---------------------------------------------------------|-----------|
| Relative to 12.0.5 | $8_1 = 30ft + 1, 513 m$<br>$A_2 = 2, + Hereil + Mberge$ | ₩1.<br>¥. |
|                    | = 3177,29+1524+6096                                     | -         |
| Module Global Dr   | - 16mm 2005                                             |           |

| L  | ÷ | 110 11 | 4 | 16  | 1  | Ť. | 121 | In | 5  | 20,16 | 1-1  |
|----|---|--------|---|-----|----|----|-----|----|----|-------|------|
| Þ  | r | 56 H   | ÷ | 22  | ł  |    |     |    | *: | 23,77 | ₹5×5 |
| 1( | : | 18 R   | ż | 7,5 | 10 |    |     |    | £- | 23,96 | 11   |

$$\frac{Moment of Inertia}{Safety factor = 1.3}$$

$$M_o I_x = \frac{1}{12} \cdot W/eight \cdot S_{\mp} \cdot (B^2 + H^2)$$

$$= \frac{1}{12} \cdot 1055,76.1,3 \cdot (23,77^2 + 23,96^2)$$

$$= 204402,82 \text{ Tm}^2$$

$$M_0 I_Y = \frac{1}{12} \cdot \ln[eight. SF. (L^2 + L(1))]$$
  
=  $\frac{1}{12} \cdot 1655, 76. 53. (30, 76^3 + 23.56^2)]$   
=  $372502, 72. Tm^2$ 

9177, 34 mm

16797,34 mm
Heave  $a_h : \left(\frac{2\pi}{Theore}\right)^2 + t$   $= \left(\frac{2\pi}{10}\right)^2 \cdot 5$   $= 1.97 \text{ M/s}^2$ Fhranc M · ah  $= 1655,76 \cdot 1.97$ = 3260, 33 km

Rdl

(to starboard)



٠

| Z;  | C 06 | 2          | 16,80 | ۲w  |
|-----|------|------------|-------|-----|
| -7- | (OR  | 194<br>194 | 2,44  | r~7 |

| JOB NO.   | : <u>I/0310</u>  |
|-----------|------------------|
| COMP'D BY | : Andros . 11    |
| CALC. NO. | : 07400-RP07     |
| DATE      | : 23 rd April 07 |

| Ŧ          |                                                                                                                |
|------------|----------------------------------------------------------------------------------------------------------------|
| a. stake   | i a construction of the second second second second second second second second second second second second se |
| Fr sta     | :-W. Gr. Aroll                                                                                                 |
|            | 16242, 98. 0,94                                                                                                |
|            | = -15263,41 kH                                                                                                 |
|            |                                                                                                                |
| b. dynamic | $\left( 1 + \frac{1}{2} \right)$                                                                               |
| Folyn      | = $\frac{W}{9.81}$ · Yoog · (Aroli (Froit))                                                                    |
|            | $\frac{16242,00}{9,01} \cdot 0,755 \cdot \left(0,35\left(\frac{212}{10}\right)^2\right)$                       |
|            | = 172,96 kM                                                                                                    |
| Fr tot     | = Frista + Fridyn                                                                                              |
|            | -15263,41 + 172,96                                                                                             |
|            | = -15090, 45  kM                                                                                               |

### <u>Th</u>

7

a. static

b dynamic

$$\frac{W}{g_{1}g_{1}} = \frac{W}{g_{1}g_{1}} \cdot \left(2\cos - 2\cos \right) \left(-4\operatorname{roll}\left(\frac{2R}{\operatorname{Troll}}\right)^{2}\right)$$

$$= \frac{16242.98}{9.81} \cdot \left(16,80 - 2,44\right) \cdot \left(-0,35\left(\frac{2R}{10}\right)^{2}\right)$$

$$= -327.6,32 \times 11$$

SHEET NO:

JOB NO. : T/0310COMP'D BY : Andrean H CALC. NO. : QT400-RP01DATE :  $22^{rd}$  (by: 1'57)

Fu fot : Fin sta + Fin dyn : - 5555, 43 + (- 3296,32) = - 0031,74 KM

Moment

$$M = M_0 I_x \left( \frac{4\pi}{1000} \left( \frac{2\pi}{1000} \right)^2 \right)$$
  
= 209402,02 .  $\left( 0,35 \left( \frac{2\pi}{1000} \right)^2 \right)$   
= 209167,87 kNm

Roll to portside Aprics are calculated with the same formula, but all of A should be multiplied by (-1) The end result are showed in forces resume.

Titch



X Cor = 30,08 m X Cor = 60,96 m

SHEET NO .: 5

JOB NO. : <u>I/0310</u> COMP'D BY : <u>And rew H</u> CALC. NO. : <u>OT100- RP01</u> DATE : <u>23<sup>rd</sup> Arrel 57</u>

$$\frac{F_{v}}{4.5440}$$
a. Static
$$F_{rsk} := -V \cdot G_{0} \cdot \theta pitch$$

$$:= -16242.98 \cdot 0.98$$

$$:= -15854.96 k tt$$
b. dynamis
$$F_{v} dyn := \frac{W}{9.01} \cdot (X \cos \theta - X \cos \theta) \cdot (-A pitch \cdot (\frac{2R}{4})^{*})$$

$$:= \frac{16242.98}{3.81} \cdot (60.96 - 60.96) (-0.22 (\frac{2R}{12.5})^{2})$$

$$:= 0 \qquad \text{MM}$$

$$F_{rtot} := F_{v} sta + F_{v} styn$$

$$:= -15854.96 + 0$$

$$:= -15854.96 k \text{M}$$

a. static

<u>Fh</u>

Fhuia : W. Sin Apilon : 16242,90.0,22 : 3515,62 KM

b. dynamic

$$\begin{aligned} & \text{Th dyn} \quad \frac{W}{3\pi^{0}} \cdot \left(2\cos - 2\cos \right) \cdot \left(\frac{\theta}{\theta} \operatorname{pitch} \left(\frac{2k}{\mathrm{Tpitch}}\right)^{2}\right) \\ &= \frac{16242.9\theta}{3\pi^{0}} \left(16180 - 2.44\right) \cdot \left(0.122 \left(\frac{2R}{\mathrm{Tpitch}}\right)^{2}\right) \\ &= 2047, 70 \text{ ktr} \end{aligned}$$

SHEET NO .: \_\_\_\_\_6

JOB NO. : I/0310COMP'D BY : Andrew, H CALC. NO. : OTGOO-RP01DATE :  $23^{rd}Arch<sup>12</sup>$ 

> Fhtot : Fhsta + Fh dyn = 3515,62 + 2043,70 = 5563,32 kM

Moment

$$M : M_0 T_{4} \left( \theta_{p+ch} \left( \frac{2\pi}{T_{p+ch}} \right)^{2} \right)$$
  
= 372502,72.  $\left( 0_{12,2} \left( \frac{2\pi}{12,5} \right)^{2} \right)$   
= 32083, 12 kH(m)

| Project                        | Tombua La     | Indana                                                                     |                                                                      | ]                                                      |                                                             |
|--------------------------------|---------------|----------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|
| Subject                        | Living Quar   | rters                                                                      |                                                                      | ]                                                      |                                                             |
| Job / Bid no.                  | 1/0310        |                                                                            |                                                                      |                                                        |                                                             |
| Date                           | 30-May-07     | Sheet                                                                      | 1                                                                    | 1                                                      |                                                             |
|                                | 00 110 01     |                                                                            |                                                                      |                                                        |                                                             |
|                                |               | TRANSI                                                                     | PORTATION                                                            | IFOR                                                   | CES                                                         |
| Transporta                     | tion Criteria | ł                                                                          |                                                                      |                                                        |                                                             |
| Roll.                          | 20            | [deg]                                                                      | (single ampli                                                        | tude)                                                  |                                                             |
|                                | 10            | [s]                                                                        | (full cycle per                                                      | riod)                                                  |                                                             |
| Pitch:                         | 12.5          | [deg]                                                                      | (single ampli                                                        | tude)                                                  |                                                             |
|                                | 10            | [s]                                                                        | (full cycle pei                                                      | riod)                                                  | These criteria are                                          |
|                                |               |                                                                            |                                                                      |                                                        | according to Noble Denton,                                  |
| Heave:                         | 5             | [m]                                                                        | (single ampli                                                        | tude)                                                  | for large barges.                                           |
|                                | 10            | [s]                                                                        | (full cycle per                                                      | riod)                                                  |                                                             |
| Cargo spec                     | ification:    |                                                                            | CARGO                                                                |                                                        |                                                             |
| ourge oper                     | Weight:       |                                                                            |                                                                      |                                                        | 16242.98 [kN]                                               |
|                                | Mass mome     | ent of inertia                                                             | about roll axis                                                      | s, Molx                                                | : 204403 [T·m²]                                             |
|                                | Mass mome     | ent of inertia                                                             | about pitch a                                                        | dis, Mo                                                | ly: 372503 [T·m²]                                           |
|                                | X coord (fro  | m stern):                                                                  | ·                                                                    |                                                        | 60.96 [m]                                                   |
|                                | Y coord (fro  | m centerline                                                               | ∋):                                                                  |                                                        | 0.756 [m]                                                   |
|                                | Z coord (fro  | m bottom ba                                                                | arge):                                                               |                                                        | 16.797 [m]                                                  |
| Barge/Ship                     | information   | r:                                                                         | BARGE                                                                |                                                        |                                                             |
|                                | V coording    | to of the co                                                               | nter of rotation                                                     | •                                                      | 60.96 [m]                                                   |
|                                | Mean draft    | of barge:                                                                  |                                                                      | •                                                      | 2.44 [m]                                                    |
|                                |               | <u> </u>                                                                   |                                                                      |                                                        |                                                             |
| Forces and                     | Acceleration  | ns (Static                                                                 | + Dynamic ) e                                                        | xerted                                                 | I by module on barge:                                       |
| Roll to SB                     |               | Fv:                                                                        | -15091                                                               | [kN]                                                   | -0.93 g                                                     |
|                                |               | Fh:                                                                        | -8831                                                                | [kN]                                                   | -0.54 g                                                     |
|                                |               | Moment:                                                                    | 28168                                                                | [kN·m]                                                 |                                                             |
|                                |               | Heave: (±)                                                                 | 3268                                                                 | [kN]                                                   | 0.20 g                                                      |
| Roll to PS                     |               | Fv:                                                                        | -15436                                                               | [kN]                                                   | -0.95 g                                                     |
|                                |               | Fh:                                                                        | 8831                                                                 | [kN]                                                   | 0.54 g                                                      |
|                                |               | Moment:                                                                    | -28168                                                               | [kN·m]                                                 | _                                                           |
|                                |               |                                                                            |                                                                      |                                                        |                                                             |
|                                |               | Heave: (±)                                                                 | 3268                                                                 | [KN]                                                   | 0.20 g                                                      |
| Pitch to stor                  | n             | Heave: (±)<br>Fv:                                                          | 3268<br>-15858                                                       | [kN]<br>[kN]                                           | 0.20 g<br>-0.98 g                                           |
| Pitch to sterr                 | ٦             | Heave: (±)<br>Fv:<br>Fh:                                                   | 3268<br>-15858<br>-5563                                              | [KN]<br>[KN]<br>[KN]                                   | 0.20 g<br>-0.98 g<br>-0.34 g                                |
| Pitch to sterr                 | n             | Heave: (±)<br>Fv:<br>Fh:<br>Moment:                                        | 3268<br>-15858<br>-5563<br>-32083                                    | [kN]<br>[kN]<br>[kN]<br>[kN·m]                         | 0.20 g<br>-0.98 g<br>-0.34 g                                |
| Pitch to sterr                 | n             | Heave: (±)<br>Fv:<br>Fh:<br>Moment:<br>Heave: (±)                          | 3268<br>-15858<br>-5563<br>-32083<br>3268                            | [kN]<br>[kN]<br>[kN]<br>[kN·m]<br>[kN]                 | 0.20 g<br>-0.98 g<br>-0.34 g<br>0.20 g                      |
| Pitch to sterr                 | n             | Heave: (±)<br>Fv:<br>Fh:<br>Moment:<br>Heave: (±)<br>Fv:                   | 3268<br>-15858<br>-5563<br>-32083<br>3268<br>-15858                  | [kN]<br>[kN]<br>[kN]<br>[kN·m]<br>[kN]                 | 0.20 g<br>-0.98 g<br>-0.34 g<br>0.20 g<br>-0.98 g           |
| Pitch to sterr<br>Pitch to bow | ٦             | Heave: (±)<br>Fv:<br>Fh:<br>Moment:<br>Heave: (±)<br>Fv:<br>Fh:            | 3268<br>-15858<br>-5563<br>-32083<br>3268<br>-15858<br>5563          | [KN]<br>[KN]<br>[KN'm]<br>[KN]<br>[KN]<br>[KN]         | 0.20 g<br>-0.98 g<br>-0.34 g<br>0.20 g<br>-0.98 g<br>0.34 g |
| Pitch to sterr<br>Pitch to bow | n             | Heave: (±)<br>Fv:<br>Fh:<br>Moment:<br>Heave: (±)<br>Fv:<br>Fh:<br>Moment: | 3268<br>-15858<br>-5563<br>-32083<br>3268<br>-15858<br>5563<br>32083 | [kN]<br>[kN]<br>[kN·m]<br>[kN]<br>[kN]<br>[kN]<br>[kN] | 0.20 g<br>-0.98 g<br>-0.34 g<br>0.20 g<br>-0.98 g<br>0.34 g |

Last Revision: May 98





### APPENDIX C

### **LOAD-OUT PHASES**

International Bachelor in Civil Engineering















### APPENDIX D

### **INVADER TUG**

International Bachelor in Civil Engineering

| Tug        | Built | Official No. | Call Sign |
|------------|-------|--------------|-----------|
| INVADER    | 1974  | 559404       | WBO 3337  |
| CRUSADER   | 1974  | 560235       | WYP 4482  |
| EXPLORER   | 1975  | 563687       | WBN 7618  |
| GLADIATOR  | 1975  | 566429       | WBN 5982  |
| MONITOR    | 1975  | 567988       | WBN 5981  |
| NAVIGATOR  | 1975  | 562688       | WBO 3345  |
| PIONEER    | 1975  | 566933       | WBN 5040  |
| WARRIOR    | 1975  | 565291       | WBN 4383  |
| ADVENTURER | 1976  | 577697       | WBN 3015  |
| BULWARK    | 1976  | 577084       | WBN 4113  |
| CAVALIER   | 1976  | 570693       | WBN 5983  |
| CENTURION  | 1976  | 574171       | WBN 3022  |
| COMMANDER  | 1976  | 571180       | WBN 5980  |
| DEFENDER   | 1976  | 576314       | WBN 3016  |
| GAUNTLET   | 1976  | 575769       | WBN 6511  |
| GUARDSMAN  | 1976  | 572647       | WBN 5978  |
| PATRIARCH  | 1976  | 578312       | WBN 3014  |
| RANGER     | 1976  | 571909       | WBN 5979  |
| SENTINEL   | 1976  | 573426       | WBN 6510  |
| STALWART   | 1976  | 575052       | WBN 6512  |
| ENSIGN     | 1977  | 581177       | WBN 3012  |
| HUNTER     | 1977  | 578655       | WBN 3744  |
| MARINER    | 1977  | 582112       | WBN 5096  |
| PILOT      | 1977  | 580326       | WBN 3011  |
| SENTRY     | 1977  | 579188       | WBN 3013  |



### **INVADER - CLASS SPECIFICATIONS:**

FLAG United States

#### PORT OF REGISTRY San Francisco, CA

#### BUILDER

J.R. McDermott & Co. Morgan City, LA

#### **OVERALL DIMENSIONS**

1/2"

| Length:  | 136' 2 |
|----------|--------|
| Breadth: | 36' 6" |
| Depth:   | 19' 2" |

#### TONNAGE

199 tons gross 135 tons net

CONSTRUCTION Steel

LIGHT DRAFT 17'

LOADED DRAFT 20'

FUEL CAPACITY 155,000 gallons

POTABLE WATER 15,000 Gallons

# CROWLEY

LUBE OIL 3,300 Gallons

MAIN ENGINES 2 EMD 20-645-E5

AUXILIARY ENGINES 2 Caterpillar D 3304

PROPULSION Twin-screw 5-bladed stainless steel

HORSEPOWER 7,200 maximum continuous BHP

**REDUCTION GEAR** 2 Falk, ratio 4.345:1

TOWING WINCH Markey TDSDW 36C, double-drum

TOWING WIRE Maximum 2 @ 3,000' of 2 1/4" wire rope

#### EMERGENCY TOW GEAR

450' x 7.5" Spectra Line (SK-75) Orville Hook and appropriate connecting gear Line throwing gun.

#### BOLLARD PULL 150,000 lbs. ahead 120,000 lbs. astern (Bollard pull will vary slightly by vessel)

NAVIGATION / COMMUNICATIONS EQUIPMENT

Radar 1: Gyro Azimuth Stabilized Furuno FR1510 mk2 or mk3 with ARP-15 Target Plotter and GPS and Depth data interface.

Radar 2: Gyro Azimuth Stabilized Furuno **FR8111** or FR8100D with GPS data interface.

GPS: Trimble NT300D, NT XL or Navtrac.

LORAN C: Furuno LC90mk2 Depth: 200kHz Furuno LS-6000

Inmarsat Mini-M Satellite Phone

(if fitted): Worldphone Marine

HF SSB #1: Stephens SEA330

HF SSB #2: Stephens SEA225 or SEA235 VHFs 3ea: Stephens SEA156, SEA157,

or Icom M127. Sperry Mk37 gyrocompass with Universal Gyropilot. EPIRB: ACR 2754 or ACR 2774 406MHz Satellite EPIRB.

2 Northpoint Drive, Suite 900 Houston, Texas 77060 Telephone: (281) 260-4410 Facsimile: (281) 260-4597 http://www.crowley.com





### <u>APPENDIX E</u>

### **EMERGENCY TOWING GEAR**



λ 3:35:47 02-May-07 ANCHOR SAFETY SHACKLE - IDOUBLE DRILLEDI 85 mT SWL ANCHOR SAFETY SHACKLE 55 mT SWL ANCHOR SAFETY SHACKLE 100 mT SWL 2 ¾ x 90' ABS GRADE 3 STUD LINK CHAIN 2 ¾ x 45' ABS GRADE 3 STUD LINK CHAIN ANCHOR SAFETY SHACKLE GRAPHIC SCALE 0 5 10 15 1 : 250 <u>30</u> M A 28 OCT 2005 AdH FOR INFORMATION (IN HOUSE ONLY) ~ APP'0 OPS, DATE DESCRIPTION APPROVED REV. DRAWN PROJECT BARGES CONTRACTORS SUBJECT CROWLEY 406 TOWING ARRANGEMENT KURNE CUNTINETORS
 CONTINUED
 eerema Marine Contractors Nederland B.V. CLIENT'S DRAWING NO, DRAWING NO, DISCIPLINE I IDENT, NO, I SUBJECT NO, I SHEET NO, REVISION 1:250 150450.27000 CB - 161 - 01 - 3 А

GENERAL NOTES 1. mT = METRIC TONNES. 2. EMERGENCY TOW WIRE ARRANGEMENT WILL BE PROPERLY SECURED TO BARGE.





.

## APPENDIX F

### **INSTALLATION PHASES**

International Bachelor in Civil Engineering

Transportation of Living Quarters-Tombua Landana Project



Sheet 1



Sheet 2



Sheet 3



sheet 4



