
Team Content Workflow
Improvement

Filippo Maria Leonardi

Saxion University of Applied Sciences

Student Number
459231

Company Name
VSTEP Simulation

Internship Coach
Yvens Rebouças Serpa

Company Coach
Thomas Breekveldt

Abstract
The following graduation thesis describes the internship work carried out at
VSTEPSimulationwith thegoal of simplifying and speedingup theworkflow
of the Team Content. The research started with defining what processes of
the development were slowing the Team Content down and then it exam-
ines each of them, reportingwhat solutions have been applied to solve those
problems and describing the benefits that those brought to the team per-
formance and usability.

ii

Table Of Contents
Chapter 1 – Introduction 11.1 Background . 11.2 Research Overview . 11.3 Company Outline . 21.4 Company Oganization . 21.5 Company Meetings . 51.6 Problem Analysis . 6Chapter 2 – Theory 72.1 Unigine . 72.2 Prefabs . 82.3 Editors . 92.4 Environments And Scenarios . 92.5 Selection Bubble . 102.6 Azure DevOps . 11Chapter 3 – Research 133.1 List of issues . 133.2 Methodology . 163.3 Research Questions . 173.4 Scope . 173.5 Testing . 18Chapter 4 – Professional Products 194.1 Prefabs Duplicator Tool . 194.2 Prefabs Links Checker Tool . 214.3 Prefabs Assets Runtime Reload Tool 244.4 Camera Prefab Component Focus Support 264.5 Selection Highlight Visibility . 294.6 Flag Line Items Spacing . 304.7 3D Studio Max Plugin . 31Chapter 5 – Bug Fixing And Optimization 375.1 Dark Environment Bug . 375.2 Environment Layers Crash . 375.3 Slow GIT Branches Checkout . 39Chapter 6 – Conclusion And Reflection 43References . 47Chapter 7 – Appendix 487.1 Reflection . 487.2 Prefabs Duplicator Tool Algorightm Flow Chart 507.3 Prefabs Links Checker Tool Algorightm Flow Chart 527.4 Professional Products Visuals . 54

iii

Chapter 1

Introduction

1.1 Background

“Competitiveness is defined as the ability of companies to compete
while maintaining or improving the average standard of living. If you
are cutting wages to become more competitive, that’s not really more
competitive. It’s raising the skill and the efficiency of those workers so
that they can support and sustain that higher wage."This quote from Michael Porter (Davidson, 2015), a professor at Harvard Busi-ness School, explains clearly that the effectiveness of the workers in a companyis critical in order to be competitive in the market.

Over the last couple of decades (Bang & Markeset, 2011), companies have beendealing with an environment of intense competition because of the economicglobalization (Aničić & Nestorović, 2020). In this scenario, the ability to have anefficient company that delivers the products to its customers in a quick way, canbe considered one of the most important competitive advantages to have.A good level of optimization is not just a reduction of the costs for the company,but it would also improve the customer satisfaction, which is seen as a majordifferentiator of the company in the market, and increasingly has become an im-portant element of business strategy (Gitman & McDaniel, 2005).
1.2 Research Overview

The following graduation thesis describes the internship work carried out at VSTEPSimulation (section 1.3) in Rotterdam, covering a semester of full-time work in2022.
During this internship, I have been assigned to the Team Simulation (subsec-tion 1.4.3) and the main activities performed were:

1

• Analysis of the user’s workflow.• User’s feedback implementation.• Creation of new features/workflow automation.• Maintenance of the existing code.• Code reviewing feedback analysis from other programmers.The implementation of tasks base been mostly done autonomously, but I receivedsupport from the Company Coach or other colleagues when needed.I worked at VSTEP every week 40 hours: the work schedule was quite flexible asthe company allows each employee to choose its working hours between 07:00and 19:00 and it allows choose if working from home or the office. Because ofthat, during the internship I worked on average two days per week at the officeand 3 days from home.
1.3 Company Outline

VSTEP Simulation is a Dutch company founded in 2001 which develops simu-lators and virtual training software that allow the training for multiple simulatedenvironments in a practical, cost-effective, and sustainable way. The companyhas around 60 employees from more than 20 different nationalities and the officeis based in Rotterdam.The current company’s core product lines are:• NAUTIS: a maritime simulator used as training for naval academy students,where the controls and the physics of this software try to reflect reality asmuch as possible in order to offer a realistic simulation (VSTEP, 2022).• ResponseSimulator (RS): a full-suite virtual training platform built in collab-oration with safety and security experts (VSTEP, 2021). It immerses usersin a realistic 3D environment in which detailed incidents can be simulated.Nautis and RS can be controlled by 2 different roles: the instructor, which cancontrol the simulation of the scenario (create new objects, move existing objects,change the parameters of the scenario, etc), and the trainee which can controlonly a single character or ship of the scenario per time and has to perform thetraining.
1.4 Company Oganization

The company is divided into 4 departments. The company organization chart(Figure 1.1) has been recreated based on the chart available on Personio (Personio,
2

2022), the HR management website that VSTEP uses, and shows the differentcompany departments and teams.

Figure 1.1: VSTEP organization chart.

1.4.1 Business Development Department

The business development department is divided into 2 teams. The marketingteam currently consists of people working to make VSTEP known to a biggerpublic and create all the commercial content for the company. The businessdevelopment team works to make sure that NAUTIS and RS always fully meetcustomer’s needs

3

1.4.2 Operations Department

The operations department makes sure that the company’s products get readyfor the customers and that they receive support in case of need. This departmentalso assists with the preparations, installation, and validation of the simulators atthe customer’s facilities located all over the world (Figure 1.2).

Figure 1.2: VSTEP installation example.

1.4.3 Technical Department

The Technical Department is the largest of VSTEP. The members of this depart-ment have their different specialties and together they create the company’sproducts.
• Team Framework: works on the software and simulation platform and en-gine.

4

• TeamProduct: works on the simulation products with an emphasis on tool-ing (instructor station, procedure, scenario).
• Team Simulation: works on the simulation products with an emphasis onsimulation systems (hydrodynamics, physics).
• Team ExtApp: works on the software and tools that run side-by-side withthe simulation software (panels, assessment tool).
• TeamContent: works on the creation of all the visual elements (3D models,materials, textures, particles, environments) and on the setup of the newprefabs used in the simulations.
• TeamQA:works on testing the products to ensure that they work correctly.

1.4.4 Internal Operations Department

There are 4 different teams within the Internal Operations Department: Finance,ICT, Legal, and HR & Office. All teams work closely together to provide and main-tain a great work environment within the company.
1.5 Company Meetings

In VSTEP there are regular meetings that employees join to give updates on theirwork and to discuss their tasks During this internship, the following regular meet-ings were joined:
• TeamSimulation: weekly update where everyone from the Team Simulationgives updates to the team leader, and reports if there are problems and ifsupport is needed on a certain task.
• Townhall: monthly update where VSTEP the managers were giving an up-date about the company status and its future development to the other em-ployees through a PowerPoint presentation.
• Content Workflow Improvement update: Bi-weekly meeting where I wasgiving an update about my progress to Team Content and the CompanyCoach. This was the most important meeting of the internship where I couldask questions, get feedback and get new inputs about things that could beimproved or issues that were compromising Team Content’s effectiveness.Based on the input received, at the end of this meeting I was organizing thelist of tasks to work on, with the help of the Company Coach, and rankedthem by their priority and impact on the development.

5

1.6 Problem Analysis

The problem that this research tried to solve arose from the desire of VSTEP’smanagement to simplify and speed up the work of the Team Content.Due to a lack of time and resources, VSTEP could not work on solutions thatwould have increased the efficiency of the team.Time is a common obstacle for companies: in fact, employees from small/middle-sized companies are unlikely to work on optimization, because instead they usu-ally use their time to work on active projects.
As communicated by VSTEP, the purpose of this research would not have beenonly about creating new tools, but also about improving existing features thatwould have made them more efficient and easy to use by the end-user.
Team Content have been reporting development issues that affected their pro-ductivity. These problems were discussed during the Content Workflow Improve-ment Update meeting (section 1.5) and the list of issues reported was sorted bytheir importance, with the goal of giving priority to the processes that impactednegatively the most.The list of problems reported is composed of the following elements and theywill be examined further in the report (section 3.1):
• Duplicating prefabs and checking if their links are set up correctly requiredtoo much time.
• Nautis/RS needed to be restarted when a prefab asset was edited.
• The camera didn’t focus on the prefab components.
• The Selection highlight visibility was low and could have been improved.
• Flag line items spacing could not be changed dynamically.
• Team Content could not import/export mesh files from 3D Studio Max 2020and 2022.
• The time for some environments was invalid.
• Some environments were crashing when loaded in the Scenario Editor.
• Switching GIT branches required too much time to be performed.

6

Chapter 2

Theory

The following chapter is needed to explain the basic concepts that are useful tohave a better understanding of the report.
2.1 Unigine

NAUTIS and RS are built on top of Unigine (Unigine, 2022), a 3D real-time enginethat is appropriate for simulation products because of its photorealistic renderingof objects and environments, which enhances the user’s immersion.
NAUTIS and RS use C++ and UnigineScript as programming languages.The Unigine Script is a proprietary scripting language, similar to C++ in syntax,which instead does not need to be compiled, offering a faster development.
NAUTIS and RS have several C++ modules that are accessible from Unigine-Script through the extension of the Unigine API. In fact, these modules can com-municate through the creation of functions accessible via the Unigine Plugin thatafter the compilation of the C++ code, become available to be called from Unig-ineScript.
2.1.1 Nodes

In Unigine all the objects added into the world are called nodes.Unigine provides different types of nodes, which differ in their visual representa-tion and behavior. Nodes are created and stored in the world and their data aresaved into a .world file and into an external .node file, which allows them to beimported into the world when necessary.
2.1.2 GUIDs

A GUID (Globally Unique Identifier) is a 40-character hexadecimal string gener-ated using the SHA-1 hash algorithm. Unigine automatically generates GUIDs for
7

all the assets, by defining a virtual path for each of them. All GUIDs are stored in
data/guids.db (Figure 2.1), which is a JSON file that contains a list of pairs com-posed of the GUID and the file path relative to the data folder of Unigine.
Using GUIDs provides a more flexible file management solution: it is possibleto abstract from file names, which means that a path to the file can be changedwhile keeping the same GUID link (File System - Documentation - Unigine Devel-
oper, 2022).For example, if the file name of an asset that was being used by several nodesneeded to be changed, it was not needed to change every single reference tothat asset, but it would have been possible to just only change the path of thatGUID, in the guids.db file.

Figure 2.1: guids.db file.

2.1.3 Source Code

VSTEP owns a license that allows its employees to access the Unigine sourcecode: this it’s a big advantage for developers because it allows them to have abetter understanding of how the engine works, as with that it’s possible to readthe code and debug it.For instance, to give an idea of how the source code is important, the lack ofit would have compromised the development of most of the tasks carried outduring the internship, because there would not have been enough resources tounderstand and tackle some issues.
2.2 Prefabs

Prefabs are compound objects loaded from the disk that can be licensed byVSTEP to be available only by the clients that own the license. Nautis/RS have a
8

different type of prefab for each object used in the simulation (vehicles, buildings,ships, etc). Each prefab is identified with a prefab code, and its data is stored ina folder named as its prefab code (/data/Prefabs/<type>/<prefab-code>).
The prefab folder contains the following folders which include a category of files:
• Cfg: VSTEP configuration files for the prefab components.
• Nodes: nodes from which the prefab is composed.
• Materials: materials used by the prefab mesh surfaces.
• Meshes: meshes used by the prefab nodes.
• Textures: textures used by that prefab materials.

Lastly, the root folder of a prefab contains the rest of the data which does not fallin one of the above categories, such as generic prefab information, thumbnails,etc.
2.3 Editors

Team Development used 4 editors to implement their changes into the frame-work:
• Objects Editor: to customize the object properties and its components.
• Environment Editor: to create and edit the environments used in the simu-lation.
• Scenario Editor: to create scenarios for the training of the trainees.
• Dynamics Editor: to configure the physics parameters of a ship.

All the cited editors, with the exception of the Scenario Editor, were only usedinternally in the company, but VSTEP was planning to extend them also to theirclients in order to provide them the freedom to create and customize content ontheir own.
2.4 Environments And Scenarios

2.4.1 Environment

An environment is the representation of an area used for the simulation, which iscomposed of one or more layers that can contain objects.
9

A layer can be enabled/disabled in the Environment Editor when necessary if itsobjects need to be displayed/hidden.
When an environment is loaded in the Environment Editor only the default layer(*) is enabled, while when a scenario based on an environment is created all thelayers that have the default button active, are enabled (Figure 2.2).

Figure 2.2: Environment layers window.

2.4.2 Scenario

A scenario is an assignment created by VSTEP or an instructor. It is based on anenvironment and it’s being used by the trainees to practice an exercise.
2.5 Selection Bubble

A selection bubble is a shape that gets displayed when a group components isselected in the Property Window of a prefab.A selection bubble can render a primitive shape(cube, sphere, cylinder) or a cus-tom mesh (Figure 2.3).Nautis and RS have a Configuration Menu which allows to customize the programsettings based on the user’s needs, including options to customize some of theselection bubbles parameters.
10

Figure 2.3: Example of selection bubble.

2.6 Azure DevOps

VSTEP uses Azure DevOps to organize its project, which is a cloud-based plat-form that provides development services for allowing teams to plan work, collab-orate on code development, and build and deploy applications (Azure DevOps
Services, 2022). Azure DevOps is a flexible tool, as it is not necessary to use allthe services offered, but it is possible to adopt each of them independently.The services used during the graduation were 3:
• Azure Boards
• Azure Repos
• Azure Pipelines

2.6.1 Azure Boards

Azure Boards provide tools for Agile planning and monitoring of work items withactivity backlog reporting. The agile method allows working with small iterations,each of them corresponds to an independent work item that will be merged intothe final product. This makes the development much more flexible as it allowsquick implementation of changes to the project, providing benefits for the com-pany and its customers.
2.6.2 Azure Repos

Azure Repos provides the hosting and the management of a GIT repository hostedon the cloud. GIT is a distributed version control system designed for trackingchanges in files. VSTEP uses GITFlow as a branching strategy to manage the
11

repository. The GITFlow approach uses two main branches to manage versioncontrol of the project: the first is the master which keeps all the releases, and thesecond is the develop branch, which is fundamental for the development of thenext versions and it’s used as the basis for future integrations. In addition, theGITFlow approach requires that each new feature should have its own branch,which must also be present on origin in order to allow other developers to col-laborate. The new feature branches need to be created from develop and whenthe feature development is completed, the features branch gets merged back tothe development branch.
Pull Request

The Pull Request is a feature that allows somebody to propose its changes to abranch and request somebody else to review those changes. At VSTEP is manda-tory to create a Pull Request to merge the changes made for a task into anotherbranch, to provide a higher quality of the code, and to try to avoid merging com-mits that could contain issues.
2.6.3 Azure Pipelines

Azure Pipelines allow to automatically build and test code projects. In order tocomplete a Pull Request, Azure Pipelines test services had to be run since bypolicy it was mandatory to pass the C++ and Unigine script compilation with-out errors. This feature helps the company to avoid merging broken code in thestable branches, through an automatic execution that reduces the effort of thedevelopers by a lot

12

Chapter 3

Research

3.1 List of issues

This section of the report contains the list of issues reported by the Team Contentin the Content Workflow Improvement Update meeting (section 1.5).
3.1.1 Prefab Duplication

When Team Content needed to create a new prefab for Nautis/RS that was sim-ilar to an existing prefab, it was more convenient in terms of time to clone andadapt the existing prefab, rather than creating a new prefab from scratch.After cloning the prefab, Team Content had to manually replace all the old assetslinks of the duplicated prefab. To do that, it was possible to use any replacementtools (i.e. NotePad++), since all the assets of a prefab were linked with path-based links.However, Unigine changed the way assets were linked with each other in version2.7.0.3, replacing path-based links with GUID links. This change made the pre-fabs duplication procedure longer as the replacement of all the assets had to bemade manually on every single link on the prefab. Furthermore, this procedurewas also not safe because it could have happened that one member of TeamContent forgot to replace one or more links, which could have caused a crash ofthe engine.
3.1.2 Duplicated Prefabs Links

As already mentioned previously in section 3.1.1, when creating new prefabs,Team Content was used to duplicate existing prefabs that were similar to theones that needed to be created. In this way, it could be avoided to create a newprefab from scratch, which would require more time. However, this proceduremay have generated further problems in case all the links with the old prefabwere not being replaced correctly in the duplicated prefab.
13

If for example Team Content created a prefab called "PrefabB", by duplicatinga prefab called "PrefabA" and they didn’t replace all the links correctly, it couldhave happened that:
• Good case scenario: a client has a license to use both "PrefabA" and "Pre-fabB". No problems are visible in this case.
• Bad case scenario: a client has a license to only use "PrefabB". This wouldbe a problem since the assets of the "PrefabB" are linked to "PrefabA" andthe assets of "PrefabA" would not have been available for the client. Thismeans that "PrefabB" could have not been loaded correctly.

3.1.3 Prefabs Assets Runtime Reload

To test if a prefab didn’t have any visualization issues, Team Content had to loadit on Nautis/RS to check if all its assets were displayed correctly. When it wasn’t,Team Content had to restart the engine to test the prefab after an asset file wasmodified, having to wait up to ten minutes for each restart.
3.1.4 Camera Prefabs Components Focus Support

Nautis and RS allow the user to focus on one or more selected objects in theeditor. When the camera focuses on an object, it accelerates toward its positionuntil a certain distance is reached.A problem with the camera focus discussed with Team Content was that it waspossible to focus prefabs, but not their components. This could have been usefulespecially when it was needed to know in a fast way where a small componentwas positioned in a big prefab, as the component would not be easy to spot.
3.1.5 Selection highlight Visibility

Team Content reported 3 problems with the highlight of the selected componentof a prefab:
• When selecting a component of a prefab, the way the components of theprefabs were highlighted when selected, could have been improved as itsvisibility was low, therefore it’s not clear for the users what component theyselected.
• The selection bubbles of some components had a color that differed fromthe color set in the Configuration Menu.
• The surfaces of some selection bubbles were not visible.

14

3.1.6 Flag Line Items Spacing

To indicate that a ship is carrying dangerous cargo, a ship can have one to three(depending on the danger of the carried cargo) blue cones in a vertical line. TeamContent could not add these items because the distance between each cone wasset too high in the code, making it impossible for some ships to fit under somebridges (Figure 3.1).

Figure 3.1: Distance between blue cones.

3.1.7 3D Studio Max plugin

3D Studio Max is a 3D modeling, animation and rendering program developed byAutodesk (Autodesk, 2021), which is used by VSTEP to make the 3D content forNautis/RS.VSTEP used a 3D Studio Max plugin made by Unigine, to import and export meshfiles. However, Unigine decided to don’t provide plugins for 3D Studio Max any-more, since they recommended using FBX. Therefore, the last plugin offered byUnigine was for 3D Studio Max 2017.VSTEP owned only 1 license for 3D Studio Max 2017, meaning that only one em-ployee from Team Content could use 3DS Max 2017 to import/export a mesh fileper time. This was inefficient, in fact Team Content reported that it frequentlyhappened that an employee had to wait that another finished using 3D StudioMax 2017, before being able to use it.
3.1.8 Dark Environment Bug

Team Content reported that some environments were loaded at night in the Sce-nario Editor because of an unknown reason, and the date displayed was set on
15

the 1st of January 1970.
3.1.9 Environment layers crash

Team Content incurred a crash when loading an environment after a specific shipwas added to the default layer. To avoid the editor from crashing, Team Contentfound a workaround that consisted of first enabling all the layers, before addingthe ship. The reason why this workaround was working was unknown, further-more, not all the environments were having this issue.
3.1.10 Slow GIT branches checkout

Team Content reported that switching from one branch to another required toomuch time on their computers, due to the fact that their hardware was less pow-erful compared to the computer of the other teams in the Development depart-ment.Switching branches was needed each time employees had to work on a differenttask from the one that they were working on, or they had to test the work per-formed by another employee. Switching branches is a process that happenedfrequently at VSTEP, especially by Team Leaders that often need to check thework of other employees.
3.2 Methodology

This thesis used qualitative and quantitative research as research methods, fo-cusing on understanding what processes of the development were slowing downthe target audience and prevented them to work more efficiently, and by howmuch they were affected.The data were gathered during the Content Workflow Improvement Update meet-ing (section 1.5) and the private consultations with the Company Coach and theTeam Content members.Furthermore, more quantitative research has been done for the Slow GIT Check-out branch issue (section 3.1.10), by collecting measurements of the time neededto perform several actions. These data have collected ten times for each actionto provide a reliable result, and the average value of those measurements wastaken into account.Lastly, during the research phase for each task, it was almost always necessaryto conduct research in VSTEP source code, the Unigine source code, and itsdocumentation to collect technical data for tasks of the assignment.

16

3.3 Research Questions

3.3.1 Main Research Question

How can the workflow of the Team Content be improved in order to reduceVSTEP’s development cost and the effort among the employees of the team?
3.3.2 Sub Research Question

• How can the duplication of the prefabs be improved to let the employeesperform it faster?
• How can the prefabs links be checked in a faster way to let the employeesknow if they are not set up correctly?
• How can prefabs assets be reloaded without needing to restart Nautis/RS?
• How can the camera focus show where a prefab component is located?
• How can the selection highlight be improved to increase the visibility for theuser?
• How can Team Content customize the distance between each flag line itemto allow the ship to also pass under low bridges?
• How can Unigine mesh files be imported/exported on a newer version of 3DStudio Max 2017?
• Why do some scenarios load at night and display the wrong date, and howcan this be fixed?
• Why do some environments make RS/Nautis crash when loaded in the Sce-nario Editor, and how can this be fixed?
• How can switching GIT branches be more efficient in terms of time?

3.4 Scope

This assignment only applies to adding improvements to the Team Content, butthis doesn’t exclude that other teams could also take advantage of those ben-efits. Furthermore, the work was limited to the tasks discussed with the TeamContent and the Company Coach during the Content Workflow Improvement Up-date meeting (section 1.5).
17

3.5 Testing

All the features developed have been tested by myself and afterward Team Con-tent tested them to give remarks and feedback. If the testing passed without anyproblems, then a Pull Request was created to have the code checked by otherprogrammers. Every time an issue was found during the previous testing phases,the process started all over again, and the code was adapted to implement thefeedback.

18

Chapter 4

Professional Products

This chapter describes the main tasks conducted during this research.All the solutions proposed have the goal to solve the problems cited in section 3.1and were discussed together with the Company Coach and Team Content duringthe Content Workflow Improvement Update meeting (section 1.5).
4.1 Prefabs Duplicator Tool

The solution for this problem consisted of adding a new window (Figure 4.1) inthe Object Editor to automatically clone chosen by the user a prefab and replaceall the links in its assets that pointed to the original prefab folder.

Figure 4.1: Prefabs Duplicator Tool window.

This window allows to insert the code of the prefab and to check that it doesn’talready exist. The window is openable from the Duplicate button in the Browser
19

Library which is accessible from the Object Editor.All the GUI elements in Unigine are generated from .ui files, which are in the XMLformat. These files describe containers and widgets provided by Unigine. Each ofthem is described by an XML tag in the UI file. The duplicate button was addedfrom a UI file, and a callback function was specified for when the button wasclicked.This tool has been intended only for internal use, so the button to open the win-dow has been made visible only to developers. The callback click creates a newprefab window, which is a container with UI widgets inside it.During the development, time had to be spent researching the documentationand the source code of Unigine, to find a way for creating GUID links for theassets of the duplicated prefab.
4.1.1 Unigine Assets Files

For the Unigine asset files, new GUIDs had to be generated. In order to do that,the approach chosen was to process each node and then recursively create allthe new links for each asset used by that node (materials, textures, and meshes).
4.1.2 VSTEP Assets Files

The files from VSTEP (Components Files) were not linked through GUID links, butby using XML path links. Because of that, the links could have been replaced thesame way as it was done before Unigine introduced the GUID system, but insteadwith an automated PowerShell script.The reason why a PowerShell script was created instead of using Unigine Script-ing, was because PowerShell allowed faster development and testing comparedto writing Unigine Scripting code: in fact, PowerShell scripts can be run almostinstantly, while in order to test Unigine Scripting code, it is needed to wait thatUnigine starts, which required on average around 2 minutes of time.
The PowerShell script could be called from Unigine by using the function runfrom the Console class, allowing to call Windows run commands from Unigine.One con of PowerShell scripts is that they are supported only by Windows, how-ever this script is currently being used internally, and Team Development usedWindows OS only.The functioning of the duplicate algorithm is viewable from the image in the ap-pendix (Figure 7.1).

20

4.1.3 Testing

The prefab duplicator tool has been tested by one member of the Team Contentand the code was reviewed by two programmers in the Pull Request. For thistask, before starting writing code, a proposal document was sent to a member ofTeam Content and the Company Coach. The document contained an explanationof what the final user would have used the Prefab Duplicator Tool, by providinga high-fidelity image of how the GUI of the Duplicator Tool window would havelooked like. This was needed to get feedback and to know if they agreed withthe solution proposed.When the product was further developed, new testing has been performed byTeam Content, which consisted in trying to duplicate different kinds of prefabs tosee if the duplicated prefab was correctly visualized in Nautis/RS, and to see thatall the links of the prefab were correctly generated and not pointing to the originalprefab. During the testing a member of Team Content reported that a prefab wasnot being duplicated correctly as one part of it was not visible in Nautis.After some further investigation, it has been discovered that this was caused byan issue in the recursive function which was used to process the elements thatwere children of a node. The problem of that was that the root node was notbeing processed, so if a node had no children, it would have been exported asan empty node.The fix this, the solution applied was to process the root node first instead of thefirst child of the root node, so that the node could have been handled correctly.
4.1.4 Results

The Prefab Duplicator Tool allowed saving Team Content a lot of time. Accordingto Team Content, it was needed up to three hours to manually duplicate a prefab,while with the Prefabs Duplicator Tool, only a few seconds were needed.Furthermore, the tool could be useful to also check if an existing prefab was setup correctly (Figure 4.2). In fact, during the duplication, errors will be printed inthe console if the name of a file is not correct, if a file doesn’t exist or if a prefabis linked to another prefab.
4.2 Prefabs Links Checker Tool

To make Team Content aware of which prefabs contained links pointing to otherprefabs without needing to manually check each of them, an automated tool hasbeen developed by creating a PowerShell script. The reason for that was thatwriting code in PowerShell allows faster development, a faster usage by the end-user (Nautis/RS don’t need to be launched) and it’s also safer as it’s separatedfrom the code used for Nautis/RS.
21

Figure 4.2: Prefab duplicator tool result window.

Furthermore, a PowerShell script can be integrated with Azure Pipelines, allowingfor example to automatically check the links of a prefab every time a Pull Requestthat contains changes to a prefab is created.The tool can be launched from a .bat file in two ways:
• No arguments: the path to scan will need to be inserted by the user andthe log output file will be created in the logs folder (Figure 4.3).

Figure 4.3: Prefab Duplicator Tool when no arguments are passed.

• With arguments: the path to scan and the log output file path can be spec-ified from the arguments (Figure 4.4). This mode has been created to givethe script the compability to be supported by Azure Pipelines.

Figure 4.4: Prefab Duplicator Tool arguments.

22

4.2.1 Tool Functioning

The theory needed for providing a solution for Team Content about this issue wasalready known from the research performed for the assets links for the PrefabsDuplicator Tool (section 4.1). A flow chart that shows more in detail the operationsthat this tool performs has been added to the appendix of this paper (Figure 7.2),showing that the tool stores all the GUIDs contained in the guids.db file in anarray map, and then it checks all the lines of the XML files contained in the prefabfolders to find a link. When a GUID link is found, the tool gets the file path relativeto that GUID and checks if the file exists or if it’s located in another prefab folder.The tool shows an error when the following statements are true:• A prefab uses assets from another prefab folder.• The file does not exist on the drive.When an error is shown to the console (Figure 4.5) it also displays the line numberand the name of the file which contained the error, allowing the user to knowexactly where the problem is located. Furthermore, when an error is shown, alog file is created, displaying all the errors found during a prefab file/folder linkscheck. This allowed the user to access the list of errors also after the tool wasclosed.

Figure 4.5: Prefab duplicator tool result window

4.2.2 Testings

The tool has been tested by one member of Team Content, which reported onemain problem:• It has been requested to make the tool more user-friendly when it waslaunched with no parameters.
23

To improve the usability of the tool, the code was adapted by adding outputmessages to the user, checking if the input provided by the user was valid, andproviding examples in the console window of inputs that the user could haveinserted. The prefab duplicator has been tested by myself, to ensure that all theassets were reloaded correctly and that the node’s cache was still working as itwas before my code changes.After Team Content approved the changes, the code has been tested by oneprogrammer, but no relevant issues were reported.
4.3 Prefabs Assets Runtime Reload Tool

To offer a faster development, the solution to allow Team Content to test assetsquickly, was to offer the possibility to reload the prefabs assets while Nautis andRS were running.The assets of a prefab that needed to be reloaded were:• Textures
• Materials
• Meshes
• NodesThe Prefabs Assets Runtime Reload Tool has been made accessible from the devmenu and when clicked, it displays a window with 4 checkboxes that could beselected to decide what kind of assets to reload (Figure 4.6). By default, whenthe window is opened, all the checkboxes are always checked but in case it’snot needed to reload some kinds of assets, those could be unselected from thewindow. This can be useful, especially when working with a lot of elements, anddeselecting one or more kinds of assets, could result in faster reloading of thenecessary assets.

Unigine offers a list of commands usable from its console (Console - Documen-
tation - Unigine Developer, 2022) which could have been also called from UngineScripting code.While researching in Unigine documentation for options to perform the runtimereload, it was found that the console offered a few commands to reload assetsused in the scene while Unigine was running. The commands were:• render_streaming_reload texture to reload all loaded textures.
• render_streaming_reload mesh to reload all loaded meshes.
• materials_reload to reload all loaded materials.

24

Figure 4.6: Runtime reload tool window.

4.3.1 Reloading Materials

Even though the Unigine console offered a command to perform the materialsreloading during runtime, this was not working properly on Nautis/RS. The reasonwas that they manage the materials in a slightly different way from how Uniginedoes: in fact, the materials loaded in the scene are used as shared materials,and for each viewport mask, a new material that derives from the shared one iscreated, and the viewport mask is set to it.The reason why the console command materials_reload could not be used wasthat by analyzing the Unigine source code, it was discovered the command calledthe function clearMaterialInherit, which set the material parent to null. This meansthat all the materials used for the viewport masks would have lost their referenceto the shared materials and they would have become invalid.
The solution for this issue was to reload each material used in the scene by call-ing the function load of Unigine and setting as a parameter the file path of thatmaterial. The function load was not invoking the function clearMaterialInherit, soit was as expected to allow a runtime reload for the materials.
4.3.2 Reloading Nodes

In Nautis/RS, all the nodes that are loaded from the disk, are cached in a maparray. This means that if a node instantiates in the scene gets deleted and thenrecreated, the prefab nodes would not be loaded from the disk, as the cachednode will be loaded instead (Figure 4.7).For the nodes, there was no console command that allowed to reload them duringruntime so to perform the node reloading it was needed to first delete the nodeelement from the cache, delete the prefab, and re-spawn it in the scene.
25

Figure 4.7: Nodes cache functioning flow chart.

4.3.3 Testing

The Prefabs Assets Runtime Reload Tool has been tested by myself, to ensurethat all the assets were reloaded correctly and that the node’s cache was stillworking as it was before my code changes.This tool has been then tested by the Team Content and the code has beenreviewed by other programmers in a Pull Request, but relevant issues have beenreported by them.
4.3.4 Results

The Assets Runtime Reload Tool allows saving time that otherwise would havehad to be spent waiting that Unigine was started (around 2 minutes) each timethe assets of a prefab wanted to be tested in the Nautis/RS world.
4.4 Camera Prefab Component Focus Support

To extend the support of the camera focus to also the prefab components, it wasneeded to add an extra if statement to check if the selected object was a com-ponent (Figure 4.8).After that, to make the camera focus at the right distance of the component, it
26

Figure 4.8: Camera focus prefab component support.

was needed to know the size of the component in the scene. To do that thesolution adopted was to set the focus distance of the camera equal to the selec-tion bubble radius of the selected component node, plus a fixed margin (Figure4.9). In this way, the camera could have focused close to the selected compo-nent, making it easier for the user to understand where the component selectedis located in the scene.
4.4.1 Camera Focus Crash

There were two ways to make the camera focus on one object:
• By pressing the F button on the keyboard.
• By clicking a button in the camera menu.

While working on the camera focus task, a crash was noticed when the cameramenu button was being used. The camera focus could support the focus of oneor multiple objects at the same time: the objects selection script sums all the
27

Figure 4.9: Camera focus distance.

positions of the selected objects and divides that by the number of the selectedobjects. The problem was that there was no if statement checking that the num-ber of the selected objects was more than zero, so it could have happened thatthe code tried to divide a vector3 by zero, which is not possible. In conclusion,by checking if the number of selected objects was higher than zero, the problemwas fixed and the crash was not reproducible anymore.
4.4.2 Testing

The solutions have been tested by a member of Team Content and no issues orfeedback were reported.The code was reviewed by two programmers are reported two main problems:• The Configuration Menu of Nautis/RS contains a checkbox to disable/enablethe selection bubbles. The code wasn’t handling this, so if the selectionbubbles were disabled and a user would have tried to focus on a component,the program would have crashed because the code would have tried toaccess the selection bubble variable, which would have been null.• Nautis has two views. One is the 3D view and the other is the chart view,used to show the simulation from a 2D top-down perspective. The chartview didn’t support the selection bubbles, so the program would have crashedway as the other issue, because the bubble variable would have been null.To fix these problems, the solution was that if the bubble variable would havebeen null, the focus would have worked without accessing the component se-lection bubble, letting the camera focus with the prefab size distance, which isthe same way the distance would have been the same as before my changes.
28

4.5 Selection Highlight Visibility

4.5.1 Selected Component Highlight Color

To improve the selection highlight visibility, the solution was to make the selectionbubble wireframe change color. A new option was also added to the Configura-tion Menu (Figure 4.10) to give the possibility to the user to change the color atwill.

Figure 4.10: Selection Bubble Configuation Menu.

4.5.2 Color Difference

After asking among VSTEP employees, it has been discovered why the selectionbubble colors were different for some components. The reason was that thecolors of those objects had a meaning for the customers, and the meaning wasexplained in Nautis/RS manual. However, because the customers didn’t haveaccess to the Objects Editor, those colors weren’t needed for that editor. Then,the solution for this problem was to ignore those custom colors when using theObject Editor, and use instead the color from the Configuration Menu.
4.5.3 Surfaces Not Visible With Custom Shapes

The surfaces weren’t visible for the capsules, because these shapes were cre-ated in the code, by combining 2 spheres, and a cylinder. The problem with thatwas that the code made by VSTEP to create the custom capsule was not takinginto account the surfaces, but was considering only the vertices. The solutionwas to instead use a function provided by Unigine called createSurface which al-lowed to combine together the vertices and the surfaces from different meshes.

29

4.5.4 Color Trasparency

During the development, it has been also noticed that it was not possible for theuser to edit the transparency, as the alpha channel was set to either zero or one.To fix this, the code has been changed to support the transparency blending byusing the alpha value provided in the Configuration Menu.
4.6 Flag Line Items Spacing

The vertical flag lines could be added on a ship from the Prefab Property Windowin the Object Editor (Figure 4.11), where it was also possible to add the items toeach flag lines.Nautis had 4 kinds of flag line items:
• Signals
• Day Marks
• Country
• Misc

The solution applied for this problem was first discussed during the ContentWorkflow Improvement Update and consisted of adding a new slider to choosethe space between the flag line items (Figure 4.12): the default space for theitems was set the same as before my changes (0.1) and 0 for the Day Marks bluecones, in order to don’t have any gap in between. Despite that, it would have beenalways possible to customize the space in between at will through the slider.
4.6.1 Wrong Flag Line Items Scaling

A problem found during the development was about the scaling of the flag lineitems. Since they were children of the flag line, when changing the scale of theladder from the Configuration Menu, the scaling of the items was also affected(Figure 4.13). The function that created the flag line items was called "rebuild-flagLineItemVisuals" and was invoked each time the flag line items needed to berebuilt (for instance when the flag line was loaded, when a flag line item wasadded, when a flag line item was removed, etc). What the function rebuild-
flagLineItemVisuals did was remove all the items from the flag line and then re-adding them, calculating the correct vertical offset to use for each item. The
rebuildflagLineItemVisuals function was already calculating the correct scale ofthe parent object by dividing 1.0f by the scale of the flag line, however this func-tion was not being called when the flag line’s scale was being modified.The solution for this problem was then to call rebuildflagLineItemVisuals every

30

Figure 4.11: Flag line Configuration Window.

time the scale of the parent was changed, in the update method, since therewas already another function that was being called when the flag line’s scalechanged.
4.7 3D Studio Max Plugin

31

Figure 4.12: Flag line items spacing slider.

Figure 4.13: Cone wrong scaling.

4.7.1 Unigine Source Code

The last version of Unigine where the source code of the 3D Studio Max pluginwas found, dates back to May 31th 2017 with the version 2.5.Unigine offered a .bat script which allowed to build the source code stored ina C++ file, into a 3D Studio Max plugin. However, several errors were showingup when trying to run that file, as the code provided was too outdated to workwith the Unigine version that VSTEP was using. This meant that the plugin hadto be recreated by using the existing plugin source code as a starting point andadapting it by analyzing the source code that the Unigine Engine used to importthe meshes and the animations into the world.
4.7.2 3D Studio Max SDK

Autodesk provides and SDK for each version of 3D Studio Max, to let developersextend the core functionalities of 3D Studio Max.The SDK contains also a set of files that when inserted into the template directory
32

folder of Visual Studio, a new option to the "New Project" window of Visual Studiois added (Figure 4.14). This new option allows creating a project that is already

Figure 4.14: 3D Studio Max Visual Studio Wizard.

set up to be run and debuggable on 3D Studio Max. In fact, when pressing the"Start" button on Visual Studio, after the code was compiled, the plugin file iscreated and automatically inserted in the "Plugins" folder, and 3D Studio Maxwas launched.
4.7.3 Mesh File Structure

To understand how to import and export .mesh files, it was first needed to knowhow the file format was structured. The documentation of Unigine describedthe content of mesh files as a sequence of data needed to describe a staticmesh or an animation (Mesh File Formats - Documentation - Unigine Developer,2022). A detailed overview of the mesh file composition can be found in (FigureFigure 4.15). After analyzing the plugin source code it was noticeable that thestructure order of mesh files changed after version 2.5 and this needed to be
33

Figure 4.15: Mesh file data structure.

adapted for the new plugin to be compatible with the mesh files that VSTEP wascurrently using.
4.7.4 Implementation

As mentioned before, a new plugin had to be created. To do that a new emptyVisual Studio solution was created, containing two projects created with the 3DStudio Max Plugin Wizard, one for importing and one for exporting (Figure 4.16).When the projects were created, a series of files are added to each of them bythe Wizard Tool, including:
• Plugin.rc a file used to design the plugin windows interface.
• Plugin.cpp the class that contains the basic information of the plugin such

34

Figure 4.16: Visual Studio Project Overview.

as name, description, extension supported, and a method called "doImport"or "doExport" (depending on the project), which are invoked when a file isimported/exported.
The way the plugin works is that when importing a mesh, a data buffer readsall the data of the file and parses them in 3D Studio Max objects, while for theexporting a mesh, a data buffer is used to write the data contained in the 3DStudio Max objects into a .mesh file.When the compilation of the plugin was successful on Visual Studio, two fileswere created: a file with the extension .dli for the import plugin, and one with theextension .dle for the export plugin.

35

4.7.5 Testing

The plugin has been tested by three members of the Team Content who didn’treport any issue except for the UI of the plugin not being visible when exportinga mesh.The reason why this was happening was that unlike with 3D Studio Max 2017, theplugins for 3D Studio Max 2020 and 2022, also required the localizable resourcesfiles in the plugin folder created during the project compilation.After providing those files, Team Content was then able to see the dialog in thesame way as it was visible with the old plugin.This task allowed Team Content to work on Unigine .mesh files on 3D StudioMax, without worrying whether or not the license was being used by some otheremployee.

36

Chapter 5

Bug Fixing And
Optimization

5.1 Dark Environment Bug

This bug was caused because the time was not handled correctly in the C++code, and it was invalid.A scenario in Nautis/RS contains two times:• TheUTC time: which stands for Coordinated Universal Time and representstime standard across the world.• The local time: representing the local time in the scenario.A scenario in Nautis can be based on an environment located in the world. Theconfiguration file of an environment contains different information such as thelongitude, the latitude, and the time zone. The ladder was being used to calculatethe UTC time by doing:
UTC = localtime− timezoneThe reason why the time was invalid for some environments was that the UTCtime hour was less than zero or more than 23.For instance, if the local time hour was nine and the time zone hour was 10, thenthe UTC time would have been -1, which is not valid.To Fix this, the solution was to make the code use the function mktime, which is abuilt-in C++ function contained in time.h that takes as a parameter the pointer ofthe time data variable and adjusts it automatically in case the value is not correct.

5.2 Environment Layers Crash

After time spent researching the cause of the crash, it was found that the reasonfor it was that 2 objects with the same id were loaded in the environment, and
37

this wasn’t possible because each object’s id must be unique.In fact, when a layer gets enabled, the id of all the objects contained in that layergets stored in an array map, which is being used for two reasons: to check thatthe ids are unique and to generate new ids.The solution for this problem was to also store the ids of the objects in the dis-abled layers when the environment was loaded. In this way, the ID generated forall the new objects would have been unique and the crash fixed.During the development, two further problems were found when loading a newenvironment.• Environments with no layers were not being cleaned.• The used IDs array map was not cleaned when loading a new environment.
5.2.1 Empty Environment Not Being Cleaned

When the Environment Editor was opened, an empty environment was loaded.However, this environment was special, because it didn’t contain any layers.When a new environment was loaded, the objects in all the layers were beingdestroyed, but because the default environment didn’t have any layers, if a newenvironment is loaded, all the objects added previously to the default environ-ment weren’t deleted. This could have also caused a crash if the new environmentcontained objects with the same ID as an object in the empty environment.The solution for this bug was to destroy all the remaining objects in the environ-ment after destroying all the enabled layers.
5.2.2 Used IDs Array Map Not Being Cleaned

The array map containing all the used IDs, used to calculate the IDs of the newobjects, was never removing any element of it., was never removing any elementof it. This means that for example if a ship was added to an environment, its IDwould have been ship0. However, If then another environment was loaded, anda new ship of the same kind as the previous one was added to the environment,the ID would not have been ship0, but ship1.The class managing the ID of the objects, was using 2 array maps to store theids, one called locked ids and used id. The Locked ids array map elements wereadded and removed when an object was created/destroyed. However, it was notnecessary to have 2 array maps at the same time, so used id could be deletedand replaced with locked ids.
5.2.3 Testing

The solutions have been tested by a member of Team Content and the code wasreviewed by two programmers are reported two problems but no major issues or
38

feedback were reported.The solutions have been also tested by a member of Team QA, who reported acrash while loading a recorded session. The crash was caused because the de-stroy functions called in the method Layers::setDesc for the task in section 5.2.1,were called while the recording was being loaded. So for example it was hap-pening that while a ship was being created, then it was immediately destroyedwhile its components were being initialized.The solution for this was to clear the objects in the environment is a functionthat was not being called when loading an environment, because when a sessionrecording was loaded all the objects were already being destroyed in the function
Player::playFrame (Figure 5.1).

Figure 5.1: Recorded session loading.

5.3 Slow GIT Branches Checkout

To understand why GIT was taking too long to switch branches on Team Con-tent’s computers, the research focused on the two factors that impacted theperformance of GIT:
• The computer hardware.
• The antivirus scanning.

5.3.1 Device Storage

About the computer hardware, what impacted the most was the device storagetype.Especially when copying small files, an SSD is way more performant than an HDD.
39

That has been confirmed also by testing the speed of the SSD and the HDD ona test computer at the office (Figure 5.2 and Figure 5.3).

Figure 5.2: HDD Speed Test Figure 5.3: SSD Speed Test

As it is noticeable, the SSD tested is faster than an HDD and can be up to 14times faster than HDD when processing 4kb files.The reason why the SSD could not be used by some employees was that the SSDin Team Development’s computer was too small to contain the GIT repository, asthe more changes were stored over time, the bigger the folder’s size would havebeen.To minimize this problem, two possible solutions were proposed:
• When the GIT repository started to take too much space, the repository hadto be backed up on the HDD, the GIT repository had to be deleted from theSSD, and then re-downloaded. After that, the size would have been reducedand the repository can have been contained again on the SSD. It’s importantto point out that this solution could have been adopted only when all theimportant changes were pushed to the remote server. Unfortunately, eventhough research has been performed to find a GIT command that allowedto reduce the space of the GIT repository, the previously cited method wasthe most efficient discovered.
• Ask VSTEP to provide SSDs with higher disk space. Nowadays SSDs arerelativity cheap and can bring benefits long term.

5.3.2 Antivirus

The impact of the antivirus depends on the operation performed (numbers offiles, size of the files, etc). Some operations have been tested in the sectionbelow (section 5.3.3).The reason why an Antivirus slows down the performance is that whenever a file
40

is being opened, saved, copied, or renamed, the antivirus first scans it and thenallows Windows to perform that operation. This means that for example, if a fileis copied to another folder, Windows cannot immediately copy the file, but firsthas to wait that the antivirus confirms that that file is safe to be copied, whichrequires more time.
5.3.3 Performance Impact

The performance impact has been tested with 3 operations, by comparing thetime between SSD and HDD, and process whitelisted and process not whitelisted.All the times have been measured several times, and the value that you can readin the graphs represents the average of those measurements.

Figure 5.4: Switching GIT branch times. Figure 5.5: Launching Unigine Editor times.

For the Visual Studio Build measurement (Figure 5.6), Visual Studio mostlyuses the CPU to compile the solution. Moreover, the files created have a bigsize, so they are fast to be saved also on an HDD. For this reason, compiling onan HDD or an SSD didn’t show any relevant differences in time.

Figure 5.6: Visual Studio compilation times.

41

5.3.4 Results

After proving that whitelisting process would make VSTEP save time during de-velopment, several processes have been whitelisted by working together withTeam ICT, to provide an improvement on the performance, without requiring anyexpenses by VSTEP. When Team ICT updated the process whitelisting, all theantivirus installed in the employees were automatically updated, so I was notneeded to update every computer used by Team Development.

42

Chapter 6

Conclusion And Reflection

This thesis aimed to improve the workflow of Team Content. This has beenachieved by researching and developing the following solutions for the researchquestions.
How can the duplication of the prefabs be improved to let the employees
perform it faster?

A tool has been created, which allows duplicating prefabs in a faster and saferway, reducing the time needed for that from up to 3 hours to a few seconds perprefab. The tool carries out the following operations:• Creates new links by generating new GUIDs for all the Unigine files.• Changes the .prefabinfo file, to provide a new name to the new prefab.• Creates new links for VSTEP files (i.e. Cfg folder and root folder files). Todo that a PowerShell script has been used which allows faster developmentand testing than creating code with the Unigine Scripting language.• Generates errors if during the duplication the name of a file is not correct,if a file doesn’t exist or if a prefab is linked to another prefab.
Howcan theprefabs links be checked in a fasterway to let the employees
know if they are not set up correctly?

An automated tool has been developed to make Team Content aware of whichprefabs contained links pointing to other prefabs.The tool shows an error the following conditions are true:• A prefab uses assets that are contained in another prefab folder.• An asset file used in a prefab does not exist on the drive.This tool allowed VSTEP to save up to half a day per object, as in this way is-sues could be caught earlier and new tickets/branches didn’t need to be madeafterward.
43

Howcanprefabs assets be reloadedwithout needing to restartNautis/RS?

The runtime reload was archived by creating a tool that could be used by theuser to decide what type of assets to reload runtime among textures, materi-als, meshes and nodes. The tool allowed to save up to 10 minutes per reload,depending on how much time the computer needed to restart Nautis/RS.
How can the camera focus show where a prefab component is located?

The support for the camera focus has been extended also to support prefabscomponents and the focus distance was based on the size of its selection bubbleshape.
How can the selection highlight be improved to increase the visibility for
the user?

The selection highlight of the selection bubbles components improved by apply-ing the following changes:• A new color for when a component was selected was added to Configura-tion Menu and applied to the selection bubble outline.
• Support to the selection bubbles opacity was added.
• When using the Object Editor, all the selection bubbles have been changedto have the same color.
• The mesh surfaces have been added to the custom capsule shapes.

How can Team Content customize the distance between each flag line
item to allow the ship to also pass under low bridges?

A new slider to choose the space between the flag line items was added to theConfiguration Menu: the default space for the items was set as the same asbefore the changes (0.1) and 0 for the Day Marks blue cones, in order to don’tprovide any gap in between. Despite that, it would have been always possible tocustomize the space in between at will through the slider.
How can Unigine mesh files be imported/exported on a newer version of
3D Studio Max 2017?

Unigine meshes could be imported/exported on new versions of 3D Studio Maxby creating a new Visual Studio solution containing two projects added throughthe 3D Studio Max SDK wizard. The project has been created by using the pluginsource code as a starting point and adapting it by analyzing the source code
44

that Unigine Engine 2.13 used to import the meshes and the animations into theengine.
Why do some scenarios load at night and display the wrong date, and
how can this be fixed?

The reason for this issue was that the time calculated in the C++ code was notvalid. The solution was to use a built-in function called mktime that adjusted thetime used by an environment when this is not correct.
Why do some environments make RS/Nautis crash when loaded in the
Scenario Editor, and how can this be fixed?

The crash was caused by more than one object having the same ID.The solution for this was to store the ids of the objects in the disabled layerswhen the environment was loaded. In this way, the ID generated for all the newobjects would have been unique and the crash fixed.
How can switching GIT branches be more efficient in terms of time?

Switching GIT branches could be made faster by whitelisting the antivirus theGIT clients used by VSTEP’s employees, and by having the checkout folder onthe SSD instead of the HDD.
The changes that all the tasks above made to Nautis/RS allowed Team Contentto have tools that were more efficient in terms of time and usability. In this way,VSTEP can be more competitive in the market as it can develop content in a fasterway than how it was before this research.
This internship was an excellent opportunity to practice the subjects learned atschool and to experience more about what a job in a real company looks like.Working in the Simulation Team at VSTEP in Rotterdam has been definitely verystimulating, and I have felt like being part of a company composed of employeeswith a very high level of expertise that were always available to help or give sug-gestions when needed.
I retain myself satisfied with the overall internship experience, as I managed tocomplete all the tasks discussed with Team Content, including a problem whichI was not sure it was possible to solve, like the 3D Studio Max plugins problem,as there was not much documentation provided by Unigine which explained howthe plugin worked, or how to compile the plugin for a newer version of 3D StudioMax.Furthermore, the communication between me and the Team Content led to good

45

results, as I was able to communicate with its members during the meetings, atthe office and on Microsoft Teams, allowing me to get constant feedback on mywork to deliver products that satisfied their needs in terms of user experienceand performance.
On the other hand, something that I feel I could have done differently was thetime estimation for each task I worked on, which most of the time was too lowcompared to the time that I actually spent on it. The reason for that was thatoften there were unexpected issues that I didn’t take into account during the es-timation.Estimating how much time a task will require, it’s not something easy to predict,especially when somebody it’s not experienced in doing so. Something that Iwould do in the future is to be more pessimist when estimating time, because itoften happens that in a task something comes up that requires extra time work.Something else that I noticed that helped me to give a more accurate time esti-mation, is dividing a task into smaller tasks because of three main reasons:
• It’s easier to give a time estimation on small tasks than on big tasks
• They create a timeline for the task, so that a team leader has more clearwhat the progress is
• It helps have a more clear overview of the steps that are needed to completethe main task.

In conclusion with this internship experience I gained new knowledge, skills andworked with new people, giving me new insights to start my career after gradu-ation.

46

References

Aničić, D., & Nestorović, O. (2020). Globalization’s influence on the competitive-ness of national economy. Journal of Process Management. New Technolo-
gies, 8(1), 12–17. doi: 10.5937/jouproman8-24404

Autodesk. (2021, 10). Retrieved from https://www.autodesk.eu/
Azure DevOps Services. (2022). Retrieved from https://azure.microsoft

.com/en-us/services/devops/Bang, K., & Markeset, T. (2011, 09). Impact of Globalization on Model of Compe-
tition and Companies’ Competitive Situation (Tech. Rep.).

Console - Documentation - Unigine Developer. (2022). Retrieved from https://
developer.unigine.com/docs/latest/code/console/Davidson, P. U. T. (2015, 11). Harvard professor calls trade deal watershed,
says economy lags. Retrieved from https://eu.usatoday.com/story/
money/2015/11/16/michael-porter-harvard-interview-trade
-deal-economy/75599090/

File System - Documentation - Unigine Developer. (2022). Retrieved from
https://developer.unigine.com/en/docs/2.15.1/principles/
filesystemGitman, L., & McDaniel, C. (2005). The Future of Business: The Essentials (with
InfoTrac) (Available Titles CengageNOW) (2nd ed.). Cengage Learning.

Mesh File Formats - Documentation - Unigine Developer. (2022). Retrieved from
https://developer.unigine.com/en/docs/latest/code/formats/
file_formatsPersonio. (2022, 04). Personio. The People Operating System. Retrieved from
https://www.personio.com/

Unigine. (2022). Retrieved from https://unigine.com/VSTEP. (2021, 09). Response Simulator. Retrieved from https://www
.vstepsimulation.com/response-simulator/VSTEP. (2022, 03). NAUTIS Maritime Simulator. Retrieved from
https://www.vstepsimulation.com/nautis-simulator/nautis
-maritime-simulator/

47

https://www.autodesk.eu/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://developer.unigine.com/docs/latest/code/console/
https://developer.unigine.com/docs/latest/code/console/
https://eu.usatoday.com/story/money/2015/11/16/michael-porter-harvard-interview-trade-deal-economy/75599090/
https://eu.usatoday.com/story/money/2015/11/16/michael-porter-harvard-interview-trade-deal-economy/75599090/
https://eu.usatoday.com/story/money/2015/11/16/michael-porter-harvard-interview-trade-deal-economy/75599090/
https://developer.unigine.com/en/docs/2.15.1/principles/filesystem
https://developer.unigine.com/en/docs/2.15.1/principles/filesystem
https://developer.unigine.com/en/docs/latest/code/formats/file_formats
https://developer.unigine.com/en/docs/latest/code/formats/file_formats
https://www.personio.com/
https://unigine.com/
https://www.vstepsimulation.com/response-simulator/
https://www.vstepsimulation.com/response-simulator/
https://www.vstepsimulation.com/nautis-simulator/nautis-maritime-simulator/
https://www.vstepsimulation.com/nautis-simulator/nautis-maritime-simulator/

Chapter 7

Appendix

7.1 Reflection

7.1.1 Technical Research And Analysis

Technical research was needed to find the answers to the problems incurredwhile working on the tasks that aimed to improve the Team Content workflow.This has been done by reading the source code of RS/Nautis, analyzing the Unig-ine source code and documentation, and gathering information from the internetthrough websites, articles, videos and forums.
7.1.2 Designing And Prototyping

For this research, high fidelity and live data prototypes have been created to getfeedback by providing the model of a solution to a problem.High fidelity prototypes have been created to give a preview of how the UI wouldhave looked like for those tasks where it was needed, while live data prototypesvideos were shown to Team Content members to give them an overview of howthe final product would have worked, by implementing only the basic functional-ities of the code. In this way, it was possible to implement their feedback easilyin the product by changing the way the product looked or worked.
7.1.3 Testing And Rolling Out

All the features developed have been tested by myself and rolled out when theydidn’t contain any issues. Furthermore, the features were tested by the stake-holders and if they didn’t have any remarks the code was checked by other pro-grammers. Every time an issue was found during these phases, the processstarted all over again, and the code was adapted to fix the issue.

48

7.1.4 Investigating And Analyzing

This thesis used qualitative and quantitative research as research methods, fo-cusing on understanding what processes of the development were slowing downTeam Content and preventing them to work more efficiently, and by how much.The data were gathered during the Content Workflow Improvement Update meet-ing (section 1.5) and during the private consultations with the Company Coachand the Team Content members.Furthermore, more quantitative research has been done for the Slow GIT Check-out branch issue, by collecting measurements of the time needed to performseveral actions (Section 4.10.3). These data were collected ten times for eachaction to provide a reliable result, and the average value of those measurementswas taken into account.During the research phase for each task, it was almost always necessary to con-duct research in VSTEP’s source code, the Unigine source code, and its docu-mentation to collect technical data for tasks of the assignment.
7.1.5 Conceptualizing

The problems of the research have been discussed during the Content WorkflowImprovement Update meeting, with the company coach and Team Content, andfor some tasks, also with other employees of the company.
7.1.6 Designings

The products developed were in line with the other company products: for ex-ample, the GUI created had the same style as other GUIs in Nautis/RS, and thecode has been written with the purpose of having the same structure as the codewritten by other employees.
7.1.7 Communication

The report aims to explain in a clear way the internship process through a simplestructure and easy language usage, and by giving an overview of the choicesmade and explaining why they were made. Furthermore, the paper uses severalreferences that are referenced by using the APA citation guideline.
7.1.8 Learning Ability And Reflectivity

I worked on a new big project that has a complex structure and functioning. Ispent time learning how to use it and understanding how it was structured by
49

watching tutorials and analyzing the samples provided in the SDK. I did my re-search on the internet when it was necessary and I asked for feedback from col-leagues from Team Development to know their opinions about my approach tomy tasks. All the tasks that I have worked on allowed me to learn a lot and lookingback I feel like I gained so much experience compared to when I started the in-ternship. I mainly worked on 10 tasks during this internship, which are describedin more depth in Chapter 4.
7.1.9 Responsibility

During the internship, I tried to behave professionally as much as possible, tryingto act like a normal worker in the meetings and in the attitude while working. Itried to work independently by spending time on research and analysis in orderto not increase the workload of my colleagues, but asking for help when it wasnecessary and I was blocked by something. In that case, I tried to ask for helpfrom the person that was the most familiar with that problem, to receive supportin an efficient way.
7.2 PrefabsDuplicator Tool AlgorightmFlowChart

50

Figure 7.1: Prefabs Duplicator Tool Algorightm Flow Chart.

51

7.3 Prefabs Links Checker Tool Algorightm Flow
Chart

52

Figure 7.2: Prefabs Links Checker Tool Algorightm Flow Chart.

53

7.4 Professional Products Visuals

The link below allows accessing an online folder that contains videos and imagesas a result of the professional products developed during the internship.
https://shorturl.at/bkpD1

54

https://shorturl.at/bkpD1

	Chapter 1 – Introduction
	1.1 Background
	1.2 Research Overview
	1.3 Company Outline
	1.4 Company Oganization
	1.5 Company Meetings
	1.6 Problem Analysis

	Chapter 2 – Theory
	2.1 Unigine
	2.2 Prefabs
	2.3 Editors
	2.4 Environments And Scenarios
	2.5 Selection Bubble
	2.6 Azure DevOps

	Chapter 3 – Research
	3.1 List of issues
	3.2 Methodology
	3.3 Research Questions
	3.4 Scope
	3.5 Testing

	Chapter 4 – Professional Products
	4.1 Prefabs Duplicator Tool
	4.2 Prefabs Links Checker Tool
	4.3 Prefabs Assets Runtime Reload Tool
	4.4 Camera Prefab Component Focus Support
	4.5 Selection Highlight Visibility
	4.6 Flag Line Items Spacing
	4.7 3D Studio Max Plugin

	Chapter 5 – Bug Fixing And Optimization
	5.1 Dark Environment Bug
	5.2 Environment Layers Crash
	5.3 Slow GIT Branches Checkout

	Chapter 6 – Conclusion And Reflection
	References

	Chapter 7 – Appendix
	7.1 Reflection
	7.2 Prefabs Duplicator Tool Algorightm Flow Chart
	7.3 Prefabs Links Checker Tool Algorightm Flow Chart
	7.4 Professional Products Visuals

