
Graduation Report

Implementing container scheduling technology to fit
the needs of a fast growing distributed infrastructure

Vasil Lozanov

Sqills

 

Vasil Lozanov Graduation Report

Table of Contents
Table of Contents	 2

1. Introduction & Abstract	 5

2. List of Used Terminology	 6

3. Problem Definiton	 7

3.1 Main and Sub-Questions	 7

4. Context Analysis	 8

4.1 S3 Passenger	 8

4.2 Current Situation	 8

4.3 Desired Situation	 8

4.4 Container Scheduling	 9

4.5 Container Orchestration	 10

5. Stakeholder Analysis	 11

5.1 General List	 11

5.2 Shortlist	 11

6. Requirements Analysis	 13

6.1 Approach	 13

6.2 Questions for the teams	 13

6.3 Requirements	 14

7. Research	 15

7.1 Approach	 15

7.2 Kubernetes	 16

7.2.1 Running Applications	 16

7.2.2 Exposing Applications	 17

7.2.3 Configuring Applications	 17

7.2.4 Securing Applications	 18

7.2.5 Deploying and Managing on AWS	 18

7.2.6 Pros and Cons	 18

7.2.7 Requirements Evaluation	 19

7.3 Nomad	 20

7.3.1 Running Applications	 20

7.3.2 Configuring Applications	 20

7.3.3 Securing Applications	 21

7.3.4 Exposing Applications	 21

7.3.5 Deploying and Managing on AWS	 21

Page � of �2 54

Vasil Lozanov Graduation Report
7.3.6 Pros and Cons	 21

7.3.7 Requirements Evaluation	 21

7.4 ECS & Fargate	 23

7.4.1 Running Applications	 23

7.4.2 Exposing Applications	 24

7.4.3 Configuring Applications	 25

7.4.4 Securing Applications	 25

7.4.5 Pros and Cons	 25

7.4.6 Requirements Evaluation	 25

7.5 Docker Swarm Mode	 27

7.5.1 Running Applications	 27

7.5.2 Exposing Applications	 27

7.5.3 Deploying and Managing on AWS	 27

7.5.4 Pros and Cons	 28

7.5.5 Requirements Evaluation	 28

7.6 Comparison	 30

7.7 Conclusion	 32

8. Design	 33

8.1 Approach	 33

8.2 Kubernetes Deep Dive	 34

8.2.1 Components Overview	 34

8.2.2 Controllers Overview	 35

8.2.3 Kubernetes API	 35

8.2.4 Authentication & Authorisation	 35

8.3 Architecture	 37

8.3.1 Global	 37

8.3.2 Application	 38

8.4 Networking	 39

8.4.1 VPC	 39

8.4.2 Applications	 40

8.5 Storage	 42

8.6 Monitoring & Logging	 43

8.6.1 Monitoring	 43

8.6.2 Logging	 44

8.7 CI/CD	 45

9. Design Evaluation	 46

Page � of �3 54

Vasil Lozanov Graduation Report
9.1 Chaos Tests	 46

9.2 Performance Tests	 46

10. Conclusion	 47

References	 48

List of Tables	 51

List of Diagrams	 52

Versioning	 53

Appendix	 54

A1. Kubernetes Monitoring Architecture	 54

Page � of �4 54

Vasil Lozanov Graduation Report

1. Introduction & Abstract
This document is a self-sufficient report on the graduation project about container orchestration
solutions. The report contains the problem definition and analysis, context and stakeholder
analysis, research and design and test of the designed solution.

The project is based on current available solutions and takes into account relevant papers from
the industry.

Generally speaking workload scheduling is not a new concept. Google, for example, has
published papers on their internal scheduling solutions (predecessors of Kubernetes) all the way
in 2013 and 2015. (Schwarzkopf, 2013) (Verma, 2015)

This project is heavily influenced by that original research, since it's one of the first to coin the
term “container scheduling” and includes a lot of detailed information about how such systems
work.

Page � of �5 54

Vasil Lozanov Graduation Report

2. List of Used Terminology

Table 2.1 - List of used terminology. 

Term Meaning

ALB Application Load Balancer. AWS’ managed layer 7 load balancing service.

AMI A template for running EC2 instances.

AWS Amazon Web Services

AWS Secrets
Manager

Managed service by AWS for safe storage of sensitive data.

AWS Systems
Manager

AWS service which allows users to group resources, execute bulk tasks, automate
certain actions, get shell access on EC2 instances running the AWS Systems Manager
daemon and store parameters and secrets.

AWS Systems
Manager
Parameter
Store

Key-value store, part of the AWS Systems Manager. Supports storage of sensitive data
as well.

Ansible Tool for automating deployments and configuration management.

CentOS A Linux operating system.

Container An isolated application environment.

Docker The leading container engine.

EC2 Elastic Compute Cloud. AWS’ managed VMs service.

EKS AWS Elastic Container Service for Kubernetes. Managed Kubernetes master cluster by
provided by AWS.

HashiCorp An American company that develops, among others, Consul, Vault, Nomad and
Terraform.

HCL HashiCorp Configuration Language. Used mainly for writing configuration files for
Nomad, Terraform, Consul and other applicable HashiCorp products.

JSON JavaScript Object Notation. Widely popular for configuration files and REST APIs.

Microservice A small application with a specific purpose.

NLB Network Load Balancer. AWS’ managed layer 4 load balancing service.

Packer A tool for making AMIs.

Rkt An alternative container engine.

S3 Passenger A SaaS platform for (among others) inventory management, booking orchestration and
ticket sales developed by Sqills.

Sqills Company in Enschede, developer and provider of the S3 Passenger platform.

Terraform Tool for implementing infrastructure-as-code.

Page � of �6 54

Vasil Lozanov Graduation Report

3. Problem Definiton
Sqills is looking to expand their business which means they should be able to facilitate a growing
number of clients. In order to make that possible the company is looking into automating the
deployment and hosting of S3 Passenger (more information in chapter 4.1) environments so that
they can roll out environments for new customers faster than it currently is (current deploy from
scratch taking a couple of hours).

The company sees the following as the main problems they want to tackle with the introduction of
a container scheduler:

• Automate the deployment of new environments, because the current way requires a lot of

manual steps.

• Raise the abstraction level of infrastructure management, because the current infrastructure

requires deep knowledge of the intricacies of AWS which slows down the process of
orientation of new employees.

• Facilitate easy auto-scaling of environments, since the current infrastructure does not scale
automatically and requires a lot of manual steps to do so.

• Make hosting of the S3 Passenger platform more efficient since schedulers can utilise
available resources more efficiently than manually deployed containers.

The company is also interested in the following as aspects that may be improved by a container
scheduler:

• Central configuration management

• Central service management and service discovery

• Easier service meshing

• Easier scalability

• Possible implementation of extra security solutions (such as Vault)

Any solution that will be developed must be designed with the following key elements in mind:

• Security

• Scalability

• Availability

• Maintainability

3.1 Main and Sub-Questions
These are the questions distilled from the causal model and brainstorming mentioned in this
chapter.

Main Question: What is the most efficient solution for implementing container scheduling
technology to fit the needs of a fast growing distributed infrastructure.

Sub-questions:
• What requirements does the company have for a possible solution?

• What do the current container management practices look like?

• What container scheduling technologies are there?

• Pros?

• Cons?

• How do container scheduling technologies integrate with the currently used tools within the
company?

• What are best practices for container scheduling?

• How are container scheduling technologies managed?

• Monitoring

• Auditing

• How to provide proof of a working solution?

Page � of �7 54

Vasil Lozanov Graduation Report

4. Context Analysis
In this chapter information about the context of problem tackled in this project can be found.
Important parts of this analysis is the current and desired situations.

4.1 S3 Passenger
“S3 Passenger” is a booking, inventory management and scheduling platform for passenger
transport companies developed by Sqills. The platform itself consists of multiple micro services
and 3rd party integrations. Currently all components (except the databases) are packaged in
Docker containers. S3 Passenger is not a multi-tenant platform, thus every customer gets their
own separate environments (usually multiple environments per customer for test, acceptance and
production). This is by design since the platform has to comply with various legislations and
standards.

4.2 Current Situation
The company has already migrated multiple customer environments (including 1 production
environment) from Previder to AWS using a lift-and-shift approach (with some modifications).
Some automation has been introduced - Terraform, for example, for implementing the
infrastructure-as-code approach. Furthermore Sqills uses Ansible for configuration management
and deployment of their various micro services.

The micro services themselves are directly deployed as Docker containers on EC2 instances in
AWS. The instances run custom CentOS 7 AMIs made using Packer.

Currently no scheduling technology is being used. The company is looking into, among others,
the following possibilities:

• Kubernetes

• Nomad

• Fargate

The generalised steps that need to be taken in order to deploy a fully functioning S3 Passenger
environment are:

1. Deploy infrastructure (instances, load balancers, etc.) using Terraform

2. Deploy micro services using Ansible

Should the environment need to be scaled the desired instance count has to be specified in the
Terraform configuration of the environment and the steps above need to be re-run.

4.3 Desired Situation
The designed solution should facilitate fast environment deployment while maintaining high levels
of observability and maintainability.

Ultimately the final design should be of the complete infrastructure required for running a
scheduler, the scheduler implementation and the S3 Passenger suite hosted on the scheduler.

Page � of �8 54

Vasil Lozanov Graduation Report

4.4 Container Scheduling
Before beginning to compare the different container scheduling technologies we first have to
define what container scheduling means.

A scheduler is a system which ensures the proper utilisation of available resources on which
containers can be run. Schedulers are responsible for distributing and running containers on the
available resources and ensuring their availability. Schedulers enable maximum utilisation of
existing resources by densely packing workloads and smartly provisioning extra resources only
when needed.

Such systems usually consist of two main components - a control cluster and a worker cluster.
The first one runs all administrative jobs and logic that make the scheduling possible, whereas the
second one runs the actual container deployed by users. Both clusters are deployed in high-
availability configurations. Furthermore, in most cases failure of a management cluster does not
result in a non-functioning deployed application, since that would only hinder the system’s
capability of adding, moving and removing containers, existing containers will just continue
running.

The following diagram, courtesy of Mapr, illustrates the architecture of such clusters. (McDonald,
2018)

Diagram 4.4.1 - Kubernetes cluster architecture.

Generally speaking these are the following steps a scheduler takes when a new application is
deployed or an old one is updated:

1. Job gets registered or updated

2. Look at the state of the system

3. Assign the job to a worker node

Page � of �9 54

Vasil Lozanov Graduation Report
The following diagram illustrates how this process works in HashiCorp’s Nomad. (HashiCorp,
2019b)

Diagram 4.4.2 - Scheduling process in HashiCorp Nomad.

Some schedulers (Kubernetes and Nomad) also support prioritising jobs. This way it can be
ensured that critical applications are always running. (HashiCorp, 2019a) (Kubernetes, 2019g)

4.5 Container Orchestration
It is still debated what the precise difference is between container scheduling and orchestration.
For the purposes of this project we will use the following definition:

Orchestrators work on a higher abstraction level than schedulers. They managed the scheduling
of running container and their configuration based on a desired state provided by a user.
Orchestrators, thus, include features like service discovery, secrets management, configuration
management and others in addition to the standard container scheduling functionality.  

Page � of �10 54

Vasil Lozanov Graduation Report

5. Stakeholder Analysis
In this chapter the stakeholders of this project will be defined.

5.1 General List
The following is a general list of all possible stakeholders in the project. Please note that this list
will be refined later in this chapter.

Table 5.1.1 - List of stakeholders.

5.2 Shortlist
In order to properly define which stakeholders are relevant for this project we should consider the
following possible impacts that the scheduling technology might have:

• The way clients use the application

• Introduction of visible functional changes to the end customer

• Management procedures

• Financial impact

• System architecture

• Development processes

• Infrastructural impact

Based on that information we can apply the
Mendelow model . (Johnson, Scholes, &
Whittington, 2008) (Mendelow, 1991) On the model
we can see that the stakeholders with most
interest and influence are the Sqills Infra and
Product Management departments. The Sqills
Development teams, although having a lot of
influence, have lower interest in the matter since
this is mainly a infrastructural project.

Diagram 5.2.1 - Mendelow Model.

Stakeholder Relevance

Student Person executing the project.

Saxion Grading organisation.

Sqills Product Management Administrative team within Sqills.

Sqills Infra Team within Sqills responsible for infrastructure development and
operations.

Sqills Development Teams Teams within Sqills responsible for the development of S3 Passenger
product components.

Sqills Product Support Team within Sqills responsible for providing support to customers using
S3 Passenger.

Sqills Clients Organisations that use S3 Passenger.

Page � of �11 54

Vasil Lozanov Graduation Report

Considering the mentioned above we can narrow down the list of relevant stakeholders to the
following:

Table 5.2.1 - Shortlist of stakeholders. 

Stakeholder Relevance

Sqills Product Management Hight interest and high influence. Concerned with financial and
administrative aspects of the implementation.

Sqills Infra Hight interest and high influence. Concerned with the infrastructural
aspects of the implementation.

Sqills Development Teams Low interest and high influence.Concerned with potential impact on the
application development.

Page � of �12 54

Vasil Lozanov Graduation Report

6. Requirements Analysis
In this chapter the list of requirements can be found along with the method used to compile them.

6.1 Approach
In order to properly define the requirements all relevant teams within the organisation will be
interviewed. The relevance of each team can be found in the stakeholder analysis. The gathered
information will then be processed and formulated into system requirements. Furthermore,
relevant industry standards will be taken into account in order to ensure the validity of the
requirements.

The requirements will be prioritised using the MoSCoW system:

• M - Must have

• S - Should have

• C - Could have

• W - Won’t have

6.2 Questions for the teams
The following questions will be asked to the different teams:

Question Relevant Teams

How important is it for the solution to be available as a managed service? Infra

Should direct execution of commands on running container be possible? Infra & Development
Teams

Should the solution be immutable? (If something fails, just start a new container/
server/etc. instead of attempting repairs.)

Infra

Should it be a multi-tenant solution? Infra

Should secrets and configuration management be done by the solution or by an
external tool?

Infra

How important is it for the solution to support external authentication and
authorisation systems? (LDAP, etc.)

Infra

How important is it for the solution to support 3rd party service meshing tools?
(Consul Connect, Istio)

Infra

Should the system be able to do service discovery or should it be able to integrate
with other service discovery solutions? (Consul)

Infra

Should the system be able to do secrets management or should it be able to
integrate with other secrets management solutions? (AWS SSM Parameter Store,
Vault, etc.)

Infra

How important is it for the solution to support blue/green deployments? Infra & Development
Teams

Should the solution be able to support A/B testing? Infra & Development
Teams

Should the solution be open source? Infra & Product
Management

What are the acceptable costs of running the solution? Infra & Product
Management

Page � of �13 54

Vasil Lozanov Graduation Report

Table 6.2.1 - List of questions for the teams.

6.3 Requirements
In this chapter you can find a list of the requirements that have been defined. These are defined
based on the interviews conducted with the different teams and relevant industry best practices
and standards. Furthermore, the requirements are prioritised using the MoSCoW system.

Table 6.3.1 - List of requirements. 

Requirement # Description Priority

1 Solution should support Docker containers M

2 Solution should support network connectivity to external services (both
within an AWS VPC and public internet)

M

3 Solution should be hostable on AWS M

4 Solution should have native support for AWS managed services (such as
ALB)

M

5 Solution should be Integrateable with current monitoring and logging
systems

M

6 Deployed apps should be able to run even if a host or the whole
management cluster is down

M

7 Solution should not bring the hosting costs higher than the current ones M

8 Solution should be simple and it should not bring unnecessary deployment,
configuration and management complexity

S

9 Solution should be open source S

10 Solution should be deployable using infrastructure-as-code approaches
(Terraform)

S

11 Solution should be easily scalable S

12 Solution should be integrateable with LDAP for authenticating and
authorising system administrators

S

13 Managed services should be utilised as much as possible C

14 Solution should support configuration management C

15 Solution should support secrets management C

16 Solution should support service discovery C

17 Solution should support 3rd party service mesh solutions (such as Consul
Connect and Istio)

C

18 Solution should support A/B testing C

19 Solution should support isolated environments C

20 Solution should support dynamic port allocation W

Page � of �14 54

Vasil Lozanov Graduation Report

7. Research
In this chapter you can find the information about the possible technologies that can be used in
this project.

7.1 Approach
The research has been done using the following two methods:

• Literature research

• Testing

Firstly, the literature research part focuses on gathering information from sources like articles,
papers and official documentation. Secondly, using by building and testing small proof of
concepts the information gathered in the previous steps can be verified and caveats can be more
easily discovered. By combining the data from both steps we can build a verified overview for
each of the researched technologies.

For each technology the following aspects are researched:

Table 7.1.1 - List of research aspects.

Aspect Description

Running applications How can applications be run using the researched
technology?

Exposing applications How can applications be made accessible on internal and
external networks using the researched technology?

Configuring applications How can applications be configured using the researched
technology? (ENV variables, configuration files, etc.)

Securing applications How can applications be run securely using the researched
technology? (Port management, secrets management, etc.)

Deploying and managing on AWS How can the researched technology be deployed and
managed on AWS?

Pros and cons What are the pros and cons of using the researched
technology.

Requirements evaluation Which requirements does the researched technology fulfil?

Page � of �15 54

Vasil Lozanov Graduation Report

7.2 Kubernetes
Kubernetes is probably the most famous container scheduling technology on the market. It has
numerous advanced features for deployments, network management and service discovery.
Furthermore, it has native out-of-the-box support for AWS services such as the ALB. In addition
to all of that AWS provides a managed Kubernetes service which makes running it even easier.

7.2.1 Running Applications

Before we go on to find out how applications can be deployed we need to understand what the
lower-level components of Kubernetes are. These components are responsible mainly for the day-
to-day running of containers.

The various architectural patterns for deploying applications (Burns, Oppenheimer, & Google,
2016a) in containers are a topic that’s discussed in more detail in chapter 8.7. Here we will focus
specifically on the way Kubernetes runs applications.

The most basic component of Kubernetes is the pod. A pod can be seen as a space of shared
resources, usually meant for one container. There are also cases when multiple containers run in
one pod, for example sidecar proxies for service meshing or any other closely coupled software
necessary for the functioning of the main container. (Kubernetes, 2019h)

Controllers, the next level of abstraction in Kubernetes, specify the way a specific job or
application should run. Some controllers, such as the Replica Set (a controller that maintains the
number of running pods) are not directly managed by the user, but by other higher-level
controllers.

Depending on the type of workload, Kubernetes offers, among others, the following deployment
types: 

Table 7.2.1.1 - List of Kubernetes deployment types.

Using a Deployment is the most standard way of deploying application on Kubernetes. The
Deployment contains all configuration needed for an application to work:

• Volumes

• Environment Variables

• Secrets

• Replicas

The Deployment practically specifies what the desired state of the application should be.
Kubernetes then creates Replica Sets and Pods and manages them.

In the Deployment the desired replicas can be specified. Then Kubernetes deploys the desired
amount of replicas. This can be configured for replicas to always be deployed on different
instances and/or availability zones.

As seen above, the Deployment is a high-level declarative controller which is managed by the
user. The Deployment generates a Replica Set for the current configuration revision. The Replica
Set is the one responsible for deploying the pods and making sure they are running properly.

Type Description

Deployment An application with specific configuration.

Daemon Set An application that is deployed on all instances. Usually used for management
services.

Job A job that needs once and is deleted afterwards.

Page � of �16 54

Vasil Lozanov Graduation Report
Graphically, the abstraction level looks like this:

Diagram 7.2.1.1 - Kubernetes workload types abstraction levels.

7.2.2 Exposing Applications

After deploying an application it will run, but it will not be accessible from other applications and
the outside. In order to expose and application a Service has to be registered.

A Service is a higher level of abstraction which ties into the way networking works in Kubernetes.
Services are not as disposable as Pods and Replica Sets. A service creates an endpoint through
which pods can be exposed. It is usually defined only once and the pods get registered to it.

A service can also automatically provision an ALB which exposes it to the internal networking of a
VPC or the internet.

It is important to notice that services in Kubernetes operate on level 4. More advanced routing on
level 7 can be done using the Ingress resource.

Diagram 7.2.2.1 - Kubernetes ingress and service flows.

7.2.3 Configuring Applications

Applications configurations can be stored in a Config Map. If some configuration is the same
across multiple applications in an environment that configuration can be stored in one Config Map
and then referenced in the Deployment. 

Page � of �17 54

Pod

Deployment

Replica Set

Vasil Lozanov Graduation Report

7.2.4 Securing Applications

Kubernetes has a Secret resource in which sensitive data can be safely stored. This resource can
then be referenced in a Deployment. The data from it can be either exposed as environment
variables our mounted as a file in the container.

Secrets can also contain credentials for private Docker registries which Kubernetes can use to
pull images from. In AWS IAM roles can be used for that purpose instead.

7.2.5 Deploying and Managing on AWS

There are currently two main ways of running Kubernetes on AWS - self-managed and fully-
managed.

Picking the self-managed option means that the company would have to manually deploy and
manage all Kubernetes components - from the master cluster and its persistent data storage to
the worker nodes. Although not impossible, this option is very time-consuming and risky due to
Kubernetes’ complicated nature.

This is why, for the sake of simplicity, high-availability and stability, most companies go for
managed Kubernetes solutions. Picking the fully-managed solution means that the company will
utilise AWS’ EKS (Elastic Container Service for Kubernetes). This service provisions a fully-
managed management cluster in a chosen by the user VPC. From there on users can deploy their
own worker nodes and connect them to the management cluster. AWS also provides
bootstrapping templates and EKS-optimised AMIs which users can use as well.

7.2.6 Pros and Cons

Table 7.2.6.1 - List of Kubernetes pros and cons.

Pros Cons

Extensive functionality Not a simple platform -> big learning curve

Extensive list of supported integrations Not as easy to implement as other solutions

Backed by most big technology companies ->
Guarantees project stability

Extensive community support

Available as managed service on AWS

Natively integrated in Docker for Desktop for local
testing

Integrates with the company’s existing tooling
(Terraform, Ansible, etc.)

Page � of �18 54

Vasil Lozanov Graduation Report

7.2.7 Requirements Evaluation

Table 7.2.7.1 - Kubernetes requirements evaluation. 

Requirement # Evaluation Requirement
met?

1 Kubernetes has out-of-the-box support for Docker containers. V

2 The Kubernetes networking components support routing both internal
and external traffic.

V

3 Kubernetes can be hosted in AWS both as managed service or self-
managed running on EC2 instances.

V

4 Kubernetes has out-of-the-box support for AWS managed services. V

5 Kubernetes can be configured to export metrics and logs to the
company’s current monitoring and logging systems.

V

6 Apps running on the Kubernetes worker nodes will continuing running
unchanged despite the status of the management cluster.

V

7 Being a complex system, requiring a decent amount of resources to run,
it is possible that it will bring the hosting costs higher. However, since it
is the scheduler’s job to utilise available resources as efficient as
possible it is more than likely that the overall costs for running
Kubernetes will be lower than the current environment setup.

~

8 Kubernetes is not a simple system to understand. The learning curve is
quite steep and some of the abstraction levels may not be properly
understood until one has more experience with them. After the learning
period however, deploying, configuring and managing Kubernetes
becomes quite easy since the platform is designed to automate a lot of
those tasks.

~

9 Kubernetes is an open source project. V

10 Both managed and self-managed Kubernetes can be deployed on AWS
using Terraform.

V

11 Kubernetes’ cluster-autoscaler component makes it easy to scale the
worker nodes.

V

12 Kubernetes can be connected to LDAP for system users management. V

13 AWS offers Kubernetes as a managed service. V

14 Kubernetes has out-of-the-box support for configuration management. V

15 Kubernetes has out-of-the-box support for secrets management. V

16 Kubernetes has out-of-the-box support for service discovery. V

17 Istio supports Kubernetes for service meshing. V

18 A/B testing can be done if a proper service mesh is implemented. ~

19 Kubernetes has support for namespaces, which enables the isolated
deployment of multiple environments on one cluster.

V

20 Kubernetes has out-of-the-box support for dynamic port allocation. V

Page � of �19 54

Vasil Lozanov Graduation Report

7.3 Nomad
Nomad is a HashiCorp scheduler build upon the principles of Google’s Borg. (HashiCorp, 2019c)
Nomad, unlike Kubernetes, does not include extra functionality such as service discovery and
secrets management. It does, however, integrate with other HashiCorp software for these types of
services.

7.3.1 Running Applications

Nomad supports various application types (referred to as Task Drivers):

• Docker containers

• Raw command execution on hosts

• Rkt containers

For the purposes of this project we will be focusing only on the Docker Task Driver.

Nomad supports three different scheduler types (comparable to the Kubernetes deployment
types).

Table 7.3.1.1 - List of Nomad scheduler types.

In Nomad there are three abstraction levels of a job configuration - the job itself, a group and a
task. The table below explains the differences between the three.

Table 7.3.1.2 - List of Nomad job abstractions.

If Consul has been configured a task can also be registered there for service-discovery purposes.

The job definition is usually written in an HCL or JSON file which then can be used to deploy the
job using the Nomad CLI or UI.

7.3.2 Configuring Applications

Applications can be configured by using environment variables and/or mounting volumes with
configuration files that can be read by the running application. These can be defined directly in the
job configuration file.

Type Description

Service An application that is run on the cluster.

Batch A job that needs to run a set amount of times on the cluster.

System An application that needs to run on all possible clients defined.

Type Description

Job Declarative description of one or more tasks that should be run.

Group A set of tasks that should run on the same Nomad client.

Task A running container or other supported deployment type.

Page � of �20 54

Vasil Lozanov Graduation Report

7.3.3 Securing Applications

If Vault has been configured tasks can be configured to get sensitive data, such as passwords
and application tokens, from it.

7.3.4 Exposing Applications

Unlike Kubernetes and Fargate, Nomad does not have out-of-the box support for AWS ALBs and
NLBs. This means that those have to be configured manually per job. This can be somewhat
automated with Terraform.

Nomad does support load balancing with Nginx, HAProxy or Fabio in combination with Consul.
The mentioned above software can be configured to proxy to the jobs running on Nomad by
resolving the DNS name provided by Consul. Those can then be placed behind an ALB.

7.3.5 Deploying and Managing on AWS

Currently AWS does not offer any managed Nomad solutions. This means that the company
would be fully responsible for deploying and managing a Nomad cluster. Usually, for service-
discovery and configuration purposes, Nomad is deployed together with Consul. This
automatically means that the company would have to manage both of these solutions manually.

7.3.6 Pros and Cons

Table 7.3.6.1 - List of Nomad pros and cons.

7.3.7 Requirements Evaluation

Pros Cons

Simple to implement and use Limited community support compared to other
open source projects

Integrates out-of-the-box with other HashiCorp
products

Limited support for external integrations (AWS
ALBs, etc.)

Integrates with some of the company’s existing
tooling (Terraform)

Not offered as managed service by AWS.

Requirement # Evaluation Requirement
met?

1 Nomad has out-of-the-box support for Docker containers. V

2 Nomad supports routing both internal and external traffic. V

3 Nomad can be hosted in AWS only self-managed running on EC2
instances.

V

4 Nomad does not provide support for other AWS managed services. X

5 Nomad can be configured to export metrics and logs to the company’s
current monitoring and logging systems.

V

6 Apps running on the Nomad worker nodes will continuing running
unchanged despite the status of the management cluster.

V

Requirement #

Page � of �21 54

Vasil Lozanov Graduation Report

Table 7.3.7.1 - Nomad requirements evaluation. 

7 It is highly probable that running Nomad will raise the monthly charges
both in hosting (since other services such as Consul and Vault would
need to be deployed alongside it) and in man-hours (since it is not
provided by AWS as a managed service, which will result in more time
spent managing Nomad).

~

8 Nomad by itself is a simple solution that is relatively easy to deploy.
Building a production cluster, however, can get complicated since
additional components (Consul, Vault, etc.) are required. This adds more
complexity to the deployment and management of the platform.

~

9 Nomad is an open source project. V

10 Nomad clusters can be deployed on AWS using Terraform. V

11 Nomad worker nodes can be put in AWS ASGs where scaling can be
trigged using CloudWatch events.

V

12 User management via LDAP can be done only via Vault. ~

13 AWS does not offer Nomad as a managed service. X

14 Configuration management can be done via Consul. ~

15 Secrets management can be done via Vault. ~

16 Service discovery can be done via Consul. ~

17 Consul Connect supports Nomad for service meshing. Istio also has
limited support for Nomad (in combination with Consul).

V

18 Nomad has out-of-the-box support for A/B testing. V

19 Nomad has out-of-the-box support for canary deployments. V

20 Nomad has out-of-the-box support for dynamic port allocation. V

Evaluation Requirement
met?

Requirement #

Page � of �22 54

Vasil Lozanov Graduation Report

7.4 ECS & Fargate
ECS is a managed solution by AWS which allows users to run containers either on EC2 instances
or in a serverless way using Fargate. A standard ECS cluster comprises of EC2 instances running
in the user’s account. These instances are place in an autoscaling group which allows ECS to
scale worker nodes in and out depending on the load.

Fargate is a solution from AWS based on their current ECS platform. Using Fargate we can deploy
containers and run them without managing any servers whatsoever. This makes the service one of
the most simple ways of running containers in the cloud.

The way the Fargate works is essentially the same as ECS with the major difference being that
with Fargate you do not have to manage ECS EC2 instances. The two services are so intertwined
that AWS specifies Fargate as a different launch type for ECS tasks.

The graphic below (courtesy of AWS) shows the differences between the two services.

Diagram 7.4.1 - Architectural differences between AWS ECS and AWS ECS with Fargate.

As seen above, Fargate is essentially the “behind the curtains” distributer of containers on
managed by AWS instances.

7.4.1 Running Applications

In order to run applications on AWS Fargate there are essentially 3 steps that need to be taken:

1. Create ECS cluster

2. Create Task Definition with Fargate launch type

3. Create Service

An ECS Cluster is an isolated environment of resources on which tasks can be run. If using the
ECS deployment type the cluster comprises of EC2 instances which run the ECS workers and on
which tasks can be deployed. If using the Fargate launch type the ECS Cluster can be seen more
as a namespace. There are no specific hosts on which containers are run, that all happens behind
the curtains.

A task definition is practically a deployment definition. In the task users can specify what they
want to run, different configuration options, credentials, etc. A deployed task definition is just
called a task.

The next level of abstraction is called a service. The service can compared to a deployment in
Kubernetes. A service is responsible for running tasks on a cluster. In the service specification
users can configure the amount of replicas needed to be run, the deployment strategy (rolling
deployment or blue/green deployments with AWS CodeDeploy), networking and service
discovery. Tasks can be configured to run in the public subnets of a VPC, thus getting a public IP

Page � of �23 54

Vasil Lozanov Graduation Report
address. It is, however, best practice to run tasks in a private subnet and expose them via a load
balancer. This makes sure the load is properly distributed and makes DNS management easier
because there will only be one endpoint for contact. (Note: load balancers get multiple IP
addresses based on the amount of subnets they’re deployed in.)

7.4.2 Exposing Applications

Applications can be exposed in multiple ways. As already mentioned in chapter 7.4.1 tasks can
have an external IP or be put behind a load balancer.

Tasks that are put in the public subnet of a VPC can get public IPs and be reachable from the
outside world. In that case communication goes through the VPCs Internet Gateway.

Diagram 7.4.2.1 - Fargate tasks in a public subnet.

Usually tasks are run in the private subnets of a VPC and placed behind a load balancer. This
ensures that containers can’t directly be accessed from the outside, it also makes rolling
deployments possible when more that 1 replicas are deployed. The load balancers can then just
route the traffic to the running replicas while the rest are being deployed. In this case ingress
traffic goes through the load balancer and is routed to the Fargate task, the egress goes through
the NAT Gateway.

Diagram 7.4.2.2 - Fargate tasks in a private subnet with a public ALB. 
Page � of �24 54

Vasil Lozanov Graduation Report

7.4.3 Configuring Applications

As mentioned before in ECS the task definition is where the configuration for a running service is.
In it users can configure, among others, environment variables, volumes, resource limits and
logging options. A task definition is defined in JSON and can be created using the AWS CLI or the
AWS’ web UI.

7.4.4 Securing Applications

Sensitive data stored in the AWS Systems Manager Parameter Store or in the AWS Secrets
Manager can be configured to be passed as ENV variables to the running task.

7.4.5 Pros and Cons

Table 7.4.5.1 - List of ECS & Fargate pros and cons.

7.4.6 Requirements Evaluation

Pros Cons

Easy to implement Proprietary -> Vendor lock in AWS

Integrates with other AWS services Does not integrate with 3rd party Service Discovery
and Service Meshing solutions

No server management necessary in the case of
Fargate

Integrates with the company’s existing tooling
(Terraform, Ansible, etc.)

Supported by AWS -> Guarantees project stability

Is an AWS managed service

Requirement # Evaluation Requirement
met?

1 ECS & Fargate have out-of-the-box support for Docker containers. V

2 ECS & Fargate support routing both internal and external traffic. V

3 ECS & Fargate are only available as AWS managed services.

ECS note - the worker nodes are still the responsibility of the end user.

V

4 ECS & Fargate have out-of-the-box support for AWS managed services. V

5 ECS & Fargate have out-of-the-box support for CloudWatch monitoring
and logging. These can be connected to the company’s current
monitoring and logging solutions.

~

6 Apps running on the ECS worker nodes will continuing running
unchanged despite the status of the management cluster.

Apps running on Fargate will continuing running since there are no
management and worker nodes. The service is fully managed by AWS.

V

Requirement #

Page � of �25 54

Vasil Lozanov Graduation Report

Table 7.4.6.1 - ECS & Fargate requirements evaluation. 

7 There is a high chance that ECS & Fargate will decrease the costs of
running a customer environment, not only because they are offered as
managed services by AWS (which results in less man hours for manual
management), but also because the general usage costs are low.
Furthermore, for deployments running on Fargate users do not have to
pay for EC2 instances, since they are not even used.

V

8 ECS and especially Fargate are simple solutions to deploy and manage. V

9 ECS & Fargate are AWS proprietary solutions. X

10 ECS & Fargate can be deployed on AWS using Terraform. V

11 ECS worker nodes can be put in AWS ASGs where scaling can be
trigged using CloudWatch events.

In Fargate there are no management or worker nodes to be managed.

V

12 ECS & Fargate can not be connected to LDAP for system users
management.

X

13 ECS & Fargate are only available as AWS managed services. V

14 ECS & Fargate have out-of-the-box support for configuration
management.

V

15 ECS & Fargate support secrets management via AWS Secret Manager
and SSM.

~

16 ECS & Fargate have out-of-the-box support for service discovery. V

17 No 3rd party tools support ECS & Fargate for service meshing. X

18 A/B testing can be done with Route 53 weighted records. ~

19 Environments can be isolated from each other by running them on
separate ECS or Fargate clusters.

V

20 ECS & Fargate have out-of-the-box support for dynamic port allocation. V

Evaluation Requirement
met?

Requirement #

Page � of �26 54

Vasil Lozanov Graduation Report

7.5 Docker Swarm Mode
Docker also have their own scheduler implementation. They have, in fact, tried multiple times to
come with a technology that can compete with the likes of Kubernetes. Docker Swarm was the
original implementation, later developed into Docker Swarm Mode. There is also Swarm Mode
and Kubernetes management functionality in Docker EE.

This chapter focuses exclusively on Docker Swarm Mode on Docker Community Edition since
using open source products is one of the must requirements of this project.

Swarm Mode is out-of-the-box functionality of the Docker daemon. This means that there is no
extra software that needs to be installed. After installing the daemon a swarm can be initialised,
nodes joined and applications can be deployed. It is also possible to initialise a Swarm on already
running nodes. This means that Swarm can be directly integrated with the company’s existing
infrastructure.

7.5.1 Running Applications

Running applications in Swarm Mode is pretty straightforward. There are only 2 important
deployment concepts - service and task.

Table 7.5.1.1 - List of Docker Swarm Mode deployment types.

Services can be deployed via the command line, just like deploying a standalone container.
Stacks, on the other hand, can be defined in a docker-compose file, but instead of deploying it on
a single machine with docker-compose it will be deployed as distributed services in a swarm.

7.5.2 Exposing Applications

Swarm Mode does not have any support for AWS ALBs or other centralised ways of exposing
applications. Ports can be published, just like with standard Docker containers. This means that if
a service has tasks running on multiple hosts each container will expose the requested port on
the host. From there the user can decide how they want to route and load balance the traffic.

7.5.3 Deploying and Managing on AWS

Essentially the deployment process will be almost exactly the same as with deploying standalone
Docker EC2 instances, however in this case they need to be joined in a swarm by:

1. Making sure the required ports are open in the Security Groups

2. Initialising a swarm

3. Running the join command on the rest of the nodes

Type Description

Stack A set of applications that can be deployed together. Based on docker-compose.

Service The definition of a running application (how many replicas should there be, environment
variables, etc.).

Task The running container on a node in the swarm.

Page � of �27 54

Vasil Lozanov Graduation Report

7.5.4 Pros and Cons

Table 7.5.4.1 - List of Docker Swarm Mode pros and cons.

7.5.5 Requirements Evaluation

Pros Cons

Easy to implement (even on existing infrastructure) Limited community support

Integrates with some of the company’s existing
tooling (Terraform, Ansible, etc.)

Limited support for external integrations (AWS
ALBs, etc.)

Not offered as a managed service by AWS

Requirement # Evaluation Requirement
met?

1 Docker Swarm Mode has out-of-the-box support for Docker containers. V

2 Docker Swarm Mode supports routing both internal and external traffic. V

3 Docker Swarm Mode can be hosted on AWS self-managed running on
EC2 instances.

V

4 Docker Swarm Mode does not provide support for other AWS managed
services.

X

5 Docker Swarm Mode can be configured to export metrics and logs to
the company’s current monitoring and logging systems.

V

6 Apps running on the Docker Swarm Mode worker nodes will continuing
running unchanged despite the status of the management cluster.

V

7 There is a high probability that the monthly costs for running a customer
environment will not change since Docker Swarm Mode is relatively
lightweight, easy to implement and easy to manage.

V

8 Docker Swarm Mode is a simple solution to deploy and manage. V

9 Docker Swarm Mode is an open source project. V

10 Docker Swarm Mode can be deployed on AWS using Terraform. V

11 Docker Swarm Mode worker nodes can be put in AWS ASGs where
scaling can be trigged using CloudWatch events.

V

12 Docker Swarm Mode can not be connected to LDAP for system users
management.

X

13 AWS does not offer Docker Swarm Mode as a managed service. X

14 Docker Swarm Mode has out-of-the-box support for configuration
management.

V

15 Docker Swarm Mode has out-of-the-box support for secrets
management.

V

16 Docker Swarm Mode has out-of-the-box support for service discovery. V

Requirement #

Page � of �28 54

Vasil Lozanov Graduation Report

Table 7.5.5.1 - Docker Swarm Mode requirements evaluation. 

17 No 3rd party solution has official support for service meshing. However,
it can still be achieved by implementing Consul and Consul Connect.

X

18 A/B testing can be done by deploying custom load balancers or
implementing a proper service mesh.

~

19 Environments can be isolated from each other by running them on
separate Docker Swarm Mode clusters.

X

20 Docker Swarm Mode has out-of-the-box support for dynamic port
allocation.

V

Evaluation Requirement
met?

Requirement #

Page � of �29 54

Vasil Lozanov Graduation Report

7.6 Comparison
In this chapter you can see a comparison of the technologies discussed in the research part of
this document. The comparison is based on the requirements defined in the beginning of this
document (chapter 6.3.). Each technology gets a score in numeric value between 1 and 5 which
translates into the following:

Table 7.6.1 - Comparison table legend.

On the following page you can see the table of requirements and component scores. 

Value Description

1 The requirement can not be met out-of-the-box and there are no other alternatives for
implementation.

2 The requirement can not be met out-of-the-box, however it can be implemented using non-best-
practice workarounds.

3 The requirement can be met out-of-the-box, however it is difficult to implement.

4 The requirement can not be met out-of-the-box, however a workaround can be implemented
easily and within best-practices and standards.

5 The requirement can be met out-of-the-box and is easy to implement.

Page � of �30 54

Vasil Lozanov Graduation Report

Table 7.6.2 - Schedulers and orchestrators comparison.

Requirement # Kubernetes Nomad ECS & Fargate Docker Swarm
Mode

1 5 5 5 5

2 5 5 5 5

3 5 5 5 5

4 5 4 5 4

5 5 5 4 5

6 5 5 5 5

7 3 3 5 5

8 3 3 5 5

9 5 5 1 5

10 5 5 5 5

11 5 4 5 4

12 4 4 1 1

13 5 1 5 1

14 5 4 5 4

15 5 4 4 5

16 5 4 5 5

17 5 3 1 2

18 3 5 4 4

19 5 1 5 3

20 5 5 5 2

Page � of �31 54

Vasil Lozanov Graduation Report

7.7 Conclusion
Given the results of the research the recommended solution to continue forward with is
Kubernetes. It does not only fully cover most “must” requirements, the platform goes further to
cover a big part of the “should” and “could” requirements as well. The “must” requirements that
are not completely covered can still be met with some extra configuration.

Furthermore, Kubernetes is by far the most mature platform on the market, with the biggest user
base and community. The future of the project looks promising and stable, which we can derive
from the amount of companies and communities behind the project.

Kubernetes is also provided as a managed service by AWS which will significantly decrease the
man-hours needed for setting up and managing clusters.

It can be said with confidence that Kubernetes is capable of addressing the company’s problems
(described in chapter 3). The platform enables the teams to deploy and manage environments
faster and more efficient than ever before. It raises the abstraction level of infrastructure
management within the organisation and it facilitates automation processes.

Because of these reasons the rest of this report will be focused on the design of a Kubernetes
environment for running the S3 Passenger platform. 

Page � of �32 54

Vasil Lozanov Graduation Report

8. Design
8.1 Approach
Based on the information gathered from the research a choice on which technology will be used
will be made.

Afterwards an iterative approach will be taken when it comes to developing the design. Building a
prototype and incrementally updating it and testing it ensures a flexible and agile way to develop
a validated design.

The built prototype has multiple purposes. It serves as a platform for developing the design and
eventually providing proof of the feasibility of it. It will also serve as a test environment where the
design can be validated.

When the final version of the design is complete the prototype created during the design process
will be used for the design evaluation.

The design is divided between the following aspects:

• Architecture

• Global

• Application landscape

• Networking

• Inside the VPC

• Between instances

• SGs

• NAT

• Load Balancing

• Inside the cluster

• Between applications

• Services

• Service mesh

• Proxies

• External

• Egress

• To other AWS services

• To the internet

• Ingress

• From the internet

• Storage

• Persistent

• Databases

• Persistent volumes

• EFS

• Caching

• ElastiCache/Redis

• Monitoring and Logging

• CI/CD

The design chapter will begin with a Kubernetes deep dive where all relevant to the design
components are explained.

Page � of �33 54

Vasil Lozanov Graduation Report

8.2 Kubernetes Deep Dive
This chapter aims to give an overview of all relevant Kubernetes components, their purpose, how
they are configured and how do they fit in the whole system.

8.2.1 Components Overview

In the table below you can find an overview of the Kubernetes master components. (Kubernetes,
2019d)

Table 8.2.1.1 - List of Kubernetes master components.

In the table below you can find an overview of the Kubernetes node components. (Kubernetes,
2019d)

Table 8.2.1.2 - List of Kubernetes node components.

The diagram below, courtesy of the official Kubernetes documentation, illustrates the relationship
between these components. (Kubernetes, 2019j) As shown below, the Kube API Server is the
central point where everything connects to. The API Server persists it data in ETCD. The Cloud
Controller Manager connects to the APIs of the the user’s chosen cloud platform.

Diagram
8.2.1.1 -
Relationship
between
Kubernetes
master
components. 

Component Purpose

Kube API Server Serves the Kubernetes API.

ETCD Key-value store.

Kube Scheduler Responsible for scheduling pods on nodes.

Kube Controller Manager Global manager for all Kubernetes controllers.

Cloud Controller Manager Responsible for cloud-specific controller processes.

Component Purpose

Kubelet An agent that runs on every server of the Kubernetes cluster.

Kube Proxy Responsible for maintaining the network rules and forwarding.

Docker The container runtime.

Page � of �34 54

Vasil Lozanov Graduation Report

8.2.2 Controllers Overview

In the table below you can find an overview of the Kubernetes controllers.

Table 8.2.2.1 - List of Kubernetes controllers.

8.2.3 Kubernetes API

The Kubernetes API is an extremely vast subject which due to time, space and project scope
constraints will not be discussed extensively in this document.

The most important takeaway about this is that the Kubernetes API is the central point of all
actions in Kubernetes. Every single resource, specification and action is essentially part of the
API. Resources are made and updated via the API, metrics are acquired via the API,
authentication goes through the api, etc.

There are 3 main API groups that separate API endpoints based on their maturity - alpha, beta
and stable. Alpha and beta groups can be explicitly enabled or disabled on the API server.

8.2.4 Authentication & Authorisation

Authentication

There are two types of users in Kubernetes - service accounts and normal users. The first type are
managed by Kubernetes itself and are used internally in the cluster for authenticating services that
need access to the Kubernetes API. The second type are human users that are managed by an
external identity provider. (Kubernetes, 2019b)

There are 3 different authentication possibilities in Kubernetes:

• X.509 client certificates

• Tokens

• Static token files

• Bootstrap tokens

• Service account tokens

• OpenID Connect tokens

• Static password files

The following table provides an explanation about how each of those methods work:

Controller Purpose

Node Controller Monitors the state of the nodes in the Kubernetes cluster.

Replication Controller Responsible for ensuring that the correct amount of pods are running as
specified in the relevant Replication Controller configuration.

Endpoints Controller Responsible for adding pods to services.

Service Account & Token
Controllers

Creates default accounts and API tokens for all namespaces.

Method Explanation

X.509 client
certificates

The Kubernetes API server can be given a CA to trust. Then users can log in with
certificates signed by the trusted CA.

Static token files The Kubernetes API Server can be given a static list of bearer tokens that it will
trust. Clients can then pass these tokens in the headers of their requests.

Method

Page � of �35 54

Vasil Lozanov Graduation Report

Table 8.2.4.1 - List of Kubernetes authentication methods.

Authorisation

When a user or a service account makes a request the first needs to be authenticated. If that
action succeeds the user’s request needs to be authorised. Kubernetes currently uses Role-based
Access Control (RBAC) for authorising users and service accounts.

As already mentioned, Kubernetes resources are modified via the API. There are multiple
modifications that can be performed on a resource. Generally speaking the following actions can
be performed on Kubernetes resources:

Table 8.2.4.2 - List of actions that can be done on Kubernetes resources and their respective API
action equivalents.

If we want to retrieve information about a specific deployment, for example, we will perform a
“get” request on the deployment we want to get information about.

In Kubernetes rules can be made that specifically allow certain actions on certain resources.
These rules are a resource by themselves - Roles (namespace-bound) or Cluster Roles (cluster-
bound). These roles can then be assigned on specific users or service accounts by a Role
Binding. 

Bootstrap tokens These tokens, generated by Kubernetes itself, are stored as Kubernetes secrets
and are meant to be used while bootstrapping a new cluster.

Service account
tokens

Automatically generated tokens for service accounts.

OpenID Connect
tokens

Kubernetes can be configured to use a 3rd party identity provider (that supports
OpenID Connect). When users authenticate with their chosen provider a JWT
token is generated which is used for authentication with the Kubernetes cluster.

Static password files The Kubernetes API Server can be given a static list of users and passwords.
Clients can then pass the username and password in the headers of their
requests.

ExplanationMethod

Action API Action

Retrieve Get

List List

Continuously retrieve Watch

Create Create

Update Update

Modify Patch

Delete Delete

Page � of �36 54

Vasil Lozanov Graduation Report

8.3 Architecture
In this chapter you can find the architectural overview of the chosen solution.

8.3.1 Global

In the following diagram a global overview of the architecture of an EKS cluster can be found.

Diagram 8.3.1.1 - Global architectural overview of the Kubernetes cluster.

Page � of �37 54

Vasil Lozanov Graduation Report

8.3.2 Application

For simplicity and NDA-related purposes the following sample app architecture will be used.

As seen on the diagram below requests from the internet are being handled by the ingress
service. This service routes the request to the relevant micro service. There are two micro services
in this example landscape. The first one (App A) is connected to a cache (Redis) and the second
one (App B) is connected to a database (PostgreSQL).

This sample landscape is relatively close to the S3 Passenger landscape since it also consists of
ingress services, multiple micro services, caches and databases.

Diagram 8.3.2.1 - Sample app architecture. 

Page � of �38 54

Vasil Lozanov Graduation Report

8.4 Networking
In this chapter the networking design can be found. This includes application and cluster level
networking.

8.4.1 VPC

In AWS the region where customer infrastructure runs is divided between multiple availability
zones (usually 3). These are physically separate data centres within the same geographical region.
A VPC, the network block available for a customer within a region spans all availability zones.

Customers can then configure subnets within their VPC. It is important to note that a subnet can
only be in one singe region, not multiple like the VPC. It is best practice to define public and
private subnets in a VPC. The difference between public and private subnets in AWS is that
anything running in the public subnets will automatically get its own public IP address and traffic
to the internet will be routed through the Internet Gateway. Anything running in the private subnets
will only get a private IP and if internet access is required outgoing traffic will be routed through
the NAT Gateway.

It is considered best practice to put all applications and other components in the private subnets
and only put external load balancers in the public subnets. (Amazon Web Services, 2017)

As you can see in chapter 8.2.1 all of our infrastructure will be deployed inside the private
subnets. Kubernetes can then create public load balances in the public subnets if necessary.

The diagram below provides a graphical overview of the architecture of an AWS VPC.

Diagram 8.4.1.1 - AWS VPC network overview. 

Page � of �39 54

Vasil Lozanov Graduation Report

8.4.2 Applications

As mentioned in the Kubernetes research chapter (7.2) applications communicate between each
other via Kubernetes services. Each service has a DNS name which resolves to an internal cluster
IP. DNS names are formed using the following pattern:
service.namespace.svc.cluster.local. (Kubernetes, 2019e) Applications can use these
DNS names instead of hard-coded IPs. Even though the DNS name resolves to one singular IP
address (that of the service) Kubernetes load-balances the traffic to all possible pods registered in
the service. This load balancing happens by using the local node’s IP tables. The kube-proxy
component is the one responsible for receiving service configuration from the Kubernetes API
servers and updating the IP tables of the nodes.

The graphic below, courtesy of the official Kubernetes documentation, illustrates the way clients
access services via the node’s IP tables and how they are updated by the kube-proxy.
(Kubernetes, 2019i)

Diagram 8.4.2.1 - Kubernetes Services iptables routing.

The following graphic illustrates a call from one service to another.

Diagram 8.4.2.2 - Communication flow between Kubernetes services. 

Page � of �40 54

Vasil Lozanov Graduation Report
It is important to note that Kubernetes services are a Layer 4 network resource. They can only do
TCP and UDP load balancing. For more advanced routing and utilisation of the AWS ALBs
Kubernetes provides the Ingress resource.

Kubernetes Ingresses are a Layer 7 network resource that understand HTTP traffic. This enables,
among others, name-based routing. Furthermore, the Ingress can be used to deploy and
configure AWS ALBs using the AWS ALB Ingress Controller. (Kubernetes Community - AWS
Special Interest Group, 2019)

Diagram 8.4.2.3 - Network flow for routing to specific service.

Page � of �41 54

Vasil Lozanov Graduation Report

8.5 Storage
There are three storage components required for the functioning of S3 Passenger:

• PostgreSQL database

• Redis session storage

• NFS share for file storage

There aren’t any specific configurations required for these components, apart from the usual HA
and security settings (replicas in multiple AZs, required ports open only for instances that run
applications which require access to these components, etc.).

Connections to the database and cache services go directly from the S3 Passenger component
that needs to use them to the designated by AWS endpoint.

NFS shares, however, need to be mounted on the EC2 instances running the S3 Passenger
components that need to utilise them. In order to do this dynamically the EFS provisioner
component of Kubernetes can be deployed in the cluster. This component creates the EFS
storage class and is responsible for mounting NFS shares to the relevant EC2 instances and
exposing them to Kubernetes as persistent volumes. (Kubernetes Community, 2019)

Diagram 8.5.1 - Storage overview

Page � of �42 54

Vasil Lozanov Graduation Report

8.6 Monitoring & Logging
This chapter explains the monitoring and logging design of the proposed solution.

8.6.1 Monitoring

Kubernetes distinguishes between two types of monitoring pipelines - the core metrics pipeline
and the monitoring pipeline. (Kubernetes Community, 2018)

As the name suggests, the core metrics pipeline is utilised by the main systems to execute tasks
like scheduling and other core Kubernetes functionalities that require such metrics. The core
metrics pipeline is realised by the Kubelet, the metrics server, and the metrics API. (Kubernetes
Community, 2018) (Kubernetes, 2019f)

The monitoring pipeline is meant for the consumption of metrics by end users. (Kubernetes
Community, 2018) Such pipeline may consist of tools like Prometheus or other 3rd party
integrations for cluster metrics gathering. (Kubernetes, 2019m)

For a detailed description of the inner workings of the Kubernetes monitoring architecture please
see appendix A1.

Since the core metrics pipeline is available by default on every cluster this design will focus on the
monitoring pipeline, which is user-configured.

The standard monitoring pipeline in Kubernetes consists of four components - Prometheus, Alert
Manager, Push Gateway and Grafana. Prometheus is the aggregator of all possible monitoring
data - from the Kubernetes metrics server and Prometheus exporter daemon sets running on
each node. Alert Manager, as the name suggests, is the tool that realises alerting in this pipeline.
Alert Manager can be configured to send alerts if specific conditions have been reached based on
the data gathered in Prometheus. The third component, Grafana, is the visualisation tool for the
Prometheus data. (Prometheus, 2018)

Sqills already utilises Prometheus and Grafana for the monitoring of their current infrastructure
and application landscape, thus such a system will be easily implementable in Kubernetes in
conjunction with the existing ones.

The following graphic, courtesy of Prometheus, illustrates such a monitoring pipeline.
(Prometheus, 2018)

Diagram 8.6.1.1 - Prometheus monitoring pipeline. 

Page � of �43 54

Vasil Lozanov Graduation Report

8.6.2 Logging

There are two important log groups in Kubernetes - logs of Kubernetes components and logs of
non-Kubernetes component (or the software that the user is running in the cluster).

Having insights on both of these groups is critical for proper cluster management.

Kubernetes saves all logs in JSON files on the respective nodes where the components are
running. Using software like Fluentd we can scrape these logs and send them to a central
database - Elasticsearch, for example. (Kubernetes, 2019l)

The standard logging solutions for Kubernetes clusters are the Elasticsearch, Logstash and
Kibana (ELK) or Elasticsearch, Fluentd and Kibana (EFK) stacks. The functionality of both stacks is
exactly the same, which makes choosing one of the two solutions purely based on functionality a
hard task. There is, however, one very important difference when it comes to platform integration.
Fluentd natively integrates with Kubernetes which allows the collection of Kubernetes-specific
metadata. Furthermore, the company currently uses an EFK stack which makes the configuration
of application-specific settings easier. (Giant Swarm, 2018)

Sqills also currently uses an EFK stack for the logging of their infrastructure and applications, thus
such a solution will be easily implementable in Kubernetes in conjunction with the current ones.

Because of the reasons mentioned above this design will focus on implementing an EFK stack.

Fluentd offers a container which can be deployed as a daemon set in Kubernetes without a lot of
extra configuration. The endpoint of the Elasticsearch cluster can be passed to the container in an
environment variable. Kubernetes will the make sure a pod runs on every node in the
environment. Fluentd will then start scraping the available logs and sending them to the specified
Elasticsearch cluster for analysis and storage.

Diagram 8.6.2.1 - Logging pipeline

Page � of �44 54

Vasil Lozanov Graduation Report

8.7 CI/CD
Although the general idea of the current CI/CD pipelines for deploying the S3 Passenger
components can still be used a change of the tooling and steps will be required to implement it
for a Kubernetes environment.

Let’s take our sample application from chapter 8.2.2 as an example. We will define the following
deployment procedure:

1. Create database

2. Create cache

3. Deploy app B

4. Run database migrations

5. Deploy app A

6. Deploy ingress service

Currently the company uses Ansible to deploy and configure applications. The deploy process is
imperative - the steps needed to roll out an application are defined in Ansible Playbooks.

Since the different application configurations are now in Kubernetes and the desired state is
defined in deployment files a new process for this declarative deployment strategy will be
required.

The default deployment strategy on Kubernetes is the rolling update. (Kubernetes, 2019k) This
type of deployment essentially updates one pod at a time, thus keeping the service running.
(Kubernetes, 2019c)

There are, of course, many other types of deployments that can be done with Kubernetes.
(Tremel, 2017)

Page � of �45 54

Vasil Lozanov Graduation Report

9. Design Evaluation
There are two types of testing that will be applied to the design:

• Infrastructure testing

• Application testing

The infrastructure tests focus on Kubernetes itself, whereas the application tests focus on S3
Passenger and how it handles when run in a scheduler.

By using the principles of chaos engineering we can conduct tests that are close to real-world
events (server and/or network failures, etc.) and find weaknesses in the design. (Lafeldt, 2019)

Furthermore, performance tests were conducted on the application itself which allows us to see
how it behaves under load and check if Kubernetes is taking the proper steps to ensure all
services are running properly.

9.1 Chaos Tests
The chaos tests, as the name suggests, were conducted at random times and intervals on
random components. The cluster was rigorously tested to see how it responds to random removal
of worker nodes and connection outages. The EC2 instances serving as the worker nodes for the
cluster were removed at random intervals and were not manually created again.

What was observed was that Kubernetes sees the fact that nodes are missing and deployments
are not running because of it. The first step it takes is evaluating the priority of deployments. As
already mentioned in this document, if the priority of deployment X is higher than the one of
deployment Y and deployment X is not running Kubernetes will stop deployment Y and run
deployment X instead. Parallel to this process Kubernetes will also communicate with the ASG to
see if the amount of desired nodes needs to be updated and if so - update the amount. In the
meantime the ASG would have also already noticed the missing nodes and it wold have started
new ones to reach the target amount. When the nodes have started and have registered
Kubernetes will start running the rest of the deployments. This process takes in total around 8
minutes.

9.2 Performance Tests
Sqills has in-house performance test of the application which generate load on its components.
These tests were applied on the prototype to verify that the application will continue working
properly in Kubernetes.

During the performance tests it was observed that Kubernetes properly monitors the resource
usage of the deployments and it scales them whenever necessary. Furthermore, the worker nodes
were scaled as well so that there are enough available resources to run the pods on.

Test Description Result

Worker Node
Resilience

Stopping random worker nodes at
random intervals.

Kubernetes spins up new nodes and
recovers within minutes.

Environment
Recovery

Stopping all worker nodes at random
intervals.

Kubernetes spins up new nodes and the
S3 Passenger environment is fully
functional within 8 minutes.

Page � of �46 54

Vasil Lozanov Graduation Report

10. Conclusion
The purpose of this project is to deliver a future-proof container orchestration solution to Sqills
which will enable the Infra team to host the S3 Passenger platform in a more automated, scalable
and modern way. In order to achieve this multiple possible solutions were researched, tested and
evaluated during the course of this project. Based on that a solution was chosen - namely
Kubernetes. A design of a Kubernetes environment, capable of hosting the S3 Passenger
solution, was created and tested.

In the beginning of the project a set of requirements were defined according to the wishes of the
teams, company requirements and industry standards. Factors like scalability and maintainability
were a top priority for the company. The requirements were prioritised using the MoSCoW method
and were used as the main evaluation criteria for the research phase of the project.

After the mentioned above first stage four scheduler technologies were researched and reviewed.
Based on that research it was concluded that Kubernetes is the best contender.

On the third stage of the project a Kubernetes environment capable of hosting the S3 Passenger
platform was designed. All aspects have been taken into account — from the underlying
infrastructure to the deployment of S3 Passenger itself.

As a final step two types of tests were conducted to ensure that the designed infrastructure meets
all requirements and standards.

It can be safely concluded that Kubernetes not only meets all necessary requirements, provides a
stable and modern platform for hosting applications, it also is perfectly deployable on AWS and
the S3 Passenger platform can be hosted on it in a highly available manner. 

Page � of �47 54

Vasil Lozanov Graduation Report

References
Amazon Web Services. (n.d.). What Is Amazon EKS? Retrieved from https://
docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html

Amazon Web Services. (2017, July). Architecture - Building a Modular and Scalable Virtual
Network Architecture with Amazon VPC. Retrieved April 11, 2019, from https://
docs.aws.amazon.com/quickstart/latest/vpc/architecture.html?shortFooter=true

Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J., & Google Inc.. (2016, March 2).
Borg, Omega, and Kubernetes - ACM Queue. Retrieved from https://queue.acm.org/detail.cfm?
id=2898444

Burns, B., Oppenheimer, D., & Google. (2016a). Design Patterns for Container-based Distributed
Systems. Retrieved April 1, 2019, from https://www.usenix.org/conference/hotcloud16/workshop-
program/presentation/burns

Burns, B., Oppenheimer, D., & Google. (2016b, July 21). Container Design Patterns. Retrieved
April 1, 2019, from https://kubernetes.io/blog/2016/06/container-design-patterns/

Burrows, M. (2006). The Chubby lock service for loosely-coupled distributed systems – Google AI.
Retrieved from https://ai.google/research/pubs/pub27897

Casalicchio, E. (2017, May 3). Autonomic Orchestration of Containers: Problem Definition and
Research Challenges. Retrieved from https://www.researchgate.net/profile/Emiliano_Casalicchio/
publication/
316703820_Autonomic_Orchestration_of_Containers_Problem_Definition_and_Research_Challen
ges/links/59c1113aaca272295a097a58/Autonomic-Orchestration-of-Containers-Problem-
Definition-and-Research-Challenges.pdf

Ellingwood, J. (2017, November 29). The Docker Ecosystem: Scheduling and Orchestration.
Retrieved from https://www.digitalocean.com/community/tutorials/the-docker-ecosystem-
scheduling-and-orchestration

Giant Swarm. (2018, August 16). Logging Best Practices for Kubernetes using Elasticsearch,
Fluent Bit and Kibana. Retrieved May 21, 2019, from https://itnext.io/logging-best-practices-for-
kubernetes-using-elasticsearch-fluent-bit-and-kibana-be9b7398dfee

Grillet, A. (2018, June 1). Comparison of Container Schedulers. Retrieved from https://
medium.com/@ArmandGrillet/comparison-of-container-schedulers-c427f4f7421

HashiCorp. (2019a, January 24). Preemption. Retrieved May 7, 2019, from https://
www.nomadproject.io/docs/internals/scheduling/preemption.html

HashiCorp. (2019b, January 25). Scheduling. Retrieved from https://www.nomadproject.io/docs/
internals/scheduling/scheduling.html

HashiCorp. (2019c, January 30). Schedulers. Retrieved April 1, 2019, from https://
www.nomadproject.io/docs/schedulers.html

Hunt, R. (2017, November 29). Introducing AWS Fargate – Run Containers without Managing
Infrastructure. Retrieved from https://aws.amazon.com/blogs/aws/aws-fargate/

Johnson, G., Scholes, K., & Whittington, R. (2008, January 21). Exploring Corporate Strategy.
Retrieved May 20, 2019, from https://www.researchgate.net/profile/Constantin_Bratianu/post/
The_difference_between_the_Concept_of_Strategic_Partnership_and_the_concept_of_Strategic_
Relationship/attachment/5a10aa79b53d2f46c7eb03d3/
AS%3A562163606409216%401511041656413/download/Johnson-
ExploringCorporateStrategy_8Ed_Textbook.pdf

Page � of �48 54

https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html
https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html
https://docs.aws.amazon.com/quickstart/latest/vpc/architecture.html?shortFooter=true
https://docs.aws.amazon.com/quickstart/latest/vpc/architecture.html?shortFooter=true
https://queue.acm.org/detail.cfm?id=2898444
https://queue.acm.org/detail.cfm?id=2898444
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/burns
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/burns
https://kubernetes.io/blog/2016/06/container-design-patterns/
https://ai.google/research/pubs/pub27897
https://www.researchgate.net/profile/Emiliano_Casalicchio/publication/316703820_Autonomic_Orchestration_of_Containers_Problem_Definition_and_Research_Challenges/links/59c1113aaca272295a097a58/Autonomic-Orchestration-of-Containers-Problem-Definition-and-Research-Challenges.pdf
https://www.researchgate.net/profile/Emiliano_Casalicchio/publication/316703820_Autonomic_Orchestration_of_Containers_Problem_Definition_and_Research_Challenges/links/59c1113aaca272295a097a58/Autonomic-Orchestration-of-Containers-Problem-Definition-and-Research-Challenges.pdf
https://www.researchgate.net/profile/Emiliano_Casalicchio/publication/316703820_Autonomic_Orchestration_of_Containers_Problem_Definition_and_Research_Challenges/links/59c1113aaca272295a097a58/Autonomic-Orchestration-of-Containers-Problem-Definition-and-Research-Challenges.pdf
https://www.researchgate.net/profile/Emiliano_Casalicchio/publication/316703820_Autonomic_Orchestration_of_Containers_Problem_Definition_and_Research_Challenges/links/59c1113aaca272295a097a58/Autonomic-Orchestration-of-Containers-Problem-Definition-and-Research-Challenges.pdf
https://www.researchgate.net/profile/Emiliano_Casalicchio/publication/316703820_Autonomic_Orchestration_of_Containers_Problem_Definition_and_Research_Challenges/links/59c1113aaca272295a097a58/Autonomic-Orchestration-of-Containers-Problem-Definition-and-Research-Challenges.pdf
https://www.digitalocean.com/community/tutorials/the-docker-ecosystem-scheduling-and-orchestration
https://www.digitalocean.com/community/tutorials/the-docker-ecosystem-scheduling-and-orchestration
https://www.digitalocean.com/community/tutorials/the-docker-ecosystem-scheduling-and-orchestration
https://itnext.io/logging-best-practices-for-kubernetes-using-elasticsearch-fluent-bit-and-kibana-be9b7398dfee
https://itnext.io/logging-best-practices-for-kubernetes-using-elasticsearch-fluent-bit-and-kibana-be9b7398dfee
https://itnext.io/logging-best-practices-for-kubernetes-using-elasticsearch-fluent-bit-and-kibana-be9b7398dfee
https://medium.com/@ArmandGrillet/comparison-of-container-schedulers-c427f4f7421
https://medium.com/@ArmandGrillet/comparison-of-container-schedulers-c427f4f7421
https://medium.com/@ArmandGrillet/comparison-of-container-schedulers-c427f4f7421
https://www.nomadproject.io/docs/internals/scheduling/preemption.html
https://www.nomadproject.io/docs/internals/scheduling/preemption.html
https://www.nomadproject.io/docs/internals/scheduling/scheduling.html
https://www.nomadproject.io/docs/internals/scheduling/scheduling.html
https://www.nomadproject.io/docs/schedulers.html
https://www.nomadproject.io/docs/schedulers.html
https://aws.amazon.com/blogs/aws/aws-fargate/
https://www.researchgate.net/profile/Constantin_Bratianu/post/The_difference_between_the_Concept_of_Strategic_Partnership_and_the_concept_of_Strategic_Relationship/attachment/5a10aa79b53d2f46c7eb03d3/AS%3A562163606409216%401511041656413/download/Johnson-ExploringCorporateStrategy_8Ed_Textbook.pdf
https://www.researchgate.net/profile/Constantin_Bratianu/post/The_difference_between_the_Concept_of_Strategic_Partnership_and_the_concept_of_Strategic_Relationship/attachment/5a10aa79b53d2f46c7eb03d3/AS%3A562163606409216%401511041656413/download/Johnson-ExploringCorporateStrategy_8Ed_Textbook.pdf
https://www.researchgate.net/profile/Constantin_Bratianu/post/The_difference_between_the_Concept_of_Strategic_Partnership_and_the_concept_of_Strategic_Relationship/attachment/5a10aa79b53d2f46c7eb03d3/AS%3A562163606409216%401511041656413/download/Johnson-ExploringCorporateStrategy_8Ed_Textbook.pdf
https://www.researchgate.net/profile/Constantin_Bratianu/post/The_difference_between_the_Concept_of_Strategic_Partnership_and_the_concept_of_Strategic_Relationship/attachment/5a10aa79b53d2f46c7eb03d3/AS%3A562163606409216%401511041656413/download/Johnson-ExploringCorporateStrategy_8Ed_Textbook.pdf
https://www.researchgate.net/profile/Constantin_Bratianu/post/The_difference_between_the_Concept_of_Strategic_Partnership_and_the_concept_of_Strategic_Relationship/attachment/5a10aa79b53d2f46c7eb03d3/AS%3A562163606409216%401511041656413/download/Johnson-ExploringCorporateStrategy_8Ed_Textbook.pdf

Vasil Lozanov Graduation Report

Kitchener, J. (2018, November 6). Kubernetes' scheduling magic revealed. Retrieved from https://
www.oreilly.com/ideas/kubernetes-scheduling-magic-revealed

Kubernetes. (2019a, February 1). Pod Priority and Preemption. Retrieved from https://
kubernetes.io/docs/concepts/configuration/pod-priority-preemption/

Kubernetes. (2019b, March 7). Authenticating. Retrieved May 10, 2019, from https://
kubernetes.io/docs/reference/access-authn-authz/authentication/

Kubernetes. (2019c, March 7). Perform Rolling Update Using a Replication Controller. Retrieved
May 3, 2019, from https://kubernetes.io/docs/tasks/run-application/rolling-update-replication-
controller/

Kubernetes. (2019d, March 8). Kubernetes Components. Retrieved April 29, 2019, from https://
kubernetes.io/docs/concepts/overview/components/

Kubernetes. (2019e, March 25). DNS for Services and Pods. Retrieved April 11, 2019, from
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/

Kubernetes. (2019f, March 25). Resource metrics pipeline. Retrieved April 24, 2019, from https://
kubernetes.io/docs/tasks/debug-application-cluster/resource-metrics-pipeline/

Kubernetes. (2019g, March 27). Pod Priority and Preemption. Retrieved May 7, 2019, from https://
kubernetes.io/docs/concepts/configuration/pod-priority-preemption/

Kubernetes. (2019h, March 31). Pod Overview. Retrieved April 1, 2019, from https://kubernetes.io/
docs/concepts/workloads/pods/pod-overview/

Kubernetes. (2019i, April 4). Services. Retrieved April 11, 2019, from https://kubernetes.io/docs/
concepts/services-networking/service/

Kubernetes. (2019j, April 15). Concepts Underlying the Cloud Controller Manager. Retrieved April
29, 2019, from https://kubernetes.io/docs/concepts/architecture/cloud-controller/

Kubernetes. (2019k, April 15). Deployments. Retrieved May 3, 2019, from https://kubernetes.io/
docs/concepts/workloads/controllers/deployment/

Kubernetes. (2019l, April 15). Logging Architecture. Retrieved April 24, 2019, from https://
kubernetes.io/docs/concepts/cluster-administration/logging/

Kubernetes. (2019m, April 19). Tools for Monitoring Resources. Retrieved April 24, 2019, from
https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/

Kubernetes Community. (2018, March 21). Kubernetes Monitoring Architecture. Retrieved April 24,
2019, from https://github.com/kubernetes/community/blob/master/contributors/design-
proposals/instrumentation/monitoring_architecture.md

Kubernetes Community. (2019, February 12). EFS Provisioner. Retrieved April 23, 2019, from
https://github.com/kubernetes-incubator/external-storage/tree/master/aws/efs

Kubernetes Community - AWS Special Interest Group. (2019, March 1). AWS ALB Ingress
Controller. Retrieved April 23, 2019, from https://github.com/kubernetes-sigs/aws-alb-ingress-
controller

Lafeldt, M. (2019, April 27). Principles of Chaos Engineering. Retrieved May 17, 2019, from http://
principlesofchaos.org

Page � of �49 54

https://www.oreilly.com/ideas/kubernetes-scheduling-magic-revealed
https://www.oreilly.com/ideas/kubernetes-scheduling-magic-revealed
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/tasks/run-application/rolling-update-replication-controller/
https://kubernetes.io/docs/tasks/run-application/rolling-update-replication-controller/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/tasks/debug-application-cluster/resource-metrics-pipeline/
https://kubernetes.io/docs/tasks/debug-application-cluster/resource-metrics-pipeline/
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/architecture/cloud-controller/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/cluster-administration/logging/
https://kubernetes.io/docs/concepts/cluster-administration/logging/
https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/monitoring_architecture.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/monitoring_architecture.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/monitoring_architecture.md
https://github.com/kubernetes-incubator/external-storage/tree/master/aws/efs
https://github.com/kubernetes-sigs/aws-alb-ingress-controller
https://github.com/kubernetes-sigs/aws-alb-ingress-controller
http://principlesofchaos.org
http://principlesofchaos.org

Vasil Lozanov Graduation Report
McDonald, C. (2018, May 1). Kubernetes, Kafka Event Sourcing Architecture Patterns and Use
Case Examples. Retrieved from https://mapr.com/blog/kubernetes-kafka-event-sourcing-
architecture-patterns-and-use-case-examples/

Mendelow, A. (Ed.). (1991). Proceedings of the 2nd International Conference on Information
Systems. Cambridge, MA, USA.

Peck, N. (2018, January 26). Task Networking in AWS Fargate. Retrieved from https://
aws.amazon.com/blogs/compute/task-networking-in-aws-fargate/

Prometheus. (2018, December 13). Overview. Retrieved April 25, 2019, from https://
prometheus.io/docs/introduction/overview/

Schwarzkopf, M. (2013). Omega: flexible, scalable schedulers for large compute clusters – Google
AI. Retrieved from https://ai.google/research/pubs/pub41684

Tremel, E. (2017, November 21). Six Strategies for Application Deployment. Retrieved May 8,
2019, from https://thenewstack.io/deployment-strategies/

Vargo, S. (2017, November 27). Load Balancing Strategies for HashiCorp Consul. Retrieved from
https://www.hashicorp.com/blog/load-balancing-strategies-for-consul

Verma, A. (2015). Large-scale cluster management at Google with Borg – Google AI. Retrieved
from https://ai.google/research/pubs/pub43438

Page � of �50 54

https://mapr.com/blog/kubernetes-kafka-event-sourcing-architecture-patterns-and-use-case-examples/
https://mapr.com/blog/kubernetes-kafka-event-sourcing-architecture-patterns-and-use-case-examples/
https://mapr.com/blog/kubernetes-kafka-event-sourcing-architecture-patterns-and-use-case-examples/
https://aws.amazon.com/blogs/compute/task-networking-in-aws-fargate/
https://aws.amazon.com/blogs/compute/task-networking-in-aws-fargate/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://ai.google/research/pubs/pub41684
https://thenewstack.io/deployment-strategies/
https://www.hashicorp.com/blog/load-balancing-strategies-for-consul
https://ai.google/research/pubs/pub43438

Vasil Lozanov Graduation Report

List of Tables
Table 2.1 - List of used terminology.	 6

Table 5.1.1 - List of stakeholders.	 11

Table 5.2.1 - Shortlist of stakeholders.	 12

Table 6.2.1 - List of questions for the teams.	 14

Table 6.3.1 - List of requirements.	 14

Table 7.1.1 - List of research aspects.	 15

Table 7.2.1.1 - List of Kubernetes deployment types.	 16

Table 7.2.6.1 - List of Kubernetes pros and cons.	 18

Table 7.2.7.1 - Kubernetes requirements evaluation.	 19

Table 7.3.1.1 - List of Nomad scheduler types.	 20

Table 7.3.1.2 - List of Nomad job abstractions.	 20

Table 7.3.6.1 - List of Nomad pros and cons.	 21

Table 7.3.7.1 - Nomad requirements evaluation.	 22

Table 7.4.5.1 - List of ECS & Fargate pros and cons.	 25

Table 7.4.6.1 - ECS & Fargate requirements evaluation.	 26

Table 7.5.1.1 - List of Docker Swarm Mode deployment types.	 27

Table 7.5.4.1 - List of Docker Swarm Mode pros and cons.	 28

Table 7.5.5.1 - Docker Swarm Mode requirements evaluation.	 29

Table 7.6.1 - Comparison table legend.	 30

Table 7.6.2 - Schedulers and orchestrators comparison.	 31

Table 8.2.1.1 - List of Kubernetes master components.	 34

Table 8.2.1.2 - List of Kubernetes node components.	 34

Table 8.2.2.1 - List of Kubernetes controllers.	 35

Table 8.2.4.1 - List of Kubernetes authentication methods.	 36

Table 8.2.4.2 - List of actions that can be done on Kubernetes resources and their
respective API action equivalents.	 36

Page � of �51 54

Vasil Lozanov Graduation Report

List of Diagrams
Diagram 4.4.1 - Kubernetes cluster architecture.	 9

Diagram 4.4.2 - Scheduling process in HashiCorp Nomad.	 10

Diagram 5.2.1 - Mendelow Model.	 11

Diagram 7.2.1.1 - Kubernetes workload types abstraction levels.	 17

Diagram 7.2.2.1 - Kubernetes ingress and service flows.	 17

Diagram 7.4.1 - Architectural differences between AWS ECS and AWS ECS with Fargate.	 23

Diagram 7.4.2.1 - Fargate tasks in a public subnet.	 24

Diagram 7.4.2.2 - Fargate tasks in a private subnet with a public ALB.	 24

Diagram 8.2.1.1 - Relationship between Kubernetes master components.	 34

Diagram 8.3.1.1 - Global architectural overview of the Kubernetes cluster.	 37

Diagram 8.3.2.1 - Sample app architecture.	 38

Diagram 8.4.1.1 - AWS VPC network overview.	 39

Diagram 8.4.2.1 - Kubernetes Services iptables routing.	 40

Diagram 8.4.2.2 - Communication flow between Kubernetes services.	 40

Diagram 8.4.2.3 - Network flow for routing to specific service.	 41

Diagram 8.5.1 - Storage overview	 42

Diagram 8.6.1.1 - Prometheus monitoring pipeline.	 43

Diagram 8.6.2.1 - Logging pipeline	 44

Page � of �52 54

Vasil Lozanov Graduation Report

Versioning
Version Date Changes

1 01/03/2019 First version

2 28/03/2019 Updated report structure, added more research

3 24/04/2019 Added design chapter

4 30/04/2019 Updated chapters based on feedback from supervisors, expanded design
chapter

5 24/05/2019 Pre-final draft version

6 03/06/2019 Final draft version

7 16/06/2019 Updated report based on feedback from supervisors

8 17/06/2019 Final version

Page � of �53 54

Vasil Lozanov Graduation Report

Appendix
A1. Kubernetes Monitoring Architecture

The diagram below, curtesy of the Kubernetes community, illustrates the Kubernetes monitoring
architecture. (Kubernetes Community, 2018)

The two monitoring processes are colour-coded. The black lines being the core monitoring
processes and the blue lines the user-specified monitoring pipeline.

As visible on the diagram the API server serves the metrics API which can be consumed by,
among other possibilities, kubectl, the scheduler and the HPA controller. Monitoring data by the
Kubelet and resource estimator are being sent to the metrics server which makes the metrics API
available to the API server.

The user-specified pipeline ties into the core metrics processes by consuming data from core
components, like the kubelet. Furthermore a monitoring agent can be installed on the master and
slave nodes which can collect even more metrics. Data from those agents is usually sent to a
cluster-central monitoring agent (eg. Prometheus) and is exposed via an API adapter to be
consumed by other components.

Page � of �54 54

	Table of Contents
	1. Introduction & Abstract
	2. List of Used Terminology
	3. Problem Definiton
	3.1 Main and Sub-Questions

	4. Context Analysis
	4.1 S3 Passenger
	4.2 Current Situation
	4.3 Desired Situation
	4.4 Container Scheduling
	4.5 Container Orchestration

	5. Stakeholder Analysis
	5.1 General List
	5.2 Shortlist

	6. Requirements Analysis
	6.1 Approach
	6.2 Questions for the teams
	6.3 Requirements

	7. Research
	7.1 Approach
	7.2 Kubernetes
	7.2.1 Running Applications
	7.2.2 Exposing Applications
	7.2.3 Configuring Applications
	7.2.4 Securing Applications
	7.2.5 Deploying and Managing on AWS
	7.2.6 Pros and Cons
	7.2.7 Requirements Evaluation
	7.3 Nomad
	7.3.1 Running Applications
	7.3.2 Configuring Applications
	7.3.3 Securing Applications
	7.3.4 Exposing Applications
	7.3.5 Deploying and Managing on AWS
	7.3.6 Pros and Cons
	7.3.7 Requirements Evaluation
	7.4 ECS & Fargate
	7.4.1 Running Applications
	7.4.2 Exposing Applications
	7.4.3 Configuring Applications
	7.4.4 Securing Applications
	7.4.5 Pros and Cons
	7.4.6 Requirements Evaluation
	7.5 Docker Swarm Mode
	7.5.1 Running Applications
	7.5.2 Exposing Applications
	7.5.3 Deploying and Managing on AWS
	7.5.4 Pros and Cons
	7.5.5 Requirements Evaluation
	7.6 Comparison
	7.7 Conclusion

	8. Design
	8.1 Approach
	8.2 Kubernetes Deep Dive
	8.2.1 Components Overview
	8.2.2 Controllers Overview
	8.2.3 Kubernetes API
	8.2.4 Authentication & Authorisation
	8.3 Architecture
	8.3.1 Global
	8.3.2 Application
	8.4 Networking
	8.4.1 VPC
	8.4.2 Applications
	8.5 Storage
	8.6 Monitoring & Logging
	8.6.1 Monitoring
	8.6.2 Logging
	8.7 CI/CD

	9. Design Evaluation
	9.1 Chaos Tests
	9.2 Performance Tests

	10. Conclusion
	References
	List of Tables
	List of Diagrams
	Versioning
	Appendix
	A1. Kubernetes Monitoring Architecture

