

GRADUATION REPORT
AUTHENTICATION ENHANCEMENT

NURHAN ABULCAI
COMPANY: PARANTION BV GROUP

University: Saxion University of Applied Sciences

JANUARY 21, 2024

1

Summary
During the graduation at Parantion, I have working and collaborating in the front-end department of the

company, under the supervision of Nick Henzen from Parantion and Manasse Siekmans from Saxion and

collaborating with employees from the back-end department and the UI/UX designer, for additional advice,

support and guidance.

The project consists of, as the title suggests, an enhancement of the authentication process for the Parantion

products, in special, Scorion, which is the main product being highly developed and maintained. The company

assigned me with the task of offering the users of Scorion the possibility to password less login through various

methods of authentication.

During this period, I researched, analyzed and developed the established goal in great details covering in my

opinion and experience all of the aspects of password less authentication, mobile applications development

frameworks, backend integrations and communications, security and risk management.

The value of this project consists of offering the company a detailed and structured analysis of different

approaches in the mobile application development field, password less authentication methods and systems,

risk management and security measures, as well as protypes to support my research and the main project

product which are 3 methods of authentication, 2 relying on the support of a mobile application.

2

Table of Contents
Summary ... 1

Table of figures .. 5

1 Introduction ... 6

1.1 Stakeholders ... 6

2 Research .. 7

2.1 Backend communication protocols and frameworks ... 7

2.1.1 What types of backend communications exist? .. 7

2.1.2 What are the advantages and disadvantages of the backend communications solutions?

 9

2.1.3 What is the expected user traffic of the products? ... 10

2.1.4 What backend solutions can we use to send notifications to the user’s mobile phone

application? ... 13

2.2 Hybrid mobile development frameworks .. 14

2.2.1 What is hybrid mobile development? ... 14

2.2.2 What are the current hybrid mobile development frameworks? 15

2.2.3 What are the advantages and disadvantages between a hybrid framework and a native

framework? ... 16

2.2.4 What is the performance of each hybrid framework and how effective they are? 17

2.2.5 What is the performance of a PWA (Progressive Web Application) as a hybrid mobile

app solution? ... 17

2.2.6 Prototypes experience ... 18

2.2.7 Evaluation and Comparison ... 18

2.3 Methods of authentication .. 20

2.3.1 How can WebAuthn be used as a password less authentication method? 20

2.4 What are the most common methods of password less authentication? 21

2.4.1 FIDO2 keys ... 21

2.4.2 Software tokens ... 22

2.4.3 Phone call / SMS .. 22

2.4.4 Email OTP ... 22

2.5 How can a mobile application enhance the password less authentication process? 22

2.5.1 Biometrics check .. 22

2.5.2 QR code scanning .. 22

2.5.3 OTP generation .. 22

2.6 Conclusion and decisions ... 23

3

3 Process ... 24

4 Quality assurance .. 26

4.1 Unit testing ... 26

4.2 Regression testing .. 26

4.3 Widget testing .. 26

4.4 Linting ... 26

4.5 Android and iOS testing. .. 26

5 Requirements .. 27

5.1 Functional requirements .. 27

5.2 Non-Functional requirements .. 27

6 Product .. 29

6.1 Design ... 29

6.1.1 Front-end ... 29

6.1.2 Back-end .. 30

6.1.3 Mobile application ... 31

6.1.4 Database .. 32

6.2 Implementation ... 33

6.2.1 Method of authentication ... 33

6.2.2 Back-end .. 43

6.2.3 Mobile application ... 44

7 Testing .. 45

8 Conclusion and recommendation ... 46

9 Reflection ... 47

10 Bibliograph ... 48

Appendices .. 50

Appendix 1: Ionic development experience. ... 50

Appendix 2: Flutter community. .. 50

Appendix 3: Android and iOS market shares across the continents. .. 50

Appendix 4: The results of the benchmark tests ... 50

Appendix 5: Flutter vs Native vs React-Native performance results. .. 52

Appendix 6: Hybrid development experience and PWA ... 54

Flutter .. 54

React native. .. 54

Ionic ... 55

PWA ... 55

Appendix 7: Backlog and changes ... 56

4

Appendix 8: Linting criteria for Flutter .. 57

Appendix 9: Regression tests ... 60

Appendix 10: hybrid vs native performance ... 62

Performance .. 62

UI/UX ... 62

Audience .. 62

Security .. 64

Costs and time. .. 64

Appendix 11: PWA advantages and disadvantages ... 65

Appendix 12: Backlog and issues ... 66

Appendix 13: Mobile testing ... 69

Appendix 14: Testing methods of authentication and email validation .. 71

Laptop fingerprint using WebAuthn. ... 71

Mobile QR code login .. 72

Mobile Biometrics login ... 74

5

Table of figures
Figure 1-Key encryption flow ... 20
Figure 2-System components diagram .. 29
Figure 3-Front-end design ... 30
Figure 4-Mobile app initial design ... 31
Figure 5-Numbers choice validation. ... 32
Figure 6-Number input validation ... 32
Figure 7-Database diagram.. 33
Figure 8-WebAuthn registration flow .. 34
Figure 9-WebAuthn authentication flow ... 35
Figure 10-WebAuthn full flow ... 37
Figure 11-Mobile application registration process .. 40
Figure 12-Mobile application authentication process ... 42
Figure 13-Final mobile application design ... 44
Figure 14-WebSocket sessions testing .. 45
Figure 15-Gauss-Legendre android results .. 52
Figure 16-Gauss-Legendre iOS results ... 52
Figure 17-Borwein algorithm iOSresults.. 53
Figure 18-Borwein algorithm android results ... 53
Figure 19-StatCounter android vs iOS global share ... 63
Figure 20-StatCounter android vs iOS N.A. market share ... 63
Figure 21-Issue example .. 66
Figure 22-Parent issue ... 67
Figure 23-Sprint 1 .. 68
Figure 24-Sprint 2 .. 68
Figure 25-Sprint 3 .. 68
Figure 26-Sprint 4 .. 68
Figure 27-Mobile testing proof .. 69
Figure 28-Emulator UI ... 70
Figure 29-Phone status and language proof.. 70
Figure 30-WebAuthn Windows Hello prompt for authentication and registration 71
Figure 31-QR code display ... 72
Figure 32-Email code validation input ... 73
Figure 33-Email received proof ... 73
Figure 34-Authentication / Registration successful ... 74

file:///C:/Users/NurhanAbulcai/Imported%20files/Backup%20laptop%20work-20231025T123122Z-001/Backup%20laptop%20work/Documentation/Draft%20report%20Abulcai%20Nurhan%202.docx%23_Toc156765930
file:///C:/Users/NurhanAbulcai/Imported%20files/Backup%20laptop%20work-20231025T123122Z-001/Backup%20laptop%20work/Documentation/Draft%20report%20Abulcai%20Nurhan%202.docx%23_Toc156765931
file:///C:/Users/NurhanAbulcai/Imported%20files/Backup%20laptop%20work-20231025T123122Z-001/Backup%20laptop%20work/Documentation/Draft%20report%20Abulcai%20Nurhan%202.docx%23_Toc156765932

6

1 Introduction
The company of Parantion produces and maintains software for sectors such as education, healthcare,

government, and private companies. It was established in 1999 and is located inside of the city of Deventer.

The company has a strong focus on developing talent and performing online research. With their use of

modern-day technologies and the general atmosphere of company garners a lot of positive attention among

students. This have facilitated a healthy relationship with the school of Saxion where many students have

performed internships and graduation assignments at the company, me included.

Parantion emphasizes a big importance of data security which is why the company is officially ISO: 27001 and

NEN: 7510 certified. This means that all their data is private and secure. It is only handled here in the

Netherlands and will never be provided to any outside parties. This is important aspect of the company which

facilitates a big trust with its customers.

The company consists of a little less than thirty people which are split up into three different departments:

Customer-care, Operation and Development. Each department plays its own significant role in the company and

has one person who assumes a managerial role to structure the workflow. Development department, which is

split up into two teams, back-end and front-end.

Before starting my graduation period, I have been working at this company since February 2023, which allowed

me to better understand the company goals, products and values, which helped me in achieving a productive

and valuable graduation period.

Parantion is aiming to improve the login authentication component by introducing multiple authentication

methods besides the username and password and in some cases 2FA. This enhancement will add extra layers of

security of accessing sensitive data of the user’s accounts, by implementing multiple layers of authentication for

a user to successfully log in to the product and improve the user experience by offering a fast and easy ways to

log into the product, without relying solely on username and password.

The graduation assignment is then extracted from this necessity, which tasked me into researching, analysing

and developing various method of authentication, to allow the users to password less login into the product.

The main requirements of the company from the start was to implement a method of authentication that uses

the incorporated fingerprint (if available) or pin code of the user’s laptop, this will create a faster and easier

process of identification of the user who is trying to login, and the 2nd requirement is to research and analyse

the benefits and methods of authentication that can be created with the usage of a mobile application as

support for identification of the user and granting access into the product. The mobile application research

should also include the possibility of having a Progressive Web Application (PWA) as an application on the user’s

phone to allow the verification and authentication of the users through it.

1.1 Stakeholders
Below I crated a table displaying the stakeholders during this project, people who contributed to the project

outcome, and overall interests into the project.

Table 1-Stakeholders

Name Company Position Contact information

Nick Henzen Parantion Front-end Software
engineer

nick.henzen@scorion.com

Manasse Siekmans Saxion University graduation
supervisor

m.siekmans@saxion.nl

Randy Groot Roessink Parantion Back-end Software
engineer

randy.grootroessink@scorion.com

Marcel van Eijk Parantion Medium back-end
software engineer

marcel.vaneijk@scorion.com

Jericho Thijssen Parantion UI/UX designer jericho.thijssen@scorion.com

mailto:nick.henzen@scorion.com
mailto:m.siekmans@saxion.nl
mailto:randy.grootroessink@scorion.com
mailto:marcel.vaneijk@scorion.com
mailto:jericho.thijssen@scorion.com

7

2 Research
For this graduation project I was tasked on finding a solution to how to enhance the authentication process of

the users using the products, this solution including the support of a mobile application and analysis of the best

frameworks for this problem.

Drawing from the main problem that Parantion assigned me to find a solution through this assignment I want to

answer the following question:

What is the ideal system architecture for a secure, efficient, and adaptable data-sharing mechanism to allow

an enhanced user authentication experience through a variety of methods of authentication with the support

of a hybrid mobile application?

During the graduation project I had three main fields of research that needed to be completed, analysed to

draw a concrete system implementation and development roadmap.

2.1 Backend communication protocols and frameworks
The authentication enhancement project consists of 3 main part which are the front-end, mobile application

and the backend communication between the first two, which acts as a bridge to allow the frontend to know

when and if the user was successful in providing a check in his identity.

The main goal of this research is to discover what possible means of communication can be established, such as

RESTful APIs, Web Sockets, Microservices and more, to achieve the goal of the project.

The contribution of this research for Parantion is to improve the decision-making process on future services

projects that involve specialized backend protocols for a specific use case in a particular product. By investing in

research in this domain, Parantion can gain a competitive edge by optimizing its network communication,

enhancing data security, and improving overall system performance. Understanding and implementing robust

backend protocols can lead to faster response times, reduced latency, and increased scalability, all of which

contribute to a more seamless user experience. Additionally, staying abreast of the latest advancements in

backend protocols ensures that Parantion remains adaptable to evolving technological landscapes.

The main question for this research paper is:

What backend solutions would be the most efficient, secure, and maintainable for the data sharing and

communication between the front-end and mobile application?

To reach a concrete solution and conclusion a few sub questions have been established to support and provide

evidence for the main question and create a clear picture of every possible option that can be used for this

project.

• What types of backend communications exist?

• What are the advantages and disadvantages of the backend communications solutions?

• What is the expected user traffic of the products?

• What backend solutions can we use to send notifications to the user’s mobile phone application?

2.1.1 What types of backend communications exist?
A backend communication type is a method in which data and communication between the user and the server

is being achieved, a few of the most popular backend communication designs are:

2.1.1.1 Request-Response

The Request-Response pattern is a way of organizing the communication between a user and a server in which

the user sends a request to the server and the server responds with the requested data or performs the

requested action. (Kartik, 2023)

In this case the user initiates the communication by sending requests, that contains information about what the

user is requesting, data transfer or action to be performed, the server receives and processes the request and

8

returning either the requested data or message on the status of the action performed (successful or

unsuccessful). (Kartik, 2023)

This pattern is used in many different types of applications and is often implemented using the HTTP protocol.

(Kartik, 2023)

2.1.1.2 Push pattern

In the push design pattern for backend communications, data or notifications are pushed from a sender to a

receiver without the receiver having to request the data. This allows the backend to proactively send

information to clients or other systems, rather than waiting for them to request the data. (Kartik, 2023)

The push design pattern is a communication pattern that can be used in backend systems to send data or

notifications from the backend to clients or other systems. It is a way for the backend to push information to

receivers, rather than requiring the receivers to request the information.

The most common practices for the push pattern are in push notifications or in messaging applications, and

technologies like WebSocket and Server-Send-Events (SSE) are commonly used to implement such method of

communication. (Enyinna, 2023)

2.1.1.3 Short Polling

Short polling is a technique used in backend design where the client repeatedly sends requests to the server at

a fixed interval to check for updates or new data. The server responds with the current state of the data or with

any updates that have occurred since the last request. The interval at which the client sends requests is known

as the “polling interval” and is typically short, such as every few seconds. (Kartik, 2023)

The main difference between request-response and short polling is that the user sends periodic requests

regardless of whether there is new data available or not, these constant flows of requests give the appearance

of real-time updates.

2.1.1.4 Long Polling

Long polling is the same technique as short polling but instead of the client repeatedly sending request to the

server it send one request and waits for the server response on that request, the server holds the requests and

when updates or data arrives it sends the data, or in case the set timeout has been reached it will give a

response. (Kartik, 2023)

2.1.1.5 Server Sent Events

Server sent events (SSE) allows a server to push updates to a client in real time. In SSE the request is as simple

and same as other process, but the response of the server is large or a stream.

It is based on the concept of a long-lived HTTP connection between the client and server. This connection

remains open for as long as the client wants to receive updates and can be closed by either the client or the

server. (Kartik, 2023)

2.1.1.6 Publish Subscribe (Pub/Sub)

The publisher-subscriber model is a design pattern where a sender, known as the publisher, sends a message or

event to a messaging system, and one or more receivers, known as subscribers, receive and process that

message or event. The publisher and subscribers are decoupled from each other and communicate indirectly

through the messaging system. (Kartik, 2023)

The publisher doesn’t need to know how many subscribers are listening or who they are. Subscribers can come

and go dynamically without affecting the publisher.

This pattern is commonly used in event-driven systems, where the publisher sends an event, and the

subscribers are notified of the event as it happens. It allows for a flexible and scalable architecture, where new

subscribers can easily be added or removed without affecting the publisher or other subscribers. (Enyinna,

2023)

9

2.1.2 What are the advantages and disadvantages of the backend communications solutions?
The advantages and disadvantages of each backend communication protocol have been concluded from various

articles (Kartik, 2023) (Enyinna, 2023) (Pabian, 2021) during the research phase and drawn into a table to

visualize the pros and cons of each of the protocol.

Table 2-Advantages and Disadvantages backend communications protocols

Method Advantages Disadvantages

Request-Response • Simple data retriever,
server-side rendering,
API calls.

• Can handle large number
of requests.

• It ensures reliability as a
response is always
received.

• Error handling

• The user must wait for
the response before it
proceeds.

• Repetition and
inefficiency can occur.

• Delays

• No real-time
communication.

Push pattern • Real time updates

• Offloading the
responsibility of
requesting data from
users to the server.

• Reduce latency of
communication between
the server and users

• Control over what data is
sent.

• Dual communication
between the server and
client.

• Live and unique
connections.

• The level of complexity
for maintaining and
implementing a push
system is greater than a
request-response system.

• Reliability of push
notifications being
reached is not great as
the user can be offline.

• Performance overload of
the system as it is
constantly pushing data
on the network, it will
consume bandwidth and
CPU time.

• Security needs to be
enhanced as sensitive
data can be constantly
pushed on the network,
requiring additional
security measures to be
implemented.

Short polling • Easy to implement.

• Low latency

• Working in restricted
environments (behind
firewalls, low internet
connection).

• High server load, as the
server must process a
high number of requests
and responses.

• High network traffic

• Short pulling will
consume the battery of
the device as it is
constantly making
requests.

• Inefficiency by constantly
polling data from the
server that it might not
have or takes a long time
for the server to process.

10

Long polling • Small number of requests
and responses sent by
the user, decreasing
server load and network
traffic.

• Updates come faster as
the user only needs to
wait for the response.

• Working in restricted
environments (behind
firewalls, low internet
connection).

• Complexity in the server-
side operations, to
handle open requests.

• Management for timeout
requests

• Scalability is limited as
the server needs to keep
a connection open for
the user.

• Power consumption as it
drains battery to keep
the connection open on
the device.

Server Sent Events • Easy implementation.

• Low overhead as it only
sends updates as text or
JSON data.

• Efficient in sending data
as no new connections
need to be made for
each update.

• One way communication
as the user cannot send
data to the server

• One way of
communication as the
user cannot send data to
the server can be a
disadvantage.

• Limited data types, SSE
supports only text and
JSON data.

• Not suitable for duplex
communication.

Publish Subscribe (Pub/Sub) • The publisher and
subscribers do not have
direct knowledge of each
other in order to
communicate, offering
the possibility to update
parts of the system
without compromising it.

• It can handle a large
number of users as there
is no need to keep track
of them individually.

• Event-driven
architecture, the system
is suited for notifications
made by the publisher.

• As the publisher and
subscribers don’t need to
communicate it allows
the system to support
different types of
components than can
have a fast or slow
processing time.

• The complexity to
maintain and implement
is high.

• A message can take a
long time to be received
by the subscribers in case
there is a large number
of them.

• Additional load will be
put on the system as
messages need to be
sent and received by the
system.

• The integrity of the
messages in the system
can be tampered with or
intercepted while in
transit.

• Duplication or loss of
messages during
distribution.

2.1.3 What is the expected user traffic of the products?
The purpose of this question and the investigation in this area is to visualize the workload of a server that might

suffer if the authentication enhancement is online, this will help in the decision making of the protocol of

communication and how to make the most efficient back-end solution.

11

After conducting an interview with the company medium backend developer, Marcel van Eijk, I had the

opportunity to ask him questions regarding the company backend and user traffic load.

2.1.3.1 How many users are currently using the products?

 According to Mr. Eijk, the exact number of users currently registered in the system could not be provided

accurately, but an approximation is that it is in the thousands.

2.1.3.2 What is the peak number of access requests?

Usually, every hour there are thousands of access requests, he provided with a log file of every login access

request from the past 2 months (August, September) by date and hour.

The data tables with calculations on the number of requests each hour and each day in the data period

provided can be viewed on the next page.

After analyzing the data it can be clearly view that the highest number of access are during the academic year

and is lower during the summer/holiday period, as compared to the busiest Hour on August being noon 14:00,

4324 requests, to the busiest Hour on September in the morning at 11:00, 9106 requests, it is an increase of

110.58%, and the busiest Day on August being Tuesday, 10197 Requests, with the busiest Day on September

being also Tuesday, with 19705 it has an increase of 93.16%.

One of the most interesting aspects that can be viewed in the data table is that the majority of access requests

are happening during the day after 08 which corelates to the teaching hours in the average universities are

operating, decreasing to the towards the end of the day (17:00) and having another peak of access during the

evening after dinner time (19:00 -> 21:00), this can be due to students using the products to complete their

tasks/homework.

12

Table 3-Access requests analysis

Below are a few tables with the total number of access requests per hour and day for the months of August and September.

Hour/Month 00 01 02 03 04 05 06 07 08 09 10 11

08 1360 294 194 149 152 179 337 978 2490 3745 4103 4255

09 1814 401 283 282 279 335 781 2279 5644 7752 8645 9106

Growth% 33.38235 36.39456 45.87629 89.26174 83.55263 87.15084 131.7507 133.0266 126.6667 106.996 110.6995 114.0071

Hour/Month 12 13 14 15 16 17 18 19 20 21 22 23

08 3496 4083 4324 4015 3410 2025 1637 2633 2180 1974 1429 663

09 7153 8234 7153 7429 6539 4132 3742 8964 9094 7088 4125 1807

Growth% 104.6053 101.6654 65.42553 85.03113 91.75953 104.0494 128.5889 240.4482 317.156 259.0679 188.6634 172.549

Month/Day 08 09 Growth%

Monday 8166 18239 123.3529

Tuesday 10197 19705 93.24311

Wednesday 9270 18454 99.07228

Thursday 9913 19697 98.69868

Friday 5563 18482 232.2308

Saturday 3208 9792 205.2369

Sunday 3788 9408 148.3633

13

2.1.4 What backend solutions can we use to send notifications to the user’s mobile phone

application?
One of the features requested to be explored was the implementation of push notification for the mobile

application, which can help in adding additional features.

The notification system can send an authentication request to the user’s mobile phone without add

authenticate in a pop-up window (as how Microsoft authenticator works) without the need to open the

application, which would have been a great feature making the user using the application in one step.

2.1.4.1 How do notifications work under the hood?

The mobile application upon installation and receives permission from the user to receive notifications the app

registers with the respective platform's push notification service. This might be Firebase Cloud Messaging (FCM)

(Firebase, n.d.) for Android or Apple Push Notification Service (APNS) (Apple, n.d.) for iOS, as both are directly

connected to the device via Google play services and Apple push notification service.

Then through these services push notifications are sent to the users even if the app is closed, as being

registered to the underlying phone services you can send data to it even if the app is sleeping.

A few possible solutions in sending the mobile application notifications are:

2.1.4.2 Own and create a notification server.

This solution is the hardest and most difficult method to implement such features as it is necessary for the

server to have a connection through the main Android and Apple notifications services (FCM and APNs), which

is done through certificates contracts. (Apple, n.d.)

2.1.4.3 Subscribe to one of the services.

The most easy and reliable solution to ensure that the notifications are send correctly and efficiently is though

the paid services of FCM and APN, or any other 3rd party that are having the base on these 2 services such as:

• OneSignal (OneSignal, n.d.)

• Pusher (Pusher, n.d.)

• PushWoosh (PushWoosh, n.d.)

This method involves having a paid subscription to keep the notifications service up and running and depending

on the service it can either charge a monthly subscription or per request subscription.

14

2.2 Hybrid mobile development frameworks
The choice of having a mobile application for the authentication enhancement is to utilize the current mobile

phone features and sensors for fingerprint or/and face recognition checks that will help in having a secure

authentication into the company products. The usage of each user’s personal phone to access the products

either by using the biometrics sensors or just inputting a pin or one time password generated from the app,

access without permission or by other individuals other than the user with the correct credentials will not be

permitted.

A hybrid mobile application is the solution to accomplishing this task and it will allow the company complete

control over the development and features of the app.

By comprehensively exploring the diverse landscape of these frameworks, Parantion gains insights into the

distinct advantages and disadvantages associated with each, facilitating informed decision-making in mobile

app development. Evaluating the trade-offs in terms of development speed, cross-platform compatibility, and

user interface fidelity provides a nuanced perspective crucial for optimal resource allocation. Furthermore, a

focused investigation into the performance characteristics of these frameworks ensures that Parantion can

deliver high-quality mobile applications with optimal speed, responsiveness, and user experience.

The main question for this research paper is:

Which hybrid mobile development framework would be most suitable for this project involving features that

will support using the biometrics sensors of the phone?

The goal is to identify the most effective mobile development framework that can efficiently support the

development of a secure, user-friendly authentication system support for the front-end application. Factors

considered will include framework performance, ease of use, support for security features, cross-platform

capabilities, and community support.

From this goal we can extract the sub questions:

• What is a hybrid mobile framework and how does it function?

• What are the current hybrid mobile development frameworks?

• What are the advantages and disadvantages between a hybrid framework and a native framework?

• What is the performance of each hybrid framework and how effective they are?

• What is the performance of a PWA (Progressive Web Application) as a hybrid mobile app solution?

These sub questions will help in drawing a conclusion to the main question of this report then based on the

researched information draw a conclusion on the best hybrid framework for the project.

2.2.1 What is hybrid mobile development?
Hybrid app development in simple terms is building a single mobile application compatible with all mobile

platforms Android, IOS and Web using a single code base, compared to native app development where each

platform is written in specific platforms.

Before the appearance of hybrid frameworks, developers were having the choice of either mastering

development for IOS devices by learning Swift or Objective-C, and Kotlin or Java for Android devices, which

meant that companies had to spend twice as much time and resources for a single mobile application in order

for it to be delivered to the IOS and Android market. With the increased popularity of hybrid development, the

industry changed by having the possibility of releasing applications faster with fewer resources consumed,

many companies such as Google, Twitter, Instagram etc. have switched and are in the process of fully adopting

the hybrid development of their products, popular example of hybrid apps are Gmail, Uber and eBay.

By having a single code base the maintenance, update and the costs are reduced, keeping track of the

development is much easier and clearer as it can only be one development team working in the same rhythm

without having to rely on progress synchronization of both the IOS and Android teams in case of native

development.

15

2.2.2 What are the current hybrid mobile development frameworks?
In this research I will choose to present the 3 most popular hybrid development frameworks, as all of them

have an increasing popularity and have a strong community base which will provide sufficient data to analyze

and compare later.

2.2.2.1 Ionic

Ionic is a popular cross-platform mobile app development which allows the developers to create using a single

code base written in web technologies such as Vue, React and Angular, high-quality apps for mobile and

desktop, allowing developers to deploy the apps on the native platforms IOS and Android as well as Progressive

Web App for the web development, everything in a single code base with HTML, CSS and JavaScript as the

backbone of the framework. (ionic, n.d.)

Ionic focuses on the front-end UX and UI interaction of an app (UI controls, interactions, gestures, animations).

Ionic’s Capacitor is the main cross-platform native runtime that makes the Web application built in Ionic +

React/Vue/Angular run natively on IOS and Android using modern web tooling. Capacitor creates Web Native

apps and provides a consistent, web-focused set of APIs that enable an app to stay as close to web standards as

possible, while accessing rich native device features on platforms that support them. (Lynch, n.d.)

The community and support for Ionic’s Capacitor is rather small with a total of approximately 6.800 threads on

Stack Overflow, (Stackoverflow, n.d.) and about the same GitHub repositories (Github, n.d.), which is a

reflection that the community is not large and that much supported.

Ionic’s Capacitor can be used most often in MVC mobile applications, applications with a heavy backend

integration and light weight and fast applications and provides a set of APIs that allow the develop to access

native device features like the camera, accelerometer, and file system, and it is a fast and efficient development

framework, by using less memory which will make the app load faster and run smoothly.

According to “Appendix 1: Ionic development experience” the development challenges with Ionic, including

inefficient hot reloads, null safety issues in JavaScript, and compatibility issues with existing libraries,

underscore the need for careful consideration and potential workarounds in utilizing this framework for mobile

app development. (capacitor, n.d.)

2.2.2.2 Flutter

Flutter is an open-source framework by Google for building beautiful, natively compiled, multi-platform

applications from a single codebase, which combines a high-performance graphics engine with the dart

programming language, and compiles to the native machine code which results in fast processing and efficient

complex applications.

By using Dart, Flutter benefits from a type safe and static type checking development process which ensures

that a variable’s value always matches the variable’s static type, but also offering the flexibility of using the

dynamic type combined with runtime checks which can be useful during experimentation or for code that

needs to be especially dynamic, and by having the build-in null safety it will ensure that the Flutter application

will be protected from null exceptions at runtime, which error proofs the application. (Flutter, n.d.)

The developer experience when working with Flutter is very fast and smooth, as it provides fast incremental

compilation with stateful hot reload, which increases productivity and efficiency by not reloading the whole

application with every change but only focus on the specific parts.

As highlighted in “Appendix 2: Flutter community”, the flutter community is large and keeps growing offering a

lot of support for new developers with various examples and real-life applications.

Flutter is a growing framework with features and possibilities, the next step from hybrid development is

combining the possibility to have hybrid applications for IOS and Android as well as embedding the same

application into multiple technologies, the biggest example is Toyota developing the main entertainment and

infotainment systems using Flutter, the reasons being the high performance + AOT consistency, smartphone-tier

touch mechanics and developer ergonomics that Flutter provides. (Flutter, n.d.)

16

2.2.2.3 React native.

React Native is an open-source UI software framework created by Meta Platforms, Inc. It is used to develop

applications for Android, Android TV, iOS, macOS, tv OS, Web, Windows and UWP by enabling developers to use

the React framework along with native platform capabilities. (React Native, n.d.)

In the same case as Ionic, react native is based on JavaScript with the addition of its own components and APIs

for building mobile user interfaces, using a combination of both native code (written in Java, Objective-C or

Swift) with JavaScript to render on the device.

Because React uses a different approach when communicating between the JavaScript code and native modules

It uses a bridge that provides a better compilation between the JavaScript libraries and the native code of the

mobile operating system, which leads to better performance and flexibility.

The developer experience when working using React Native is fluid and similar to working on a web application,

having efficient fast reload with 90% of code being reusable across Android and IOS, with a lot of compatible

plugins with the device hardware components, and because of the high majority of developers familiar with

JavaScript it takes less time to learn and adapt to the framework.

The community of React Native is large and in 2nd place to Flutter as being one of the most popular choices of

hybrid development with approximately 168.000 threads on Stack Overflow and approximately 428.000

repositories on GitHub, and being maintained by the company Meta, it offers great support from the Meta

development community.

Some of the popular applications developed using React native are Facebook, Facebook messenger, outlook,

teams, discord etc. which proves that React native is great for large scale user applications that require a high

level of complexity. (React Native, n.d.)

2.2.3 What are the advantages and disadvantages between a hybrid framework and a native

framework?
When talking about what are the advantages and disadvantages between a hybrid framework and a native

framework, we must first set a few important categories that will highlight the performance of each framework.

Every mobile operating system (Android and IOS) is written in High-level programming languages such as Swift,

C, C++, Objective-C, Java and Kotlin. A high-level programming language is a programming language that can

communicate the closest with the hardware components of the device, this increasing the efficiency of each

computation that a program must do. (Grigalashvili, n.d.)

Native development is written using these high-level programming languages which offer the developer access

to every possible feature a mobile device has to offer, by having a direct means of communication with little to

no compilation of the written code.

Hybrid development is written in different kinds of programming languages which are not considered high-level

programming languages and require bridges and engines to compile the written code to native code. This

method highly influences the efficiency of the application as more computing power is necessary for accessing

certain features.

The categories that every company and developer is looking when presenting the choice of picking a mobile

development framework are performance, UI/UX, audience, security, costs, and time, which can be further read

on “Appendix 10: hybrid vs native performance”.

To summarize and reach a conclusion for this sub-question, choosing between a hybrid framework and a native

framework highly depends on the company needs, time and finance are a key aspect of any business which

highly influences the decision making. Hybrid frameworks are constantly improving are getting closer to native

performance, allowing a single code base allows the developers to better keep track of the progress, versions

and updates of the application which is a disadvantage for native development where every aspect of business

and development must be doubled.

17

Native keeps up by allowing easier access to native elements of the devices and a higher security aspect of

storing and working with sensitive data.

2.2.4 What is the performance of each hybrid framework and how effective they are?
The relevance of this sub-question is to highlight through extensive research the best hybrid framework in

terms of performance as computing power and efficiency, this will support in the decision-making process of

choosing the proper hybrid framework for the needs of the assignment.

During the research I encountered the research article “An empirical investigation of performance overhead in

cross-platform mobile development frameworks” by Biørn-Hansen, A., Rieger, C., Grønli, TM., highlighting

different benchmarks test of 5 different hybrid mobile frameworks (Ionic 3.9.2, React Native 0.53.2, Native

Script 3.4.1, Flutter 0.5.1 MAML/MD2 2.0.0) and a Native framework.

According to the “Appendix 4: The results of the benchmark tests” it is concluded that the experiment unveiled

distinct performance characteristics of various frameworks under different workloads. Flutter and Native Script

emerged as top performers in terms of time-to-completion, showcasing efficiency in executing tasks. Ionic,

although competitive in certain aspects, demonstrated potential delays in specific operations, raising concerns

about its performance, especially in fetching geolocation data. In terms of CPU load, Flutter outperformed Ionic

and React Native, emphasizing its effectiveness in handling computational tasks. Memory consumption results

indicated that Flutter maintained consistently low usage, while React Native's lower results were attributed to

alternative module implementations. In contrast, Ionic exhibited the highest memory consumption. These

findings underscore the importance of considering specific performance metrics and workloads when selecting

a mobile development framework, with Flutter and Native Script presenting strong contenders for optimal

performance across various scenarios.

In the article published by Ihor Demedyuk and Naazr Tsybulskyi with the title “Flutter vs Native vs React-Native

Examining performance” it is showcased how Flutter, React-Native and Native frameworks are performing

under high CPU intensive tests using 2 computing algorithms.

Based on the results from the “Appendix 5: Flutter vs Native vs React-Native performance results” Flutter

performance is very close to native performance and React-Native not coming even close to the values resulted

from the Flutter tests.

2.2.5 What is the performance of a PWA (Progressive Web Application) as a hybrid mobile app

solution?
A progressive web app (PWA) is an app that's built using web platform technologies, but that provides a user

experience like that of a platform-specific app. Like a website, a PWA can run on multiple platforms and devices

from a single codebase. Like a platform-specific app, it can be installed on the device, can operate while offline

and in the background, and can integrate with the device and with other installed apps.

The relevance of this question is to investigate the possibility of Parantion using a PWA as a mobile solution for

this assignment and future products, how secure, efficient and what applicable use cases are the most

beneficial.

Concluding from the “Appendix 11: PWA advantages and disadvantages” the PWA has its advantages and

disadvantages based on the requirements of the use case, it is a new technology that is rapidly developing into

more flexible and secure option for mobile development without the need for installation through an app store,

offering a great solution for simple in terms of functionality of applications.

18

2.2.6 Prototypes experience
To further expand my research into the most suitable hybrid mobile framework I am going to develop 4 small

prototypes that will highlight the same function which will be a simple login page using the company API for

authentication, as it would be for the final product and a main page where I can test the devices features:

• Fingerprint

• Face recognition and fingerprint sensors

• Camera.

Compare the development experience, how much time did it took to achieve the settled goal, how much

support did I receive from the documentation and community, how intuitive is working in the specific

framework and how well structured, error proof and efficient is to implement new features to each of them and

write my evaluation for each of them.

Each framework provided a good insight into the development experience, challenges and difficulties, what are

the benefits and what each framework lacks, and to draw a conclusion from “Appendix 6: Hybrid development

experience and PWA” Flutter scored the best as it was the easiest framework to work with and offered a great

variety of options to achieving the functionality set for this experiment, followed by React-Native and Ionic. The

PWA proved to not be a great choice of mobile solution as it did not meet the goals specified for this

experiment.

2.2.7 Evaluation and Comparison
Based on the presented evidence, it can be drawn out the ranking from best to worst hybrid framework to use

as the date of this research paper.

The rankings on the table below are from 1 to 3, 1 being the lowest score and 3 being the highest score.

Table 4-Evaluation hybrid frameworks

Framework Native
performance

Development
process

Accessibility Community Error proofing

Flutter 3 2 3 3 3

React Native 2 3 3 3 2

Ionic
Capacitor

2 1 2 1 1

Flutter during this research proved to be the most interesting framework to work with as it is written in a high-

level programming language. It offers the most error-proving development experience. The widget-based

structure where the more you make each individual custom widget a separate file the better and more easily

readable the code is. The only downsize in Flutter is its biggest advantage which is the how meticulous the

developer must be when contributing to the project, which for large projects will benefit as multiple developers

can work on multiple parts of the project without frequent intersections.

React Native is an interesting approach to native development as if a developer is familiar with front-end

development, mainly JavaScript, with CSS elements it will easily create and implement features and native

designs in a short amount of time. The biggest downside of React Native is that JavaScript, not being a high-end

programming language, is not able to communicate efficiently with the native components of a phone which

will greatly influence the performance of the applications. It is a great choice for small and medium

applications, that do not require advanced features to be implemented.

Ionic capacitor framework proved to be the lowest scoring hybrid framework due to the development

experience and lack of in-depth documentation, especially for the installation and development process. The

only good option was the usage of the plugin capacitor with the Quasar framework, but it limits the easily

implemented native design of the components as it requires the developer to design each component

19

according to the native standards. As in the same case of React native being a framework and not

communicating efficiently with the native components it has a great impact of the performance of the

application. As Quasar having support for capacitor and offering Vue project the possibility to be transformed

into mobile apps it offers for the company a big advantage as the main development framework for

components and design for the company products are made using quasar with Vue.

Progressive Web Applications are an interesting technology, that can be used for simple applications that do not

require the usage of advanced native features.

20

2.3 Methods of authentication
For this assignment I was tasked to implement a few methods of password less authentication into the

Parantion products, the purpose of this research is to highlight the most popular, secure, efficient and common

methods of authentication with and without the support of a mobile application.

For this assignment, one of the requirement methods of authentication to be research and implemented was

the password less method of authentication using the laptop Windows Hello (PIN or fingerprint sensor of the

laptop), for this reason a part of this research will be cover this requirement as it also supports the overall goal

of the research.

The purpose of this research is to analyze and offer Parantion a variety of opportunities that can be developed

for the goal of this assignment, this research can enhance security, improve user convenience, reduce

password-related issues, ensure regulatory compliance, adapt to mobile usage, prevent fraud, provide a

competitive advantage, and future-proof a company's authentication strategy, which are all a great benefit for

Parantion.

The main research question for this topic is:

What password less methods of authentication can be used with or without a mobile application as a

support?

From this main research question, I extracted the following sub-questions that can help support and give a

concrete answer to the main research question.

• How can WebAuthn be used as a password less authentication method?

• What are the most common methods of password less authentication?

• How can a mobile application enhance the password less authentication process?

These sub-questions will guide into achieving the best methods of authentication to be developed for this

assignment.

2.3.1 How can WebAuthn be used as a password less authentication method?
The Web Authentication API (WebAuthn) is a specification developed by the World Wide Web Consortium

(W3C) and Fast Identity Online (FIDO) Alliance, with participation of Google, Mozilla, Microsoft, Yubico, and

more. The API allows the servers to register and authenticate users using a public key cryptography instead of

password, using strong authentication technologies that are built into devices such as Windows Hello, Apple’s

Tauch ID. (WebAuthn, n.d.)

Public key cryptography also known as asymmetric cryptography was invented in the 1970s and was a solution

for the problem of shared secrets being a pillar of modern internet security, using the concept of keypair, a

private key that is stored securely with the user and a public key that can be shared with the server, these pairs

are generated with cryptographic algorithms based on mathematical problems termed one-way functions.

(WebAuthn, n.d.) (Wikipedia, n.d.)

Figure 1-Key encryption flow

The figure above is a demonstration of how a public and private key pair is used to encrypt and decrypt data.

For example, in a communication between 2 Users, User 1 has the public key of User 2, he can encrypt the data

21

using that key that only the private key of User 1 can decrypt it, without the private key the data cannot be

decrypted, User 2 using his private key decrypts the data and can visualize it.

In the case of WebAuthn, the public key of the user is stored on the server and used for the validation of a

signed challenge by the private key upon the authentication process. (World Wide Web Consortium, n.d.)

The public key is not a secret in case of WebAuthn, because without the corresponding private key, it becomes

useless and this implying a high security measure as the private key is never shared and securely stored on the

user’s device, leading to hackers and other malicious individuals not interested in databases storing public keys

of users. (WebAuthn, n.d.)

During this research, I conducted a small prototype of how the WebAuthn can be implemented and used and

was impressed by the large number of available solutions in different platforms and languages such as Ruby,

Python, .NET, Java and much more (WebAuthn, n.d.) (World Wide Web Consortium, n.d.), and libraries that can

support the proper validation of the signed data of the private key using the public key.

The prototype proven to be successful and very effective, achieving the goal of having a password less

authentication process using the WebAuthn API, and providing the evidence that using WebAuthn for a method

of password less authentication is a great option and be included in the development roadmap.

2.4 What are the most common methods of password less authentication?
When thinking about a password less authentication, one of the most common practices are through either

email verification or the usage of a mobile application, a password less authentication works by using

something that the user is in possession of or something that the user “is” to verify their identity and allow the

system to properly give them access to the piece of software or application. (Magnusson, 2023)

The reason for investigating this research sub-question is to aid the decision-making process when establishing

the methods of authentication that will be developed for this project. Parantion will benefit from this research

through having an analysis on what are the most popular and common methods of authentication that might

be implemented in future projects.

A traditional authentication method that requires only username and password are highly vulnerable as

attackers can steal or even guess the access credentials to sensitive information and IT systems using a variety

of hacking techniques. (Cyberark Glossary, n.d.).

Password less authentication strengthens security by eliminating risky password management practices and

reducing attack vectors and improves the user experience by reducing the steps to authenticate the password

and secrets fatigue, removing the need of remembering passwords, secrets and security questions answers.

(Cyberark Glossary, n.d.)

A few popular methods of authentication are:

2.4.1 FIDO2 keys
There are 2 different types of FIDO keys authentication, one physical through a special device such as an USB,

and a digital solution which relies on platform authenticators using the built-in security features of the devices

such as laptops or smartphones. (Magnusson, 2023)

The first type of FIDO key authentication is through a USB device that can be plugged into the computer to

allow the user to successfully provide his authorization to authenticate.

The second type of FIDO key authentication is using build-in authenticators such as Windows Hello, Mac OS

TouchID on platforms such as Firefox, Microsoft Edge, Google Chrome and Apple Safari, this option in some

cases supports the usage of a physical FIDO key, discussed earlier, to allow the user to authenticate, this offering

more variety for the user to authenticate. (Cyberark Glossary, n.d.)

22

2.4.2 Software tokens
Software tokens are digital tokens sent to the user’s smartphone, computer or tablet and consist of a one-time

password which must be entered to provide the authentication. This method relies on a shared secret key and

support OATH event based (HOTP) and time-based (TOTP) algorithms. (Magnusson, 2023)

Software tokens are usually used on two-factor authentication systems, and because the secret key for the

generation of the software token is stored on the device, the risk of unwanted interception by a hacker or virus

corruption can become a security risk. (Wikipedia, n.d.)

This method is usually used in combination with the username and password for an increase of security of the

account.

2.4.3 Phone call / SMS
A method of authentication can be used through the usage of a phone call or SMS that can give the user a one-

time password (OTP) or access approval links to the registered mobile number on the account.

The security risk associated with this method are lost phone case scenario or change of numbers.

2.4.4 Email OTP
Email one-time password (OTP) allows the user to receive a one-time password via the registered email address

to complete in most cases a secondary authentication process. (Cyberark Glossary, n.d.)

This method should be used for extra authentication checks and not rely on solely email verification as it can

create security risks and vulnerabilities associated with either email lost, changes or hacking.

2.5 How can a mobile application enhance the password less authentication process?
One of the most popular methods of authentication is through a mobile application authorization which offers

the user a variety of options to use to successfully prove his identity and allow for a successful authentication.

A mobile application can support a few methods that can prove the identity of the user.

2.5.1 Biometrics check
This method of verification is through the usage of the built-in smartphone or tablet fingerprint, face or voice

recognition, or retina scanning.

This method of verification can be found in popular mobile applications that rely heavily on keeping the security

of the user as high as possible, such as mobile banking applications, authenticator applications (Microsoft

Authenticator, Google Authenticator etc.), deducting that this method of providing a identify check to allow the

authorization of the user is secure and efficient.

2.5.2 QR code scanning
By allowing the user to simply scan a unique QR code on the screen through a mobile application, it enhances

the user experience and makes the authorization process much faster compared to a traditional username and

password authentication process.

QR code scanning for login purposes is getting increasingly popular among software applications and websites,

platforms like Steam or Discord allow the users to simply scan a QR code to login without relying on having to

input the username and password, and just through one registered device on the user account to grand him

access anywhere anytime using this method.

2.5.3 OTP generation
One-time password (OTP) generation can be implemented and used in a mobile application, a popular example

of this functionality is Google Authenticator, which allows the user to provide an extra authentication check or

in some system allowing the user to input the generated password as his password for authentication.

These 3 methods of authentication can enhance the user authentication experience and allow more secure and

easy access to software products as it provides a high security solution.

23

2.6 Conclusion and decisions
To conclude the research “Which hybrid mobile development framework would be most suitable for this

project involving features that will support using the biometrics sensors of the phone?” chapter, based on the

evidence presented and discussed the best framework to choose for this project will be Flutter as it offers the

best performance and native functionality, with great security and high scoring performance. Flutter can be

used for complex and applications as performing the closes to the native development frameworks, having a

great and large community with a lot of support developed and supported by one of the most professional

company of developers, Google, it has the best potential for future hybrid development.

A conclusion to the “Backend communication protocols and frameworks” research, each communication

protocol has its own advantages and disadvantages and there is no universal fit for every project as it highly

depends on the use case and what is the final goal of an application. For this graduation project according to

the research using a Push Pattern protocol for communication between the server and the client will offer the

best solution as it offers several advantages over the traditional HTTP-based communication such as live-

communication and updates from the server, this protocol is highly used in technologies such as Web Sockets

and RabbitMQ (Enyinna, 2023) (Kartik, 2023) drawing from here and the familiarity of both the company

development team and me as a developer the Web Socket would be a great choice for the development of a

live communication backend between the front-end and back-end.

The conclusion of the “What password less methods of authentication can be used with or without a mobile

application as a support?” research is that there are a variety of options to choose on what method of

authentication would be best for a better validation of identity of the user, to comply and achieve the

requirements of the assignment WebAuthn API would be used as a method of authentication as it proven

based on the research that it is a possibility and can be achieved in the time frame of the assignment, as well as

QR code login and Biometrics check authentication using a mobile application would be the most efficient,

offering the user an enhanced user experience which is the one of the goals of the assignment.

These research materials conducted for the project answer the main question, offering a concrete and stabile

system, frameworks and the best methods to implement for the best user experiences. Allowing the users to

choose between a mobile support as authentication and the own device authentication platform using the

WebAuthn API, will allow a variety of options that will fit or be the most familiar for the users.

24

3 Process
Table 5-Timetable with competences

Week
Date

1.1
04.09
08.09

1.2
11.09
15.09

1.3
18.09
22.09

1.4
25.09
29.09

1.5
02.10
06.10

1.6
09.10
13.10

1.7
16.10
20.10

Holiday
23.10
27.10

1.8
30.10
03.11

1.9
06.11
10.11

1.10
13.11
17.11

2.1
20.11
24.11

2.2
27.11
01.12

2.3
04.12
08.12

2.4
11.12
15.12

2.5
18.12
22.12

Holiday
25.12
29.12

Holiday
01.01
05.01

2.6
08.01
12.01

2.7
15.01
19.01

2.8
22.01
26.01

2.9
29.01
02.02

2.10
05.02
09.02

Research
&
Analyze

Design

Realize

Deliver

The roadmap above showcases the established course of development split into the 3 main HBO-ICT competences chosen, Analyze, Design and Realization, as well as a

delivery phase where documentation, necessary graduation documents and forms to be filled and overall quality assurance proof for the company.

During this period, me and my company supervisor conducted stand-up meetings from Tuesday to Friday from 9:00 to 9:15, and at the end of the week, each Friday from

10:00 to 11:00 a progress meeting to check what has been done, what needs to be completed, and the overview of the goals and roadmap, if everything is on course or

there are any problems. The realization part of this project consisted of sprints of 2 weeks, starting on a Monday and ending on a Friday, the sprints kept track of the

development progress and through issues, stand-up and progress meetings, with a beginning sprint 0 of 1 week which establishes the grounds for the next sprints such as

the code base project (front-end, back-end and mobile), and making the transition from design to product.

25

Table 6-Sprints time table

Sprint 0 1 2 3 4 5

Dates 13.11 -17.12 20.11 -1.12 4.12 - 15.12 18.12 - 29.12 1.01 – 12.01 15.01-26.01

Preparations

Laptop fingerprint / Pin
authentication

QR code login

Biometrics login

Testing and quality
assurance

Documentation

Above is a table highlighting the main development points based on the three main requirements of the project.

Drawing from the “Appendix 7: Backlog and changes” the biggest changes of the project was the initial idea of creating the necessary API endpoints for the WebAuthn API

(Windows Hello / Laptop Fingerprint) method of authentication in a Symfony project but due to version compatibility it was no longer possible to achieve this goal and

choose to implement these API endpoints in the Node JS Express back-end.

During this assignment, advice on back-end challenges and other backend related topics have been given by the back-end employee Randy Groot Roessink, and UI/UX

design with the feedback from the company UI/UX designer, Jericho Thijssen, which both guided me into the right though direction without giving a straight answer, which

benefited in the end results of the project, these advices can be better visualized in the “Appendix 7: Backlog and changes”.

For this assignment I managed my code in a company provided repository supported by JetBrains Space environment which is similar to GitHub or GitLab, as it is also

structured in issues and sprints, each update and commit to the repository was named after the issue that I was working on having a reference or each issue to the

corresponding commit. This way it improved the management of the backlog items that I completed or changed, enhancing my productivity and code structure. The

repository for the system parts was split into three sub folders, each holding the code for the front-end, back-end and mobile application. This structure allowing me to

better coordinate and manage the product during the development. The coding of the project is following the default coding standards of JavaScript for the front-end and

back-end with the additional Vue and Quasar coding and structuring standards to fit the company already written code, the same for the mobile application according to the

framework and language standards. More detailed backlog and issues information can be viewed in the “Appendix 12: Backlog and issues”.

26

4 Quality assurance
For this project I established five fields of testing proving that the code quality, functionality of the applications

and system are working according to the goals set.

As of now testing is still in progress and is expected to be finished by the end of the final submission of the

report.

4.1 Unit testing
Unit testing will provide the grade quality of the written code of the system, testing the main functionality

under different circumstances and scenarios, and making sure that there are no potential security issues or

bugs, by isolating the system into distinct parts.

4.2 Regression testing
Regression testing is a testing technique that involves retesting a software application to ensure that new

changes or modifications after bug fixes or updates have not affected the existing functionality of the

applications and system overall, the main goal of the regression testing is to identify unintended changes and

side effects as a result of the project being updated.

Regression testing will be done through manual tasks listed below, each task will have the goal of ensuring that

the main requirements and functionality of the system are still fully operational, through regression testing the

quality of the system will pe provided as if every test is successful without any remarks, it will indicate that the

quality of the system is high and tested.

These tests can be further investigated on “Appendix 9: Regression tests” which highlight the name of the test,

description and steps needed to be taken to successfully complete the test.

4.3 Widget testing
Widget testing will be done on the mobile application to test the individual components of the application such

as buttons and functions.

4.4 Linting
To provide proof that the mobile application code quality is good and up to the standards I am using the

command-line tool provide by the Flutter SDK that performs static code analysis on the Flutter project “flutter

analyse”, with this command it will be easy to identify and report code issues through errors, warnings,

suggestions and style inconsistencies to confirm that the written code is in conformity with the Flutter Dart

code standards.

Based on the “Appendix 8: Linting criteria for Flutter” it can be proven that using this method of code quality

testing will ensure that the code base of the Flutter project covers and meets all the coding standards of the

framework, allowing for a more readable, performance increasement and consistency.

4.5 Android and iOS testing.
To test and ensure that the hybrid mobile application works according to the project goals, a series of test on

various emulators and physical devices will be conducted. iOS will be tested on a MacBook provided by the

company with iPhone emulators, the Android testing will be done on a few Android Emulators provided by

Android Studio which simulates a real device, these tests will cover various operating systems versions and sizes

to verify the UI/UX responsiveness and speed, as well as on a Samsung S21+ physical device that will handle the

testing for the biometrics checks feature.

27

5 Requirements
The lists below are the functional and non-functional requirements established for the project.

• RQ – Requirement

• F – Functional

• NF- Non-functional

• B – Business

• U – User

• S - System

5.1 Functional requirements
Table 7-Functional requirements

Number Description MoSCoW

RQ-F1 The login component design must be approved by the UI/UX designer. Must

RQ-F2 The user must be able to login with the username and password. Must

RQ-F3 The login component must log in the user. Must

RQ-F4 The login component must offer multiple ways to log in. Must

RQ-F5 The mobile application must be accessible for both IOS and Android Must

RQ-F6 The mobile application should provide notification and sensational feedback on
events through the phone’s sensors.

Should

RQ-F6 The mobile application design must be approved by the UI/UX designer. Must

RQ-F7 The login component must offer an option to select the preferred authentication
method

Must

RQ-F8 The login component must offer the option to use the laptop fingerprint/touch id
or Windows hello pin code as authentication option.

Must

RQ-F9 The login component must offer an option to register multiple devices under the
same account.

Must

RQ-F10 The mobile application could provide 2FA codes Could

5.2 Non-Functional requirements
Table 8-Non-Functional requirements

Number Description MoSCoW

RQ-NF-B1 The mobile application must comply to the guidelines and requirements of the
app stores.

Must

RQ-NF-U1 The user must be able to complete the authentication checks in maximum three
steps.

Must

RQ-NF-U2 The user must be able to select a preferred method to authenticate Must

RQ-NF-U3 The user must be able to change his preferred method of authentication. Must

RQ-NF-S1 The UI/UX must be responsive for various devices. Must

RQ-NF-S2 The mobile application must support multiple languages and must include
support English and Dutch.

Must

RQ-NF-S3 The data transmission must be encrypted and secured over HTTPS Must

RQ-NF-S4 The data stored must be encrypted. Must

RQ-NF-S5 The login component must require authentication methods based on the user
role.

Must

RQ-NF-S6 The login component must support the option to log in using the laptop touch id
or fingerprint sensor.

Must

RQ-NF-S7 The mobile application must provide code input for login. Must

RQ-NF-S8 The backend must handle encryption and decryption of data. Must

RQ-NF-S9 The database must store encrypted data Must

RQ-NF-S10 The mobile application must support code authentication Must

RQ-NF-S11 The mobile application must support biometrics authentication Must

28

RQ-NF-S12 The login component must support using the laptop Windows Hello or Touch
id/Pin code.

Must

RQ-NF-S13 The login component must have a fallback option in case the new backend
methods are not functioning.

Must

RQ-NF-S14 The mobile application must support QR code login Must

RQ-NF-S15 The mobile application must inform the user if the device can support or not
any of the methods of authentication (QR code login or Biometrics check).

Must

RQ-NF-S16 The back end must send email code verification Must

RQ-NF-S17 The WebSocket must handle connection interruptions and reset the registration
session of the user.

Must

RQ-NF-S18 The login component could offer the registration of the account to multiple
mobile applications.

Could

RQ-NF-S19 The back end could handle multiple linked mobile application to the same
account

Could

RQ-NF-S20 The mobile application could support 2FA code generation Could

In the table above it can be viewed the functional and non-functional requirements of established for this

project, the requirements marked in GREEN are completed requirements, the YELLOW are still in progress as

of the writing of this report, and the RED requirements have not been yet completed and can be moved to

recommendations for future development.

29

6 Product
In this section I am going to detail the process of how the product has been build, decision, design evolution,

and changes along the development.

6.1 Design
For this project 1/3 of the product is categorized as brownfield as the login component is already a working and

fully functional part of the company product and my assignment is to enhance it and add improvements and

new features along with 2/3 of the project categorized as greenfield which are the newly backend

implementation for the to be developed features and a hybrid mobile application which the company currently

does not have one.

This allowing me to offer the company through this project the base of a mobile application in Flutter that can

be further used in other projects or plans of the company

Figure 2-System components diagram

In the diagram above it can be viewed an overview of the system components and architecture.

The Login component (Front-end) will make the authentication and registration requests, as the back end

receives the data it stores it into the database to later be used upon the authentication process to fetch the

user access information from the company back-end API. The mobile application has the role of validating the

access requests, and the backend will grand de access to the user based on the received data from the mobile

application and stored data in the database.

The UI design of the mobile application and login component changes would fit the newly rebranding of the

company to the specific colours and fonts.

6.1.1 Front-end
To clarify about the brownfield part of the project, the login component is a component written in Vue 3.0.0,

and servers as the interface where the users can login into the company products with their username and

password.

For this project I was given the latest version of the login component to work on and have my separate

repository where I can modify it and test it to prevent any override of the current live environment of this

component until the project is proven to be successful and fully tested.

The login component first modifications have been when the development of the first method of authentication

has been done which is the Windows Hello / Fingerprint usage to allow the user to password less authenticate.

30

These modifications have been decided through some design improvements as to offer the user to initially

select which method of authentication would like to register.

Figure 3-Front-end design

In the picture above you can view the design changes of the login component after the user logged in, but it

does not have a registered password less method of authentication.

The three methods of authentication have been chosen based on the requirements of the company and the

results from the conducted research.

6.1.2 Back-end
In the beginning of development of this project the back-end application would serve as additional endpoints

for verification, these endpoints were initially decided to be built in a simple Symfony project, Symfony being

the company’s main backend framework and by integrating the necessary changes into a compatible back-end

project as the main backend framework it would ease the transition of integrating the features and changes for

production.

Unfortunately in the beginning of the development, in sprint 1, this decision has been revoked due to version

compatibility, the company Symfony version is not compatible and does not support the latest verifications and

validations of the Windows hello / Fingerprint method as it based on FIDO validations and configurations, FIDO

being the core library that supports the validation of authentication and registration through Windows hello,

which I will dive into details later in this paper.

This change made the movement to the second option of back-end framework which is NodeJS Express, this

framework is very familiar and commonly used for small tasks around the company called services and due to

the complexity of this project we decided that it would be the best option to keep it as a service backend.

The back-end features the main API endpoints for registration, authentication and validation of the users

credentials through for the Web Authentication API (FIDO validation), and a because of the analysis and

conclusions drawn from the “Backend communication protocols and frameworks” research, a WebSocket

service is used to handle the communication and validations of the users sessions when authenticating with the

mobile application, as it provides live communication, secure channels and unique session identifiers.

The back end features an email verification function, which allows for a simple Gmail account used for the

purpose of increasing the security and have a more valid proof of the identity of the user during the registration

process.

The email verification was thought to be implemented after a security risk was discovered during the

registration process which was if two persons are doing the same registration process under the same

31

username and database the back end will have to know which active registration session needs to save the

registered device data.

A possible solution for this problem was to allow only one session per username and password to be active and

if another person tries to create a similar session it will automatically be closed, this idea was not implemented

as it can fall in the unlikely scenario of what if the 2nd user that tries to do the registration process is the actual

owner.

6.1.3 Mobile application

The mobile application has been built in a hybrid development framework, Flutter, as based on the research

conducted in the beginning of the project proved to be the most efficient, fast, error-proof and as close as

possible to a native application, serving the access to numerous native features that can be used in the future.

After the research phase has ended and the development phase was approaching, a decision was made

between 2 paths of development frameworks for the mobile application, one of them being the usage of

Progressive Web Application (PWA) which offers the users the ability to add to their home page of the phone

the application to use for the authentication and registration processes without any installation processes or

the need of an app store to host the application which sounded great as it turned down cost of production,

hosting and it would have been more time efficient, as a PWA is in essence a Web Application that can access

some of the mobile phone native features. And the other path was the usage of a secure hybrid framework.

The reasons the PWA was not chosen was due to security risks and limitations of native features, as it is

impossible to store sensitive data on the user device, because being a JavaScript based application it does not

have access to the phone internal storage where data can be safely secured, compared to the hybrid

frameworks where they offer this possibility each of them with a grade of safety, Flutter, scoring the best in this

field.

The design of the mobile application has gone through some changes reflecting the feedback of the company

UI/UX designer, as I was trying to make the application UI look and feel according to the company theme and

new UI colours and shapes as currently is undergoing a branding transition, and would greatly benefit if the

mobile application is keeping up with these updates.

Figure 4-Mobile app initial design

The initial design would feature a slider to choose between the two different method of authentication, QR

scan login and biometrics check, along with a drawer to view the current registered account, and a possibility to

change the language.

I chose this design of the drawer to have room for a feature of this system to handle multiple accounts with the

same device and be showcased as a list of accounts.

32

Initially the camera for QR code scanning would occupy the space of the square as seen in the picture above,

but later changed to a larger view occupying two-thirds of the screen leaving room only for the slider and top

bar.

During the development of the 3rd method of authentication, the biometrics check, I discovered a security issue

that compared with the QR scan login method, after the validation of the biometrics it is impossible to know

which session to approve the login as there might be the very low change of 2 people trying to login under the

same username at the same time.

And initially implement a chose between 3 numbers to validate which session is the actual owner of the acount.

Figure 5-Numbers choice validation.

Figure 6-Number input validation

But because there might be the very unlikely scenario of having more than three active sessions under the

same username I implemented to check if there are more than one session active to force the user to input the

displayed number.

The logic and reasons of implementation would be discussed in the next section of this report.

6.1.4 Database
The database choice of this project was the most efficient and straight forward decision as it is the same

database framework, MariaDB, as the main company database framework, being a very popular choice among

the developers being open sources, featuring great security features and being high available and scalable,

being an SQL based relational database management system, is a standard language to use for managing and

manipulating relational databases, making it compatible to a wide range of applications and tools.

33

Figure 7-Database diagram

As it can be viewed in the diagram above, for this project I store the user credentials (username, password and

database) to use when authenticating using the company API to fetch an access token and the necessary

information for the user to login into the products. Each user can have a registered device which holds a unique

device id a server generated unique id and the device name. Each user WebAuthn credentials are stored in the

“webauthncredential” table which contains the public key of the user credential_id and handle to be used in

the authentication process for validation.

6.2 Implementation
In this section I am going to dive into the details of implementation of each of the section of the project.

During the development of this project, I provided the company with good results during the design and

research phases of the project, that I had the opportunity to allow the further development of the WebAuthn

method of authentication using the laptop fingerprint sensor through Windows Hello, the company upgraded

my working laptop to a newer model featuring a fingerprint sensor, this upgrade allowed me to increase my

development speed and testing of the newly implemented features.

6.2.1 Method of authentication
For this project I implemented three methods of authentication without the necessity of a password. To

enhance the user experience and a allow a more secure and fast login process.

6.2.1.1 Windows Hello / Fingerprint login

During the setup of this project one of the established features was to implement the WebAuthn process into a

backend developed in the same framework as the main company backend, Symfony, but due to version

compatibility of the library for which registered and validates the authentication process, would no longer be

possible to fully implement this method into a Symfony framework backend.

The reason for this drop of implementation was due to several reasons such as older versions of this library no

longer being supported which will create compatibility risks in case of updates to the backend framework in the

future as well as provide instability and bugs which can be detrimental to the project, as a new version of this

framework might cause dependencies issues leading to a complex cascade of changes, avoiding this can simplify

project management and reduce the risk of introducing new issues. One of the goals of this project being to

offer the company an easy to implement the desired functionality.

Due to this reason and the lack of proper documentation and support for the older versions, the learning curve

turned to be difficult which is another reason to support this decision.

WebAuthn defines an API enabling the creation and use of strong, attested, scoped, public key-based

credentials by web applications, for the purpose of strongly authenticating users.

WebAuthn, or Web Authentication, is a web standard published by the World Wide Web Consortium (W3C) in

alliance with the FIDO Alliance. It represents a significant leap forward in online security, offering a more secure

and convenient alternative to traditional password-based authentication methods. Here is a brief introduction

to how WebAuthn works and its key component.

34

6.2.1.1.1 The registration process.

After the user has successfully submitted his username, a registration check would be made and if the user is not registered with a method of authentication, the password

would be asked from the user and if the password is valid, it would be forwarded to a menu to select a method of authentication. The diagram above describes the process

of registration using the WebAuthn method.

1. The user requests the initialization parameters from the backend.

2. The backend response with the attestation options for the FIDO verification later + a generated unique Challenge and credential ID,

3. The login component requests the authenticator, in this case the Windows Hello authenticator to generate a unique public and private key pair.

4. The authenticator asks the user to make and identity check (PIN, Biometrics)

5. The authenticator responds to the login component with the generated public key, signature and generated challenge and credential id from the server.

6. The login component forwards the received credentials and requests the backend to register these credentials with the user credentials (username, database and

password).

7. The backend validates the received credentials from the authenticator.

8. The backend saves the received credentials to the database to later be user in the authentication process.

Figure 8-WebAuthn registration flow

35

6.2.1.1.2 The authentication process.

After the user has successfully submitted his username, a registration check would be made and if the user is registered with a method of authentication and be forwarded

to the method of authentication registered. The diagram above describes the process of authentication using the WebAuthn method.

1. The login component requests server initialization parameters.

2. The server retrieves the stored credential id of the user.

3. The server responds with the credential id of the username, a generated challenge and domain information.

4. The login component requests the authenticator to validate the received domain information and credential id.

5. The authenticator validates the received data and asks for user consent.

6. Send the generated signature and challenge.

7. Forward the signature and challenge to the backend.

8. Retrieve the user credentials.

9. Validates the received credentials with the stored ones and compares them.

10. Request the access token and information with username and password from the company backend.

11. Receives the user data.

12. Forwards the user access data to the login component.

Figure 9-WebAuthn authentication flow

36

6.2.1.1.3 Key elements

6.2.1.1.3.1 Fido2

The validation of this process is done using the FIDO2 library (fido2-lib), which is a set of technology standards,

including WebAuthn, developed by the FIDO Alliance. It is designed to provide simpler and stronger

authentication experiences.

6.2.1.1.3.2 Challenge

The challenge in this system is a random string generated by the server during both registration and

authentication phases. The purpose of this challenge is to prevent replay attacks and ensure the authenticity

and freshness of the authentication session. This ensures that intercepted data cannot be reused as the

challenge will be different in the next session.

6.2.1.1.3.3 Credential ID

The Credential ID is a unique identifier associated with a specific set of cryptographic keys (a public and private

key pair) used for authentication. During the registration process the credential ID is associated with the public-

private key pair generated by the user authenticator and during the authentication process it is used to identify

which key pair should be used to sign the challenge from the server to be validated with the stored credentials.

6.2.1.1.3.4 Initialization parameters

The initialization parameters are certain domain information that represents the server using the parameters:

• Relying party id: Is a string that represents the domain name of the relying party (the server chosen

name), It is used to ensure that the authentication request is indeed intended for the specific website

or service the user is trying to access. This helps in preventing phishing and man-in-the-middle attacks.

• Origin: includes the scheme (‘https’) and the host to help the browser verify that the authentication

request is coming from a legitimate source.

• Challenge: random generated string or byte sequence form the relying party (server) to ensure that

each authentication and registration session is unique.

6.2.1.1.3.5 Public key / Private key

The public key is a generated upon registration by the authenticator which generates a public-private key pair,

the private key is securely stored on the user’s device and not shared, and the public key is sent to the server to

be stored.

The server uses the public key to validate the signed credentials with the challenge received. The public key can

only verify the signatures made by the corresponding private key which is highly secured against external

attacks.

6.2.1.1.3.6 Signature

The signature is the data signed by the private key along with the challenge to send for validation.

37

In the diagram on the left a detailed

view of the process of registration and

then authentication of the user using

the Windows Hello / Fingerprint

authentication.

As it can be viewed the front-end checks

initially with the Parantion backend and

the Authentication Enhancement

backend (Backend Webauthn in the

diagram) if the user credentials are

correct and if they are registered with

the method by checking with the

database.

The user does the registration process

discussed above and later validates it for

a successful authentication.

Figure 10-WebAuthn full flow

38

6.2.1.2 QR code login

The QR code login works with the support of the mobile application, Authenticator, the mobile application

allows the user to register his device details to the specific account upon registration and store a unique

identifier generated by the server during the registration process.

The stored unique identifier along with the device unique identifier and name would be then used for the

validation during the authentication process. The QR code login registration process works by checking initially

if the username and database of that username have a registered device, if not the registration process will

begin through an open WebSocket.

The front-end will receive from the backend a unique identifier of the connection, a server generated unique

identifier, and the username and database of the account to be displayed in a QR code to be scanned. The

Authenticator will be used to scan the QR code and if there is no already stored account on the device it will

store the server generated unique identifier scanned form the QR code and the username and database. The

unique identifier of the device and the device name is fetched using the library “client information” which

provides a unique and persistent unique identifier of the device.

These identifiers are then sent through and API call to the backend and be validated and allow the session

where the QR code has been scanned to move to the next phase which is the validation through an email

confirmation.

This step is an extra security measure as there might be a small change of 2 or multiple users trying to register a

device to the same account, by implementing a code received through the user’s email address it will ensure

that the session that successfully scanned the QR code is the actual owner of the account.

This service has been realized using the “nodemailer” package that allows an service to send an email using an

already existing email address in this case a Gmail address, that will send custom emails. I choose this method

as the mailing service already constructed by the company is at the moment inaccessible unless you are a high

ranking employee, and due to the nature of this project being a proof that multiple method of authentication

can be implemented and allow for a faster pace and success rate I was encouraged to choose this method

rather than waiting for approval and spend time on a relatively small part of the system which can be later

replaced with the existing emailing service.

The user will view a code format XX-XXXX with the first XX- being revealed to correctly input the rest of the code

received by email.

After the code is validated, the user is registered and later can authenticate using only a QR code scan.

The authentication process is less complicated as upon the input of the username, the front-end will check with

the backend if the user has a registered method of authentication, it will then create an open WebSocket

connection and receive to be displayed on a QR code, a unique identifier for the connection.

The Authenticator will then scan and check if there is a stored account on the device and send to the backend

for validation the stored data and session id from the QR code.

The backend will validate the data and make an API call with the stored user credentials in the database to the

main company backend which will provide the access information of the user to be forwarded to.

https://pub.dev/packages/client_information
https://www.npmjs.com/package/nodemailer

39

6.2.1.3 Biometrics login

The biometrics login works through the same WebSocket system as the QR code login detailed in previous

section of the report, the only key difference is that it relies on a randomly generated code that needs to be

input into the Authenticator to validate the session upon the registration of the device, followed by the email

validation with the same XX-XXXXX code sequence.

The authentication process proven to be the most difficult part of the process as compared with the QR code

login where a session unique identifier can be passed through the scanning process, a security problem raised

from the biometrics login as in case of multiple session under the same username and database combination,

there is no way to correctly identify only through already registered unique identifiers.

To counter this problem the initial solution was to hold out any other session creations under the same

username and database combination, then it will fall into the scenario of what if the 2nd or 3rd session is the

actual owner of the account.

To counter this I came up with the most reliable solution to this dilemma which allows the system to correctly

identify the session by assigning each session a random 2-digit number that is displayed on the front-end to be

input into the mobile application after a successful biometrics check.

This problem is a very unlikely scenario that can happen in this system and the user will not have to use this

input feature most of the time.

The biometrics check is done using the mobile phone native fingerprint or face recognition sensors, through a

library called “local_auth” which allows a simple integration and usage of the biometrics pop-up check of the

phone.

https://pub.dev/packages/local_auth

40

Figure 11-Mobile application registration process

6.2.1.4 Registration process

Above is the sequence diagram of how each component of the project communicates in order to achieve the

successful registration of the user using the mobile application QR code scanning or Biometrics check

functionality.

1. The user will input his username and database (if registered in multiple databases)

2. The front-end starts by checking if the user and database combination are registered into the system.

3. The back end will search through the database for this combination.

4. Response with no registration found.

5. Request input of the password from the user and choose one of the methods that require the mobile

application. (QR code login or Biometrics).

6. The front-end opens a WebSocket communication session with the back end with the encrypted

username, database and password.

7. The back end will respond with a unique identifier of the session.

a. For the QR code login process it will only send the unique generated server identifier and

WebSocket session id.

b. For the Biometrics login process it will send a generated numerical code in the format XXXX-

XXXX to be displayed on the screen to be input on the mobile application. This code acts as

the unique identifier of the session.

8. The mobile application will then be used to scan or input the unique identifier from the login

component.

41

a. For the QR code login process it will scan the displayed QR code and extract the unique

session identifier.

b. For the Biometrics login process a code input will be requested and then a biometrics

verification.

9. The mobile application will send a request to the back end with the unique identifier fetched and

mobile unique identifiers (id and name).

10. The back end will check if the received data matches with a WebSocket connection.

11. The back end will respond to the mobile application with the username database and unique identifier

generated to be saved on the device for later use.

12. The back end will request from the Parantion back-end the access information and user data.

13. An email will be sent to the user with a numerical code in the format XX-XXXXX

14. The back end will send to the login component the hint for the code and request an input.

15. The user will input the code and the login component will send that code to the back end.

16. The back end will validate the code and save the credentials of both the user and the device to be

registered into the database.

17. The back end will forward the access information of the user to the front-end.

42

Figure 12-Mobile application authentication process

6.2.1.5 Authentication process

In the sequence diagram above it can be viewed the authentication flow for the QR code and biometrics

authentication.

1. The user inputs the username and database (if registered in multiple databases)

2. The back end will check for the registration of the username and database combination.

3. The response with the type of registration is forwarded to the login component.

4. The login component will display the type of authentication required based on the registered response

and display the QR code or input code to the user.

a. In the case of biometrics authentication if multiple sessions under the same username and

database are active, a unique 2-digit number will be displayed on the front-end to be used for

extra check in the mobile application.

5. The mobile application will scan the QR code and send the stored data during the registration process

and the unique device id and name to the back end along with the session identifier extracted from

the QR code.

a. In the case of biometrics authentication, it will make a request to the back end with the

number of active connections under the username and database combination and if multiple

connections are active, it will display a code input to the user. If there is only one connection

active it will automatically ask for biometrics authentication and send the stored data to the

back end.

6. The back end will validate the received data with the stored data.

7. The back end will make an access request with the user credentials to the Parantion back-end and

forward the data to the front-end.

43

During these processes of registration and authentication multiple error checks are implemented during each

step of the process, if one of them fails the session will either be terminated or inform the user of the error.

Fallback methods have been implemented as if specific server-side errors are triggered, for example if the

authentication enhancement back-end or database is not active it will automatically revert the user to only

username and password authentication to not keep the user from using the product.

6.2.2 Back-end
The back-end integration is a Node JS Express service that handles the FIDO verification and validation through

API endpoints and a WebSocket service that allows for communication during the QR code and Biometrics

authentication methods.

Initially the backend was to be constructed with the same framework and version as the main company

backend, Symfony 5.4, but due to compatibility issues of the FIDO library as it has not received updates to meet

the necessary requirements for a proper validation it has been decided to not go further and move to a simple

Node JS Express service.

The back-end implementation for the WebAuthn API works in a 2-step process for authentication and

registration.

For the registration the user makes a get request with the username and database to get the server

registration-options, during this call the server checks if the received request data is already registered, if not it

can proceed in creating a credential ID and challenge with the server preset preferences and details.

After the front-end makes the registration, another request is sent to the server with created credentials to be

stored into the database after the validation using the FIDO verification of the signed challenge.

The authentication process works the same way as the registration process as initially it requests the registered

credential id from the server and after the verification of Windows Hello or Mac OS Touch ID, a signed challenge

by the private key of the user is send to the serve to be validated with the stored public key.

After the validation is completed, the back end will make an access request to the company backend with the

user credentials (username, password and database) to be forwarded to the front-end.

The WebSocket service of the back end handles the communication and sessions of the users during the

authentication process.

During the authentication process if the user is having a registered method of authentication, it will be

forwarded to the chosen method.

In the case of the two methods QR code login and Biometrics check using the mobile application, the front-end

will open a WebSocket connection with the backend and send the username and database of the user that is

trying to do the login.

The back end handles what type of authentication between the 2 should it choose based on the stored data in

the database, and what type of validation should it expect.

In the case of QR code authentication, the process is more straightforward as in the QR code data, the unique

session of the user is integrated in the form of an unique UUIDv4 ID, I choose the UUIDv4 as it offers a large

number of possible unique values (2^122), using this identifier the mobile application send a request to the

back-end through an API endpoint with the phones unique identifier and stored generated unique identifier

that was made during the registration process.

The back-end was constructed in a way that if anytime during the registration or the authentication processes,

an error is thrown due to database failure or any other system failure, an error will be send to the frontend to

revert to only username and password authentication to not allow the user to be locked out of the system.

44

6.2.3 Mobile application
The mobile application is a hybrid application developed in Flutter and handles the QR code scanning login and

biometrics login, working by sending a unique identifier of the device to be checked and validated to the

registered credentials received during the registration process.

One of the challenges of this part of the project was the fetching of the unique phone identifier which in

present is no longer possible due to privacy reasons, but through research I discovered a library that can give a

unique identifier for the application that the phone will assign to it, this id is persistent and does not present a

security issue.

Figure 13-Final mobile application design

In the picture above are the latest UI/UX changes, a screenshot of the Biometrics check interface is not possible

due to phone privacy reasons restricting the usage of taking a screenshot. During the development of this

assignment, working with the feedback and advice of the UI/UX designer of the company, Jericho Thijseen,

which gave the approval of the design choices that I made to achieve this final UI/UX interface. The company

provided me with the necessary UI colours, shapes and dimensions to properly integrate them into the mobile

design.

The mobile application development went as planned during the design phase each feature working

accordingly and smoothly, code standards have been followed accordingly allowing for a structured and easy to

read and understand code base for future development.

45

7 Testing
As of the submission date, the testing phase is still undergoing and currently in progress, and further testing

proof will be offered during the defence of the project.

The current testing elements that have been made are a few UNIT tests on the back-end Web Socket service,

these tests are to check and verify the unique session characteristics of each of the 2 method of authentication

created that are handled through WebSocket connections, QR code and Biometrics authentication. The tests

have been going successfully and proving proof that the back-end can handle multiple session and have unique

ids assigned to each of them.

Figure 14-WebSocket sessions testing

In the figure above, it can be viewed the WebSocket unique sessions check tests, which succeed,

which matches with the requirement “RQ-NF-S17” that requires that the back-end must support

multiple unique sessions.

Drawing a conclusion from “Appendix 13: Mobile testing”, the requirements for mobile testing have

been met as it handles QR code and Biometrics authentication, due to the nature of the tests, video

evidence would be best suited for this proof of testing, which it can be demonstrated during the

defence presentation of the assignment. The mobile testing was successful through different

emulators and providing proof that the requirements for mobile have been successfully tested.

And according to the “Appendix 14: Testing methods of authentication and email validation”, the

requirements for the front-end testing proofed through a several screenshots, of each of the methods

of authentication developed, proofing the testing of the system successfully and the quality of the

application as established through the requirements.

To provided quality assurance testing, as to the submission of this assignment, the linting validation

of the mobile application through the linting criteria presented at “Appendix 8: Linting criteria for

Flutter”, can be viewed below.

The testing phase as of writing this report is undergoing successfully and without any issues, the

manual tests that can be viewed in the “Appendix 9: Regression tests” have been completed

successfully, another phase of these manual tests repeating in the following weeks with additional

cases.

46

8 Conclusion and recommendation
To conclude this report, the project is a success as it meet all the initial requirements and provided a great

viable product to be implemented and used in the production of the products of the company.

During the development of the mobile application, the structure of the mobile application is made in a way for

continuous development and additional features to be added.

The resulted research, prototyping and development of the methods of authentication with the support of a

hybrid mobile application, this assignment answered the main research questions put in the beginning of the

project, through proof and great results, the company will benefit from this assignment and have the

opportunity to allow the users to have a better, faster and more secure authentication experience, offering a

solution to the problem that Parantion was facing before the start of this assignment.

The product will allow the users and employees of Parantion to access Scorion, the main product developed by

the company, without the necessary of password inputs and allow for fast identification and password less

authentication of the owner of the accounts.

The product during the graduation period did not suffer massive changes which most of them have been

explained during the previous chapters, these changes have not impacted the main goal of the assignment and

through risk management and advice, I managed to keep the main goal intact and accomplished.

 Some requirements have not been implemented due to time constraints of the project, which allows me to

recommend further improvements and recommendations to how this project can move forward and additional

features to be implemented.

A recommendation is the addition of multiple registered accounts under the same device, and have the mobile

application handle multiple types of registered accounts that can be either QR scan login or biometrics login.

The process during this graduation period has been going smoothly and according to plan, the only issues that

encountered were the early deadlines regarding the final report as initially I had planned them 1-2 weeks later,

resulting in a delay of proof of testing which is still undergoing as to this submission.

The company employees have been great during this project as I could always call out for advice and help if

necessary, during various parts of the project, I had great support from the company management as I was

offered the upon showing promising results and progress an upgrade of my laptop to help in the development

of the Windows Hello / Fingerprint method of authentication. The laptop received features this technology of

fingerprint scanning to unlock the laptop, which was a significant help for the development. As well as IOS

testing support, having the opportunity to test the application in an IOS environment through a company

MacBook.

I believe the organization fit the assignment and allowed me to grow and explore new territories in terms of

software development, risk management, organizational skills and overall complexity of the assignment which

was a challenge.

47

9 Reflection
In my opinion the graduation period went as planned from the start, the research, development and now

testing phase have been undergoing accordingly and planned, the results and expectations have been met and I

gave all my might and knowledge for the success of this project.

I learned a great deal of software skills in all the fields front-end, back-end, mobile development which made

me a more organized and better decision-making person. I encountered problems and dilemmas which helped

me grow the success of this project.

During this project the were a few significant changes that lead to some challenges along the way, but because

of the helpful guidance, advice and support from the company employees that I interacted with and my

supervisor, I managed to overcome these challenges without any issues.

On of the important changes was the change of planning of development for the back-end part of the

assignment, where initially it was supposed to be developed in Symfony, the company’s main back-end

framework, but due to computability issues that were explained in the previous chapter, it was no longer a

possibility, but as I was expecting a issue similar to this might happened in the future development of the

project, a back-up plan was already in the planning, the back-up being the implementation of the functionality

from Symfony to a Node JS Express framework, as It was already in development. What I learned from this

change and problem, was to always think about the risks that can happen in the development period of a

project, always make a good risk management analysis and prepare a few back-up options.

Another important challenge was during the development of the QR code and biometrics check authentication

method, as it presented with a dilemma that how can we allow the correct session to successfully register the

device details to the account. After discussing this possibility with my supervisor we the idea of allowing only

one session per username and database combination to be active, but this solution created another dilemma

which was how can I know if the 1st person is the owner of the account, and what if the 2nd or 3rd person that

tries to register the device is locked out and not allowed to do the process as it is already undergoing to another

person.

This issue was solved by introducing the email code verification functionality, which allows the back end to send

an email to the user’s registered email address and if it receives the correct code, it will allow the registration

process to be finalized. I learned from this situation to think more ahead and visualize a lot more use cases as

there is always an angle that was not properly explored.

Collaborating through advice and feedback with the UI/UX designer of the company helped me grow my

professional UI/UX skills as I discovered a new field of knowledge and details that I was previously not aware of

the depth of how much there is to be learned in this field. Learning tips and how to improve the design helped

me learn how to better structure and create unique and correct designs.

Organizing meeting, presentations and interviews with the employees at Parantion increased my management,

communication and professional skills by receiving different points of view from different departments and

professions, back-end, front-end, design, allowed me to visualize the project in a different manner and from

different points of view during this period.

What I would have done differently during this graduation period is do a broader analysis of the potential risk

factors that can happen, a better understanding of the risks in terms of software testing and that a lot of

scenarios can happen that initially have not been thought.

48

10 Bibliography
Apple. (n.d.). developer.apple. (Apple) Retrieved October 3, 2023, from

https://developer.apple.com/documentation/usernotifications

Apple. (n.d.). developer.apple. Retrieved October 6, 2023, from Apple:

https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notific

ation_server/establishing_a_certificate-based_connection_to_apns

Biørn-Hansen, A., Rieger, C., Grønli, T., Tim, A. M., & Gheorghita, G. (2020, June 9). An empirical

investigation of performance overhead in cross-platform mobile development frameworks.

Empirical Software Engineering., 25(4), 2997-3040. doi:https://doi.org/10.1007/s10664-020-

09827-6

Brainhub. (n.d.). Brainhub. Retrieved October 27, 2023, from Brainhub:

https://brainhub.eu/library/progressive-web-apps-advantages-disadvantages

capacitor, i. (n.d.). capacitor. Retrieved September 27, 2023, from capacitorjs:

https://capacitorjs.com/docs

Cyberark Glossary. (n.d.). cyberark. Retrieved October 26, 2023, from cyberark:

https://www.cyberark.com/what-is/passwordless-authentication/

Dart. (n.d.). Dart. Retrieved January 3, 2024, from Dart.dev: https://dart.dev/tools/linter-rules

Enyinna, C. (2023, September 12). freecodecamp. Retrieved September 14, 2023, from

https://www.freecodecamp.org/news/communication-design-patterns-for-backend-

development/

Firebase. (n.d.). Firebase.google. (Google) Retrieved October 3, 2023, from

https://firebase.google.com/docs/cloud-messaging

Flutter. (n.d.). Flutter showcase. Retrieved September 28, 2023, from Flutter:

https://flutter.dev/showcase/toyota

Flutter. (n.d.). Flutter.dev. Retrieved September 27, 2023, from Flutter: https://flutter.dev/

Github. (n.d.). Github. Retrieved October 20, 2023, from Github: https://github.com/

Grigalashvili, E. (n.d.). Anyforsoft. Retrieved September 29, 2023, from Anyforsoft:

https://anyforsoft.com/blog/hybrid-app-frameworks-comparison/

inVerita. (n.d.). medium. Retrieved October 24, 2023, from medium:

https://medium.com/swlh/flutter-vs-native-vs-react-native-examining-performance-

31338f081980

ionic. (n.d.). ionic. Retrieved September 28, 2023, from ionic: https://ionicframework.com/

Kartik, N. (2023, January 16). Medium. Retrieved September 27, 2023, from

https://medium.com/@naikofficial56/design-patterns-for-backend-communication-

446823dee2c0

Lynch, M. (n.d.). Ionic capacitor. Retrieved September 26, 2023, from Ionic:

https://ionic.io/blog/capacitor-everything-youve-ever-wanted-to-know

49

Magnusson, A. (2023, June 22). strongdm. Retrieved October 24, 2023, from strongdm:

https://www.strongdm.com/blog/passwordless-

authentication#:~:text=Passwordless%20authentication%20examples%20can%20be,%2C%20

badge%2C%20or%20software%20token.

OneSignal. (n.d.). OneSignal. Retrieved October 6, 2023, from onesignal:

https://onesignal.com/unlock-growth-ga-

lp?utm_source=google&utm_medium=cpc&utm_campaign=BOF_Brand_Search_EMEA-

A&_bt=652032114925&_bk=onesignal%20push%20notification&_bm=e&_bn=g&_bg=12900

4913243*&gad_source=1&gclid=CjwKCAiA75itBhA6EiwAkho9e35gi_cU8iYl4D_zl

Pabian, G. (2021, March 28). levelup.gitconnected. Retrieved September 20, 2023, from

https://levelup.gitconnected.com/backend-to-backend-communication-d9fe85234ead

Pusher. (n.d.). Pusher. Retrieved October 6, 2023, from pusher: https://pusher.com/

PushWoosh. (n.d.). PushWoosh. Retrieved October 6, 2023, from pushwoosh:

https://www.pushwoosh.com/

React Native. (n.d.). React Native. Retrieved September 29, 2023, from React:

https://reactnative.dev/

Stackoverflow. (n.d.). Retrieved October 20, 2023, from https://stackoverflow.com/

Stat counter. (n.d.). statcounter. Retrieved October 19, 2023, from gs.statcounter:

https://gs.statcounter.com/os-market-share/mobile/worldwide/

WebAuthn. (n.d.). WebAuthn.guide. Retrieved September 19, 2023, from WebAuthn:

https://webauthn.guide/#about-webauthn

Wikipedia. (n.d.). Software token. Retrieved September 26, 2023, from Wikipedia:

https://en.wikipedia.org/wiki/Software_token

Wikipedia. (n.d.). Wikipedia. Retrieved October 20, 2023, from Wikipedia:

https://en.wikipedia.org/wiki/Public-key_cryptography

World Wide Web Consortium. (n.d.). w3c. Retrieved October 20, 2023, from w3c:

https://w3c.github.io/webauthn/#sctn-sample-scenarios

50

Appendices
The purpose of this section is to dive into more detailed information about the research material of the report

highlighting more data.

Appendix 1: Ionic development experience.
The development experience using Ionic is that it does not offer an efficient hot reload of the application

changes, every time the developer performs hot reload the app will be reloaded as a whole not only the

specific component which the developer is working on, this resulting in a slower development process and high

waiting times for compiling in large applications, and JavaScript not being considered a null safe language,

allowing variables to have the value of null or undefined, it will result in unexpected errors and crashes which

will render the application unusable.

Because Ionic is based and runs using JavaScript someone might expect that a lot of libraries can be used in the

development of the mobile app, but due to compatibility issues, Ionic’s Capacitor might not work with most of

the already made JavaScript libraries due to either dependency issues or compiling issues, which leaves the

developer in the position to either create using pieces the functionality of the JavaScript library that he want to

implement or using different more complex methods.

Appendix 2: Flutter community.
The community of Flutter is growing exponentially and is now having a total of approximately 168.000 threads

on Stack Overflow (Stackoverflow, n.d.) and approximately 580.000 repositories on GitHub (Github, n.d.), with a

very supporting and devoted community, according to the JetBrains 2021 State of Developer Ecosystem survey,

Flutter is the most popular cross-platform framework in the world.

Flutter provides with a total number of 15.590 packages that are fully compatible and can be integrated in any

application, with most of them having constant support and updates from the community, offering a lot of

diversity and the possibility to develop complex applications.

Some of the most popular apps developed using Flutter are Google Pay, BMW customer app, eBay, Google

Classroom, PUBG mobile etc. which proves that Flutter is a popular, secure and efficient wait to develop and

deploy applications for large scale usage.

Appendix 3: Android and iOS market shares across the continents.
The European market consists of 65.62% Android users and 33.83% of iOS users, the remaining 0.53% is

unknown. (Stat counter, n.d.)

The Oceanian market consists of 55.66% Android users and 43.29% iOS users. (Stat counter, n.d.)

The Asian market is even more Android dominant with 79.93% users having an Android and 19.39% using IOS,

the remaining 0.66% are using unknown operating systems. (Stat counter, n.d.)

The same Android dominant trend is reflected in the South American market with 85.29% being Android users

and 14.33% iOS and in the African market 83.36% of users having an Android powered phone and 14.03% iOS.

(Stat counter, n.d.)

To choose between a native application and hybrid application depends heavily to which market is it going to be

delivered. The Netherlands consists of 59.79% of users having and Android phone and 39.53% IOS, which

having a very close and even distribution of operating systems it would be wise to develop an application for

both Android and iOS. (Stat counter, n.d.)

Appendix 4: The results of the benchmark tests
The experiment consisted in a various benchmarks tests featuring the Accelerometer, Contacts, File system and

Geolocation, monitoring different parameters such as time-to-completion(TTC) metric, CPU load, idle-state

memory usage (PreRAM) and RAM usage during the benchmarking, which gave clear indications which

framework is performing the best under different workloads, and comparing them to a native test for

comparison.

51

The TTC metric showed that there are major differences between each framework, Flutter and Native Script did

not show any fluctuating results however Flutter compared to the other frameworks had a higher mean TTC,

making Flutter and Native Script with the best results in this test, followed by React Native, excepting the Ionic

framework where the benchmark indicated that it may cross the 10.000ms mark for fetching for example,

geolocation data, that other implementations. (Biørn-Hansen, Rieger, Grønli, Tim, & Gheorghita, 2020)

The CPU load test highlighted that Ionic and React Native had equivalent results and both being in the last

places and standing out as less effective compared to Flutter, having values close to the native test.

The memory consumption benchmark highlighted the results for the PreRAM and RAM, showcasing the impact

on memory usage caused by it, from these 2 values a 3rd value ComputedRAM was extracted by subtracting the

PreRAM from the RAM during the test. “If an app consumes 85MB PreRAM in idle state, and 100MB RAM

during a task run, the calculated usage for that task is 15MB – which is what the metric ComputedRAM

reflects.” From this benchmark it was shown that Flutter has the highest PreRAM usage but compared to the

ComputedRAM results it has the lowest usage, and can be observed that has a consistent low memory usage,

React Native results are low when in the RAM and PreRAM category according to the article the reason being

“This is caused by alternative module implementations for the different features that deviate from

recommended practices for a hand-written implementation (e.g., the geolocation module which performs

slower and less accurate Facebook Inc 2019, cf. Section 4.7).”, while Ionic performed used the most memory out

of all of them. (Biørn-Hansen, Rieger, Grønli, Tim, & Gheorghita, 2020)

52

Appendix 5: Flutter vs Native vs React-Native performance results.
Below I extracted the results from the algorithms Gauss-Legendre which was used to view the CPU load, and

Borwein algorithm which was used to view the memory load. (inVerita, n.d.)

Figure 15-Gauss-Legendre android results

Figure 16-Gauss-Legendre iOS results

53

Figure 17-Borwein algorithm iOSresults

Figure 18-Borwein algorithm android results

The Borwein algorithm and Gauss-Legendre algorithm are methods of numerically approximating mathematical

constants, by calculating the digits of mathematical constants like π (pi). These algorithms are great for testing

the computing power of various devices due to their iterative and computationally intensive nature.

54

From these charts we can see that Flutter compared with React Native is the superior in both memory and CPU

load, flutter being approximately 20% slower than the native frameworks, where React Native is 15 – 20 times

slower than native. One exception where Flutter was 15% faster that the native language Swift was on the

Gauss-Legendre algorithm for the IOS.

The article tests were done on physical devices an iPhone 6s with IOS 13.2.3 and Xiaomi Redmi Note 5 with

Android 9.0. (inVerita, n.d.)

Appendix 6: Hybrid development experience and PWA

Flutter
The installation process for flutter is easy and takes approximately 5 minutes using VS code. To install flutter,

you must download the Flutter SDK and add it to the environment’s paths, and it is required to have Android

studio or Xcode for IOS in order to create emulators, which can later be used for serving the application on. For

this prototype I followed the documentation instructions which pointed me to install VS code with the

necessary Flutter extensions, where after a few commands I managed to create a simple application.

The flutter extension on VS code offers the beginner the option to have a simple application with descriptive

comments or a skeleton application with a list view and the most basic options such as settings, change of

theme and routing, with detailed comments on what each widget does and how it is running inside the

structure.

The implementation for biometrics authorization is straightforward with a library “local_auth” it allows the

developer to check and call for a biometric authorization, it can be viewed what type of biometric sensors are

available, in case of failure to authenticate using the sensors the application can requested to enter the phone

password.

Other sensors such as vibration and camera accessibility have been easily implemented with little to no errors

as the documentation for the packages are clearer with detailed examples on what are the capabilities of

package.

The most challenging part of the prototype was writing the code as it is structured in widgets it can get very

ramified into smaller and smaller parts that the benefit for it is the focus on development without the need to

reload the application. The architecture is very structured and as the previous sections mentioned Flutter is a

very null proof application as it is necessary for every operation with objects to have special classes that

manage the manipulation of data.

In the beginning is a slow-paced environment but as familiarity increases, with the support of the community

examples and documentation the widgets can get made fast.

React native.
The installation process and to run React Native was quicker compared to Flutter as it was necessary only a line

of code to fully create a project and in combination with the app Expo Go the developer can view the

application and change in real time.

Compared with Flutter React Native offers a faster set up time with a physical device, as it is necessary to only

be on the same network and access using the app Expo Go the running app. (React Native, n.d.)

The implementation of the established features took less time to write the code debug and test compared to

Flutter, and it supports all the features without any issues. The application using the Expo environment allows

the developer to access the available libraries from the development team behind expo to use the devices

sensors (vibration, camera, and biometrics). As being a framework written in JavaScript it had the most

familiarity in terms of creating screens, accessing functions and implementing components.

The most challenging part of this prototype was the authentication process with API calls as the library ‘axios’ is

will through an error as the compiler of the app confuses it with some IOS component, to solve this issue the

function fetch has been used.

https://pub.dev/packages/local_auth
https://www.npmjs.com/package/axios

55

Ionic
The installation process for Ionic capacitor was the hardest out of all the frameworks tested so far, it had

compiling issues, version matching issues and lack of documentation for debugging these issues.

The development experience was the most difficult out of the tried hybrid development frameworks as it

caused a lot of errors and compatibility issues with java and Gradle versions in order to properly run, the

documentation is not straightforward in terms of how to use and update the application when adding libraries

as example. I had to follow extensive tutorials and guides on the most basic aspects of Ionic Capacitor.

The only instance that worked without that many issues was using the quasar framework in combination with

the capacitor plugin, which allowed me to access the device native features (biometrics, camera and other

sensors) with already made capacitor libraries.

In order to have access to the biometrics sensors of the phone, only a single library was compatible with the

latest version of capacitor the “aparajita/capacitor-biometric-auth”, as the rest of the available libraries are

outdated and the default capacitor functionality does not support yet biometric authentication functions.

The community for issues and bugs regarding compiling is small and it does not provide clear and multiple

solutions to any errors encountered.

PWA
The installation process of a PWA is quite simple as it can only be done from a single command and choose the

PWA template which will set the necessary dependencies for a web application to become a PWA.

The main objectives established for the prototyping have been achieved by using the WebAuthn API to access

the fingerprint sensor for authentication on the device. The technology works by creating a public and private

key pair, during the registration process the fingerprint check will be triggered as to proof identify of the user

trying to create the pair on the device.

During the prototyping of this technology, the usage of the fingerprint sensor and checking the identity of the

user anytime without relying on the WebAuthn API is currently not possible.

A PWA is great for simple tasks that does not require complex features with high processing power usage.

https://www.npmjs.com/package/@aparajita/capacitor-biometric-auth

56

Appendix 7: Backlog and changes
In this appendix I am highlighting what has been discussed during the progression meetings and an overview of

the changes and decision taken during this graduation period.

Table 9-Backlog and changes

Date Progress Changes

10.11.2023 First progress meeting.
Deciding what frameworks and
technologies are going to be used.

Initially it was the decision
between a PWA and Flutter as a
mobile solution but eventually
choose Flutter as being a more
secure and flexible solution.

17.11.2023 Code base for each part of the
project.

Documentation.

Changes in the back-end system
to move the API endpoints for the
WebAuthn method of
authentication (Windows Hello /
Fingerprint) from Symfony to
Node JS Express due to
compatibility issues.

24.11.2023 Initial design of the changes in the
front-end

Basic API endpoints for the
WebAuthn API.

Database implementation and
design.

1.12.2023 Fully implementation of the
Windows Hello / Fingerprint
method of authentication using
the WebAuthn API.

Documentation.

8.12.2023 Base design of the mobile
application

Implementation of the WebSocket
communication.

Drawing the login between how
the mobile application will
communicate with the back end.

Necessary API endpoints

15.12.2023 Fully implantation of the QR code
login method of authentication.

Design improvements

Documentation.

22.12.2023 Fully implementation of the
biometrics method.

Design improvements.

Documentation.

57

29.12.2023 Holiday

5.01.2024 Starting the testing phase.

Documentation and final report.

Improving the design and bug
fixing the mobile application.

12.01.2024 Unit testing
Linting and code quality tests
iOS Testing
Documentation

Final report update.

19.01.2024 Final report update.
Android testing.

Appendix 8: Linting criteria for Flutter
The analyses criteria that this linting testing does are: (Dart, n.d.)

Table 10-Linting criteria details

Name Description

avoid_print Discourages using the “print” function (the
equivalent of console.log ()), as it can lead to
performance issues and cluttered output in
production apps.

camel_case_types Ensures that type names are in Upper CamelCase, as
it improves code readability and consistency as well
as conforming to the Dart’s naming conventions.
Classes and typedefs should capitalize the first letter
of each word (including the first word) and use no
separators.

constant_identifier_names Enforces that constant names are written in
uppercase with underscores, as it makes constant
variables more identifiable and distinct to improve
code readability and consistency.

empty_constructor_bodies Ensures that there is no usage of empty bodies for
constructors. In Dart, a constructor with an empty
body can be terminated with just a semicolon. This is
required for constant constructors for consistency
and brevity

prefer_const_constructors Encourages the usage of constant constructors which
improves performance by enabling compile-time
constant expressions.

always_declare_return_types Ensures that all functions declare their return types
explicitly, to increase code clarity and understanding
the function’s intent.

always_require_non_null_named_parameters Requires named parameters without default values
to be marked as @required, enhancing API clarity
and prevent runtime null errors.

annotate_overrides Enforces the use of @override annotation for
overriding methods and properties and improves
code readability and accidental method
overloading.

58

avoid_init_to_null Discourages explicitly initializing variables to null, as
it reduces unnecessary code since variables in Dart
are null by default.

avoid_null_checks_in_equality_operators Provides a warning against the usage of null checks
in equality “==” methods preventing incorrect null
comparison behavior and improves method
consistency.

avoid_relative_lib_imports Discourages importing libraries with relative paths,
enhancing code maintainability and clarity by using
package based URIs.

avoid_return_types_on_setters Checks that setters do not have a return type, as per
Dart language conventions setters should not return
values.

avoid_shadowing_type_parameters Creates a warning against shadowing type
parameters within the same scope to prevent
confusion and potential errors due to type
parameter shadowing.

avoid_single_cascade_in_expression_statements Discourages using cascades for single method
invocations to allow the code to be more simplified
and readable without unnecessary cascade syntax.

avoid_types_as_parameter_names Prevents using type names as parameters names
improving code readability and structure.

await_only_futures Verifies that “await” is only used in “Future” objects
to prevent runtime errors and ensures correct use of
asynchronous programming constructs.

camel_case_extensions Extensions should be capitalized on the first letter of
each word (including the first word) and no
separators, to improve consistency and readability
according to Dart naming conventions.

curly_braces_in_flow_control_structures Checks the usage of curly braces in structures to
improve maintainability and readability in complex
structures.

empty_catches Avoids empty catch blocks, to not silently ignore
exceptions and always handle them.

library_names Enforces naming libraries using the
lowercase_with_underscores, as some file systems
are not case-sensitive, it is required filenames to be
all lowercase and have underscores to improve
readability.

library_prefixes Ensures that when specifying a library prefix it is in
lowercase_with_underscores, improving a uniform
and readable library prefix across the code.

no_duplicate_case_values Checks for duplicate values in switch case statements
to prevent logical errors and make each case unique.
(

null_closures Prevents passing null as an argument for closures as
it can cause unexpected behavior and runtime
errors.

prefer_adjacent_string_concatenation Checks for concatenating strings that are adjacent
literals, to simplify string handling and improve
performance.

prefer_collection_literals Encourages the use of collection literals to initialize
collections to improve code conciseness and
readability.

59

prefer_conditional_assignment Suggests the usage of “??=” for assigning a value to a
variable if it is null, to reduce code redundancy and
improve clarity.

prefer_contains Suggests the usage of contains for List and String in
testing

prefer_final_fields Suggests declaring fields as final if they are not
modified after initialization, to encourage
immutability leading to a safer and predictable
code.

prefer_for_elements_to_map_fromIterable Recommends using for-elements when converting an
iterable to a map, to enhance code readability and
efficiency in collection manipulation.

prefer_generic_function_type_aliases Encourages using generic function type aliases over
typedefs with parameterized return types to help in
a clearer and more concise function signatures.

prefer_if_null_operators This rule suggests the usage of if null operators
instead of null checks in conditional expressions

prefer_inlined_adds Checks that elements declared in a list are inline
rather than using add and addAll methods, to
improve readability and conciseness

prefer_is_empty Suggests using ‘isEmpty’ to check for empty
collections as it is more expressive than checking the
lengths.

prefer_is_not_empty Suggests using ‘isNotEmpty’ over ‘!isEmpty’ to
improve code readability.

prefer_iterable_whereType Encourages using “whereType” for filtering elements
of a specific type, to simplify and clarify type filtering
collections

prefer_single_quotes Encourages using single quotes for strings when they
do not contain single quotes, improving
maintainability in string declaration

prefer_spread_collections Encourages the use of spread operators (“…”) in
collections, to increase code clarity.

recursive_getters Give warnings against getters that are recursively call
themselves, to prevent potential stack overflow
errors and enhances code safety

sort_child_properties_last Suggest the placement of child and children property
of the widgets at the end in terms of declaration
order to enhance readability by following a
conventional and predictable order in the widget
tree and properties.

type_init_formals Discourages the repletion of the type of parameter
in functions and constructor as it can lead to
redundancy in the code

unawaited_futures Provides warnings about “Future” functions that are
not awaited or returned, to help in preventing
unintentional asynchrony bugs and ensures that the
functions are handled properly

unnecessary_brace_in_string_interps This rule advises against the usage of braces in string
interpolation when not necessary, as it helps simplify
the string interpolation and creating a clearer and
readable code

unnecessary_const This rule gives warnings when unnecessary “const”
keyword is used to reduce code clutter and
emphasizes where “const” is important and needed

60

unnecessary_getters_setters Checks and discourages using getters and setters
without additional functionality and logic, it provides
the usage of simple alternatives to improve code
simplicity and readability

unnecessary_new Suggests against using the “new” keyword as it is
optional in Dart, to contribute to a more cleaner and
modern Dart syntax

unnecessary_null_in_if_null_operators Checks and warns against using null as the second
operand in “??” operators, to avoid redundancy by
highlighting the intention of null-aware operators

unnecessary_this Gives warnings when unnecessary usage of “this” is
made, to improve readability and removing
redundant language constructs

unrelated_type_equality_checks Checks and gives warnings to equality checks
between unrelated types, to help detect potential
logical errors due to comparing incompatible types

use_full_hex_values_for_flutter_colors Recommends the usage of full hex values for color
codes in Flutter, to enhance consistency and clarity in
defining color values.

Appendix 9: Regression tests
Below there are a table of the regression test cases that covers the main functionality of the project and

ensures that after each change or update of the system the previous and already implemented features have

not been affected.

Table 11-Regression tests

Name Description Steps Bugs

Windows Hello /
Fingerprint
authentication

Login into an account
that has a windows hello
/ fingerprint
authentication method
set.

-Login into: X account
-Windows hello interface
should be prompted.
-Provide fingerprint
authentication
-User should be logged
in.

QR code scan login Login into an account
that has QR code scan as
a method of
authentication.

-Login into: X account
-A QR code should be
displayed
-Open the Authenticator
application
-Slide to open the
camera for QR code
authentication.
-Scan
-User should be logged
in

Biometrics login Login into an account
that has biometrics as a
method of
authentication

-Login into: X account
-A message of waiting
for confirmation should
appear
-Open the Authenticator
application
-Slide to the right for the
biometrics
authentication

61

-Provide the biometrics
check
-User should be logged
in

Register method of
authentication
(Windows hello /
Fingerprint)

This test should check if
a fresh account can
register the method of
authentication Windows
hello / fingerprint

-Login into: X account
-A menu of three
methods of
authentication should be
displayed
-Choose first option
-Provide the Windows
Hello fingerprint to
register
-Provide the windows
hello fingerprint to
authenticate
-User should be logged
in

Register method of
authentication (QR code
scanning)

This test should check if
a fresh account can
register the method of
authentication QR code
login

-Login into: X account
- A menu of three
methods of
authentication should be
displayed
-Choose second option
-Open the Authenticator
application
-Slide to the QR code
scan to open the camera
-Scan the QR code on
the screen
-The front-end should
ask for a code starting in
the format XX-XXXXX
with the first two
numbers being revealed
-Provide the code from
the email
-User should be logged
in

Register method of
authentication
(biometrics login)

This test should check if
a fresh account can
register the method of
authentication
biometrics login

-Login into: X account
- A menu of three
methods of
authentication should be
displayed
-Choose third option
-Open the Authenticator
application
-Slide to the right for
biometrics
authentication.
-Input the code
displayed on the screen
-Provide a biometrics
check
-The front-end should
ask for a code starting in

62

the format XX-XXXXX
with the first two
numbers being revealed
-Provide the code from
the email
-User should be logged
in

Appendix 10: hybrid vs native performance
In this appendix I am highlighting the advantages and disadvantages of the hybrid and native frameworks in

terms of performance and business benefits. (Grigalashvili, n.d.)

Performance
In terms of overall performance of the application, the relationship between the language that the framework

is written makes a stark difference in how an application will have an efficient way of using the phones

hardware and processing power as well as battery consumption.

Native will overpower hybrid development in this category as being the closest to utilizing the devices hardware

components will require less computing power and overall have a low battery consumption.

Hybrid on the other hand is constantly evolving and engines and frameworks that support the compilation of

the hybrid code is getting increasingly efficient with each version or even new frameworks that appear. Which

makes the performance between Native and Hybrid close and soon might be a close to match.

The performance of a native framework currently is considered faster than a hybrid framework.

UI/UX
The UI/UX experience is one of the key factors in deciding which framework to use as the main way users will

decide to use or not the app.

Native frameworks have the advantage of utilizing the already made native interfaces of the operating system

which make each application look and feel friendly and easy to use for the users of their specific platform.

Hybrid frameworks will not be able to 100% match the UI/UX of a native created application as they will never

provide users a fully native experience, and only by compromising performance hybrid frameworks might

match and give the native look for the application.

The overall conclusion is whatever the application needs to have a native look or keep the same design across

all platforms, and to what extent should the performance be sacrificed in case of hybrid development.

Audience
When choosing between creating applications it is important to whom is it going to be delivered to and to what

market.

For example, according to this chart by Stat Counter, worldwide there is a majority of users using a phone with

Android as the operating system.

63

Figure 19-StatCounter android vs iOS global share

But in the chart below if the company is based or wants to deliver the application to the North America market,

it will be faced with different values as the IOS operating system is in the majority of the user’s mobile phone.

With values of 54.32% using IOS and 45.24% Android (Stat counter, n.d.)

Figure 20-StatCounter android vs iOS N.A. market share

Based on the “Appendix 3: Android and iOS market shares across the continents” the regional distribution of

mobile operating system highlights the Android dominance in regions like Asia, South America and Africa with a

more evenly split market in the Netherlands and Europe.

64

Security
When it comes to how secure an application is, we must look at what makes an application secure in the first

place.

The Native frameworks due to the nature of the accessibility to all the mobile phone features it is advantageous

in implementing security measures and due to the policy of the App Stores in having each Native application

undergo more stringent reviews on the submission process, it will ensure that as soon as a native application is

on the store meets certain security standards and guidelines.

Running directly with and on the device’s, operating system provides a degree of code isolation which makes

penetrating the application harder, this comes with also the disadvantage on the application security relying on

the operating system security which if a security vulnerability is found, the native application must wait for the

operating system to release an update. But having different native applications consist in different approaches

when making the application secure, which leaves the app being vulnerable depending on the platform, as IOS

and Android operating systems work differently when it comes to security measures, IOS being considered most

secure and harder to penetrate than Android.

The hybrid frameworks having the advantage of sharing a single codebase across multiple platforms can make it

easier to maintain and improve the security measures consistently, but if vulnerabilities exist in the shared

code, it can affect multiple platforms.

A hybrid application can use third-party plugins and libraries which can induce security risks if not carefully

implemented and documented, and it is important to keep those components secure and up to date. Due to

this factor hybrid applications undergo additional security by having third-party plugins implemented.

By not relying mostly on the operating systems security, hybrid applications can be developed with more

flexible and improved security measures which are isolated from the underlying system on which they are

operating.

Costs and time.
And the most key factor when choosing between a native framework and a hybrid framework is the financial

consumption and the time it takes for development and updates.

Native development can only be done by specialized teams that are familiar with programming languages like

Swift, Kotlin, Java, C++, C or Objective-C. This factor alone requires the need of having multiple employees

working on different teams which is an excessive cost for a single application to be developed.

Native development can have the issue of desynchronization of the development, as one platform can have a

faster or slower development than the other and for releases and keeping track of the progress and features of

the application will be very challenging, as for example the Android team already be finished with the

application and the IOS team requiring additional time, which ultimately makes the Android development

either go forward increasing the gap in the synchronization between the app versions and features or hold the

development and lose time and have financial consequences. With also the risk of one platform being more

vulnerable or less vulnerable than the other security issues will arise.

This process alone makes choosing a native development a hard decision for each company, as it requires

professional employment in both the platform fields and the management field in order to have a proper

development.

Hybrid development in this category has the advantage, by having a shared codebase for multiple platforms it is

easily maintained, secured, and provides a faster development with twice the difference in costs, as it is only

necessary for a single team to handle the development of the application which removes the potential of

desynchronization between the platforms and creates an efficient and fast pacing environment for the

development. Updates and version control is done efficiently, and the release of updates is faster which makes

updating the application in case of vulnerabilities or glitches greater than waiting for native development on

both platforms.

65

Overall hybrid development is the better choice for financial costs and time efficiency, as it requires a single

unified team with a single code base for all the platforms that the app is releasing on, and updates and fixes are

faster and easier to implement.

Appendix 11: PWA advantages and disadvantages
A PWA is written in JavaScript, CSS and HTML and looks and behaves just like a regular web application, and it

can be installed on any native device, which gets rid of the need to creating separate applications in either

native or hybrid frameworks. (Brainhub, n.d.)

The PWA as in the case of a hybrid application it shares a single code base and are a great alternative to hybrid

frameworks offering a cheaper alternative with a faster development time with about 50%-75% less time than a

traditional native and hybrid development time. And it is not necessary for the users to install the application as

a traditional application, it would simply be added as an icon to the phone.

The biggest disadvantages of a PWA are the limitations in terms of native features and accessibility as being a

recent technology not many features are as easily accessible compared to the native or hybrid frameworks.

Compared with hybrid applications, a PWA application is a fast and cost-effective but with the limitations of

performance, features and low security protection, being a great solution for simple and not advance mobile

feature dependent applications.

66

Appendix 12: Backlog and issues
In this section I am going to highlight the backlog and principal issues that had been completed for

this project.

Figure 21-Issue example

The picture above it can be viewed the main issue and sub-issues of the first authentication method

developed using the laptop fingerprint sensor thorough the WebAuthn API, the issue features sub

issues that by completing them results in a fully functional feature for the project. This issue being a

sub-issue to the most important issue of the project which is the Methods of authentication

implementation issue, being the parent issue for the 3 methods that have been developed and the

additional tasks that needed to be completed for the goal of implanting the 3 methods to be fully

completed.

67

Figure 22-Parent issue

This issue was keeping track of the progress and what needed to be achieved during the project, such

as the completion of the Windows Hello (WebAuthn) authentication, QR code scanning login and

Biometrics authentication with encrypted credentials and email confirmation during the registration,

and much more sub-issues that collectively result in the successful build of these 3 methods and the

main goal of the assignment.

Below there are screenshots of proof of sprint completion and the achievement of the goals, with

sprint five being still undergoing a few issues in terms of testing and documentation are still in

progress.

68

Figure 23-Sprint 1

Figure 24-Sprint 2

Figure 25-Sprint 3

Figure 26-Sprint 4

69

Appendix 13: Mobile testing
The requirements established for this project regarding the mobile application have been tested

through several manual testing which cover:

RQ-F5: The mobile application must be accessible for both iOS and Android.

This requirements has been tested using the company MacBook through Xcode that handles the

iPhone emulators, these emulators have been used successfully to run the application, the testing for

iOS is still undergoing as a proper physical device is required to be tested on as Xcode does not

support camera simulation. The android testing can be viewed in the screenshot below as the

application is successfully run and operational on a physical Samsung S21+ device. Which also cover

the requirement RQ-F7 that the design must be approved by and the UI/UX designer.

Figure 27-Mobile testing proof

The requirements RQ-NF-S1, RQ-NF-S2, RQ-NF-S14, RQ-NF-S15 have been tested through manual

testing on various emulators, Nexus 5X, Pixel 3a etc. to cover a variety of screen sized to check UI/UX

responsiveness. The language implementation for Dutch and English as well as the requirement for

the phone status, can be viewed in the figure below.

The testing on the emulators and physical device have been successful without any issues.

70

Figure 28-Emulator UI

Figure 29-Phone status and language proof

71

Appendix 14: Testing methods of authentication and email validation
Below there are several screenshots highlighting the manual testing of each of the methods of

authentication as well as the email validation.

Laptop fingerprint using WebAuthn.
Figure 30-WebAuthn Windows Hello prompt for authentication and registration

72

Mobile QR code login
Figure 31-QR code display

In the figure above the QR code for registration and login can be viewed.

73

Figure 32-Email code validation input

After scanning the QR code with the mobile application, it the figure above displays the request of

email code validation according to the requirement RQ-NF-S16.

Figure 33-Email received proof

In the figure above is proof that the code is received through email.

74

Figure 34-Authentication / Registration successful

And the last step displaying that the authentication is successful and the user is logged in.

Mobile Biometrics login
Due to privacy reasons of the smartphone operating system, screenshots and video evidence cannot

be provided to better highlight the proof of testing of this method, during the final defence of this

assignment a demonstration can be provided as proof of testing of the biometrics check.

