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This paper gives a linearised adjustment model for the affine, similarity and congruence

transformations in 3D that is easily extendable with other parameters to describe deformations.

The model considers all coordinates stochastic. Full positive semi-definite covariance matrices

and correlation between epochs can be handled. The determination of transformation

parameters between two or more coordinate sets, determined by geodetic monitoring

measurements, can be handled as a least squares adjustment problem. It can be solved

without linearisation of the functional model, if it concerns an affine, similarity or congruence

transformation in one-, two- or three-dimensional space. If the functional model describes more

than such a transformation, it is hardly ever possible to find a direct solution for the

transformation parameters. Linearisation of the functional model and applying least squares

formulas is then an appropriate mode of working. The adjustment model is given as a model of

observation equations with constraints on the parameters. The starting point is the affine

transformation, whose parameters are constrained to get the parameters of the similarity or

congruence transformation. In this way the use of Euler angles is avoided. Because the model

is linearised, iteration is necessary to get the final solution. In each iteration step approximate

coordinates are necessary that fulfil the constraints. For the affine transformation it is easy to get

approximate coordinates. For the similarity and congruence transformation the approximate

coordinates have to comply to constraints. To achieve this, use is made of the singular value

decomposition of the rotation matrix. To show the effectiveness of the proposed adjustment

model total station measurements in two epochs of monitored buildings are analysed.

Coordinate sets with full, rank deficient covariance matrices are determined from the

measurements and adjusted with the proposed model. Testing the adjustment for deformations

results in detection of the simulated deformations.
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Introduction
Geodetic deformation analysis is about analysing the
geometric changes of objects on, above or under the earth’s
surface or changes of this surface itself. The objects are
generally discretised by points, whose coordinates are
registered at two or more epochs.

Affine, similarity and congruence transformations play an
important role in geodetic deformation analyses, mainly for
two reasons. First objects may undergo deformations that
are well described by such transformations. This is the case, if
the deformations comprise translations, rotations, shears and
changes of size. The second reason is that objects are often

described with geodetically determined coordinates that are
defined by geodetic datums. To transform coordinates to a
common datum, transformations are necessary. The three
mentioned transformation types are often adequate for this
purpose.

Deformations of objects may comprise much more
complicated patterns than can be described by
congruence, similarity or affine transformations.
Therefore extended functional models have to be
built to describe the relations between coordinate sets
of two or more epochs of geodetic measurements.
These extended models can often be described as
extensions to the congruence, similarity or affine
transformation or to combinations thereof. If neces-
sary the models are complemented by covariance
functions (collocation) or variograms (kriging) to
capture the systematic effects that are not described
by the functional model.
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Problem definition
The problem addressed in this paper is the problem of
finding the relation between two coordinate sets in 3D,
describing each object by means of the same points but
at different moments in time. This relation describes the
deformation that the object is subject to and a possible
difference in geodetic datum. The coordinate sets are
supposed to be Cartesian with full covariance matrices,
reflecting the precision by which the coordinates have
been acquired. Testing the correctness of the deforma-
tion model should be possible. If it is not correct, it
should be possible to find least squares estimates of the
deformations. These estimates can be used to extend the
adjustment model.

Approach to solution
The problem is addressed by first finding the optimal
affine transformation, or its special cases: the similarity
and congruence transformation. Subsequently the trans-
formation model is extended by additional parameters
to find the best fitting solution.

The affine transformation in 3D involves a rotation.
This rotation is often described by Euler angles. They
have, however, the disadvantage that gimbal lock may
occur, i.e. the impossibility to determine the three Euler
angles, if a specific one of them is 0 or 90u. Which angle
gives this problem and at what value, depends on the
sequence in which Euler angles are applied to perform a
rotation. If the problematic angle is close to the
dangerous value, this may still cause problems to
determine the other angles with sufficient precision.
Therefore finding the deformation should avoid the use
of Euler angles, because angles of 0 and 90u can occur in
deformation problems.

The approach to solve the posed problem is setting up
an adjustment model and solving the parameters of this
model by means of the method of least squares. It is an
adjustment model, because there are in general more
coordinate differences than transformation parameters
to be estimated.

The adjustment model describes a null hypothesis, in
which it is supposed that no deformation occurred. It
should be possible to extend the model with extra
parameters to formulate alternative hypotheses, which
describe possible deformations, and to test them against
the null hypothesis. A linearised adjustment model
makes it relatively easy to formulate many types of
hypotheses. Linearisation of the model makes it easy as
well to take account of full covariance matrices of
coordinate sets. Such full covariance matrices are to be
expected when the coordinate sets are the result of the
adjustment of geodetic measurements (terrestrial, air-
borne or satellite).

Overview
The setup of this paper is as follows.

First the general adjustment model for a transforma-
tion is given. Determining the transformation para-
meters between two or more coordinate sets is a problem
that can be solved without linearisation of the functional
model, if the transformation is one-, two- or three-
dimensional and an affine, similarity or congruence
transformation. Direct solutions to the general adjust-
ment model are referenced.

The paper continues with the linearised adjustment
model. If the deformations are more than just an affine,
similarity or congruence transformation, it is hardly
ever possible to find a direct solution for the
transformation parameters. Linearisation of the func-
tional model and solving the linearised model is
necessary in that case. The linearised adjustment model
is given as a model of observation equations with
constraints on the parameters. The starting point is the
affine transformation, whose parameters are con-
strained to get the parameters of the similarity or
congruence transformation. In this way the use of Euler
angles is avoided.

The least squares solution of a linearised adjustment
model is reviewed. It is shown how to handle a singular
cofactor matrix. Methods to solve an adjustment
problem with constraints are given.

Then the model for the affine transformation is
elaborated upon, followed by the congruence transfor-
mation. A linearised adjustment model needs approx-
imate values for the unknown parameters. Their
determination and the iteration to arrive at the final
solution are treated. In each iteration step approximate
parameters are necessary that fulfil the constraints. For
the affine transformation it is easy to get approximate
coordinates. To make subsequently the approximate
coordinates comply to the constraints, use is made of
the singular value decomposition of the rotation
matrix.

Finally the similarity transformation is treated and an
experimental validation is given.

Recent literature mentions total least squares as a
method to find a least squares solution for transforma-
tion problems, where all coordinates are considered
stochastic (Fang, 2011; Snow, 2012). In this paper it is
shown that it is very well possible to construct an
adjustment model, where all coordinates are considered
stochastic and the coefficient matrix does not contain
stochastic elements. This makes application of the total
least squares method unnecessary. Since the standard
method of least squares is used, its extensive body of
knowledge can be used.

General adjustment model for
transformation
A general adjustment model for solving the transforma-
tion parameters between two sets of coordinates is
treated in this section.

Let a point field be described by a set of Cartesian
coordinates in reference system ra, taken together in a
vector a, and by another set of Cartesian coordinates in
reference system rb, taken together in a vector b. The
vector names are underlined to indicate that they are
random variables. It is supposed that vector a differs
from vector b because of a deformation, a difference in
geodetic datum and of stochastic noise in both vectors.
Let the vector c contain the mathematical expectations
of a, i.e.

c~Efag (1)

where E{ } indicates the mathematical expectation.
Let a transformation, represented by the vector

function t, transform the vector b into the vector a by
means of transformation parameters, taken together in
vector f. The transformation is supposed to describe the
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deformation and the difference in geodetic datum. The
mathematical expectation of a and of the transformed
vector b should then be equal

Efag~Eft(b,f)g (2)

The transformation t is non-linear in the elements of
vector b and of vector f for the affine, congruence and
similarity transformation. If, however, vector b is
considered non-random, i.e. a constant vector, transfor-
mation t is linear for the affine transformation. Its direct
least squares solution is given in section ‘Step 1: affine
transformation done simply’.

For the general case transformation t is non-linear,
which means that a solution can be found by a direct
solution, treated in the next section, or by solving
iteratively a linearised model, treated subsequently. This
paper proposes a solution with a linearised model, which
is elaborated upon in the section ‘Linearised adjustment
model’.

Direct solutions
A direct solution of the transformation parameters in (2)
is, as mentioned above, straightforward in the case of an
affine transformation if b is considered a constant
vector. The stochastic behaviour of b cannot be taken
account of, unless it is possible to have it included in the
stochastic behaviour of vector a.

In the case of a congruence transformation the
transformation consists of a rotation around a certain
axis and a translation in a certain direction. It can be
considered a special case of the similarity transforma-
tion, treated subsequently.

The similarity transformation in 3D consists of a
rotation around a certain axis, a translation in a certain
direction and a change of scale. It is also called a seven-
parameter transformation or a Helmert transformation
(Awange et al., 2004; Krarup, 2006).

Much literature is devoted to finding direct solutions
for the parameters of these transformations, where
finding the three rotation parameters is most difficult.

Menno Tienstra writes (Tienstra, 1969) that the first
method published was by Thompson (1959) and that
Schut (1960/61) gave a more elegant derivation of the
same method. Tienstra himself gives a different method
(Tienstra, 1969). At least eight solutions of more recent
date (from 1981 up to 2006) can be found in literature.
They are the solutions of Hanson and Norris (1981),
Bakker et al. (1989, p.55), Awange et al. (2004),
Teunissen (1985, p.148), Arun et al. (1987), Hinsken
(1987), Horn et al. (1988), and Krarup (2006).

Of the first three solutions a short description is given
to illustrate the different approaches that are possible.

Hanson and Norris consider in their paper (Hanson and
Norris, 1981) the estimation of the transformation
parameters of the congruence and similarity transforma-
tions. Their application is quality control of manufactured
parts, where points on parts are matched with points on a
drawing. They prove that the least squares estimation of
the rotation can be performed independently from the
translation, if the elements of a and b are mutually
stochastically independent and the x, y and z-coordinate of
each point i have the same weight ci. A procedure is given
to compute the direct least squares estimates of the
rotation parameters by means of singular value decom-

position of a matrix that is computed from the elements of
a and b. Also a procedure is given to compute the direct
least squares estimate of the change of scale of the
similarity transformation. The direct least squares estimate
of the translation is the difference between the centres of
gravity of a and the rotated and scaled b.

Bakker et al. (1989) consider the points of a and b as a
distribution of mass points with unit mass. They
compute for both a and b the centre of mass, the set
of body-axes, the mean radius of gyration and the inertia
tensor. After translating to the centre of mass, rotating
with the inertia tensor and scaling both a and b, the
transformed vectors are equated and a formula for the
transformation parameters derived. The stochastic
characteristics of a and b are not taken into account,
although it is mentioned by Bakker et al. (1989) that an
adjustment is easy, especially if the coordinates have
rotationally symmetric variances.

Awange et al. (2004) give a procedure to compute the
least squares estimates of the parameters of the
similarity transformation (seven-parameter transforma-
tion), based on finding the roots of univariate poly-
nomials using a Groebner basis.

Solutions by linearisation
The transformation parameters in (2) can be solved by
linearising the equation and using the standard least
squares algorithm. The advantage of this approach is the
possibility of solving adjustment models, for which
direct solutions are not known. The disadvantages are
the need to have approximate values for all unknown
parameters and the need to iterate the computation with
the risk of divergence, if the approximate values are not
chosen well.

The linearisation of the affine transformation is
simplest and is given first. For the linearisation of the
congruence and similarity transformation, the rotation
has to be parameterised. This is generally done, see e.g.
Hofmann-Wellenhof et al. (2001, p. 294), by using
three angles that describe the rotation around three
coordinate axes, the so called Euler angles. As
described in the introduction, the use of Euler angles
may result in gimbal lock. This problem occurs for
example for the rotation parameterisation of Hofmann-
Wellenhof et al. (2001, p. 294), if the second rotation
angle a2 is a right angle (a25100 gon), which yields the
rotation matrix R

R~

0 sin(a1za3) {cos(a1za3)

0 cos(a1za3) sin(a1za3)

1 0 0

0
B@

1
CA (3)

Only the sum (a1za3) appears in the matrix, and
angle a1 nor angle a3 can be determined separately,
although the rotation matrix itself is well defined. This is
called ‘gimbal lock’ after the equivalent problem in
mechanical engineering, when two of three gimbals
become parallel to each other and one rotation
possibility is lost. An additional disadvantage of Euler
angles is that approximate values for them have to be
determined in some way. In this paper a different
approach is chosen, where the rotations are not
parameterised by three angles, but by the nine elements
of the rotation matrix. By imposing six constraints on
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the nine elements, the matrix is forced to describe only
rotations.

The use of the direct solutions of the previous section
has the advantage that no approximate values and no
iteration are needed. The advantage of a linearised
adjustment model, however, is that extending the model
with other parameters is easy. There are two reasons
why the model should be extended:

(i) errors may be present in the coordinates, caused
by errors in the measurements that were used to
compute the coordinates, or caused by e.g.
identification errors. To test for these errors the
model is extended by parameters, describing these
errors. The extended model is tested as an
alternative hypothesis against the null hypothesis
of no errors (Teunissen, 2006, p.78).

(ii) the description by means of 6, 7 or 12 parameters
of one congruence, similarity or affine transfor-
mation may be not adequate. Maybe not one but
more such transformations are needed, for
example each describing a subset of points. Or
more complex transformations with more or
other parameters are needed.

Extending or changing the model is easier for a
linearised model than for a non-linear one.

Linearised adjustment model
Linearisation of general model
To solve the problem of finding the transformation
parameters, a system of observation equations is set up.
Constraints are added to this system. This constrained
system is solved by means of the method of least
squares. As the equations of this system are not linear,
they are linearised.

First the system is given for an affine transformation.
The affine parameters can be obtained without the
addition of constraints. Then the system is augmented
by constraints that force the parameters of the affine
transformation to become the parameters of a con-
gruence transformation. Finally it is shown how the
parameters of a similarity transformation are obtained.

A linearised adjustment model is constructed by
differentiating the function t of (2) relative to the
elements of the vectors b and f (Teunissen, 1999, p.142).
The resulting equations stay simpler, if vector b is first
transformed to coincide approximately with vector a.
For this transformation approximate transformation
parameters are needed. Their computation is treated
later on.

The approximately transformed vector is

b’~t’(b,f’) (4)

The cofactor matrix of b9 is determined by applying
the law of propagation of cofactors. To do this,
equation (4) is linearised by a Taylor expansion,
neglecting second and higher order terms. The expan-
sion is relative to the elements of vector b.

Equation (2) now becomes

Efag~Eft(b’,f)g (5)

Define two matrices B and F of partial derivatives as
follows

B~
Lt

Lb’

� �
0

; F~
Lt

Lf

� �
0

(6)

The sub index 0 indicates that approximate values of
resp. b9 and f have to be entered into the matrices.

Assuming that B is square and invertible, which is the
case in the situations treated in this paper, the
adjustment model can be constructed as

E
Da

Db0

� �� �
~

I 0

B{1 {B{1F

� �
Dc

Df

� �
(7)

where Da~a{a0; Db0~b0{b00; Dc~c{c0; Df~f{f0;

a0,b00,c0,f0 are approximate values; I is the unit matrix; 0

is the zero matrix; c05a0 and thus E Daf g~Dc
On the left hand side of (7) the vector of observations

can be found, which consists of the two vectors
containing the coordinates. The right hand side contains
the matrix of coefficients and the vector of unknown
parameters. The parameters are the mathematical
expectations of the coordinates in reference system ra

and the transformation parameters.
The vector of observations is assumed to have a

normal distribution, described by a covariance matrix
that is the product of a scalar variance factor and the
cofactor matrix. The cofactor matrix is

Qf
a

b0

� �
g~

Qa Qab0

Qb0a Qb0

� �
(8)

where Qaand Qb0 are the cofactor matrices of a and b9.

Qab0~(Qb0a)T gives the cofactors that describe the
correlation between a and b9. It equals the zero-matrix
if a and b9 are supposed to be not correlated mutually. It
is, however, possible to use non-zero matrices, for
example to describe temporal correlation using a
covariance function. The variance factor is chosen in
such a way that the elements of the cofactor matrix have
computationally convenient values. The situation that
Qa or Qb0 or both are not regular, but positive-
semidefinite matrices, is treated later on.

Reduced general model
The system can be reduced to minimise the amount of
unknown parameters, which is advantageous in case
there is a large number of coordinates. The solution of
the system of normal equations can be a computational
burden with many coordinates, especially if full covar-
iance matrices are involved. The reduced system is
acquired by premultiplying the second row of (7) with B
and subtracting it from the first row

E Da{BDb0f g~FDf (9)

On the left hand side appears the vector of remaining
coordinate differences (Da{BDb0) as vector of observa-
tions. On the right hand side the only unknown
parameters are the transformation parameters. The least
squares residuals of the coordinates can be computed by
means of the stochastic correlation of the adjusted
coordinates with the estimated transformation para-
meters, because the adjusted coordinates are so called
free variates (Teunissen, 1999, p. 75).

In this paper use is made of the model as defined by
(7), because it shows more clearly the structure, because
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constraints on the coordinates can be added, e.g. to
describe more complex deformation behaviour, and
because it can readily be extended to more than two
epochs.

Least squares solution
The system of observation equations (7) is overdeter-
mined if the number of parameters is less than the
number of coordinates and can be solved by the method
of least squares. A weighted least squares solution is
obtained, if account is taken of cofactor matrix (8).

A system of linearised observation equations, like (7),
has the following general structure

E ‘f g~Ap; Df‘g~s2Q‘ (10)

where ‘ is the m-vector of observations, A is the (m6n)-
matrix of coefficients and p is the n-vector of unknown
parameters. The equation behind the semicolon
describes the stochastic model by giving the covariance
matrix Df‘g, the variance factor s2 and the cofactor
matrix Q‘. The least squares solution of system (10) is
given in the appendix. There the equations for testing of
the results are given as well.

For each system of linear observation equations an
equivalent system of linear condition equations exists

KT Ef‘g~0; Df‘g~s2Q‘ (11)

where KT is the [(m-n)6m]-matrix of conditions, for
which holds

KTA~0 (12)

The least squares solution of system (11) is given in
the appendix. The equations for testing are the same as
those given for the model of observation equations.

Positive semidefinite cofactor matrix
The vector ‘ of observations of system (7) contains
coordinates, which may have resulted from geodetic
measurements. In that case it can easily happen that the
cofactor matrix Q, is positive semidefinite, because the
coordinates are defined relative to a geodetic datum,
defined by some of the points.

A solution for handling a positive semidefinite
cofactor matrix of the observations is given for the
reduced general model by Teunissen et al. (1987) for the
similarity transformation. Matrix Q, is regularised by
adding a term to it, which does not change the least
squares solution of the parameters p. It is possible to
generalise regularisation to any model of observation
equations, if the coefficient matrix A is of full rank.

Matrix Q, of (10) can be regularised by adding to it a
matrix l AAT, with A from (10) and l any real scalar
with l.0

Q’‘~Q‘zlAAT (13)

Matrix A is a real matrix of full rank and therefore
AAT is positive definite. Multiplying it with a positive
factor l does not change its positive definiteness. Q’‘ is
the sum of a positive semidefinite matrix and a positive
definite matrix and is therefore positive definite. This
means that its inverse (Q’‘)

{1 exists.

Using Q’‘ instead of Q, for computing the least
squares solution yields the same adjustment and testing
results. This can be seen by switching to the model of
condition equations (11). The equations in the appendix
show that vector r̂ and its cofactor matrix Q r̂ are used to
get the adjustment and testing results. In the equations
Q’‘ appears only in the product Q’‘K (or its transpose),
for which we have

Q’‘K~(Q‘zlAAT)K~Q‘KzlAATK (14)

The second term is zero because of (12). Therefore

Q’‘K~Q‘K (15)

The conclusion is that the adjustment and testing
results do not change by using Q’‘ instead of Q,. Owing
to the equivalence of using the model of observation
equations and the model of condition equations, Q’‘ can
be used as well to get the least squares solution for the
model of observation equations.

Constraining parameters
The parameters of an adjustment model can be
constrained to satisfy certain linear or linearised
relations

Cp~0 (16)

where matrix C is a matrix of coefficients and 0 a zero
vector. In the following sections constraints are used to
force the affine transformation parameters to change
into the parameters of a congruence or similarity
transformation.

The least squares solution for the parameters p from
(10) has to be found under the condition that they fulfil
the constraints (16). A method is the extension of the
system of normal equations with the constraints as
follows (Tienstra, 1956, section 7.3)

ATQ{1
‘ A CT

C 0

 !
p

k

� �
~

ATQ{1
‘ ‘

c

 !
(17)

where k contains the Lagrange multipliers and 0 is a zero
matrix. Solving this system of normal equations delivers
a solution for p and k. Vector k plays no further role in
the considerations of this paper.

If Q, is positive semidefinite, it has to be regularised.
To see how this can be done, another method to solve
(10), taking account of the constraints (16), is given.
Take the null space of the space R(C), spanned by the
columns of matrix C of (16). If NC is a base matrix of
this null space, we can write

p~NCl (18)

with l a vector of (n–nc) parameters (nc is the amount of
constraints). We can now write (10) as

Ef‘g~Arl; Df‘g~s2Q‘ (19)

with Ar5ANC. These are observation equations, for
which a least squares solution is found in the normal
way. It is the same solution as the one that follows from
(17). The determination of Ar can be seen as the
elimination of nc parameters from (10), which can be
done with the Gaussian algorithm or the Cholesky
method (Wolf, 1982). If Ar is determined as Ar5ANC,
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the base matrix NC can be determined e.g. by the
Matlab-command ‘null(C)’.

For the regularisation of Q, we now use

Q’‘~Q‘zlArA
T
r (20)

Model for affine transformation
If an object is subject to a force, the material and the

force may be such that applying and releasing the force
causes respectively an elastic deformation and the
disappearance of the deformation. Such a deformation
is often linear and can be described by an affine
transformation. In this section the adjustment model
for the affine transformation is given by defining the
content of the matrices B and F of (6).

Let x, y, z be the vectors with the x-, y- and z-
coordinates of vector a, as described in the appendix.
Let u, v, w be the vectors with the x-, y- and z-
coordinates of the same points in vector b9.

Let the vectors a1, a2, a3 and the vector t be defined as

a1~

a11

a12

a13

0
B@

1
CA, a2~

a21

a22

a23

0
B@

1
CA, a3~

a31

a32

a33

0
B@

1
CA, t~

tx

ty

tz

0
B@

1
CA

Let the matrix R be defined as

R~

a11 a12 a13

a21 a22 a23

a31 a31 a33

0
B@

1
CA~

aT
1

aT
2

aT
3

0
B@

1
CA

The equation for the affine transformation reads then

xT

yT

zT

0
B@

1
CA~R

uT

vT

wT

0
B@

1
CAzteT

where e~ 1,1,:::,1ð ÞT
The parameters tx, ty, tz describe a translation and the
parameters a11,..,a33 describe the rotation, scaling and
shearing of the affine transformation.

To get the matrices B and F of (6) the coordinates x, y, z
have to be differentiated relative to the coordinates u, v, w
and to the parameters tx, ty, tz and a11,..,a33.

Matrix B has the following structure in the case of an
affine transformation

B~

a0
11I a0

12I a0
13I

a0
21I a0

22I a0
23I

a0
31I a0

32I a0
33I

0
B@

1
CA

where a0
ij, with i,j51,2,3, are the approximate values of

the parameters of (21) and I is the (n6n) unit matrix.
Since with (4) vector b9 is already approximately equal to

a, the approximate values of (24) can be chosen as follows

a0
ij~dij

with i,j51,2,3 and dij the Kronecker delta. Then
matrix B becomes a (3n63n) unit matrix.

During iteration of the least squares adjustment, the
approximate values have to be adjusted. If this is done
by adjusting transformation (4), matrix B does not need
to be adjusted and can stay a unit matrix.

To give a simple structure for matrix F the vector of
transformation parameters Df is divided as follows

Df~

Da1

Da2

Da3

Dt

0
BBB@

1
CCCA

with the D-quantities defined as described in the
appendix (Conventions).

Matrix F has now the following structure

F~

b 0 0 e1

0 b 0 e2

0 0 b e3

0
B@

1
CA

where b, e1, e2, e3 and 0 are all (n63) matrices, as
follows

b5(u0, v0, w0); u0,v0,w0: approximate values of u, v, w

e1~

1 0 0

1 0 0

..

. ..
. ..

.

1 0 0

0
BBBB@

1
CCCCA, e2~

0 1 0

0 1 0

..

. ..
. ..

.

0 1 0

0
BBBB@

1
CCCCA, e3~

0 0 1

0 0 1

..

. ..
. ..

.

0 0 1

0
BBBB@

1
CCCCA

0 is the (n63) zero matrix.
The adjustment model for the affine transformation

can be constructed with (7), with B and F according to
(24) and (26). Solution of this model by the method of
least squares follows by generating the normal equations
and solving them.

Model for congruence transformation
One of the simplest deformations an object can
undergo on, under or above the earth’s surface is a
movement that consists of a shift and a rotation, i.e. a
congruence transformation (also called a rigid body
transformation).

The congruence transformation is a special form of an
affine transformation, in which no central dilatations
(changes of scale) and no shears occur, only translations
and rotations. It has less parameters than the affine
transformation. It involves a translation, described by
three parameters tx, ty, tz, and a rotation, described by
three Euler angles, or by one angle and a unit vector,
around which the rotation occurs.

We can write down matrix R in (22) with only three
parameters: the three Euler angles. Differentiating such
a system results in matrices B and F that can be used to
construct adjustment model (7). There are two dis-
advantages to such an approach:

(i) determining the parameters to perform the
approximate transformation (4) is no easy task
(but it is easy for an affine transformation, as will
be shown later on)

(ii) the Euler angles may cause problems, as it was
discussed before.

The approach chosen in this paper, is to use the model as
it was derived for the affine transformation in the
previous section, and constrain the parameters in such a

(22)

(21)

(23)

(24)

(25)

(26)
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way that they become the parameters of a congruence
transformation.

Applying constraints to affine transformation
For a congruence transformation matrix R of (22) has to
be an orthogonal matrix. This means that the rows of R
are orthogonal and each row has length 1 (Strang, 1988,
p. 166). So six conditions have to be satisfied, i.e. three
orthogonality conditions (e.g.: row 1 is orthogonal to
row 2 and to row 3, and row 2 is orthogonal to row 3)
and three length conditions (three rows have length 1).
As an equation

aT
i aj~dij (27)

with i51,2,3; j51,2,3; j§i; ai defined as in (21) and dij

the Kronecker delta.
The six conditions can be linearised and added as

constraints on the parameters to system (7). The six
linearised constraints are

a0T

2 a0T

1 0

a0T

3 0 a0T

1

0 a0T

3 a0T

2

a0T

1 0 0

0 a0T

2 0

0 0 a0T

3

0
BBBBBBBBBB@

1
CCCCCCCCCCA

Da1

Da2

Da3

0
B@

1
CA~

0

0

0

0

0

0

0
BBBBBBBB@

1
CCCCCCCCA

(28)

where 0 is the (163) zero vector and a0T

i with i51,2,3 is

the transposed vector of approximate values of the
parameters as defined in (21). As mentioned before, as

approximate values can be chosen a0
ij~dij, with

i,j51,2,3, from which follows

a0
1,a0

2,a0
3

� �
~I3 (29)

with I3 the (363)-unit matrix.

Determining approximate values
To determine the transformation parameters of the
congruence transformation, adjustment model (7) is
constructed, the matrices B and F are determined with
(24) and (26), and the constraints are added with (28).
Two methods to determine a solution of the adjustment
model with constraints have been described before.

In the matrices B and F, in the constraints and in the
D-quantities, however, approximate values have to be
entered. The case of matrix B has been treated already
when the adjustment model for the affine transforma-
tion was constructed: a unit matrix can be used. In
matrix F the approximate values u0, v0, w0 are needed.
Here the observed values of u, v, w must be transformed
with (4) and can then be used as u0, v0, w0.

For the transformation parameters of (4) approximate
values are needed for all nine elements of matrix R and
for the three translation parameters tx, ty, tz.

The methods to get direct solutions of the transfor-
mation parameters in (2) have been treated before and
can be used to get approximate values for the nine
elements of matrix R and the three translation para-
meters.

Instead of using one of the treated direct methods a
two-step procedure is described here to arrive at
approximate transformation parameters. It is given to
show its usability. The choice to use this method or one

of the direct solutions depends on considerations like
computational suitability.

In the two-step procedure approximate values for the
translation parameters and the elements of matrix R are
determined by first using a simplified version of the
adjustment model of the affine transformation and
secondly using the singular value decomposition of
matrix R.

Step 1: affine transformation done simply
If in (2) vector b9 is considered a non-random vector (i.e.
b9 without an underscore), and the equations of an affine
transformation are used, the elements of vector E{a} are
a linear function of the transformation parameters

Efag~Ff (30)

where F is the matrix from (26) and f the vector of
parameters

f~

a1

a2

a3

t

0
BBB@

1
CCCA (31)

The least squares estimator of f, indicated as f̂, with
all observations considered as having the same variance
and not being correlated, is

f̂f~(FTF){1FTa (32)

With (32) approximate values for all transformation
parameters can be acquired.

Step 2: singular value decomposition of R
The approximate values, acquired with (32), are,
however, not usable in transformation (4) and adjust-
ment model (7), using the matrices B and F from (24)
and (26), and the constraints from (28). The reason is
that the approximate values must fulfil the constraints
(27), which is a consequence of the linearisation process
of the constraints by means of a first order Taylor
expansion.

If the approximate values, computed with (32) are
entered in matrix R from (22) the result should be an
orthogonal matrix. In general this will not be the case.
Changing R into an orthogonal matrix can be accom-
plished by performing a singular value decomposition of
R. The result is three matrices, for which holds (Strang,
1988, p. 443)

R~Q1SQ2
T (33)

where Q1 and Q2 are (363) orthogonal matrices and S
is a (363) diagonal matrix that contains the three
singular values on the main diagonal. How these
matrices are computed can be found in textbooks on
linear algebra, e.g. Strang (1988). Computation routines
are available in mathematical software like Matlab.

Changing R into an orthogonal matrix is done by
changing all singular values to a value of 1, i.e. by
removing matrix S and computing the changed matrix
R9 as follows

R’~Q1Q2
T (34)
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Since Q1 and the transpose of Q2 are orthogonal
matrices also their product R9 is an orthogonal matrix.
A proof that the elements of R9 are as close as possible
to the analogous elements of R is given by (Higham,
1989). Closeness is defined with the Frobenius norm.

By using the results of (32) to construct matrix R and
using singular value decomposition to arrive at the
orthogonal rotation matrix of (34), approximate values
for all transformation parameters of the congruence
transformation can be computed.

Iteration
Since both adjustment model (7) and the added
constraints (28) are linearised, solving the model by
the method of least squares needs iteration. In each
iteration step the estimates of the coordinate corrections
Dc and the corrections to the transformation parameters
Df are used to compute new approximate values. The
adjustment model with its added constraints is then
solved again. The iteration continues until the difference
between the newly computed approximate values and
those from the previous step is less than a preset limit.

In each iteration step the new approximate transfor-
mation parameters should again fulfil the constraints
(27). That means that in each iteration step the
adaptation of matrix R by means of a singular value
decomposition, as described in the previous section, has
to be repeated.

As mentioned before, (4) is used in each iteration
step to compute new coordinates b9. Their cofactor
matrix is determined by applying the law of propaga-
tion of cofactors. This guarantees that matrices B and
F and the linearised conditions (28) keep their simple
structure.

Model for similarity transformation
A similarity transformation is a congruence transforma-
tion with an additional parameter to account for a
change of scale (change in the unit of length). This
additional scale parameter may be necessary for example
if the two coordinate sets have been determined by
measuring techniques that cannot be guaranteed to use
exactly the same unit of length.

Because of the additional transformation parameter,
equation (23) receives an additional parameter l as follows

xT

yT

zT

0
B@

1
CA~lR

uT

vT

wT

0
B@

1
CAzteT (35)

Again matrix R has to be orthogonal.
Linearisation is done relative to the coordinates of b9

and to thirteen transformation parameters f (of which
seven remain as independent parameters, because there
are six constraints)

f~

a1

a2

a3

t

l

0
BBBBBB@

1
CCCCCCA

(36)

Linearisation gives matrices B and F that resemble
very much the ones of the congruence transformation.
Matrix B is the same as in (24), matrix F has one column
more than matrix F in (26)

F~

b 0 0 e1 ba1

0 b 0 e2 ba2

0 0 b e3 ba3

0
B@

1
CA (37)

A slight disadvantage of this matrix F is that it makes
the adjustment model singular without the constraints.
Another approach is possible that does not have this
disadvantage. To arrive at rotation matrix R six
constraints are put on matrix R of (22). These six
constraints were relaxed by allowing an extra parameter
l. It is also possible to put only five constraints on
matrix R. The three constraints that the lengths of the
three rows are equal to 1, are replaced by two
constraints: the length of the first row equals the length
of the second, and it equals the length of the third row.
Matrix F now stays the one of (26). The linearised
constraints are

a0T
2 a0T

1 0

a0T
3 0 a0T

1

0 a0T
3 a0T

2

a0T
1 {a0T

2 0

a0T
1 0 {a0T

3

0
BBBBBB@

1
CCCCCCA

Da1

Da2

Da3

0
B@

1
CA~

0

0

0

0

0

0
BBBBBB@

1
CCCCCCA

(38)

Approximate values are computed in the same way as
for the congruence transformation. An approximate
value for l can be determined from matrix S of the
singular value decomposition by taking the mean of the
singular values, i.e. the mean of the three values on
the main diagonal of S.

Barycentric coordinates
The numeric values of the coordinates can be very large,
for example if coordinates in a national grid are used. It
is advisable to switch in such a case to barycentric
coordinates xb, yb, zb

xT
b

yT
b

zT
b

0
B@

1
CA~

xT

yT

zT

0
B@

1
CA{

1

n

xTe

yTe

zTe

0
B@

1
CA eT (39)

where e~(1,1, . . . ,1)T. Likewise barycentric coordinates
ub, vb, wb are defined. The cofactor matrix should be
adapted accordingly, but it is possible to consider the
second term on the right hand side of (39) as a constant
term (a non-stochastic shift). The cofactor matrix then
remains unchanged. If barycentric coordinates are used,
the last column of (26) or the last-but-one column of
(37) can be left out, because the pertinent parameters are
zero, also after adjustment, as long as a and b are not
correlated mutually.

Use of adjustment model
Given two vectors of coordinates a and b, which
describe the same points in 3D, the relation between
both is searched by estimating the parameters of a
transformation between them. To solve this problem in

Velsink Extendable linearised adjustment model for deformation analysis

Survey Review 2015 VOL 47 NO 345404



case of a congruence or similarity transformation, the
adjustment model (7) is set up and constrained by (28) or
(38). The matrices B and F in this model have been
defined for the affine, congruence and similarity
transformation (resp. (24), (26) and (37)). The adjust-
ment model can be used in the following ways:

(i) suppose that the two vectors of coordinates a
and b are defined in different geodetic datums,
i.e. reference system ra is different from system
rb. Adjustment model (7) and the constraints (28)
or (38) can be used to transform vector b into
system ra. Coordinates in vector b that have no
analogous coordinates in vector a can be
transformed to reference system ra as free
variates (Teunissen, 1999, p. 75). Coordinates
in vector a that have no analogous coordinates in
vector b can be adjusted as free variates in the
same way

(ii) if the two vectors of coordinates a and b differ
from each other because of a deformation that
can be described by an affine, congruency or
similarity transformation, adjustment model (7)
and the constraints (28) or (38) can be used to
estimate the deformation

(iii) if a combination of both datum differences and a
deformation describes the relation between a and
b, adjustment model (7) and the constraints (28)
or (38) can be used to estimate both datum
differences and the deformation.

Using adjustment model (7) in combination with the
constraints (28) or (38) has the following characteristics:

(i) positive-semidefinite, full covariance matrices of
a and b, and the correlation between both, can
be taken account of, which is especially useful if
a and b stem from geodetic measurements, in
which case such covariance matrices are to be
expected

(ii) testing for biases in the coordinates can be easily
done by adding parameters to the model that
describe the biases (Teunissen, 2006, p.71)

(iii) testing for several simultaneous deformations
can be easily done by extending the model with
extra parameters and constraints that describe
those deformations

(iv) suppose that a test shows that added parameters
are significant. These parameters can easily be
added to the adjustment model

(v) extending the model to more than two epochs
can be readily accomplished by adding the
coordinates of a new epoch to the vector of
observations and adding additional parameters
to describe the datum of the new epoch and the
deformation of this new epoch relative to the
other epochs.

Model (7) contains a transformation. The model could be
constructed without such a transformation, but the
transformation fulfils a fundamental function: it takes
care that the vectors a and b, including their cofactor
matrices, are compared with each other only by means of
their intrinsic geometric information [the information that
can be extracted from the underlying measurements with
enough ‘sharpness’, a word used by Baarda (1995, p.1)].
Information about the geodetic datum and the precision
of its definition are eliminated from the deformation
analysis. Tests of the deformation measurements are

therefore more accurate. Also the description of the
resulting precision and reliability is better. The necessity to
eliminate the influence of the geodetic datum is closely
related to the search of Baarda (1995, p.1) for dimension-
less quantities and the call of Xu et al. (2000) for invariant
quantities.

Experimental validation
To show the effectiveness of the proposed adjustment
model for deformation analysis, a deformation analysis
task, as it is encountered in professional practice in the
Netherlands, is used. For this task fictitious observations
were generated (assuming a normal distribution) and
two different deformations simulated.

Three monumental buildings are monitored by total
station measurements. Because of underground works,
movements of the buildings might occur. Fifteen points
are monitored (Fig. 1) from an instrument point that is
not monumented and varies from epoch to epoch. Two
epochs are considered (99 and 100 are the instrument
points). A state-of-the-art high precision total station is
supposed to have been used. The standard deviation of
horizontal and vertical direction measurements is 0.3
mgon, of distance measurements 1 mm. The precision
with which a point is defined (idealisation precision) is
supposed to be 0.5 mm. The generated observations are
listed in the appendix. The second epoch has two
different lists of observations. In the first one (called
case 1 hereafter) a deformation of point 1 is intention-
ally introduced. In the second one (case 2) the first five
points, belonging to one building, are deformed.

The generated observations were processed by the
commercial software package MOVE3 (2014), version
4.2.1(x64). 3D coordinates and their full covariance
matrix were computed. The covariance matrices of both
epochs were defined relative to the approximate x-, y-, z-
coordinates of point 1 and 14 and z-coordinate of point
26. Note, however, that the testing results of the
adjustment model of this paper are invariant to a
change of base points. This was confirmed by computa-
tions with other base points. The approximate coordi-
nates of the first epoch were in the national grid, those of
the second epoch in a local system that was rotated on
purpose over 100 gon relative to the national grid.

The adjusted coordinates and their covariance
matrix, of both epochs, were transformed to the system
of the first epoch and adjusted and tested with the

1 Location of points
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adjustment model of this paper. A similarity transfor-
mation was used, in accordance with the degrees of
freedom of the adjustments of each epoch in MOVE3.
To do the computations a specifically designed Matlab
programme was used. The results are shown in the
appendix.

The covariance matrices of both epochs are rank
deficient, because they are defined relative to a subset of
the points. This results in a rank deficiency of 14 for the
cofactor matrix of (8). Regularisation of the cofactor
matrix has been used to handle the rank deficiency.

To estimate the parameters of the 3D similarity
transformation and to adjust the coordinates, three
computations (i.e. two iterations) were needed. In the
last iteration the absolute value of the largest correction
to the estimated parameters was less than 10212.

Testing of case 1
In case 1 a deformation of point 1 of 5.2 mm was
induced by giving the x-, y- and z-coordinate each a bias
of 3 mm.

The overall model test (F-test) of the adjustment
yielded an F-value of 1.41, which was more than the
critical value of 1.18 (computed with a one-dimensional
significance level of 0.1%, a power of 80% and using the
B-method of testing). Conventional w-tests were per-
formed, using (60) and (61). None led to any rejection.
Also point tests were performed, using (62). A point test
is a three-dimensional test, where the alternative
hypothesis is, that three independent biases are present
for respectively the x-, y- and z-coordinate of a point.
Point 1 was rejected with estimated errors (computed
with (58)) of 4, 2 and 3 mm in resp. the x-, y- and z-
direction of system ra. This shows that using weighted
least squares with full covariance matrices and applying
a three-dimensional point test is capable of detecting
deformed single points.

Point 1 is one of the base points that were held fixed
on their approximate values in the epoch adjustments.
Testing of this point, however, can be done with the
model of this paper like the testing of the non-base
points, without any additional action. This is possible,
because the model includes a transformation. The
estimated least squares residuals from ê of (46) are zero
for the base points, but the reciprocal least squares
residuals from r̂ of (47) are not. The reciprocal residuals
are used for testing ((56), (59) and (60)).

Testing of case 2
In case 2 the first five points, belonging to one building,
are deformed, all with the same deformation: 3 mm
along the x- and y-axis, 22 mm along the z-axis. The x-,
y- and z-axis are those of the local system of the second
epoch.

The overall model test (F-test) of the adjustment
yielded an F-value of 2.20, which was more than the
critical value of 1.18. Both conventional w-tests and
point tests were performed. Only the w-tests of the x-
coordinate of point 5 and the y-coordinate of point 2 led
to rejection. Points 2 and 5 were rejected by the point
tests. If, however, the deformation of this one building
was tested by formulating an alternative hypothesis that
the five points of this building had undergone the same
deformation, the pertinent test led to rejection with a
test statistic that was 2.01 times larger than the critical
value. This was larger than the same ratio for any other

alternative hypothesis that was formulated. The esti-
mated deformation was 3, 3 and 24 mm in the direction
of respectively the x-, y- and z-axis in system rb. This
shows that using weighted least squares with full
covariance matrices and applying more-dimensional
tests gives the possibility to detect deformations that
are below the noise level of individual points.

Conclusions
The problem of finding the relation between two Cartesian
coordinate vectors that pertain to the same points of an
object under deformation, is addressed. If the two vectors
refer to two different epochs, the relation between them is
determined by a possible difference in geodetic datum, by a
possible deformation, which may have occurred between
both epochs, and by measurement noise. In this paper the
relation is considered as describable by in principle one or
more affine, congruence or similarity transformations, to
be extended by other parameters.

An adjustment model is given to estimate the
parameters of an affine, a congruence or a similarity
transformation. The congruence and similarity transfor-
mation are formulated as an affine transformation with
constraints. That makes it possible to avoid the use of
Euler angles.

To compute approximate values for the parameters of
a congruence and similarity transformation it is possible
to compute first approximate values for an affine
transformation and subsequently to change these values
to those of a congruence or similarity transformation by
applying a singular value decomposition of the rotation
matrix. This computation of approximate values has to
be repeated in each iteration step of solving the
linearised adjustment model.

Applying the proposed linearised adjustment model
with constraints makes it easy to extend the model as
follows
1. Several transformations can be combined.
2. Different geodetic datums are taken account of.
3. Testing for biases in the coordinate vectors is made

possible.
4. Testing alternative deformation models is possible.
The proposed linearised adjustment model can be solved
to get a weighted least squares solution, where full
covariance matrices of the coordinates of both epochs
are taken account of. The covariance matrices may be
singular positive semidefinite matrices.

The effectiveness of the proposed adjustment model is
demonstrated in an experiment, where artificially added
deformations are successfully detected.

Extending the proposed linearised adjustment model
to more than two epochs and to more complex
deformation models is straightforward.

Appendix

Conventions
In this paper use is made of the following conventions:

N T indicates the transpose of a matrix

N approximate values of a scalar or vector are indicated
by a sub or super script 0, e.g. a scalar s0 or a vector v0

N if v is a certain vector, then Dv is the vector of
differences of v with its vector v0 of approximate
values
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Dv~v{v0

For a scalar an analogous equation holds.

N a vector that contains the coordinates of n points
contains first all x-coordinates from point 1 up to
point n, then all y-coordinates and finally all z-
coordinates

N the vector a consists of three sub vectors x, y and z,
and the vector b9 of three sub vectors u, v and w, such
that

a~

x

y

z

0
B@

1
CA and b’~

u

v

w

0
B@

1
CA (40)

N vector x contains for each point the x-coordinates. If
there are n points, then

x~

x1

x2

..

.

xn

0
BBBB@

1
CCCCA (41)

In the same way y, z and u, v, w are defined.

Adjustment equations
Most of the following equations can be found in
(Teunissen, 1999) and (Teunissen, 2006). To write the
equations more concisely, and because of their central
role in testing, the reciprocal least squares residuals r̂ are
introduced.

A system of linear or linearised observation equations
has the following general structure

E ‘f g~Ap ; Df‘g~s2Q‘ (42)

where ‘‘ is the m-vector of observations, A is the (m6n)-
matrix of coefficients and p is the n-vector of unknown
parameters. The equation behind the semicolon
describes the stochastic model by giving the covariance
matrix Df‘‘‘g, the variance factor s2 and the cofactor
matrix Q‘. Both A and Q, are considered in the

following equations to be regular matrices. The situation
that Q‘ is singular is treated in the paper.

The least squares solution is given by

p̂~(ATQ{1
‘ A){1ATQ{1

‘ ‘‘ (43)

Q
p̂
~(ATQ{1

‘ A){1 (44)

with p̂ the vector of estimated parameters and Q
p̂

its

cofactor matrix. We have also

‘̂~Âx; Q
‘̂
~AQ

x̂
AT (45)

ê~‘{̂‘; Q
ê
~Q

‘
{Q

‘̂
(46)

r̂~Q{1
‘ ê; Q

r̂
~Q{1

‘ Q
ê
Q{1
‘ (47)

with ‘̂ the adjusted observations, ê the least squares

residuals and r̂ the reciprocal least squares residuals.
The Q-matrices are their cofactor matrices. The
reciprocal least squares residuals are used in the testing
equations.

For each system of linear observation equations an
equivalent system of linear condition equations exists

KT Ef‘g~0; Df‘g~s2Q‘ (48)

where KT is the ((m-n)6m)-matrix of conditions, for
which holds (Teunissen, 1999, p. 63)

KTA~0 (49)

Matrix K is considered a regular matrix. Q‘‘ is
considered a positive semidefinite matrix, so it may be
singular.

Define the vector of misclosures t and its cofactor
matrix Qt as

t~KT ‘; Qt~KTQ‘K (50)

The least squares solution is

r̂~KQ{1
t t; Q

r̂
~KQ{1

t KT (51)

ê~Q‘̂r; Q
ê
~Q‘Qr̂

Q‘ (52)

‘̂~‘{̂e; Q
‘̂
~Q‘{Q

ê
(53)

Testing equations
Consider models (42) or (48) as the null hypothesis. Let
an alternative hypothesis be defined as

Ef‘g~ApzG=; Df‘g~s2Q‘ (54)

with G a (m6q)-matrix of known coefficients and = a q-
vector of unknown bias parameters, with m the amount
of observations and q the amount of bias parameters.
The formulation for the model of condition equations is

KTEf‘g~KTG=; Df‘g~s2Q‘ (55)

To test this alternative hypothesis against the null
hypothesis (model (42) or (48)) use is made of the
following test statistic (Teunissen, 2006, p.78)

Vq~r̂
T

G(GTQ
r̂
G){1GT̂r (56)

If Fq,?~
Vq

qs2
wFcrit (57)

with Fcrit the critical value, the null hypothesis is rejected
in favour of the alternative hypothesis.

If the null hypothesis is rejected, an estimate of the
biases and its cofactor matrix can be determined as
(Teunissen, 2006, p. 76)

=̂~(GTQ
r̂
G){1GTr̂; Q

=̂
~(GTQ

r̂
G){1 (58)

For q we have 1#q#m – n. If q.m – n the adjustment
models (54) and (55) are underdetermined and cannot
be solved. For the limiting case q5m–n the test is equal
to the overall model test and we have

Vm{n~ê
T

Q{1
‘ ê~r̂

T
Q‘r̂ (59)

The rightmost expression can be used if the system of
condition equations is used and Q, is singular.
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The limiting case q51 is the test of w-quantities
(Baarda, 1968, p.13). It is called a w-test

If w~
gTr̂

s gTQ
r̂
g

� �1=2
wwcrit (60)

reject the null hypothesis. Here wcrit is the critical value
and g is the matrix G, but written as a lower case letter,
because it has only one column: it is a vector. The w-
quantity has a normal distribution with an expectation
of 0 and a standard deviation of 1. A conventional w-
test (Baarda, 1968, p.15) is the test of one observation
being biased and all other observations being without
bias. The vector g is

g~(0 � � � 010 � � � 0)T (61)

with the 1 corresponding to the biased observation.

A point test is a three-dimensional test (q53) of the x-,
y- and z-coordinate of one point (used as observations).
The matrix G is

G~

0 � � � 0 1 0 0 0 � � � 0

0 � � � 0 0 1 0 0 � � � 0

0 � � � 0 0 0 1 0 � � � 0

0
B@

1
CA

T

(62)

with the ones corresponding to the coordinates that are
supposed to be biased.

Results case 1
Point 1 is biased
dx, dy, dz 3 mm, -3 mm, -3 mm
in x-system

Number_of_computations 3
Max_criterion 5 5.0e-013
Scale_factor 5 1
Translation_x_y_z_in_m 5

81475.939, 455202.030, 2.000
Alpha_Beta_Gamma_in_gon 5

0, 0, -100
Overall model test:

Number_of_conditions 5 38
Ftest 5 1.41
Critical_value 5 1.18

w-test: Critical value is 3.29
No rejections

Point test: Critical value 5 4.21
Point 
001        6.2758
Est.def. x Est.def. y Est.def. z
3.6 mm        -2.4 mm      -2.5 mm

Data of experimental validation

Observations of the first epoch

pnt pnt Direction Distance Zenith angle

99 1 307.7820765 24.5060074 99.8055455
99 2 319.7344105 20.0876102 98.7070717
99 3 331.5296877 17.0625166 105.4327481
99 4 352.4563301 14.7326649 106.6349756
99 5 388.3056469 15.4070803 101.3380122
99 14 29.0918416 17.8292985 99.7871557
99 15 46.7749502 15.3559925 96.6129838
99 16 59.3812951 14.5848606 99.6001975
99 17 79.1592740 14.9923557 105.715829
99 18 89.8716178 17.9265803 106.5598073
99 19 93.2971810 21.2104291 98.4820515
99 23 186.8788155 19.3414323 103.9408223
99 24 200.1056248 20.9264019 105.3692816
99 25 212.6876307 23.5421679 99.0553208
99 26 224.8455986 28.3270008 98.4196188

Observations of the second epoch, point 1 is biased

pnt pnt Direction Distance Zenith angle

100 1 13.7372731 23.0672793 99.7859602
100 2 27.7594635 19.1262636 98.6398106
100 3 41.4401419 16.6097400 105,582282
100 4 63.6494039 15.1749445 106.4430463
100 5 96.2060486 17.1252428 101.2017896
100 14 131.4346394 20.3808279 99.8127807
100 15 146.8624786 18.0020637 97.1040642
100 16 157.5422153 17.1916389 99.6580831
100 17 174.4918375 17.3543574 104.9366243
100 18 184.6390687 20.0631725 105.8611633
100 19 188.5080762 23.2655969 98.6169971
100 23 279.1965362 17.9334770 104.2543189
100 24 294.0907282 19.0647202 105.8937977
100 25 308.5860882 21.3237391 98.9581652
100 26 322.5863556 25.8583270 98.2684568
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5

        F_q



Differences between x and adj. coord. in mm

1 0 0 0

2 -1.1 0.1 0.9

3 -1.6 1.5 1.2

4 -1.1 -0.2 1.1

5 -0.7 0.2 0.4

14 0 0 0

15 -1.1 -1.5 -1.1

16 -0.3 -0.6 -0.5

17 -0.9 -0.8 -0.4

18 -1.2 -1.7 -0.4

19 -2.1 -1.4 -0.6

23 -2.5 -1.1 0.0

24 -3.2 -1.5 -0.6

25 -2.9 0.9 0.0

26 -3.2 -0.5 0

Results case 2
Points 1, 2, 3, 4, 5 are biased

dx, dy, dz 5 3 mm, -3 mm, 2 mm

Observations of the second epoch, points 1 up to 5 are biased

pnt pnt Direction Distance Zenith angle

100 1 13.7372731 23.0672631 99.7997607
100 2 27.7642973 19.1302064 98.6467483
100 3 41.4423295 16.6141034 105.5885051
100 4 63.6455986 15.1792709 106.4496345
100 5 96.1955807 17.1284537 101.2089988
100 14 131.4346394 20.3808279 99.8127807
100 15 146.8624786 18.0020637 97.1040642
100 16 157.5422153 17.1916389 99.6580831
100 17 174.4918375 17.3543574 104.9366243
100 18 184.6390687 20.0631725 105.8611633
100 19 188.5080762 23.2655969 98.6169971
100 23 279.1965362 17.9334770 104.2543189
100 24 294.0907282 19.0647202 105.8937977
100 25 308.5860882 21.3237391 98.9581652
100 26 322.5863556 25.8583270 98.2684568

Approximate coordinates of the first epoch

pnt x y z

099 83 277.7360 457 303.9790 2.0000
001 83 253.4140 457 306.9670 2.0740
002 83 258.6090 457 310.1060 2.4080
003 83 262.7790 457 312.0580 0.5460
004 83 267.7820 457 314.7330 0.4670
005 83 274.9220 457 319.1230 1.6760
014 83 285.6020 457 319.9780 2.0600
015 83 288.0160 457 315.3580 2.8170
016 83 289.4500 457 312.6660 2.0920
017 83 291.8750 457 308.7800 0.6560
018 83 295.3420 457 306.8040 0.1560
019 83 298.8230 457 306.2070 2.5050
023 83 281.6860 457 285.0840 0.8030
024 83 277.7020 457 283.1290 0.2370
025 83 273.0750 457 280.9050 2.3490
026 83 266.9620 457 277.7910 2.7030

Approximate coordinates of the second epoch

pnt x y z

100 0.0000 0.0000 0.0000
1 4.9360 22.5280 0.0740
2 80.750 173.330 0.4080
3 100.270 131.630 214.540
4 127.020 81.600 215.330
5 170.920 10.200 20.3240
14 17.9470 29.6600 0.0600
15 133.270 2120.740 0.8170
16 106.350 2135.080 0.0920
17 67.490 2159.330 213.440
18 47.730 2194.000 218.440
19 41.760 2228.810 0.5050
23 2169.470 257.440 211.970
24 2189.020 217.600 217.630
25 2211.260 28.670 0.3490
26 2242.400 89.800 0.7030
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in x-system

Number_of_computations 5 3
Max_criterion 5 5.2e-012
Scale_factor 5 1
Translation_x_y_z_in_m 5

81475.940, 455202.029, 2.001
Alpha_Beta_Gamma_in_gon 5

0, 0, -100
Overall model test

Number_of_conditions 5 38
Ftest 5 2.20
Critical_value 5 1.18

w-test: Critical value is 3.29
x-coordinate

Point Ratio  w          Est.error
005    1.1582 3.8106 3.0011

y-coordinate
Point Ratio  w            Est.error
002    1.1816 3.8875 -3.2984

z-coordinate
no rejections

Point test: Critical value 5 4.21
Point       F_q
002          5.8141
Est.def. x Est.def. y Est.def. z
2.3 mm -3.9 mm -0.4 mm

More-dimensional test
q53, points 001, 002, 003, 004, 005
F_q
5.8141
Est.def. x Est.def. y Est.def. z
2.8 mm        -3.1 mm       3.7 mm

Differences between x and adj. coord. in mm
1 0 0  
2 0.2 -1.2 -0.2
3 0.0 0.1 0.3
4 0.7 -1.7 0.6
5 1.0 -1.6 0.4

14 0 0 0
15 -1.2 -1.5 -0.6
16 -0.3 -0.7 0.2
17 -0.8 -0.9 0.7
18 -1.0 -1.9 1.1
19 -2.3 -1.4 1.2
23 -2.4 -1.2 1.1
24 -3.1 -1.7 0.2
25 -3.0 0.9 0.4
26 -3.4 -0.5 0
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