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realized that the route of exposure (oral vs injected) can mean the 
difference between life and death after exposure to snake venom 
(Schickore, 2010). Since then, our understanding of the com-
plexity of both aspects has expanded greatly. To the assumption 
of a threshold of toxicity was added our understanding that there 
are both linear and nonlinear dose-response curves; the era of 

1  Introduction 

Toxicology owes its origin to Paracelsus’ insight that hazard is 
not just a property of a chemical but requires a quantitative as-
sessment – there is an amount below which a substance is not a 
poison. This concept was further refined by Francesco Redi, who 
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“The only certainty is uncertainty.”
Pliny the Elder
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deeper evaluation, ideally through a probabilistic approach. An-
other example is the discussion about the use of a mixture assess-
ment factor (MAF), a default hazard factor for each chemical in 
order to cover “pragmatically” the risk linked to unintentional 
chemical mixtures (European Commission, 2020; with further 
comments from the German Bundesinstitut für Risikobewertung 
(Herzler et al., 2021)).

In the real world, there are many examples where over-reli-
ance on simplistic estimates of averages has had detrimental ef-
fects – one often-cited case is that of the city of Orange County, 
CA which in 1994 structured its financial portfolio on the as-
sumption that the then low average interest rates would continue 
– neglecting both the uncertainty and volatility that interest rates 
had displayed in the past. Had they made this uncertainty more 
explicit, they would have realized there was a small but not zero 
chance that rising interest rates would cost them over 1 billion 
dollars; interest rates did rise, and the city was forced into bank-
ruptcy (Savage and Markowitz, 2009). The reliance on an aver-
age hid enormous tail risks. Indeed, this problem was so acute in 
the financial world that Monte Carlo simulations were developed 
specifically to calculate financial risk in a more probabilistic way 
– an innovation that won the inventor, Harry Markowitz, the No-
bel prize in economics1. 

Within toxicology, a probabilistic risk assessment generates a 
range of risk values, in addition to an average estimate. This ap-
proach also seeks to quantify the uncertainty and identify sources 
of variability. Therefore, a probabilistic risk assessment can iden-
tify where more data is needed before a decision can be made 
confidently, analyze what would be a tipping point, where a deci-
sion might be different if assumptions were different, and help to 
estimate trade-offs with more realistic assumptions. Unlike ap-
proaches which require a specific data point – for example, a 90-
day NOAEL (no-observed-adverse-effect level) – a probabilistic 
risk assessment can incorporate multiple types of data. It makes 
more explicit not just what is known, but what is unknown and 
uncertain – which in the field of toxicology (and biology in gen-
eral) encompasses a great deal. Additionally, it provides a more 
realistic assessment of variability and susceptibility differences. 
Finally, a probabilistic risk approach lends itself more readily to 
approaches that build upon big data/artificial intelligence (AI) 
approaches.

Since the middle of the ’90s, probabilistic approaches have 
been included in the risk assessment paradigm. Thus, thresholds 
of toxicological concern (TTC; Munro et al., 1996) and bench-
mark doses (BMD; EFSA Scientific Committee et al., 2019) have 
gained regulatory acceptance. The field of exposure assessment 
is probably the area where the most significant progress has been 
made. Hence, exposure to cosmetic ingredients and products us-

molecular endocrinology demonstrated the importance of non-
monotonic dose-response curves. Similarly, our understanding 
of exposure now encompasses appreciation of the temporal pat-
tern of exposure, the need to understand sensitive populations, 
and the developmental origins of adult diseases. We have begun 
to address the importance of multiple co-existing exposures and 
the interaction of chemical and non-chemical stressors (Sillé et 
al., 2020), although toxicology has only recently begun to grap-
ple with this. 

Human health risk assessment should be considered inherently 
probabilistic as the risk is a probability for a hazard to occur de-
pending on the exposure. Nonetheless, despite our growing ap-
preciation of the complexity of both dose-response and exposure 
parameters, risk assessment is still done in a largely deterministic 
way – with heavy reliance on averages for environmental concen-
trations, body weight, and intake to produce a point estimate for 
risk. Moreover, deterministic approaches around the two pillars 
of risk assessment, namely hazard identification and exposure 
assessment, along with the allocation of numerous uncertainty 
factors during the risk characterization step lead to an overly con-
servative risk estimate. While this enables low-cost first-tier risk 
assessment for data-poor chemicals and exposure scenarios, a de-
terministic-based risk assessment does not consider the full range 
of possible outcomes, nor can it quantify the likelihood of each of 
these outcomes. Crucial information is lost when risk is reduced 
to a threshold or hazard to a classification. 

The limitations of relying on an average are well-known: Con-
sider the long-running joke about the statistician who drowns in 
a river with an “average” depth of 3 ft. The joke about a toxicolo-
gist might be that, looking at a river with an average depth of 3 ft, 
they added an uncertainty factor of 10 for geological variability 
and an additional 10 for database uncertainty, thus assumed an 
estimated depth of 300 ft and declared the river uncrossable. (Of 
course, a hazard-based assessor might have assumed the water 
was no threat at all: It had a high LD50 (median lethal dose), was 
a non-sensitizer, and had no CMR (carcinogenic, mutagenic or 
reprotoxic) risk. On the other hand, a screening level risk asses-
sor might look at the volume of water in the river compared to 
the LD50 and decide the margin of exposure was unacceptable). 
The above example is, of course, a simplification and exaggera-
tion. However, it is evident that deterministic risk assessment can 
be hugely impacted by overestimated exposure, uncertainty fac-
tors, and default assumptions. This layering of conservatism can 
directly lead us to unrealistic decision-making rather than scien-
tifically sound risk assessment. Recently there is a debate regard-
ing the preferable approach for risk assessment, which can either 
focus on hazard-driven decisions, which are faster and easier, 
or focus on the identification of a risk, which should require a 

Abbreviations: AI, artificial intelligence; AO, adverse outcome; AOP, adverse outcome pathway; BER, bioactivity exposure ratio; BMD, benchmark doses; ChatGPT, Chat 
Generative Pre-Trained Transformer; DES, diethylstilbestrol; iTTC, internal TTC; MIE, molecular initiating event; NLP, natural language processing; NOAEL, no-observed-
adverse-effect level; OS-CAM, Open Science Career Assessment Matrix; PBPK, physiologically based pharmacokinetic modeling; qAOP, quantitative AOP; TL, transfer  
learning; TTC, thresholds of toxicological concern

1 https://www.nobelprize.org/prizes/economic-sciences/1990/press-release/ (accessed 09.12.2022)
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What can go wrong? What are the consequences if something 
goes wrong? And what is the frequency of these undesirable con-
sequences? 

Translating this to toxicology, the first two questions – what 
can go wrong, and what are the consequences – form the broad 
topic of chemical hazard and in many respects the foundation of 
modern toxicology. In some instances, the sequence of events, 
i.e., the adverse outcome pathway (AOP), is relatively straight-
forward – a chemical can covalently bind to DNA, this can lead 
to the adverse outcome (AO) of cancer, or a chemical can cova-
lently bind to a protein and eventually cause skin sensitization. 
Ideally, we should be able to specify the frequency for these in-
teraction events. Yet even in cases where the molecular initiat-
ing event (MIE) is understood and the AO easy to identify, some 
difficulties emerge. In the case of cancer, very few chemical ex-
posures are linked to unique cancers in a way that can be confi-
dently called causal – for example, prenatal exposure to diethyl-
stilbestrol (DES) causes clear cell vaginal carcinoma (Hoover et 
al., 2011) and vinyl chloride causes liver angiosarcoma (Sher-
man, 2009). For most chemical exposures associated with cancer 
(for example, ethanol and breast cancer (McDonald et al., 2013)) 
there is no single MIE, and the AO is a shift in the probability of 
cancer, which may be very slight. 

In many areas of toxicology most steps in the toxicological pro-
cess are not certain – for example, there is no consensus on the 
precise MIE for most endocrine disruptors, but instead diverse 
proposals of potential receptor interactions and cellular perturba-
tions (Maertens et al., 2021, 2018). Nor is there any agreement on 
adverse outcomes, which have been proposed to include delayed 
puberty, weight gain, but also weight loss, and no consensus on 
the likelihood. Many areas of toxicology – for example, neurode-
velopmental disorders – typically gauge adverse events only at 
the population level, e.g., a shift in the IQ distribution of the ex-
posed population (Heidari et al., 2022). The existing approaches 
are also poorly suited to understanding events that are rare, such 
as birth defects. Valproic acid – often used as a positive control 
in teratogenicity studies – causes major congenital anomalies 
in humans with a range of 5 to 15% depending on the dose, and 
establishing the true frequency requires large, case-controlled 
population-based studies (Jentink et al., 2010). For chemicals 
with a less pronounced effect, or an effect observed primarily in a 
susceptible subpopulation, traditional animal-based studies with 
the necessary power would likely be too large to be practical and 
have the added drawback that they are mechanism-blind. Finally, 
many of the concerns that will likely be critical to risk assess-
ments in the future – for example, the developmental origins of 
disease, and the unique concerns brought up by co-exposures/
mixture toxicology – will require substantial investment in novel 
methodologies. 

Probabilistic risk assessment will therefore require a more 
mechanistically oriented toxicology, both in terms of MIEs 
and in terms of understanding the molecular nature of suscep-
tibility – in essence an AOP approach. However, most existing 

ing probabilistic modelling has been accepted for regulatory pur-
poses allowing a more realistic risk assessment2 (McNamara et 
al., 2007). More recently, the Crème RIFM probabilistic model 
approach was successfully shown to be a very robust and useful 
tool to realistically estimate the aggregate exposure of fragrance 
ingredients in cosmetic products (Safford et al., 2017).

A robust estimate of the quantity of products and therefore 
ingredients used by consumers is a crucial step of exposure as-
sessment and consequently risk assessment. Among the key ad-
vantages of probabilistic exposure modelling, we may highlight 
the fact that product usage data are based on real habits with-
out making an assumption that each consumer uses every single 
product type every day. In summary, these models avoid overly 
conservative and unrealistic assumptions for estimating exposure 
and allow a more accurate and realistic risk assessment.

To be sure, toxicology has been well served by the precau-
tionary principle, but there is also a cost to caution. Risk as-
sessments are especially prone to be overly conservative when 
they are based on multiple high-end point values – the cumula-
tive effect of combining multiple upper-bound assumptions can 
cause a “compounding of conservatism” and lead to implausible 
estimates of health effects that fall well above the 90th or 95th 
percentile of the distribution (Ruffle et al., 2018). Several analy-
ses that focused on Superfund sites found that deterministic and 
probabilistic risk assessments often had one or more orders of 
magnitude difference (Viscusi et al., 1997). Given the expense 
of mitigation, deterministic risk assessments that achieve only 
a marginal risk reduction for comparatively high social, envi-
ronmental, and economic costs, are neither practical nor desir-
able (Ruffle et al., 2018). In this respect, food allergy is a very 
interesting example. Food allergy is a crucial health concern 
worldwide, and both the risk assessment and risk management 
of food allergens have always been a crucial topic/challenge both 
for industry and regulatory bodies. It is now well established that 
probabilistic risk assessment is considered the most appropriate 
method for population allergen risk assessment and management 
purposes by numerous regulatory bodies (Crevel et al., 2014; 
Houben et al., 2020).

As a society we face numerous ecological challenges going 
forward, and many will require complex solutions with novel 
technologies that will challenge traditional risk assessment para-
digms – think of nanotoxicology (Krug et al., 2018) and synthet-
ic biology (Voigt, 2020). A probabilistic risk assessment provides 
a more precise framework for weighing the advantages and dis-
advantages of different choices, and this approach can help avoid 
both regrettable substitutions and burden shifting. How can this 
be achieved? 

2  Data

The field of probabilistic risk assessment developed from the 
field of engineering and focused on three principal questions: 

2 https://health.ec.europa.eu/publications/sccs-notes-guidance-testing-cosmetic-ingredients-and-their-safety-evaluation-11th-revision_en (accessed 08.06.2023)
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creasingly quantified information about individuals’ movements 
(courtesy of smartphones), and more comprehensive machine-
readable electronic health records, our ability to gather data on 
outcomes provides a far richer, if more high-dimensional, data 
stream than was possible in the past. 

Figure 1 illustrates that the probability of risk is driven by the 
probabilities of hazard, exposure, and biological effect.

3  Conceptual model

The conceptual model that guides risk assessment – that  
“hazard × exposure = risk” – remains true for a probabilistic risk 
assessment with some refinements. While hazard is still often 
handled with binary labels (e.g., sensitizer or non-sensitizer, car-
cinogen or non-carcinogen), or relatively simple binning strate-
gies (e.g., low, medium, or high acute toxicity), hazard will in-
stead need to be quantified as a point-of-departure, BMD, or po-
tency with a confidence interval. 

One existing methodology, the TTC can be viewed as prob-
abilistic, as it was based on a cumulative distribution of oral 
NOAELs. Despite having been developed on the basis of a small 
data set, it has proven remarkably robust (Kroes et al., 2005). In 

AOPs are qualitative. This is useful to quickly rule out hazards 
when screening chemicals, but it cannot be used for a quantita-
tive or probabilistic risk assessment of chemicals. Instead, this 
will require quantitative AOPs (qAOPs), which mathematically 
define the internal concentrations that trigger the biological tip-
ping points along the AOP, and the probability or magnitude with 
which those tipping points are exceeded (Spinu et al., 2020). In 
many respects, a probabilistic risk assessment will be a driving 
force for 21st century toxicology that avails itself of in vitro, in 
chemico, and in silico methodologies to map chemical structure 
to hazard in a more precise way than has been done in the past 
(Krewski et al., 2010).

On the exposure side, there is an equal need to improve data 
gathering so that we can base estimates on more extensive expo-
sure data that is both higher in quality and granularity. Remote 
sensing technologies can improve our ability to monitor external 
concentrations. Improvements in the technology to miniaturize 
sensors can allow more ubiquitous sensing of personal expo-
sures, while non-invasive biosampling techniques can improve 
measurements of internal exposures (Di Guardo et al., 2018). A 
significantly larger investment in sensing could improve not only 
the precision of exposure estimates but provide better resolution 
for temporal and geographic variability. Lastly, in an age with in-

Fig. 1: The probability of risk is ultimately driven by the probability of hazard, probability of exposure, and probability of 
biological effect
Each of these can be predicted or tested with different data streams, all of which should be considered for predicting risk. 
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and seek to gather more data if necessary, as well as ask if the 
models are too poorly parameterized, or if the model is too com-
plex, such that a cascade of uncertainty makes a decision impos-
sible.

The cosmetics industry is a very good example of how a risk 
assessment can shift from deterministic to probabilistic ap-
proaches. During the last two-three decades, the cosmetic indus-
try had to deal with a regulatory animal testing ban in Europe, 
which encompassed first finished products and then ingredients. 
This industry developed some pioneering approaches to tackle 
the consequences of the regulatory ban, and it demonstrated the 
capacity to operationally handle this topic. The risk assessment 
approach aimed to protect consumers as published by Middleton 
et al. (2022) provides a full probabilistic model of risk assess-
ment, since it combines not only probabilistic exposure assess-
ment by using PBPK modelling, but also bioactivities and points 
of departure derived using probabilistic approaches to determine 
a bioactivity exposure ratio (BER), i.e., a margin of safety. Nu-
merous case studies using this modelling approach have been 
performed and published providing refinements and improve-
ments. This model could become the first end-to-end probabilis-
tic risk assessment model, though the road to gaining regulatory 
acceptance may still be long.

4  Resources

A probabilistic risk assessment will necessarily be more com-
putationally complicated than a deterministic risk assessment, 
and therefore computational infrastructure will be required. 
This means not just creating the necessary software, but also 
acknowledging that software creation is a scientific contribu-
tion of equal value to a publication. This leads to the premise 
that funding agencies will need to adapt their funding programs 
and evaluation procedures to include the support of robust and 
reproducible research outcomes beyond scientific publications 
in high impact journals. The EU Commission has already start-
ed the discussion on this transition and aims to implement the 
evaluation of scientists and organizations using, e.g., an Open 
Science Career Assessment Matrix (OS-CAM), which illustrates 
the range of evaluation criteria for assessing Open Science ac-
tivities (EC et al., 2017). Funding support must also be provided 
not just for software creation but also for its maintenance, and 
equally crucial, to improve user experience so that it is acces-
sible to the broadest range of users. Currently, many of the most 
sophisticated models typically require a user to be comfortable 
with a command-line interface as well as having the experience 
and expertise to trouble-shoot software installation, which can 
often require complicated dependencies. Some areas of science 
such as the field of computational oncology long ago realized 
that powerful models, with appropriate attention to a user inter-
face and data visualization, could be made broadly accessible 
(Gao et al., 2014).

The creation of additional software and models for performing 
probabilistic risk assessments of a diverse nature, brings with it 
the challenge of standardization, e.g., in the area of omics tech-

an era of large data sets, it has the potential to be further refined 
with closer mapping of functional groups to toxicity, and there-
fore can be extended beyond its current uses in food additives 
(Hartung, 2017). In addition, as our ability to extrapolate from 
external exposures to internal exposures improves, using physi-
ologically based pharmacokinetic modeling (PBPK) or in-vitro-
to-in-vivo extrapolation (IVIVE), we can focus more precisely 
on internal dose. This can be extended to an internal TTC (iTTC) 
(Ellison et al., 2021) – basically, a refinement of the TTC concept 
based on plasma concentrations for the risk assessment of sub-
stances with a low absorption (either by the oral or the dermal 
route), as the internal exposure is in these cases more relevant 
than the external exposure. Accordingly, an interim iTTC of  
1 μM was proposed by Blackburn et al. (2019) based on experi-
ences from the pharmaceutical industry, an in-depth review of 
published non-drug chemical/receptor interactions, and an analy-
sis of ToxCast™ data. In addition, chemicals excluded from the 
interim iTTC approach comprise the original TTC exclusions, 
such as androgen and estrogen agonists. Interestingly, Najjar et 
al. (2023) recently published a case study that provides a practi-
cal example of how the iTTC can be used to refine a TTC-based 
assessment for dermal exposures to consumer products and 
provide a promising tool for risk assessment when systemic ex-
posure data are available. The authors compared Cmax values 
measured in clinical pharmacokinetic studies performed with 
seven chemicals topically applied in over-conservative condi-
tions to the interim 1 µM iTTC value. Although they indicated 
that refinements and improvements were still needed, the com-
parison of Cmax values derived from PBPK with the iTTC in-
terim value could become a very potent probabilistic model for a 
pragmatic risk assessment approach.

Deterministic approaches, which compare estimates of expo-
sures (often based on simplistic metrics such as production vol-
ume) to a 90-day NOAEL for an appropriate margin of exposure, 
will instead look at a probability of exposure that, based on PB-
PK data, is tied to a probability of tissue concentration. In lieu of 
a margin of exposure, therefore, we have a comparison of a prob-
ability distribution for both tissue concentrations and an iTTC 
or point of departure from a qAOP. This avoids the difficulty of 
interspecies comparison as well as makes more explicit physio-
logical variation in ADME (adsorption, distribution, metabolism 
and excretion). This approach is also more easily extendible to 
the problem of multiple chemical stressors, as it can focus on in-
stances where there is a similar target organ or overlap in AOPs. 

Where both exposure and PBPK modelling indicate limited 
tissue concentration of a chemical with minimal potential for 
hazard, we can confidently declare there is a low probability of 
risk. For much of the middle ground, we have an area of uncer-
tainty which will likely prompt testing to clarify and refine the 
estimates, as well as areas where the risk is easy to identify. This 
allows risk assessors to better take advantage of data streams, 
ranging from ExpoCast to Toxcast (Houck et al., 2013) for ex-
posure and hazard as well as using approaches such as RASAR 
(read-across structure activity relationships) for potency (Luech-
tefeld et al., 2018). In lieu of replacing uncertainty with conserv-
atism, at each step an assessor can pinpoint an area of uncertainty 
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grow over time), this will require a commitment to AI that is 
both transparent and robust. 

It is apparent that the advances in AI and the availability of rel-
evant Big Data will greatly enhance the development of probabil-
istic approaches to risk assessment. However, with computation-
ally intensive solutions, the demand for powerful computational 
hardware also increases. There seems to be an increasing interest 
and incentive for funding agencies to allocate parts of their budg-
ets to fund applications from researchers to use computational 
infrastructure. Research organizations have been investing in 
building human capital with the know-how on leveraging cloud-
infrastructure for computation. Large hardware facilities already 
exist, and some of them are even international collaborations as 
exemplified by the EU High Performance GRID6. 

Finally, we should not forget the human resources. The use of 
NAMs, application of or development of more advanced compu-
tational models, and development and maintenance of software 
will require large and very diverse groups of experts. It is likely 
that these groups of researchers at organizations will have to 
adapt new ways of working to move from a more classical “con-
tent-driven” scientific composition to a more agile team with 
flexible expertise and working disciplines. These agile teams of-
ten consist of specific researchers who have in-depth knowledge 
on, e.g., immunology or cancer biology, mixed with expertise on 
IT-related topics such as cloud-computing, DevOps, software 
development, or web development. Often, these teams will also 
have data science and statistical expertise on board and have the 
reproducible research principle (including FAIR principles) in 
scope when delivering their results to the scientific community 
(Baxter et al., 2022). 

5  Capacity building

Currently, risk assessment has many different paradigms de-
pending on whether a substance is a drug, cosmetic, an industrial 
chemical, or a food additive. Drug regulators understand that 
some risk is inherent in medicine and therefore focus on risk vs 
benefit. Risk assessors for industrial chemicals typically assume 
chronic exposure and must pay more attention to the diversity 
of exposure scenarios as well as accidental exposures, but rarely 
think of risk trade-offs. Those who focus on food additives must 
manage a great deal of chemical diversity and often focus on a 
TTC, with the understanding that absolute safety is impossible. 
Cosmetic risk assessors must concern themselves with potential 
contaminants as well as consumer perceptions about safety and 
testing. Often, however, scientists trained in one risk assessment 
paradigm rarely look to other areas for ideas, and they view the 
chemical space of their focus as unique and outside the appli-
cability domain of models or systems developed in other areas. 
However, AI and transfer learning (TL) thrive on large data sets 

nologies. In the early days of transcriptomics data analysis from 
array technology there was little standardization, which led to 
inconsistencies in scientific outcomes between experiments and 
different labs. This has changed dramatically with the adoption 
of open-source programming languages in this field of research. 
Nowadays, Bioconductor3 is the leading platform for data analy-
sis of many high-throughput technologies, including genomics, 
metabolomics, and proteomics (Gentleman et al., 2004). Simi-
larly, the last decade also saw the rise of publicly available cu-
rated bioactivity databases such as ChEMBL or ToxCast. These 
resources have chemoinformatics interfaces and allow, for in-
stance, performing chemical similarity searches; to achieve that, 
some level of chemical structure curation and standardization 
must be provided. The open-source data science-oriented pro-
gramming languages such as Python and R have greatly changed 
the way analysis can be made reproducible. Using version con-
trol software like Git and platforms such as Github4 has helped 
the re-use and adoption of existing software tools, and adaptation 
of the code to solving new problems in many scientific fields, 
including toxicology (Peng and Hicks, 2021).

Above and beyond producing the crucial kind of mechanistic 
data to inform probabilistic risk assessment, it is equally impor-
tant to have scientific data that is machine-readable (Luechtefeld 
et al., 2018). This will almost certainly require some level of en-
forcement mechanism from funding agencies as well as journals, 
in addition to a commitment to database infrastructure. While 
virtually everyone in the community wants both free and well-
maintained, well-documented software as well as easily accessi-
ble, curated, publicly available data, that priority is not currently 
reflected in funding mechanisms – a mismatch of community 
needs and resources that will have to be addressed. 

As data sources continue to grow, gathering and parsing data 
is no longer feasible to be done by one person or even a com-
mittee. Both the FDA and the EPA have embraced the neces-
sity of using AI approaches for literature review for both risk 
assessments and systematic reviews, and probabilistic risk as-
sessment will certainly require a similar approach. To leverage 
AI for data extraction, accumulation, and synthesis from a large 
volume of (unstructured) data sources, we need to examine the 
technology of natural language processing (NLP). Recently, the 
field of language generative AI has made a major leap forward 
with the release of ChatGPT5 (Chat Generative Pre-Trained 
Transformer) by OpenAI. The success of ChatGPT encouraged 
other researchers to develop more domain-specific language 
models such as BioGPT, which can be used for mining biomed-
ical content (Luo et al., 2022). These approaches could be fur-
ther utilized for constructing (q)AOPs, which is currently a very 
labor-intensive and time-consuming process. Workflows that 
leverage NLP to develop AOPs have been recently proposed 
(Corradi et al., 2022). Indeed, as probabilistic risk assessment 
will be heavily dependent on AI (and the role of AI will only 

3 http://new.bioconductor.org/ 
4 https://github.com/ 
5 https://chat.openai.com/auth/login 
6 https://www.e-cam2020.eu/pilot-projects-with-industry/ (accessed 08.06.2023)
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most laypeople) will confidently assert that correlation is not cau-
sation, the reality is they are often conflated, or ambiguous terms 
are used (e.g., a chemical is “linked with” an outcome). A study 
found that nearly one third of papers on obesity used inappropriate 
causal language in their abstracts, even when study design preclud-
ed such conclusions (Cofield et al., 2010). In point of fact, what 
distinguishes mere association from causation is often a source of 
discussion in environmental epidemiology (Lucas and McMichael, 
2005). As large-scale data becomes more common, AI and big da-
ta-oriented approaches will find connections that would otherwise 
be missed. At the same time, there is the potential for the field to 
be overwhelmed by spurious correlations. AI does not reduce the 
need for critical thinking – if anything, it sharpens it. 

7  Communication

Probabilistic risk assessment will require a substantial invest-
ment in communication – end users will have to be able to under-
stand the outcome without statistical jargon. The field of medi-
cine has long understood that probability is often counterintuitive 
and difficult to grasp for many practitioners (Arkes et al., 2022), 
and realized that presenting data on false positives and negatives 
for a test did little to impact clinical practice, while presenting 
data “on number needed to test” was more easily understood and 
implemented. For risk assessment, reframing the output as the 
fraction of people protected is an easy-to-understand metric for 
decision-making. 

The reality is that the existing hazard-based classification sys-
tem that underpins many aspects of chemical regulation will likely 
persist and needs to be accommodated within the new framework. 
The output for many risk managers in the field may therefore re-
main the same, while additional data will be available on an as-
needed basis. A probabilistic risk assessment should not seek to 
start anew, but rather build upon this framework to add nuance 
where necessary while keeping simplicity where possible. 

8  Conclusion

Significant progress has been made over the last decades regard-
ing the use of probabilistic modelling in risk assessment. The 
continuous development of NAMs both in the field of hazard 
identification and exposure assessment will without doubt pro-
vide us with robust and pragmatic tools to conduct realistic risk 
assessment and, above all, to ensure the safety of consumers.

However, beyond the need to continue to develop robust 
NAMs, in the field of learning and education there should be an 
effort to change this mindset and avoid over-conservatism. The 
way to address uncertainty is at the heart of the debate (Rusyn 
and Chiu, 2022; Dourson et al., 2022). 

Mel Andersen, one of the main proponents of transforming 
toxicology towards a more mechanistic, systems biology-based 
approach, was once asked how many “pathways of toxicity” 
can we expect to find? He responded succinctly “132” and then 
added “as a toxicologist/risk assessor, I am accustomed to false 

that explore a broad chemical space. A probabilistic risk assess-
ment framework is by necessity a multi-disciplinary undertak-
ing and therefore will require individuals with different types of 
expertise – this will mean a re-orienting towards team science 
as well as better communication amongst regulators, industry, 
and academia. Since a probabilistic risk assessment will likely 
require a fundamental retooling of paradigms, this opens space 
for better communication amongst agencies. In many agencies 
where probabilistic risk assessment is performed, such as EFSA, 
EPA, and the OECD, case studies can be used to highlight the 
methodologies and the advantages.

Finally, there will be little point in developing probabilistic 
risk assessment as a field if regulatory acceptance does not fol-
low. This will require a shift amongst regulators, and potentially, 
the legal landscape within which they operate, as uncertainty 
offers an opening for much legal contestation. It will require 
greater transparency about uncertainty, and more fundamentally, 
regulators will need to be comfortable both with a more statis-
tically complicated approach and greater reliance on predictive 
methodologies and AI. Insofar as a probabilistic risk assessment 
will gather broader types of data, it will require greater scrutiny 
of data quality, bias in data, and data provenance – not to mention 
the necessity of using AI to gather data. 

6  Education

Probabilistic risk assessment will almost certainly require an in-
crease in statistical literacy of both users and practitioners, and 
points to a critical need to increase the grounding in statistics in 
training. In addition, as toxicology switches to a more mechanistic, 
qAOP focus, this will require a more solid grounding in quantita-
tive biology – in this respect, toxicology will simply be following 
the pattern of the life sciences in general (Eaton et al., 2020).

Similarly, toxicologists of the future will require literacy in ma-
chine learning. Not every toxicologist needs to be an expert in deep 
learning – in fact most do not – but an understanding of how AI 
uses data, how to make sense of the outputs, whether as a classifi-
cation or a summary statistic, how to benchmark AI performance, 
and how to understand both the strengths and weaknesses of AI ap-
proaches should be a skill imparted to every student. Indeed, many 
of the challenges of AI are not the more esoteric aspects of the al-
gorithms used to build the model but instead more quotidian prob-
lems: The data used for the model are flawed, biased or somehow 
unrepresentative of the real world, or the conclusions and interpre-
tation are unjustified by the result (a problem not unique to AI). 
Identifying these flaws requires minimal computational expertise. 

Toxicologists – even those planning on staying in academia – 
need to be trained in the regulatory use of data, and more broadly 
on the critical need for data to be robust. This will include focusing 
on adequately powered studies, a high degree of reproducibility, 
and adequate quality control. Many fields have faced a reproduc-
ibility crisis, and the life sciences in general and toxicology in par-
ticular are no exception (Hartung, 2013; Ioannidis, 2005).

Correlation versus causality needs to be more explicit in our 
thinking and our education – while virtually all scientists (and 
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and Innovation, Valdes, C. et al. (2017). Evaluation of research 
careers fully acknowledging Open Science practices: Rewards, 
incentives and/or recognition for researchers practicing Open 
Science. Publications Office of the European Union. https://data.
europa.eu/doi/10.2777/75255 

European Commission (2020). Chemicals Strategy for Sustain-
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Brussels, Belgium. https://eur-lex.europa.eu/legal-content/en/
txt/pdf/?uri=celex:52020dc0667 
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CBioPortal for cancer genomics as a clinical decision support 
tool. Cancer Res 74, Suppl, 4271. doi:10.1158/1538-7445.
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ductor: Open software development for computational biology 
and bioinformatics. Genome Biol 5, R80. doi:10.1186/gb-2004-
5-10-r80 

Hartung, T. (2013). Look back in anger – What clinical studies tell 
us about preclinical work. ALTEX 30, 275-291. doi:10.14573/
altex.2013.3.275 

Hartung, T. (2017). Thresholds of toxicological concern – Setting a 
threshold for testing below which there is little concern. ALTEX 
34, 331-351. doi:10.14573/altex.1707011 

Heidari, S., Mostafaei, S., Razazian, N. et al. (2022). The effect 
of lead exposure on IQ test scores in children under 12 years: A 
systematic review and meta-analysis of case-control studies. Syst 
Rev 11, 106. doi:10.1186/s13643-022-01963-y 

Herzler, M., Marx-Stoelting, P., Pirow, R. et al. (2021). The “EU 
chemicals strategy for sustainability” questions regulatory toxi-
cology as we know it: Is it all rooted in sound scientific evidence? 
Arch Toxicol 95, 2589-2601. doi:10.1007/s00204-021-03091-3 

Hoover, R. N., Hyer, M., Pfeiffer, R. M. et al. (2011). Adverse 
health outcomes in women exposed in utero to diethylstilbestrol. 
N Engl J Med 365, 1304-1314. doi:10.1056/nejmoa1013961 

Houben, G. F., Baumert, J. L., Blom, W. M. et al. (2020). Full  
range of population eliciting dose values for 14 priority al-
lergenic foods and recommendations for use in risk charac-
terization. Food Chem Toxicol 146, 111831. doi:10.1016/j.
fct.2020.111831 

Houck, K. A., Richard, A. M., Judson, R. S. et al. (2013). ToxCast: 
Predicting toxicity potential through high-throughput bioactiv-
ity profiling. In P. Steinberg (ed.), High-Throughput Screening 
Methods in Toxicity Testing (1-31). John Wiley & Sons, Inc. 
doi:10.1002/9781118538203.ch1 

Ioannidis J. P. (2005). Why most published research findings are 
false. PLoS Med 2, e124. doi:10.1371/journal.pmed.0020124 

Jentink, J., Loane, M. A., Dolk, H. et al. (2010). Valproic acid 
monotherapy in pregnancy and major congenital malformations. 
N Engl J Med 362, 2185-2193. doi:10.1056/nejmoa0907328 

Kleensang, A., Maertens, A., Rosenberg, M. et al. (2014). Pathways 

accuracy” (Kleensang et al., 2014). Toxicology, as a field, has 
been challenged with providing assurance of safety in the pres-
ence of enormous uncertainty. In the future, instead of looking 
away from areas where there is uncertainty, we must instead seek 
to shine a light on them. Moreover, we cannot pretend to have 
more certainty than we actually have – the illusion of accuracy 
is often more problematic than an acknowledgement of where 
uncertainty exists. Finally, perfect safety will always be an illu-
sion – attempts to eliminate risk are often simply shifting risk 
from more visible to less visible areas. Embracing the intrinsic 
uncertainty in science and the inevitability of risk is essential for 
a 21st century toxicology. 
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