

THESIS
WEB-BASED DEVELOPMENT ENVIRONMENT FOR TACTICOS APPLICATIONS
IMPLEMENTED ON A CLOUD-NATIVE PLATFORM.

Year 2022/2023

Educational institution Saxion University of Applied Sciences

Module Graduation HBO-ICT

Involved teacher Herman Voortman Involved students Max de Haas

Document version 1.0 Number of pages 98

Realization date 20-01-2023 First realization 19-09-2022

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 1 | 98

VERSION MANAGEMENT

Version Changes Date

0.1 Added 1. Introduction and 2. Techniques and Methods 19-09-2022

0.2 Set up problem analysis 10-10-2022

0.3 Set up Needs analysis 19-10-2022

0.4 Set up Context analysis 28-10-2022

0.5 Set up Literature study 01-11-2022

0.6 Set up Design/testing 29-11-2022

0.7 Adding all the appendixes 23-12-2022

0.8 Performing quality checks/changing small things 27-12-2022

0.9 Finished concept version 07-01-2023

1.0 Change feedback Saxion 16-01-2023
Table 1 Version management

Name Role E-mail

Herman Voortman Supervisor/teacher from
Saxion

h.w.voortman@saxion.nl

Willy Boenink Supervisor/Software
engineer from Thales
Nederland B.V.

willy.boenink@nl.thalesgroup.com

Max de Haas Graduation student 448590@student.saxion.nl

max.dehaas@nl.thalesgroup.com
Table 2 Contact information supervisors and graduate

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 2 | 98

MANAGEMENT SUMMARY

Many companies have recently started implementing cloud-native applications, and Thales has
done the same. These applications are currently being used in certain parts of the company.
With the development environment missing. The goal of the assignment is to do research on
how the development environment can be placed on a Cloud-native platform. The development
environment is divided into 4 parts for assignment purposes, these are the development part,
the version control system, the build/test system and an artifactory.

Research has been done help design a cloud-native development environment and ensure that
all cloud-native applications used communicate with each other and provide security,
manageability, observability and scalability. The research method used during the assignment is
“design research”, the design research method is based on scientifically proven research and
results in design(s) and an advisory. The advisory and design are based on the requirements,
the design principles and conditions.

The main question the research and where the focus is on is:

“How could a web-based development environment for TACTICOS applications be
implemented on a cloud-native platform?”

Besides the main questions there are multiple sub-questions, these sub-questions will result into
the answers for the main question. The research is split up into multiple parts: a problem
analysis, needs analysis and a context analysis. These parts deliver a view of the problems,
gather the stakeholders and note their needs and define the conditions of for the design.

The following conclusion has been concluded and summarized in these results.

A Cloud-native infrastructure can help a company save on its resources, using less resources
than a physical application. The scalability makes it easier to deploy more instances of an
application without configuring them. This can be done with Kubernetes as a platform and then
the choice can be made on what development solution can be implemented. The tests have
been done with GitLab and the current application set build on a Kubernetes platform instead of
the virtual machine it runs right now.

The outcome of the tests was that a web-based development can be deployed on a Cloud-
native platform without any problems.

With these test results and the capabilities of Cloud-native, the following advice was
determined: Thales should make the step to a Cloud-native development environment as it can
only help them better maintain their system, more flexibility, more scalability and save on
resources. With

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 3 | 98

1 TABLE OF CONTENTS

Abbreviattions and Glossary ... 5

Preface ... 6

1 Introduction ... 7

2 Techniques and methodolgies .. 9

2.1 Design Research .. 9

2.2 Triangulation... 9

2.3 MoSCoW .. 9

2.4 Interviews ...10

2.5 Togaf 3 layer infrastructure drawing ...10

2.6 Prototyping approach ...11

3 Problem analysis ...12

3.1 Preface ..12

3.2 Used methods ...12

3.3 Problem description ...13

3.4 Prespectives ..13

3.5 Conceptual model ...16

3.6 Problem definition and main & sub-questions ...17

4 Needs analysis ..19

4.1 Preface ..19

4.2 Used Methods ...19

4.3 Stakeholder analysis ...20

4.4 Requirements ..22

5 Context analysis ...25

5.1 Preface ..25

5.2 Used methods ...25

5.3 Current situation ...26

5.4 Conclusion ..27

6 Literature research ...28

6.1 Preface ..28

6.2 Used methods ...28

6.3 Results ..29

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 4 | 98

7 Research conclusion ..39

8 Design..40

8.1 Preface ..40

8.2 Used methods ...40

8.3 Cloud-native development environment comparison ...41

8.4 Functional design ...44

8.5 Technical design ...47

9 Testing ...49

9.1 Preface ..49

9.2 Used methods ...50

9.3 Tools and applications ...51

9.4 Test environment and procedure ...51

9.5 Test conclusion. ...53

10 Evaluation ...55

10.1 Used methods ...55

10.2 Research evaluation ..55

10.3 Design evaluation ...56

11 Advisory ...57

11.1 Recommendations ...58

12 Appendixes...59

12.1 Interviews ...59

12.2 Architecture drawings ..64

12.3 Closer look at the GitLab solution ...70

12.4 Closer look at GitHub ...73

12.5 Closer look at Azure DevOps ...75

12.6 Closer look at lift and shift solution ..76

12.7 Evaluations ..77

12.8 Testing results ...83

12.9 Guides and manuals ..90

13 References ..94

14 Table of Figures and tables ...97

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 5 | 98

ABBREVIATTIONS AND GLOSSARY

Word Abbreviation Definition

TACTICOS Combat
management
system

CMS TACTICOS is a modular operating system for
naval ships. It is used to as an application where
radar data comes together with the fire systems.

Kubernetes
orchestration

 Orchestration is the automation of the
management and coordination of applications,
with the goal of improving efficiency and
simplifying maintenance. Kubernetes is a tool
that provides orchestration for containerized
applications.

Integrated
development
environment

IDE An IDE is (web)application that helps
developers write code, an IDE offers plug-ins
and other features that helps developers
improve their code.

Artifact Artifacts are bundles of Software applications,
support documentation and informational
content and more.

Container A container is a package that includes all
components needed to run an application. It is
portable and provides a consistent environment
for running applications,

Visual Studio Code VSC Visual Studio Code is an IDE application, an
application for writing code.

Helm Helm is a package manager for Kubernetes that
simplifies the installation and management of
applications in Kubernetes.

Cloud native
Computing
Foundation

CNCF Is a foundation which focusses on making
Cloud-native sustainable and new projects
known.

Red Hat Enterprise
Linux

RHEL Red Hat is a Linux distribution mostly for
commercial use, it offers extra support from Red
Hat.

Development
(security)
operations

Dev(Sec)Ops Dev(Sec)Ops is an abbreviation for the
development process, where the security is a
new addon as security trends improved.

Table 3 Glossary and abbreviations

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 6 | 98

PREFACE

This thesis document is written for the assignment “Web-based development
environment for TACTICOS applications implemented on a Cloud-native platform” and
written by Max de Haas. The thesis is written as part of the graduation assignment for
the bachelor degree in HBO-ICT in the IT Service Management direction. the study was
conducted at Saxion Enschede.

The thesis consists of research, an advice, testing and results and a reflection.

The assignment is supervised by Herman Voortman from Saxion Hogeschool (Tutor) and
Willy Boenink from Thales Hengelo (Company supervisor). I would like to thank them for
their guidance, time and effort they put in to make sure I can fulfill the assignment. I
would also thank every employee from Thales that helped me with interviews and
Volonta for the fun outings. The assignment was educational and gave the opportunity
to learn a lot from the Cloud-native world.

I hope that everybody will enjoy reading this Thesis and learn from doing so.

Max de Haas

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 7 | 98

1 INTRODUCTION

This is the Thesis assignment: “Web-based development environment for TACTICOS
applications implemented on a cloud-native platform” This assignment has been given
by Thales Nederland B.V. and will be carried out by Max de Haas.

Thales Nederland B.V. is the Dutch branch of Thales Group, Thales group has over 81000
employees and operates in over 44 countries worldwide. Thales Netherlands has three
locations throughout the Netherlands with Hengelo (O) as its main location. In addition
to Hengelo, there is a location in Huizen which deals with (radio) communication
equipment, there is also a location in Delft which is a research and development
location and (infrared) viewers and a location in Eindhoven which deals with cooling
systems for military purposes. Thales Nederland has around 2250 employees.

The customers of Thales Nederland are mainly ministries (of defense) of countries spread
around the world, the Dutch Railways and Boeing/Airbus.

Figure 1 Thales Nederland headquarters (GIB)

Thales is interested in moving their systems to Kubernetes clusters. Thales want to move
their development environment to the cloud. They want to find out how they could
improve on their current systems and either move them to a Kubernetes cluster or
implement a new system to replace the current systems.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 8 | 98

The main question that needs to be answered is:

How could a web-based development environment for TACTICOS applications be
implemented on a cloud-native platform?

To find the answer of the main question a few sub questions must be answered first,
these questions combined will provide an answer to the main question.

1. What is a web-based development environment?
2. What is a Cloud-native environment?
3. What is needed in development environment for TACTICOS applications?
4. What are the requirements for a web-based development environment to be run

on a cloud-native platform?
5. How would the design and implementation of a web-based development

environment be run on a cloud-native landscape?

To make sure that these answers get answered the following method will be used:
“Design Research” This process will start with the research phase consisting of the
following research:

 Problem analysis
 Needs analysis
 Context analysis
 Literature research

After the research phase, the design phase will start. Build on the founding in the
research phase a design will be created in the design phase.

After the initial problem analysis, the stakeholders will be interviewed for the
requirements in the needs document. After these requirements they will be sorted
based on the MoSCoW method to prioritize the importance of the requirements. Once
the requirements are clear, desk research will be used to further understand the
concept op web-based development environments and cloud-native environment.

When the design has been designed it will be built in a Proof of Concept in the form of
a prototype. The prototype will be tested and the results of the prototype, the design
and the research will be used to draw a conclusion and give recommendation for
Thales to use.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 9 | 98

2 TECHNIQUES AND METHODOLGIES

The research will be done using multiple different techniques and methodologies. In this
chapter these techniques and methodologies will be described.

2.1 DESIGN RESEARCH

Design Research will be the main method that is used during the assignment. Design
research is a customer-focused framework that uses multiple research methods to
come to an end result.

2.2 TRIANGULATION

 This technique is used to look at a problem from at least 3 different perspectives. This
technique is used during the problem analysis and for this assignment the following
perspectives will be used:

 Perspective of Thales
 Perspective of the user
 Perspective of the researcher

2.3 MOSCOW

MoSCoW is a technique that focuses on prioritizing the requirements that Thales has. It
uses the capital letters to prioritize the needs in the following way:

Priority Description

Must have (M) The “Must have” requirements are for
must have and is the letter used to mark
the most important requirements.

Should have (S) The “Should have” requirements are
important to consider but not necessary.

Could have (C) The “Could have” requirements are
optional requirements that the customer
desires. They can be implemented after
the assignment/future research

Would have (W) The “Would have” requirements are
optional requirements that are not
required for the assignment and for future
research.

Table 4 MoSCoW table

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 10 | 98

2.4 INTERVIEWS

For the needs analysis interviews will be held, these interviews will be held with the
stakeholders of the project. These stakeholders are identified in a stakeholder analysis.
The goal of these interviews is to collect information on the needs and expectations of
the design from the stakeholders. For the interview there will be a set of open questions
prepared. These questions will be extended with follow-up questions during the
interview depending on the answer the questioner gets.

The table below will show the stakeholders that were interviewed, their function and the
goal of the interview.

Interviewee Function Goal

Willy Infrastructure/software architect Gaining a perspective of
the problem,

Gathering, requirements,
context, conditions and
other stakeholders.

Daniel Cloud-native architect Gathering, requirements,
context and conditions for
the assignment

Rob Software architect CMS Gathering, requirements,
context and conditions for
the assignment

Rick IS/IT solutions architect Gathering, requirements,
context and conditions for
the assignment

Table 5 Interviewees and goals

The interviews with the stakeholders can be found in the appendix “Interviews”.

2.5 TOGAF 3 LAYER INFRASTRUCTURE DRAWING

The TOGAF Standard is a proven best practice framework for enterprise architecture.
This framework will be used to design and visualize the current architecture and a future
architecture. These designs will be made in ArchiMate.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 11 | 98

Figure 2 The TOGAF standard (The Open Group)

2.6 PROTOTYPING APPROACH

This method is used to develop the design by producing several smaller products,
analyzing them with the key stakeholders, and testing them to conclude. There are
three approaches for testing these are:

 The systematic approach – This approach uses a predefined plan with clear
criteria to setup multiple prototypes.

 The deliberative approach – This approach uses communication with different
people to setup multiple prototypes

 The prototyping approach – This method uses small end products to test and
communicate them to the customer, the method can elements of both
approaches mentioned before.

The guides and manuals can be found in the appendix “Guides & manuals”. These
guides contain all the steps taken and commandos used to setup the prototype used.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 12 | 98

3 PROBLEM ANALYSIS

3.1 PREFACE

The problem analysis is the first step in the “design research” method used during the
graduation period. The problem analysis will define the problem and make sure that the
problem is correctly specified. The main and sub questions will be established. The
problem analysis consists of the following chapters:

 Used methods – Describing all the methods used in the problem analysis
 Problem description – A description of the general problem during the research.
 Perspectives – A description of the different perspectives towards this problem.
 Problem definition – A summary of the problem constructed with the main

question and sub-question

3.2 USED METHODS

This section describes the methods used during the problem analysis. The following
methods are used in the problem analysis.

3.2.1 DESIGN RESEARCH

The problem analysis is the first analysis in the research phase according to the design
research method. During the problem analysis it is the goal to use different methods to
create a clear problem. The outcome of the problem analysis will help in with future
research.

3.2.2 TRIANGULATION

The goal of this method is to see the problem from various perspectives. Different
perspectives will be used to look at a cause or (part of) the problem. Triangulation
needs a minimum of 3 perspectives to get good results and all the perspectives
together should enlighten the problem. Interviews will help gather information about
other perspectives.

3.2.3 INTERVIEW

The goal of the interviews is to gather information. The first step is an interview with Willy
(Supervisor from Thales). The goal of this interview is to gather information about the
problem and to create a list of stakeholders. The step after is to interview the
stakeholders from the list to gather their perspective, view on the problem, their needs
and demands. Their perspectives will be part of the above-mentioned triangulation.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 13 | 98

3.3 PROBLEM DESCRIPTION

Thales is always interested in future solutions and technologies they might need in the
future. Cloud-native solutions are becoming more important every day and more and
more people are becoming dependent on them. Much research has been done on
the security and deployment of containers. As the trend continues and security
improves, more companies are deploying containers to run applications.

For this assignment, containers play a big role. Thales might want to build their
development environment on a Cloud-native environment. Before Thales can
implement a system like that, they need to know what problems can occur. More and
more applications are compatible in a Cloud-native environment and more
applications get updated to get rid of the above-mentioned problems.

This research must come with a clear view of the current Cloud-native solutions and
how certain applications will work on a Cloud-native environment, what are the pro’s
and what are the cons and which solutions for each part in the development area is
the best choice for Thales to offer to the Naval Domain according to requirements and
conditions. Everything must be well documented so the results can be reproduced for
future usage.

3.4 PRESPECTIVES

Perspectives will be used to clarify the problem. these perspectives were chosen in
consultation with the problem owner (Willy). The perspectives chosen are from various
functions within Thales that may be affected by a new development environment. The
perspectives chosen will be from Thales, Solutions architect, software architect,
(cloud)infrastructure architect and literature.

3.4.1 PERSPECTIVE THALES NEDERLAND B.V.

Thales is always interested in researching future solutions to improve on security,
performance, and functionality. The goal of these research project is to have
information about the latest techniques on the market, the research done will help
Thales see how and whether a new technology will improve any aspect of the current
system. Thales want to improve their systems and products but does not want to spend
too much money.

3.4.2 PERSPECTIVE SOLUTIONS ARCHITECT

The function of a solutions architect within Thales is to set up and maintain the systems
of Thales. Thales is limited in the type of solutions they can use especially cloud solutions.
Thales is not allowed to use a public cloud solution, so any solution must be hosted in
their own environment. The EAST team has the knowledge to maintain a containerized

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 14 | 98

network but has not yet attempted to move to a full containerized development
environment.

3.4.3 PERSPECTIVE SOFTWARE ARCHITECT

Software developers will have to deal with a big change in their IDE (Integrated
development environment.) The reason is that in the current environment, the IDE is the
only application running locally, while the other applications can be run locally, but
most employees already run them in the Web browser.

The research should confirm if a web IDE will be comparable to the physical
application. The git, building and artifact tools are already accessed by web so any
changes there would probably be on the back end and that is something not relevant
for the software developers.

3.4.4 PERSPECTIVE (CLOUD)INFRASTRUCTURE ARCHITECT

Thales is always looking at improvements. If they were to implement a Cloud-native
environment and start running more applications in container clusters then possible
problems might come forward. Infrastructure architects help with finding these
solutions. In this case Architectures are mostly interested in the advantages,
disadvantages, and the performance of a cloud-based development environment.

Thales must build everything in their own private cloud, so public cloud solutions are not
an option. The infrastructure architect does look positive for the benefit this research
can bring.

3.4.5 PERSPECTIVE USERS

Thales has a lot of developers, a problem with that is that there are a lot of different
programming languages and applications used by the users. The problem that can
come forward from here is that one IDE can work while another one cannot work. Also,
the IDE is the most important part for the developer. Developers do not need to know
how certain applications work; they just want it to work.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 15 | 98

3.4.6 PERSPECTIVE LITERATURE

The trend is changing since 2010, moving faster towards cloud-native solutions. The
assignment is focused on the container and the DevOps side.

Figure 3 Cloud-native trend (Oracle)

A cloud-native environment can provide several important benefits over an older
environment. These benefits are:

 Independence : Cloud-native application can be run and maintained
 independently

 Resilience : A well-designed cloud-native application can stay online
 even if the infrastructure fails.

 Based on standards : Cloud-native services are built with opensource standards
 in mind and lower the dependency of certain providers.

 Flexibility : A Cloud-native environment can be setup in different ways
 and can be managed in different ways.

 Automation : There are multiple ways in why automation is benefit. There
 is auto scaling and the way containers communicate using
 API’s

 Zero downtime : A well build container orchestrator has built in options to
 perform rolling updates also when a pod stops working a
 new pod will be built to replace the broken pod.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 16 | 98

3.5 CONCEPTUAL MODEL

The goal of the conceptual model is to visualize the benefits and the goals of the main
features of a container solution. The results and some of the information come from the
literature research (chapter 6 in this document. A container solution has 4 main features
at the time of this project. These features bring benefits and these benefits are used to
fulfill the goals.

Figure 4 Conceptual model

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 17 | 98

3.6 PROBLEM DEFINITION AND MAIN & SUB-QUESTIONS

The problem definition defines the problem using pre-defined questions that are
created by using the perspectives and consultation with the problem owners. There is
one main question that is answered once all the sub-questions have been answered.
The main question itself defines the problem that will be researched.

The main goal for Thales for this assignment is to gain information and a vision on how
they could build a development environment in a Cloud-native environment, Thales is
interested in the solutions, the advantages and consequences that might come with it.
The following main question is created for this assignment:

“How could a web-based development environment for TACTICOS applications be
implemented on a cloud-native platform?”

The following sub questions are used to answer the main question:

1) What is a web-based development environment?
2) What is a Cloud-native environment?
3) What is needed in development environment for TACTICOS applications?
4) What are the advantages and disadvantages of going Cloud-native?
5) What are the requirements for a web-based development environment to be

run on a cloud-native platform?
6) What web-development tools are available on the market?
7) How would the design and implementation of a web-based development

environment be run on a cloud-native landscape?

A description of why a sub question was chosen and where in this study the sub
question will be addressed can be found in the following table:

Sub
question

Description Covered in

1

 2

3

It is important to understand the basics of web-based
development and how it differs from normal developing.

Literature study
Needs analysis
Context analysis

Containers are important part of a Cloud-native
environment, which is why it is important to understand
and figure out the pros and cons of a Cloud-native
environment.

Literature study
Needs analysis

Context analysis

To design a new development environment or improve
the current one, it is important to understand what is
needed for a development environment.

Needs analysis
context analysis
literature study
design

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 18 | 98

4

5

6

7

Knowing the advantages and disadvantages of the
Cloud-native platform helps in designing a new
environment as the strong and weak points can be
determined.

Needs analysis
context analysis
literature study

The requirements that are needed come from 2 sides, the
view of what Thales needs and the requirements an
application has. IT is important to know these
requirements to figure out what resources are needed.

Needs analysis
literature study

For this question it is important to know what are the main
programming languages used (for TACTICOS), This way
the best applications for these languages can be
researched and tested.

Needs analysis
design
prototyping

A new Cloud-native design would mean that the
underlying infrastructure must be changed. It needs to be
researched what the effect will be of a change like this.

Context analysis
Needs analysis
design
prototyping

Table 6 Sub question descriptions and coverage

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 19 | 98

4 NEEDS ANALYSIS

4.1 PREFACE

The second step of the “Design Research” method is the needs analysis. The needs
analysis is used to determine the stakeholders using a stakeholder’s analysis. The
stakeholders will also be used to gather their needs and requirements. After the list of
requirements has been drafted up, it will be sent to the stakeholders for an extra review.
The outcome of this analysis is the checked list of requirements, this list is important for
decisions made in the future and the outcome of the assignment. The following
chapters will be in the need’s analysis:

 Used methods - Describing all the methods used in the Needs analysis.
 Stakeholder analysis – Analysis to determine all stakeholders for this assignment.
 Requirements – A list of requirements and needs are setup and prioritized. The list

contains all the relevant requirements and needs from the stakeholders and
verified with the boundaries of the assignment.

During the needs analysis 1 sub question will be answered this is the following question
“What are the requirements for a web-based development environment to be run on a
cloud-native platform?”, it will be answered All other sub questions will have extra
information.

4.2 USED METHODS

4.2.1 STAKEHOLDER ANALYSIS

To determine and analyze the stakeholders in this project and their role inside Thales. To
analyze the stakeholders a 3-step plan will be used. The first step is to determine the
stakeholders, the second step is to sort the stakeholders and the third step categorize
the stakeholders. The graduation supervisor will start by giving some stakeholders and
more have been added during interviews with the recommended stakeholders.

The next step is to prioritize the stakeholders in their power over this project and their
interest in this project. What stakeholders have high interest in the project and would
like to be updated and what stakeholders have high power over the project and can
stop it if they want.

4.2.2 MOSCOW

MoSCoW will be used to prioritize the requirements. This method will prioritize the
requirements using the following words: Must, Should, Could and Would. Where Must
are the requirements that are required and would are the requirements that are not
necessary but nice to have.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 20 | 98

4.2.3 INTERVIEW

An important part of the needs analysis is to gather requirements from stakeholders, the
method used will be the interview. Interviews will help to know more about the
stakeholder’s perspectives, their views, wishes, demands and their requirements.

4.3 STAKEHOLDER ANALYSIS

4.3.1 STEP 1: IDENTIFYING STAKEHOLDERS

To find the right stakeholders for this assignment, an interview was scheduled with Willy
Boenink. During this interview, different perspectives, departments, and stakeholders
were discussed and from this the stakeholders were identified. In addition, additional
stakeholders were added during the stakeholder interviews.

Stakeholder Function

Willy Boenink Software architect

Rick Jansen IS/IT solutions architect

Daniel van Gils Cloud-native architect/Systems architect

Rob ten Hove Software architect CMS

Lex Emmens Software engineer
Table 7 Stakeholders and their function

4.3.2 STEP 2: SORT STAKEHOLDERS

The second step is to sort the stakeholders in Primary stakeholders (directly involved) or
secondary stakeholders (Interested parties), this sorting method is used to reveal their
involvement in the assignment. There are no external stakeholders in this project.

Primary stakeholders

(Directly involved)

Secondary stakeholders

(Interested parties)

Willy Boenink Rick Jansen

 Daniel van Gils

 Rob ten Hove

 Lex Emmens
Table 8 Sort primary/secondary stakeholder

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 21 | 98

4.3.3 STEP 3: CATEGORIZE THE STAKEHOLDERS

The next step is to categorize the stakeholders, it is important to understand their power
and their interest in the assignment. There are 4 main categories for a stakeholder. (See
stakeholder categorization matrix below) The categories help define the importance of
the requirements and possible exceptions from certain requirements.

Figure 5 power/interest grid example

To prioritize the stakeholders a Power/Interest Grid will be used, this grid consists of 4
categories.

 Manage closely - Stakeholders from this category require a lot of effort to keep
up to date and satisfied.

 Keep satisfied - Stakeholders from this category require some status updates
during the assignment to know what the status is of the assignment.

 Keep informed - Stakeholders from this category require regular updates and
information about the assignment pure out of interest.

 Monitor - these stakeholders have low power and low interest but are involved in
a way.

Stakeholders are also color coded in the Power/Interest grid; the colors have to the
following meaning.

Red: stakeholders being critics and are the most important and require regular updates.

Orange: stakeholders are neutral they know about the project and require a result in
the end.

Green: are supporters and are important during the project and like the project but also
do not require special needs.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 22 | 98

Stakeholders Influence Power Color Categorization

Willy High High Red Manage
closely

Rick Moderate High Orange Keep satisfied

Daniel High Moderate Green Keep informed

Rob Low Moderate Orange Monitor

Lex Low Low Green Monitor
Table 9 Stakeholder’s categorization

The Power/Interest grid can be finished with the information from the table above.

Figure 6 Power/Interest Grid

4.4 REQUIREMENTS

The requirements are a key element in determining the result. The requirements are
gathered using interviews. Interviewing the relevant stakeholders is the main method
used to gather information which can turn into requirements. The requirements will be
prioritized using the MoSCoW methodology. The requirements will be prioritized in
consultation with Willy. Requirements fall in 3 categories, Business-, User- and system-
requirements. The final requirements are controlled and validated with the main
stakeholder and Thales supervisor Willy.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 23 | 98

 ID Description MoSCoW Functional Non-
functional

Gained
from

Bu
si

ne
ss

 re
q

u
ire

m
e

nt
s

BR-01 A possible container
solution should not be
tailor made and be
commercially available.

Must X Daniel,
Rick

BR-02 A design should be able
independent. One
container
solution/program can be
replaced with another.

Must X Rick,
Daniel

BR-03 The design must be well
documented.

Must X Willy,
Rick

BR-04 Employees of these
teams must be able to
reproduce the proof of
concept.

Must X Willy,
Rick

BR-05 The design should not
have a vendor lock-in

Must X Rick,
Willy,
Daniel

Table 10 Business requirements

 ID Description MoSCoW Functional Non-
functional

Gained
from

U
se

r r
e

q
ui

re
m

e
nt

s

UR-01 The IDE must be
accessible from a
browser.

Must X Willy

UR-02 Developers must have
access to the following
functions in an IDE:

 Compiler
 Debugging tools
 Code

completion
 Refactor

Must X Rick,
Rob

UR-03 Developers have
access to plugins for
testing

Could X Rob

UR-04 Artifacts must be built
automatically

Must X Willy,
Rick,
Daniel,
Rob

UR-05 Developers must have
access to a version
control and merge
support.

Must X Willy,
Rick,
Daniel,
Rob

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 24 | 98

UR-06 Developers must have
access to an artifact
storage.

Must X Willy,
Rick,
Daniel,
Rob,

UR-07 The design must support
a static code check for
example SonarQube
and Coverity.

should X Rob

UR-08 The advantages and
disadvantages of
possible solutions must
be described

Must X Willy

UR-09 The features of different
solutions must be
described and
documented

Must X Willy

Table 11 user requirements

 ID Description MoSCoW Functional Non-
functional

Gained
from

Sy
st

e
m

 re
q

ui
re

m
e

nt
s

SR-01 The finished product must
run in a local
environment with no
access to the internet
and be managed locally.

Must X Willy,
Rick,
Daniel,
Rob

SR-02 The system must have
high availability.

Should X Willy,
Rick,
Daniel

SR-03 The system should have
scalability for at least 500
engineers.

Should X Willy,
Rick,
Daniel

SR-04 The new environment
must have auto scaling
capabilities.

Could X Willy,
Rick,
Daniel

Table 12 System requirements

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 25 | 98

5 CONTEXT ANALYSIS

5.1 PREFACE

The Context analysis is the third step in a “Design research” method. This analysis is used
to determine the environment in which the intervention will take place. When the
current situation is clear, the second step is to define the conditions for the solution. This
is important for the progress of the task and the result. The result of this analysis is an
overview of the current situation in which the intervention will take place and a list of
intervention conditions. The following sections constitute context analysis:

 Used methods – Describing all the methods used in the context analysis
 Current Situation – A drawing and explanation about the current situation What

the solution is designed for.
 Conclusion – Overall conclusion of the context analysis and a list of conditions.

Some points of the sub-questions are mentioned or provide information in this chapter
these are the following sub-questions:

1. What is a web-based development environment?
2. What is a Cloud-native environment?
3. What is needed in development environment for TACTICOS applications?
4. How would the design and implementation of a web-based development

environment be run on a cloud-native landscape?

The goal is that these questions will help define possible conditions for the assignment.
The conditions will be used to find a design that fits Thales their needs and wishes the
best. The previously defined requirements and conditions will be used to clarify the
intervention. At the end of the chapter the question “What are the conditions for the
solution?” from the “Design research” method will be answered.

5.2 USED METHODS

5.2.1 INTERVIEW

Interviews are an important part of the whole assignment. Interviews will be used to
gather information about the conditions and a view of the current situation of the
environment. The interviews will be taken with the stakeholders, the views of the
stakeholders will help with defining the problem, the assignment and finding a solution.

5.2.2 ARCHITECTURAL MODEL

The goal of architectural models is to visualize the infrastructure and processes of a
company. The architectural model will be used in the context analysis in the form of a
drawing of the current situation. This drawing will be made in ArchiMate using the
“TOGAF ADM” methodology. The drawing delivers input

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 26 | 98

5.3 CURRENT SITUATION

The information gathered on the current situation comes from interviews and
information from Thales their wiki. These interviews can be found in the Appendix
“Interviews”. The information gathered from the interviews can help in designing an
architectural model of the current situation. This model will also be the base and
comparison for a possible solution.

Thales does not use a container solution in the current development environment as the
current solution is virtualized environment using virtual machines to host the applications
that are important for the development environment. The reason Thales is making the
step towards a Cloud-native solution is that the environment can be more efficient in
resources, easier to manage and etcetera. Besides the above-mentioned advantages
it is also important to note that vendor lock-in will not be as impactful, through the
advantage of a Cloud-native standard, each application runs independently, this gives
the rolling updates so individual containers can get their update if they are not used at
that time.

Thales has always been looking into new technologies, while container orchestration is
already used inside different parts of the company it has never been used to manage
their development environment. Container orchestration tools like Kubernetes and
VMware Tanzu are widely used by big companies like Spotify, Adidas and many more.
A cloud orchestration tool offers great solution in managing applications.

Any new Cloud-native solution will have the most impact on the systems. The servers will
have to use different software (for example Kubernetes). In return the programs that will
run on the new software will receive a better manageability, more efficient with
resources and better auto scaling to support the on demand needs of the software.
Deploying a Cloud-native environment could help Thales If the chosen and tested
solution meets the requirements that Thales said it is up to Thales to decide if a new
solution will be implemented at the end of the assignment.

In the following chapter an architectural model is made using ArchiMate, this model
shows the current infrastructure on which a new solution will be designed.

5.3.1 ENTERPRISE ARCHITECTURE MODEL

The models can be found in appendix “12.2.1 Current situation”

The model is based on the answers gathered during the interviews. The drawing is split
up in a developer environment and the maintain/manage side of the environment. This
has been chosen as these maintainers and the developers will receive the biggest
change.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 27 | 98

In the development environment there are 3 actors that are important. The developer
their job is to write the code, a test engineer to test the code and make sure it is as safe
as possible to use and a release manager that makes sure the artifacts are working as
intended and decides when to release an artifact. The issue management is a part
that is out of the scope for the assignment but there the assignments a development
process, When the code is written in the IDE and updated/uploaded to the version
control system. If the code is ready to be built it will be built and tested in Jenkins, if the
code is tested and build then the artifact will be (bundled) released and put in an
artifactory. All these systems/ applications are hosted on specific application servers.
The development environment itself is part of a Citrix environment and the applications
within are hosted on a server where the different physical servers are controlled
VMWare vSphere.

On the maintainer/manage side there is one actor (There are specific teams for it). Their
job is to maintain, update and configure the environment so that it keeps working as
intended. They have access to all the management/admin pages and applications
and maintain/control the environment trying to make sure that there will be the least
amount of downtime necessary.

5.4 CONCLUSION

During the context analysis and the interviews done some conditions became visible.
These conditions will be used in designing a prototype, and are important for after as
the company has to adhere to these conditions.

The following conditions have been established:

 Must work within a Cloud-native Environment.
 Solution must work within a Linux based operating system.
 Preferred solution with a Kubernetes orchestrator.
 Applications in a solution must be able to work together while running stand

alone.
 Solution must have an ease of management.
 The system should be able to run in a production environment.
 Must integrate with different applications to improve further.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 28 | 98

6 LITERATURE RESEARCH

6.1 PREFACE

The literature study is the fourth step in a “Design research” method. The goal of the
literature study is to write down the latest information and research and theories on the
sub questions of the assignment. The literature study is an important step as the main
result of the literature study will be the design principles. The literature study consists of
the following chapters:

 Used methods – Describing all the methods used in the Needs analysis.
 Results – Certain sub questions will be researched and their answers will be

written down.
 Research conclusion – The conclusion of the literature study will be written down.

The goal of the literature study is to help give valuable information to the sub question;
the following sub questions will be addressed:

 What is a web-based development environment?
 What is a Cloud-native environment?
 What are the advantages of going Cloud-native?
 What web-development tools are available on the market?
 How would the design and implementation of a web-based development

environment be run on a Cloud-Native landscape?

6.2 USED METHODS

6.2.1 DESK RESEARCH

Desk research is a research method where the researcher finds reliable sources while
sitting behind the desk, information can come from all types of sources so it is the
researches’ goal to see how reliable the sources are and what information can be used
from a source.

6.2.2 SNOWBALL METHODOLOY

The snowball methodology is another research method that is used during the literature
study. The snowball method is used to dive further in to certain subjects, when
something interesting is found the researcher will read further in that subject. The more
in dept research method makes sure that the sources are more reliable and that there
are multiple sources share the same answer on a subject. This way Snowball realizes a
Literature Study that contains deep information on topics from multiple sources.
(Haveman, Hageraats, & van der Linden, 2016)

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 29 | 98

6.3 RESULTS

6.3.1 LITERATURE QUESTION 1: WHAT IS WEB BASED DEVELOPMENT?

Web based development is a new and upcoming technique that focusses on moving
the development environment to the cloud. A well-designed development
environment consists of the following tools: An IDE, version control system, building
tool/pipeline and an artifactory. First the tools/functions must be explained.

An IDE (Integrated Development Environment) is a software application that provides a
great number of features for a developer to write code. A few of these features are
build automation, compilers and debuggers used to control, write and change written
software code.

A version control system is a system that tracks and manages software code. This tool is
useful as it can track every change made to the software code and it allows the
developers to compare earlier versions of the code if a mistake has been found. This
tool is especially useful when there is a development team working on the same code,
every developer can see what other developers did and control their work. A
developer can also pull the latest version of the code from the version control system.

Software building tools/pipelines are used to build the written source code and create
a software artifact that can be run on a computer. The build tool that supports the
building of the code, these features can be automation, testing, extra version control
and compilation. The build is also called an artifact. The artifact will be stored in an
artifactory.

The artifactory is a repository where all the builds will be stored and managed. An
artifactory makes sure that developers can easily use code and builds from other teams
or previous projects and their dependencies. After the source code has been build and
stored in the artifactory the software packages will be ready to be used. These software
packages are called artifacts

For a web-based development environment all the above-mentioned programs/tools
must be usable in a web browser. The development environment and specifications are
different for all companies but these tools/functions are the necessities.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 30 | 98

Figure 7 Development environment drawn

CONCLUSION

In short, a web-based development environment is the same as a standard
development environment but with web-based possibilities and access from a web
browser. The current environment supports web-based development but is not build on
a Cloud-native layer.

6.3.2 LITERATURE QUESTION 2: WHAT IS A CLOUD-NATIVE ENVIRONEMNT?

Cloud-native has been up and coming for a few years with large and small companies
moving towards a Cloud-native platform. With new technologies coming every day,
the Cloud-native environment is an interesting choice for tech industries. To help
improve the Cloud-native environment the CNCF (Cloud-native Computing
Foundation) has been created by the Linux foundation in 2015, with the following goal
“The Cloud-native Computing Foundation seeks to drive adoption of this paradigm by
fostering and sustaining an ecosystem of open source, vendor-neutral projects. We
democratize state-of-the-art patterns to make these innovations accessible for
everyone.” (Cloud-native Computing Foundation (CNCF), 2022) The CNCF helped
redefining how software has been built and made a collective landscape of all Cloud-
native apps.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 31 | 98

Figure 8 Cloud-native landscape (CNCF)

The CNCF gives the following explanation for Cloud-native “Cloud-native technologies
empower organizations to build and run scalable applications in different environments
such as public/private/hybrid clouds, with technologies such as: containers, service
meshes, microservices, immutable infrastructure and declarative APIs exemplify this
approach.

These techniques enable loosely coupled systems that are resilient, manageable and
observable. Combined with robust automation, they allow engineers to make high-
impact changes frequently and predictably with minimal toil.” (Cloud-native
Computing Foundation (CNCF), 2022)

The CNCF is hosting projects and has successfully build successful projects together with
the support of over 150.000 contributors and big companies like Apple, Google,
Amazon, Microsoft and many more.

The Cloud-native environment consists of 2 main building blocks and 2 trends, the
building blocks are containers and microservices and the 2 trends are Cloud and
DevOps.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 32 | 98

Figure 9 Cloud-native trend (Oracle)

Containers are lightweight virtual machines, due to their lightweight they are efficient,
highly portable and scalable. Containers contain only the application libraries and
processes they need. Containers are isolated from each other, this way multiple
containers can run on 1 server without impacting each other, containers are also faster
in deployment time and have better security if configurated right. All these points
together make containers a lightweight alternative to virtual machines and physical
servers. Multiple containers can
be managed using an
orchestrator, an
orchestrator has many
features such as
autoscaling, monitoring, load
balancing and repairing
containers.

The other building block is microservices. If you have an application, it is most likely
being made by 1 company with multiple functions. Microservices are mini applications
where you can combine as many microservices as
you want to create the same or better result as an
actual application. With these microservices an
company can configure the exact functionality they
want all from different vendors which all use the
Cloud-native standards and are easy to change. 2 of
the biggest benefits are Rapid innovation and greater
levels of data center automation. What is meant with
rapid innovation is that a company do not have to Figure 11 Microservices

Figure 10 Containers

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 33 | 98

wait till their vendor updated the application to have the feature they desire, there is a
large support of open source content to create microservices. The second point about
automation, microservices connect through scripted processes such as API’s, these
API’s can be used to automate most systems. In the picture at the start of the next
page a preview off some microservices is shown.

The 2 trends that gained a big foothold is DevOps and Cloud are more known. The goal
of the Cloud is to make applications available to anyone and everywhere with the only
necessity being an internet browser and internet.

DevOps is the CI/CD pipeline companies start to use to streamline their software
creation process and make it more efficient. The DevOps circle consists of multiple of all
the 8 steps in a development process.

Figure 12 DevOps drawing

CONCLUSION

Cloud-native means that applications and systems are built with the advantages of a
Cloud delivery system. Some examples on what is needed to implement Cloud-native
systems are the use of micro-services, containers, the cloud itself and the use of DevOps
structures. The goal of Cloud-native architecture is to create more on-demand systems.

Thales is using some Cloud-native environments within their company. Within the
Development environment Thales only has DevOps. They have indicated that they are
interested in setting the first steps towards containers for parts of the development
environment.

6.3.3 LITERATURE QUESTION 3: WHAT ARE THE ADVANTAGES AND
DISADVANTAGES OF GOING CLOUD-NATIVE?

The Cloud-native trend made a big leap forward in 2015 when the CNCF has been
founded and announced Kubernetes 1.0, Kubernetes is an open-source container
cluster manager. A big advantage of the Cloud-native environment is that mayor
companies like Google, Red Hat and VMware pledge their ideas, knowledge and
employees to support the Cloud-native community and open-source projects within

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 34 | 98

the CNCF. So, the strength of most Cloud-native applications is that they are open
source and/or backed by mayor world leading companies.

To start with the advantages of a well build Cloud-native system.

 Reduced time to marked
o This means that due to the efficiency of Cloud-native applications that a

development process can be quicker and an application can be
delivered earlier.

 Ease of management
o Cloud-native solutions help bring more monitoring tools and more options

for managers to setup systems.
 Reduced cost

o Efficient applications help reduce cost as they use less resources, auto
scaling help scale the number of applications/instances running by the
demand. If there is no demand only 1 or 2 instances of that application
will be running. Some Cloud-native options are open source that can help
reduce licensing cost.

 Reliable systems and reduced downtime
o Most Cloud-native applications have advanced monitoring and logging

tools which can help identify errors before they happen
 No vendor Lock-in

o In the Cloud-native landscape, a company has the option to take a
different application for all the different systems. A company is not bound
to one vendor delivering the system without options to integrate with
other vendors.

 Scalability and flexibility
o As mentioned with the cost part, an environment is auto scalable that

manages to spend the resources on the right instances. It can also help
with setting up a specific environment in a faster timeframe then a virtual
machine.

The Cloud-native environment has one mayor downside which is the loss of portability.
This can be a problem for applications being built for 1 environment and must be
ported to a different environment which can take a long time rewriting and refactoring
code. If an application is built using a certain set of programs and the code needs
access to a certain artifact that is stored in an artifactory. If the whole system is
changing and the artifactory is changed it could mean that that part of the code must
be rewritten.

For a company it can be a choice if they want to future proof their environment and
invest the upfront cost and manpower to refactor the code or keep the artifactory as is
and change the systems around it. A company must look at the advantages of going
Cloud-native one a case by case and application by application basis.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 35 | 98

CONCLUSION

The support for Cloud-native systems and applications is great as it is backed by
multiple industry leading companies. It also brings more benefits then disadvantages for
the companies that switch towards Cloud-native. The biggest advantage is the
efficiency as it will improve the resources used on the server. The biggest disadvantage
is that the company can lose some portability in their applications.

This change might not be a problem for Thales as they have a large amount of
developers and have the option to set apart a team to start working on it. A solution
might come that will make porting less of a disadvantage.

6.3.4 LITERATURE QUESTION 4: WHAT WEB-DEVELOPMENT TOOLS ARE
AVAILABLE ON THE MARKET?

It is necessary to look at the first literature question to understand what is needed for
web development. In the first question the following 4 tools were discussed: IDE, Version
control system, Software building/Pipeline and an Artifactory.

There are multiple ways to setup a complete development environment, here are some
examples:

 All in one solution – 1 application for the whole development environment.
 Lift and shift – Lift the current applications and deploy them on a Kubernetes

cluster instead of a virtual machine.
 Individual Cloud-native applications – Chose an option to fulfill 1 (or more) of the

4-parts of a development environment.
 All in one with support of other Cloud-native applications – All in one solution

might not fulfill the full package of requirements and can be supported by
different applications.

All in one solution are products that have at minimum the features needed to replace
the current development environment. In short, the application must have a build in
IDE, a version control system, code building and an artifactory. Most big Cloud
providers like AWS, GCP and Azure have built their own all in one system that can be
used on their own platform. Other well-known products are GitHub and GitLab, both
are more used by the coding community and support the 4 most important parts of a
development environment.

The lift and shift method are a common way to move an environment to the Cloud, the
meaning behind lift and shift is that the application will be lifted off from the current
server and put in the Cloud. For the assignment the main goal is to move towards a
Cloud-native environment the to account for this goal a small change must be made,
instead of moving it the Cloud it must be moved to a container. The container can be
run in an application like Kubernetes (K8S).

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 36 | 98

The third option is to use a Cloud-native application for each part of the development
environment. Using the Cloud-native applications, it should be easy to couple and
decouple different applications and processes to each other using API’s, this way a
new full Cloud-native environment can be setup.

The fourth option the all in one with support of other Cloud-native applications, as
explained before an all-in-one solution might not fulfill all the requirements a company
has, so a company can decide if they want to add an extra

To start with the Cloud-native IDEs, Cloud-native IDEs is a new and emerging
technology with the 2 most widely used desktop IDEs (JetBrains IntelliJ, Microsoft Visual
Studio Code) releasing their product in the last 2 years.

The second part of a development environment is about version control. While there
are a lot of different vendors for a version control system, the most known/used
programmers all use the GIT open-source standard. GIT is an open-source distributed
version control system that uses branches to control a version. The developers work in a
developing branch and if needed a push request can be done to make changes in
the master branch.

Figure 13 What is GIT

Some alternatives for Git solutions are Azure DevOps Server and Helix Core.

Building code is the next step in the process. Build code has been tested and is ready to
be used as an application or can be used as a dependency in other code. The reason
to build you code is to make an application from the code that is written. Thales is
currently using Jenkins for it; Jenkins is one of the most known and oldest build
automation tools for a CI/CD pipeline. Many companies joined the CI/CD trend with
their own application as shown in the screenshot below.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 37 | 98

Figure 14 Cloud-native computing foundation CI/CD

Not all the applications shown are direct competitors to Jenkins but some great
alternatives are Circle CI, GitLab and Bamboo.

The final step is storing the build artifacts, hereby is automation key in the process from
start to finish, so it is good to know that the build Pipeline can integrate with the
artifactory and the artifactory must integrate with the IDE. Cloud-native Artifactory’s are
uncommon and most require a container orchestrator like Kubernetes to function.
Some Cloud-native solutions are GitHub and GitLab and some solutions that need
Kubernetes to function are JFrog and Nexus.

CONCLUSION

In short, there are 4 ways to come to a solution using field proven methods. These are:

 All in one solution
 Lift and shift
 Individual Cloud-native applications
 All in one with support of other Cloud-native applications

The goal is to use these methods to help design a solution that fit the requirements.
Some applications have been mentioned to redesign the current system or improve the
current system to a Cloud-native environment. A few designs and further research into
all the mentioned products will be worked out in chapter 8 “Design”.

Inside of Thales there are teams that have experience with migrating systems, the
knowledge is there and so is the experience.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 38 | 98

6.3.5 LITERATURE QUESTION 5: HOW WOULD THE DESIGN AND
IMPLEMENTATION OF A WEB-BASED DEVELOPMENT ENVIRONMENT BE RUN
ON A CLOUD-NATIVE LANDSCAPE?

If a company were to switch to a Cloud-native environment, then the company must
take a set of steps to overcome the switch. While the set of steps to take are mostly the
same with the exception the lift and shift concept. The main problem a company
would face is porting their code for a new solution, any code that currently or has been
written and that uses artifacts must be temporarily stopped, this is due to the location of
the dependent artifacts changing to a different artifactory.

While this process can take a very long time and would bring a high cost in salaries of
developers who are not able to perform certain tasks as they must change the code.
The lost money can be earned back during the upcoming years as the efficiency
improvement can reduce the development time.

The moment that code from older projects has been ported to the new artifactory and
that new projects have started using the new artifactory. The rest of the systems can be
implemented during the porting phase so newer projects can start with the new
development environment.

The company has to setup their build pipeline between the version control system and
the artifactory.

And the company has to setup the IDE and make sure that the IDE, version control
system and the artifactory can all communicate together.

CONCLUSION

There are some steps that need to be completed before the switch can be made to a
Cloud-native solution it starts by porting the code so that the code can still use their
dependencies. The porting is done after the new artifact storage has been set up. From
there on all the other systems must be set up, these are the following Version
management system, a build/test system and an IDE.

As mentioned in the previous literature questions (chapter 6.3.4), Thales has the
knowledge to fulfill a full migration.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 39 | 98

7 RESEARCH CONCLUSION

All the previous research must come together to create the design principles. The
design principles help define the choices made in a design, while not all the design
choices have to be used in the design. The goal is that a design can be explained using
the design principles. The design principles have a standard layout:

If (the problem) then (the solution) because (the reasoning).

DP 1 – If Thales want a new development environment that makes use of the newest
technologies, then Thales should use a Cloud-native development environment,
because the Cloud-native trend is relatively new and supported by world leading
companies help design the newest techniques in an open-source fashion.

DP 2 – If Thales does not want a vendor lock on their systems, then a Cloud-native
solution can help Thales because the CNCF is designed with the idea of multiple
applications and micro services working together and have possibilities to integrate
which each other.

DP 3 – If Thales want to save money eventually, then Thales should go for a Cloud-
native solution, because Cloud-native solutions are built with the idea of scalability and
can auto scale with the demand. This together with the fact that Cloud-native solutions
are designed to be more efficient with the resources.

DP 4 – If Thales want to have a simple way to manage their systems, then a Cloud-
native solution can help Thales, because Cloud-native application try their best with an
ease of configuration mindset. Most Cloud-native solution have a way to connect
another application to theirs with just an API.

DP 5 – If Thales want to have multiple ways to implement a new system, then moving to
a Cloud-native solution can help Thales because there are at minimum 4 ways to
choose from in moving their systems to a Cloud-native environment

DP 6 – If Thales want to have an on the shelf solutions, then Thales can consider a
Cloud-native solution because in the Cloud-native landscape a lot of different
applications exist which Thales can use to create their own solution.

DP 7 – If Thales is looking for an All-in-one solution, then Cloud-native can be a great
option because there is great application in the Cloud-native landscape like GitHub
and GitLab.

DP 8 – If Thales needs to have their environment in run locally then Cloud-native can
help Thales because Cloud-native does not mean that it is only accessible in the Cloud,
most Cloud-native applications can be run locally on a on premise server.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 40 | 98

8 DESIGN

8.1 PREFACE

The design is the next step of the design research method. The design chapter is used to
show what the new changes will be and show the differences between the current and
new situation. Further this chapter will consist of a functional design and a technical
design, furthermore the test environment will be described.

All the previous research will be used to create a design, the previous research will
consist of the requirements (chapter “4.4 requirements” from the needs analysis), the
conditions (chapter “5.4 conclusion” from the context analysis) and the design
principles (chapter “7 research conclusion” from the research conclusion). The
compliance of the previous research can be found in the evaluation chapter. The
design chapter consists of the following chapters:

 Used methods – In this chapter the used methods will be described.
 Cloud-native solution comparison – In this chapter different solutions will be

compared, and the applications that help build the environment.
 Functional design – In this chapter the current and new situations will be

described using UML drawings.
 Technical design – The prerequisites for a Cloud-native development

environment, architectural drawings for the new situation.

During the design phase some of the sub questions will receive valuable input. These
questions are the following:

 What is needed in development environment for TACTICOS applications?
 What are the advantages and disadvantages of going Cloud-native?
 What are the requirements for a web-based development environment to be

run on a cloud-native platform?
 What web-development tools are available on the market?
 How would the design and implementation of a web-based development

environment be run on a cloud-native landscape?

These questions will help create and define a possible design. The results of the
design phase will be used in the testing phase and the advisory.

8.2 USED METHODS

8.2.1 ARCHITECTURAL MODELS

In the design phase the goal is to make a design of the situation in the future. In the
“context analysis” the same architectural model has been made, the difference
between that one and the one made in the design phase is that the one in the design
phase is made for a future solution and is based on the one from the “context analysis”.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 41 | 98

8.2.2 UNIFIED MODELING LANGUAGE (UML)

The UML method will be used to visualize the functional level of the design. The current
and future situation will be compared, whereas the current situation will be based on
the context analysis and the future situation will be based on the research done so far.

8.2.3 PROTOTYPING

Another method used is the prototyping method. The prototyping method is used as the
prototyping design approach mentioned in the Saxion “Design Research”
methodology. During the prototyping method gives flexibility and allows for multiple
solutions to be tested. Prototyping may include elements of systematic or deliberative
approach, but it does not have to. (Haveman, Hageraats, & van der Linden, 2016)

8.3 CLOUD-NATIVE DEVELOPMENT ENVIRONMENT COMPARISON

For the Design phase 2 designs will be created, the designs will be prototyped and
tested. For the all-in-one solution the top 3 options will be compared, while for the lift
and shift method will be done with Kubernetes, the reasoning behind is that Kubernetes
is the only solution out of the top 3 which either free to use or can be done with minimal
resources for a prototype situation. However, container orchestrators use the same
base functionality so if a situation works in Kubernetes, it has a high likelihood working in
other container orchestrators.

The 2 designs will be based on the previously mentioned options a company has. The
designs are based on what Thales has mentioned, the solutions architect named that
Thales France is working with GitLab and that Thales itself is interested in working with
their current systems but on a Cloud-native platform. So, for that reason the following 2
designs will be created:

 All in one solution
 Lift and shift

In the case that Thales is interested in an all-in-one solution with the support of other
Cloud-native application they can add them. For now, the focus is on the core features
of a solution. Thales also has mentioned that they are not interested in moving their
current applications set to a new application set, so the “Individual Cloud-native
applications” method is not going to pass

8.3.1 COMPARING ALL IN ONE SOLUTIONS

To start with the All-in-one solution. The goal of an all-in-one solution is to (almost) fulfill
the full DevOps (Developer Operations) environment with 1 tool. A comparison will be
made between the 3 biggest DevOps applications and the current environment, the 3
solutions that are chosen are GitHub, GitLab and Azure DevOps (Boards). According to
Gartner these are the best alternatives for the current Atlassian based environment.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 42 | 98

 GitLab GitHub Azure DevOps Current
environment

IDE
Basic features

exist.

Plugins available
for all JetBrains
IDEs and more.

Extra paid
service GitPod
for web-based
access to VSC
and desktop
access to All
JetBrains IDEs

and VSC

Basic features

exist

Paid service
called GitHub

Code spaces with
advanced

features

There is no web
development

tool, but
Microsoft owns

Visual Studio
Code (VSC) as a

separate
application/Licen

se

And offers great
integration with

VSC.

In the current

situation Thales
uses VSC in a Citrix

environment.

But different Cloud
IDEs can be
integrated in

Bitbucket.

Version
control
system

Full GIT support

Full GIT support

Git support and

Team Foundation
Version Control
support (makes

use of
workspaces)

Full GIT support in

Bitbucket

Code
Building

GitLab has built

in features to
build code and
create artifacts.

GitHub has built in
features to build

code and create
artifacts.

It has a feature

called Azure
pipelines.

Thales uses Jenkins

for their
testing/building.

Bitbucket does
offer a building

solution

Artifactory
GitLab has an

artifactory
called GitLab

Artifacts where
artifacts can be

stored.

GitHub has an

artifactory called
GitHub Artifacts

which is like
GitLab Artifactory

Azure has a

feature called
Azure Artifacts for
storing artifacts.

Thales uses Nexus
for their artifact
storage. Here are
all the artifacts
stored after
building the code.

Price’s GitLab server:
price on inquiry

Web version
(GitLab

A similar package
(GitHub) to

GitLab Ultimate
costs around $21
per user/month.

Without any IDE
the Azure

DevOps basic +
Test license costs:

Bitbucket+ Jira+
confluence should
cost around 33,40

USD per person per
month. Price is

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 43 | 98

Ultimate): $99
per user/month.

GitPod add-on:
price on inquiry

Or online version
between $8-35 a

month.

GitHub Code
spaces

Or GitPod (see
pricing at GitLab’s

pricing)

First year between
$1299-$2199

Second year 50%
off if extended on

time.

€52.01 per
user/month

An additional
VSC license costs
around €250 per

user/month

calculated based
on 250 users.

Jenkins is free to
use.

Nexus needs a
quote for 100+

users but should
cost around $100

per user per
month.

In total this plan will
cost around

$133.40 per user
per year.

Can be
locally
hosted

GitLab Self-
Managed

Cannot be

hosted in an on-
premise

environment.

Cannot be

hosted in an on-
premise

environment.

Server solution is
not supported
anymore, Data

center is still
supported.

Table 13 Comparison between solutions

Advantages:

 GitLab
o Can be locally hosted.
o Lots of integration options from different applications.
o Open source
o Big community support.

 GitHub
o Most advanced features.
o Open source
o Lots of integration options from different applications.
o Big community support.
o Base version is the cheapest per person.

 Azure DevOps
o Great integration with Microsoft products.
o Advanced features in the Microsoft ecosystem.
o Microsoft support

Disadvantages:

 GitLab
o By itself is it the most expensive solution.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 44 | 98

 GitHub
o The main components cannot be hosted locally. Just the runners to

build/test the code.
 Azure DevOps

o The main components cannot be hosted locally. Just the runners to
build/test the code.

o Not the best integration with other applications.

The 4 solutions in the comparison are considered the best alternative DevOps solutions
compared to the current environment. If these solutions are compared with the design
principles and requirements then the only enough solutions are GitLab, this main reason
for this choice is the on-premise solution that GitLab offers and the other solutions do
not. GitLab is also the only solution that fulfills all the design principles.

Further research will tell if GitLab is a better solution then the current DevOps solution

More details can be found in appendix “12.3,12.4 and 12.5”

8.3.2 COMPARING THE LIFT AND SHIFT CONTAINER ORCHESTRATORS

While there are multiple container solutions like VMWare Tanzu and Kubernetes. It is
worth it to note that container orchestrators work nearly the same and a container
application function on all of them. Kubernetes is considered the best open-source
container orchestrator while the other 2 named solutions are paid solutions. Due to the
standards in container solutions and the way containers are made can it be assumed
that a solution in Kubernetes will also work with another container orchestrator.

8.4 FUNCTIONAL DESIGN

In the functional design the changes will be compared from the current system and the
two designed solutions. The functional changes consist of two forms, the current and
the future form. Both are based on the interviews and the context analysis.

MAINTAINER

In the current situation the maintainer does perform multiple tasks. The maintainer has
access to the production environment, in there the following processes take place:
update, maintain, monitor and troubleshoot. Updating the system consists of update
the applications and the server. Maintenance is when configuration changes must be
made, the server needs monitoring in case the environment starts to feel slow or
storage runs out, also good monitoring software can help spot problems before they
occur. The final process is trouble shooting, in case anything breaks the maintainer must
fix it.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 45 | 98

Figure 15 Current situation maintainer

The future situation will stay relatively the same, the time to perform some processes will
slow down, this will be because Kubernetes has rolling updates and tries to restart shut
down containers. These extra features will come to both solutions because Kubernetes
is performing them.

Figure 16 Future situation maintainer

DEVELOPERS AND TESTER

In the current situation the developers write the code and test their code. The first
process is writing and updating code, the code gets build and tested in the second
process. Any application will get released and stored in an artifact storage. The artifacts
that are stored can be used in the future.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 46 | 98

Figure 17 Current situation Developer

In the future situation the situation will only change for the GitLab environment. The lift
and shift are the same situation on a different platform. The GitLab solution is better
automated, saving time and time in different processes in the solution, GitLab’s tests are
more advanced. The core processes are the same.

Figure 18 Future situation with GitLab developer

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 47 | 98

8.5 TECHNICAL DESIGN

The technical design outlines how the technical implementation of a Cloud-native
development environment will work in the current environment and serve the use cases
from the functional design. The prerequisites for a Cloud-native development
environment will be described. A view enterprise architecture for a possible future
solution will be shown.

8.5.1 PREREQUISITES FOR CLOUD-NATIVE DEVELOPMENT SOLUTION

There are no real prerequisites to implement a Cloud-native development solution.
Implementing a solution can be done on every Linux distro. For this assignment tests will
be done on the latest Ubuntu version to demonstrate that it is possible to run it Cloud-
Native, tests will be done on the web-version.

Installations for both solutions can be realized using the created Guides/manuals
(Chapter 12.8 Guides and manuals)

8.5.2 DESIGN CHOICES FOR THE FUTURE SOLUTIONS

The designs have been drawn with the design principles mentioned in the design
principles (Chapter 7 “Research conclusion”), and the requirements (Chapter 4.4
“Requirements”). The design is firstly based on a Cloud-native fundament, offers less
maintenance, both designs use on the shelf software and applications. So, the design
can be used for other companies as well and for the GitLab design the choice was to
make it an All-in-one solution. Both drawings have an optional part worked out for
added features.

All the “Must” requirements are used in the choice for these solutions as they are the
most important. Both the GitLab and the Lift and shift solution satisfy the requirements
set. Some “should” requirements are added in the design by default due to the
solutions offering the function needed to meet the requirement.

8.5.3 ENTERPRISE ARCHITECTURE CHANGES

The drawings have been split into 2 different environments, the maintainer side and the
developer side. There are drawings for both solutions where one method is designed
with the lift and shift method in mind the other with an all-in-one solution in mind.

LIFT AND SHIFT SOLUTION (KUBERNETES)

Both drawings can be found in appendix “12.2.3 New lift and shift solution”

This design is nearly the same as the current situation. The biggest change is in the
technology layer, where everything is run in containers and were Visual Studio Remote
development. This plugin in VSC is gives the opportunity to offload the workload in a

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 48 | 98

Citrix environment and moves that to a container this is to save locked in resources from
the Citrix servers. In this case the server resources can be used on different servers.

For the maintainers most of it is the same, there are 2 applications added to the
maintainers pool, these are remote VSC and Kubernetes.

ALL IN ONE SOLUTION (GITLAB)

Both drawings can be found in appendix “12.2.2 New GitLab solution”

This solution brings a lot of changes, within the drawing there is an optional section
which is an option which for now focusses on a better coding solution. With the GitLab
solution each member of a developing team can do everything they need in GitLab.
The technology layer is also trimmed down to just a server with GitLab and an optional
Citrix server to create a better coding environment (can be improved with Linux laptops
or other solutions).

For the maintainers there is just 1 application that needs to be maintained, this makes it
easier to manage/maintain, the application itself can take a while to setup as the
current functions need to work in a new application.

8.5.4 THE TEST ENVIRONMENT

The test environment will be used to test both solutions within the possibilities. The test
environment consists of 1 physical machine for both solutions. Both solutions run on
Kubernetes and both run in a different namespace within Kubernetes.

The GitLab namespace consists of all the containers needed for GitLab. The Atlassian
namespace consists of the current situation in a Kubernetes environment. A small
disclaimer is that the current situation is not fully testable due to licenses, however the
applications are the same as Thales uses in the current situation with the only change
being set-up on a Cloud-native platform. Functionality of the application will stay the
same, but Kubernetes offers autoscaling functionality. Which should help Thales in
saving resources.

GitLab offers a free trail to use with limited functionality, so while not all the functions will
work, the functions which cannot be tested work on paper.

The demo environment will use Helm charts to help install the needed container. Helm is
a package manager for Kubernetes, this choice is made due to the time it will take to
build an own container for Kubernetes. For Thales it might be an option to customize
their own containers. The tests performed are functional tests to check if the design
choices can be brought to reality and perform the functions that Thales wants.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 49 | 98

Figure 19 New development environment test environment

9 TESTING

9.1 PREFACE

Testing is the next step after the design phase is “testing”. The purpose of this chapter is
to outline the topics and areas that will be tested. Developing a final judgment and

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 50 | 98

recommendation while taking the prior findings into consideration is a crucial step.
During this phase the two chosen solutions (GitLab and Kubernetes) will be prototyped.
After they will be tested following a procedure of tests based on the requirements set
earlier. The following chapters are part of the testing chapter:

 Used methods – Describing the used methods during the testing phase.
 Tools and applications – Describing the applications and tools used for testing.
 Test environment and procedure – Describe the test environment and the testing

technique.
 Test conclusion - contains the test results and a conclusion drawn from the results.

During the testing phase, a few sub questions will return answers and provide feedback.
The following questions are:

 How would the design and implementation of a web-based development
environment be run on a cloud-native landscape?

 What is a web-based development environment?
 What is needed in development environment for TACTICOS applications?

These questions are important to the main question and are essential to the final
advisory. This advice is primarily based upon the test results. The tests also comply to
specifications, rules, and design principles. The evaluation chapter contains the results
of these.

9.2 USED METHODS

9.2.1 PROTOTYPING

The Prototyping Design Approach, as mentioned in the Saxion "Design Research"
methodology, is chosen for the design. This approach allows for the creation and
testing of multiple solutions, which is an essential element of this assignment. The
researcher has used one of the three approaches mentioned in the “Prototyping
approach”

9.2.2 FUNCTIONAL TEST

The functional test is used to test the requirements, the goal is to test the functionality of
the prototypes and see if the functionality matches the requirements the customer set
during the assignment. These requirements focus is about functionality. This method is
tested using the applications and see if they can run on a Cloud-native platform and
perform the functions that the customer requires.

The functional test is testing the mainline functions and accessibility of an application.
Having the applications perform the main tests

9.2.3 DESK RESEARCH

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 51 | 98

Desk research will be used to gather information about installation guides, answers to
certain questions that during the set-up and tests and read about others user
experience. More information in chapter “Desk research”

9.3 TOOLS AND APPLICATIONS

The perform the tests in the test environment some applications and tools have been
used.

The first tool that has been used is Helm. Helm is a package manager for Kubernetes
helping this tool helps managing the applications and making sure Kubernetes does
what it must do. Helm also makes it possible to configure applications before they
launch. Helm charts, the main component of Helm gives the researches the option to
read installation/configuration settings.

To test GitLab’s functionality the web version of GitLab is used*. The web version offers
the same functionality as the self-managed version and will be used to test the in-
application functionality.

The first application being used is Visual Studio Code (VSC), this application is being
used together with the remote development plug-in available in the plug-in
marketplace. Gives this application the remote development possibility.

*This is due to free license not being accepted in the self-managed version.

9.4 TEST ENVIRONMENT AND PROCEDURE

A test environment is designed during the design phase and will be built and tested. The
"Test Environment" chapter has details on this setup. The tests regarding the systems will
be done on the test laptop, the tests regarding the functionality of an application are
done using the web version.

The prototype environment meets a few set requirements to make sure that the results
are consistent.

 Each solution is setup using Helm as a package configuration.
 Each solution is setup with at least 1 load balancer service included to make a

connection possible.
 The web version of GitLab makes use of a free trail license.
 All environments are setup in a different namespace.

Some key points worth mentioning

o Each test setup is used using the steps from the “Guides & manuals” step.
o For the functionality test of the lift and shift environment it can be assumed

that all functions work as they do in the current environment, so the important

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 52 | 98

part is to check if the environment can be run on a Cloud-native
environment.

The following test setups have been performed.

 Deploying an application on a Cloud-native platform:
o GitLab environment

 Using Helm, the deployment of all the applications needed to run
GitLab will be deployed on Kubernetes showing that the
environment can be run on a Cloud-native platform.

o Lift and Shift environment
 Using Helm, the deployment of all the applications needed to run

Bitbucket will be deployed on Kubernetes showing that the
environment can be run on a Cloud-native platform.

 Using Helm, the deployment of all the applications needed to run
Jenkins will be deployed on Kubernetes showing that the
environment can be run on a Cloud-native platform.

 Using Helm, the deployment of all the applications needed to run
Nexus will be deployed on Kubernetes showing that the
environment can be run on a Cloud-native platform.

 Coupling Visual Studio Code to Docker to start up a container in
Kubernetes to run/debug code.

 Testing the IDE
o GitLab environment

 Opening the web version and write test code, debug it and check
for plugins usage.

o Lift and Shift environment
 Opening the application write test code, debug it, check for

plugins usage and if the code gets run in a container.
 Testing the version control system

o GitLab environment
 The previous written code will be committed, then changed and

again committed to see the changes made.
o Lift and Shift environment

 Bitbucket will be deployed using helm on a Kubernetes platform
and tested to see if it works.

 Testing the pipeline/build tool.
o GitLab environment

 Check if the runners are functioning in the pipeline.
o Lift and Shift environment

 Check if Jenkins can be run in a Kubernetes environment.
 Testing the Artifact storage.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 53 | 98

o GitLab environment
 The pipeline jobs will push the artifact automatically to the artifact

storage.
o Lift and Shift environment

 Testing if Nexus can be run on a Kubernetes environment.

These tests will make sure that the functionality of the application can be performed
and help find an answer for Thales to see if a Cloud-native solution is an option that
Thales can rely on.

9.5 TEST CONCLUSION.

Unfortunately, not all tests could be performed. To start with GitLab had a big web ide
update on December 19 2022, which disabled the run/debug solution and the
marketplace. These features do exist and will be brought back. Another problem was
that the trail license blocked the use of the pipelines/artifact storage. Again, these
functions exist.

In the lift and shift environment Bitbucket was the biggest problem, it required a license
key configured into the code before actually being able to be deployed. So, on it
should work as Atlassian offers their own Helm chart and guide on how to deploy
Bitbucket.

If we look at the IDEs the tests were a success, GitLab with the new web ide update
offers a coding experience that looks and feels like Visual Studio Code. It will offer a
market place soon and all the core functionality Thales requires in their code. GitLab
also explained that they keep working on improving the web IDE.

The remote code solution that Visual Studio Code offers works as a great solution to
offload the resources from a Citrix environment of laptop to a server backend that spins
up a container to run the code.

The version control system of GitLab works as intended, showing all the versions, who
committed the code, what has been updated and more. As mentioned before
Bitbucket could not be run due to the license and not wanting to spin up a container
without a license, but Atlassian does offer an official guide and all the official Helm
charts needed to setup an environment in Kubernetes.

The next thing that has been tested is the Pipeline/build function. As mentioned in the
first paragraph this was not an option to be tested in GitLab, the function in GitLab is
called GitLab runner. It offers a scalable system in Kubernetes as it will deploy a
container to build/test the code and closes the container after the building/testing is
done. In the lift and shift environment it worked as intended, Jenkins is an open-source

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 54 | 98

solution which offers a great integration with version control systems and artifact
storages. It also offers the same scalability as GitLab.

The final test is about the artifact storage. Again, as mentioned the artifact storage from
GitLab is not available due to the licensing. GitLab mentions it functionality and explains
how it functions on their website and forums. Nexus also has full support from their
vendor Sonatype, making sure there are official Helm charts and a guide on how to
setup their environment, Nexus does function well on a Cloud-native environment.

Not all requirements were able to be tested to the full extend, some functions were
limited to a full application. Plugins that were not testable in the GitLab environment
due to it being temporarily disabled.

All the test results can be found in the appendix “Testing results”

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 55 | 98

10 EVALUATION

The goal of this chapter is to evaluate the various products and phases within the thesis.
The main and sub questions are answered, and check if the solutions comply with the
requirements and conditions. The evaluation is divided into two parts: research
evaluation and design evaluation.

10.1 USED METHODS

The following methodologies are used in the evaluation:

 Verification with the stakeholders
o The results of the tests and the evaluation will be discussed with the

primary stakeholder “Willy” and decided if everything is as the company
wishes.

 Prototype testing
o The test environment is built and tested to gather results. These results are

in the appendix “testing results”.

10.2 RESEARCH EVALUATION

The research evaluation consists of 3 products, these will individually be evaluated:

 Main and sub questions
 Requirements
 Conditions

10.2.1 MAIN AND SUB QUESTIONS

The full evaluation can be found in appendix “12.7.1 main and sub questions
evaluation”. In the appendix is a reference to each question and a summarized answer
can be found. All the (sub)questions have been answered during the research and
concluded in the evaluation.

The main question: “How could a web-based development environment for TACTICOS
applications be implemented on a Cloud-native platform?” gained the following answer:

A web-based development environment can be implemented using multiple strategies,
there are two designs chosen on which one is an all-in-one solution and the other a lift
and shift solution. Both were able to keep the same functionality a normal development
environment has. This combined with better maintenance tools extra configuration
options in the Cloud-native platform, makes a web-based development environment
worth it.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 56 | 98

10.2.2 REQUIREMENTS EVALUATION

All the requirement has been evaluated in appendix “12.7.2 requirements evaluation”,
each requirement has been checked using the tests and the research. Each
requirement has a description on why it passed/(partly)failed. It is important to mention
that GitLab recently received an update, due to some features being temporarily
locked.

10.2.3 CONDITIONS EVALUATION

The entire evaluation can be found in appendix “12.7.3 conditions evaluation”, in there
is a description for every condition. Only 1 condition did not pass due to it not being
able to test it.

10.3 DESIGN EVALUATION

In the design evaluation the design and tests will be evaluated in the following
products:

 Design principles
 Testing

10.3.1 DESIGN PRINCIPLES EVALUATION

All the design principles have been evaluated and can be found in appendix “12.7.4
Design principles evaluation”, all the design principles have been evaluated and have
been described on why and where they are used.

10.3.2 TESTING EVALUATION

Setting up the test environment brought a few small problems; the problems occur due
to not having paid licenses, however the answer to the possibilities has been found due
to the big community support and the support from the vendor an answer was given on
all tests and the requirements that had to be met.

The other tests were successful and went without any problems. The applications did
what they were supposed to do, the current situation can be run on a Cloud-native
platform, while GitLab can be a strong contender of even a better solution.

The testing results are comparable with the literature the full testing evaluation is in
appendix “13,4.5 Testing evaluation”.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 57 | 98

11 ADVISORY

If Thales were to make the step into designing a Cloud-native development
environment, then Thales still has a lot of options to choose from. A Cloud-native
development environment can be an improvement over the current environment, this
is due to higher efficiency. The higher efficiency equals to lower resource usage for the
same or better performance. However, some application are not completely finished
and might not be optimized.

A Cloud-native solution may also bring more customization opportunities, because of
simple application integration and new solutions keep entering the market bringing
new advanced features. Looking at the solutions there are still a lot of possibilities, but a
recommendation is to wait a few years so that the web IDEs can catch up with the
other parts of a development environment.

The Cloud-native market is dynamic and new solutions and features come out
regularly. During the graduation period JetBrains (IntelliJ) announced a mayor update
to their remote development solution. While VSC (Visual Studio Code) has a great VSC
server solution which makes sure the code is run on a remote server (still need to be
tested), but in the current situation the IDEs are the most behind. While the IDEs
mentioned are from 2 of the biggest companies that are active in the IDE world. Some
smaller companies already have true Cloud-native IDEs, others have a web
development environment. But there are a lot of different applications.

On the other hand, if you look away from the IDE and look at the different segments of
a development environment then there are great solutions, like GitLab as an all-in-one
solution. A company also could customize their environment to their specific needs
using different Cloud-native applications which as mentioned have great integration
with each other.

So, now if Thales were to go with this moment Cloud-native solution for their
development environment, then GitLab will fit Thales their needs the best. However, the
recommendation is to wait a few years to let the web-IDE part of both solutions catch
up with the applications. Both solutions offer web-based development and can be
implemented on a Cloud-native platform. Almost all the requirements have been met
during the tests.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 58 | 98

11.1 RECOMMENDATIONS

Not all the solutions have been researched so some recommendations can be given
for any future research or on what to keep your eye on.

 First, keep an eye on GitLab, if it is considered not the best solution at this
moment keep an eye on it, GitLab is continuing to improve and keeps pushing
new functions with a great roadmap on their website showing what they are
working on and what they still want to add.

 Another recommendation is to test the solutions on a greater scale inside the
company with a copy of the current system. Test it with developers over a
certain time.

 Another recommendation is to do research into a full open-source Cloud-native
solution.

 Keep an eye on future Cloud-native technology.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 59 | 98

12 APPENDIXES

12.1 INTERVIEWS

12.1.1 INTERVIEW WITH WILLY

 1. How do you think a cloud-based development environment can help Thales

Thales must obey to some strict rules on how our applications are run and how our
data is stored. One of these rules is that all data/applications must be hosted locally.
So, while there is a chance that your solutions will not be used but Thales need
backup solutions in case that the current vendors decide to drop the support for their
self-managed solutions and only support their Cloud solution.

 2. Can you think of any problems where a Cloud-native development environment
can help?

First, a cloud-native solution should bring more scalability to the system.

Secondly, a solution can help Thales save resources.

 3. Are there some requirements you can think of that will be relevant for this
Project?

A design must be hosted locally.

Kijk nog even naar de requirements

 4. What is Thales already doing with Cloud-native?

Thales has been working with Kubernetes for a while for specific systems, but not yet
for internal/own use.

 5. Does Thales have any plans in going for a Cloud-native solution?

Not that I currently know of, this assignment will be the first for Thales Hengelo. I know
that our French colleagues use GitLab for their entire development environment so
that could be a start.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 60 | 98

 6. What results do you hope to get out of the research?

I hope that you can come up with some strong arguments on why a Cloud-native
solution can be sustainable for Thales.

 7. Can you name some stakeholders who also might be interested in an interview?
Rick Jansen is a solutions architect at IS/IT (Thales internal IT), he also has a lot of
knowledge of the current system.
Daniel van Gils is a Cloud-native architect/systems architect who has a lot of
knowledge of Kubernetes and other solutions.
Rob ten Hove is a Software architect for our CMS system and can help you with the
software engineering perspective.
Lex Emmens as a software engineer. I recommend to go for Rob ten Hove but if he is
not available ask Lex for an interview.

12.1.2 INTERVIEW WITH RICK JANSEN

 1. What does a solutions architect do?

A solutions architect is concerned with maintaining and improving current
environments. They do this together with all teams from IS/IT (Thales own IT).

 2. How are the current applications hosted in the system? (Nexus, Jenkins,
Bitbucket and the IDE)?

Currently, the entire development environment is built on different servers that use
virtualization, so all applications are independent of each other and not connected to
the Internet. All applications are managed on the server itself apart from the IDE,
which runs in the Citrix environment and is updated using Citrix tooling.

 3. How do you think moving the development environment to a Web-based
development environment could help Thales?

A big advantage is that you have all the Cloud-native benefits such as high
availability and scalability. In addition, you have an advantage that an environment
is also easier to manage.

 4. Can you think of any potential drawbacks that might apply to this?

A big disadvantage that comes into play but especially at Thales is that there are
many diverse environments, because there are so many developers and there are
also many programming languages used, each environment is different. So,
application A may work for group A but application B may not work for group A and
group A probably does not want to switch either.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 61 | 98

 5. What do you think are requirements relevant to a web development
environment in the cloud?

We must be able to host the environment locally.

The environment must have high availability.

 6. Do you know if an entirely different solution has ever been looked at? Like Gitlab
or GitHub?

Yes, Gitlab has been looked at, but right now Thales Netherlands is very much in the
Atlassian world. Therefore, the problem is that switching to a completely different
environment is difficult.

However, it is being looked at as a backup option for when Atlassian no longer
supports the private data center option.

12.1.3 INTERVIEW WITH DANIEL VAN GILS

 1. What does a Cloud-native architect/systems architect do?

I keep myself busy by designing the Cloud-native side of my project group, besides I
am helping other project groups and Thales with making Cloud-making choices and
bringing my knowledge to help decide if a choice must be made and how an
environment should look like.

 2. How are the current applications hosted in the system? (Nexus, Jenkins,
Bitbucket and the IDE)?

Basically, all applications except the IDE run on physical servers as far as Daniel
knows. Essentially, the IDE is run in a VDI environment which is already a virtual
desktop. But a physical application is still started.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 62 | 98

 3. How do you think moving the development environment to a Web-based
development environment could help Thales?

It can help Thales because you have a portable environment and all dependencies
and packages start right when you open the code.

The environment can be used anywhere

With some web IDEs you have many plugins which makes the web ide very diverse.

The IDE can also run in a container.

 4. Can you think of any potential drawbacks that might apply to this?

Well, it depends on what type of solution you come up with, in the case you go for a
container solution you will get different drawbacks then if you go for a GitLab/GitHub
solution. While I am not up to date on the current GitLab version from experience I
can say that the IDE was missing some core functions like debugging tools.

 5. So you have investigated GitLab?

Yes, Gitlab was tried several years ago but the web IDE was not good enough at that
time, in addition some functionality was missing in the application at that time.

 6. What do you think are requirements relevant to a web development
environment in the cloud?

For the development environment, make sure you keep in mind the core functionality
of the IDE. If these are missing then it is soon not good enough for a developer.

12.1.4 INTERVIEW WITH ROB TEN HOVE

 1. What does a software architect do?

A software architect focuses on all the software projects at the same time and makes
sure that what they deliver will work together with the other code.

 2. How do you think moving the development environment to a Web-based
development environment could help Thales?

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 63 | 98

New developers can get started quickly because the IDE does not need to be
configured first and no license needs to be attached.

Peer programming, just go to 1 session together see each other's code and program
together.

The most important thing is that everything can load very quickly. Now it is always a
bit of searching for where the code is and everything that goes with it. This could
ensure that you can open your IDE at once and everything is there.

 3. Can you think of any potential drawbacks that might apply to this?

So far actually more advantages than disadvantages, these mainly have to do with
the current plug-ins that are now widely used in addition to the IDE. There is also a
fear that the environment will become slow if there are many users using it at the
same time.

Also, some developers like to use a different IDEs some do not support a Cloud-native
solution.

 4. What do you think are requirements relevant to a web development
environment in the cloud?

Possibly shielding parts of the development process for shared files with colleagues
from a different country.

Speed, the speed is important, that it does not collapse when more people are using
it.

Functionality is also important, especially for the IDE, our developers need to debug
and use plug-ins to help them write code.

 5. What is your opinion on different environments like GitLab and GitHub?

From a developer point of view is GitHub one of the best and most used tools, while I
am not known with the full capabilities of GitHub and GitLab. I understand the basics
but have never used the full capabilities.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 64 | 98

12.2 ARCHITECTURE DRAWINGS

12.2.1 CURRENT SITUATION

Figure 20 Architecture drawing current developer

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 65 | 98

Figure 21 Architecture drawing current maintainer

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 66 | 98

12.2.2 NEW GITLAB SOLUTION

Figure 22 Future development environment GitLab

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 67 | 98

Figure 23 Future maintainer environment GitLab

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 68 | 98

12.2.3 NEW LIFT AND SHIFT SOLUTION

Figure 24 Future Development environment Kubernetes

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 69 | 98

Figure 25 Future Maintainer environment Kubernetes

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 70 | 98

12.3 CLOSER LOOK AT THE GITLAB SOLUTION

GitLab is one of the best-known all-in-one web-based development environments,
GitLab is an open-source project and backed by industry leading companies like
Nvidia and T-Mobile.

GitLab offers a complete
development environment, from
writing code to deploying code it can
all be done within GitLab. A company
can easily change the GitLab
environment to their liking, adding
other applications to it and many
ways to deploy GitLab itself. GitLab’s
main features are focused on the
DevSecOps. The term "DevSecOps" is
a combination of "development,"
"security," and "operations."

The picture below shows the 9 main features and how below is how they support the
features and in what stage of development they are.

Figure 27 GitLab features (GitLab, 2023)

Figure 26 GitLab logo

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 71 | 98

He features which are the most relevant to the project are “Create”, Verify”,
“Package” and “Release”

- Create is focused on writing the code and the code repository and merge
requests.

- Verify and package are mainly focused on building and testing the code.
- Release is focused on storing the artifacts.

Together they offer a complete development environment. GitLab is part of the Cloud-
native Computing Foundation which support the Cloud-native environment.

GitLab’s wide variety of possibilities makes it a perfect application to use as a
development environment.

GitLab offers roles to users and guest. This can be used to give a different facility access
to the specific part of code they should have access to without them being able to see
the other code.

GitLab offers issue management within the application, so developers can always see
what must be done per project they have access to. Once the code is ready to be
build it can be built, tested and reviewed in the GitLab pipeline.

Build – Code will be built so it can be tested.

Test – GitLab performs a few default tests like code quality and dependency’s, it also
offers a company to develop custom tests for their application. GitLab offers a static
and a dynamic application security test, for errors in the code, errors like known code
vulnerability errors and cross-site scripting vulnerabilities.

Review – In the review stage of the pipeline a test deployment will be deployed so the
developer can test the application before releasing it. The application deployment will
also get an extra dynamic application security test to find cross-site scripting
vulnerabilities.

DEPLOYMENT OPTIONS FOR GITLAB

GitLab offers 3 solutions to be deployed. The first solution is the web solution. GitLab
hosts the environment and everything that is part of it. This solution is great for smaller
companies that do not have the infrastructure to host their own servers.

The second option is to deploy it straight on Linux, this is a is simple installation on a
server.

The third option is to deploy it on Kubernetes, this deployment method brings Cloud-
native functionality to the application.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 72 | 98

INTEGRATION POSIBILITIES WITH GITLAB

A Gitlab environment is adaptable to any sort of project. There is an extensive list off
applications which can be integrated in any project. The reason a company chose to
integrate different applications into a project is that some applications bring special
features that can be useful. The list in the following picture gives an indication of which
applications you can integrate:

Some of these applications are well known like Jenkins, Slack
and GitHub. But applications like Prometheus are used for
better monitoring.

Another application mentioned inside of the project is
GitPod, GitPod is not in this list but can be used to improve
Web-IDE functionality, it will add extra costs to an
environment.

Figure 28 Applications integration GitLab

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 73 | 98

12.4 CLOSER LOOK AT GITHUB

GitHub is considered market leader in the world of web CI/CD environments. GitHub
offers almost the same functions as GitLab, both solutions try to copy each other but
GitHub their IDE is more advanced. It already offers the functionality that GitLab is trying
to implement, functions like code debugging and an application marketplace.

The version control system is based on GIT,
so code must be committed to a branch.
GIT is a well-known version control
method. Which is used by all other
possible solutions (GitLab, Azure DevOps).

Another important part of the developer
operations is building and testing the
code. GitHub offers a feature called
GitHub Actions, GitHub actions offers a
few features called “Matrix builds”, this
feature gives the developer the option to
start multiple tests at the same time across
different operating systems. This function
will lower the build and test time.

GitHub has been taken over by Microsoft
in 2018

DEPLOYMENT OPTIONS FOR GITHUB

GitHub has only one possibility of deployment and that is using their Cloud solution and
that only they host the company’s environment. This part does not meet the
requirements for Thales.

The only part that a company can self-manage is the runners for the test/build process.

Figure 29 GitHub logo

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 74 | 98

INTEGRATION POSIBILITIES WITH GITHUB

GitHub offers a sophisticated integration with different
applications, GitLab has a repository with applications and
detailed description on how to build these integrations.

Besides their own made integrations, they offer a
marketplace with plugins and applications for all needs. A
Company has the possibility to change their environment to
their wishes and requirements. It also makes migrating to
and from the platform more accessible.

Figure 30 GitHub integration

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 75 | 98

12.5 CLOSER LOOK AT AZURE DEVOPS

Azure DevOps is the third solutions that will be investigated, it is considered a big
DevOps vendor, This platform is also from Microsoft and is considered the third biggest
DevOps environment. While it is the best for companies that work a lot with Windows
environment, a company can manage their
whole company using Azure, from Intune as a
device manager, active directory to manage
rolls and access for their employees.

Azure in general offers a great solution for a
company.

Azure offers some of the best application
lifecycle management tools on the market.

DEPLOYMENT OPTIONS FOR AZURE DEVOPS

Azure DevOps has the same deployment options as GitHub, the only option is to let the
environment be hosted online by Microsoft itself. While this can be great for most
companies in the case for Thales it is not accepted. The pipeline runners can be hosted
locally on a server.

INTEGRATION POSIBILITIES WITH AZURE DEVOPS

Azure offers the best IDE integration, with Visual Studio Code being their own
application.

Azure DevOps lacks integration possibilities as Azure is more of a local integration
system. It does offer integration solutions with GitHub.

Figure 31 Azure DevOps logo

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 76 | 98

12.6 CLOSER LOOK AT LIFT AND SHIFT SOLUTION

The lift and shift solution are the same environment as the environment currently being
used. It consists of the main 4 applications that perform the main 4 core features. These
are Visual Studio remote Code, Bitbucket, Jenkins and Nexus. Together they perform
the following functions:

- Writing code for Visual Studio Code.
- Version control management is done by Bitbucket.
- Building and testing code is done by Jenkins.
- Artifacts are stored in Nexus.

The goal of a lift and shift migration is to make an exact copy of the current system and
place it in a new in this case a Cloud-native platform.

An important step is to make sure that the applications you do this with are Cloud
compatible and support Cloud-native features like autoscaling to get the best
performance from the migration. With the last few years Cloud-native trend has
become more common and vendors update their applications to be able to run on a
Cloud-native environment.

Figure 32 Lift and shift methods

DEPLOYMENT OPTIONS FOR LIFT AND SHIFT SOLUTION

The lift and shift solution can be implemented using different solutions. In this case all the
4 applications need to be compatible with the same deployment method to make it as
easy to manage as possible. In this case all the applications are compatible with
Kubernetes, A normal version option and for Nexus, Bitbucket an online option where
the vendors host the environment.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 77 | 98

12.7 EVALUATIONS

12.7.1 MAIN AND SUB QUESTIONS EVALUATION

Main question:

- How could a web-based development environment for TACTICOS applications be
implemented on a Cloud-native platform?

o In the advisory, the main question is addressed using all the results and
conclusions. In short, a web-based development environment will be an
improvement over the current system, due to the Cloud-native platform
making the system easier to manage and help save resources.

Sub question:

- What is a web-based development environment?
o This question is answered during the literature study. In short, a web-based

environment stands for an environment where the core functionality and
applications can be accessed using a web browser.

- What is a Cloud-native environment?
o This question is also answered in the literature study, in short, a Cloud-

native environment is an environment that consists of Cloud-native
techniques, like containers, micro-services

- What is needed in development environment for TACTICOS applications?
o This question is mostly answered in the requirements/interviews. Thales

requires strict security rules on their environment. These are mostly around
the servers and that these cannot have any direct connection with the
internet.

- What are the advantages and disadvantages of going Cloud-native?
o This question mostly got answered in the literature study. The main

advantages of Cloud-native are Integration, lightweight and scalability.
The main disadvantage is taking the step towards a Cloud-native
environment which takes a lot of work.

- What are the requirements for a web-based development environment to be run
on a cloud-native platform?

o The requirements that are needed are part of the requirements, the web-
based environment does not need a lot to run on a Cloud-native
platform. A development environment consists of at least an IDE, a version
management system, code building and an artifact storage. Any of the
software used to run any of these functions need to be able to run on
containers, or other Cloud-native techniques.

- What web-development tools are available on the market?
o Depending on what method a company wants it can change. In short, a

company can choose for an all-in-one solution, lift and shift method and
special Cloud-native development applications, however the last is new

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 78 | 98

since most companies are updating their application to be able to run on
Cloud-native infrastructure.

- How would the design and implementation of a web-based development
environment be run on a Cloud-native landscape?

o The full answer can be found in the literature study, it should at least follow
these 4 rules. Start this process, set the requirements, setup the cloud
environment used to deploy the development environment the last big
step before converting is to make sure to port all the code that it can be
used in the new environment.

12.7.2 REQUIREMENTS EVALUATION
 ID Description MoSCoW GitLab Lift and

shift

Bu
si

ne
ss

 re
q

u
ire

m
e

nt
s

BR-01 A possible container
solution should not be
tailor made and be
commercially available.

Must Yes Yes

BR-02 A design should be able
independent. One
container
solution/program can be
replaced with another.

Must Yes Yes

BR-03 The design must be well
documented.

Must Yes Yes

BR-04 Employees of these
teams must be able to
reproduce the proof of
concept.

Must Yes Yes

BR-05 The design should not
have a vendor lock-in

Must Maybe Yes

Table 14 Business requirements

 ID Description MoSCoW GitLab Lift and
shift

U
se

r r
e

q
ui

re
m

e
nt

s

UR-01 The IDE must be
accessible from a
browser.

Must Yes Web
version of
VSC can
be used
not
tested

UR-02 Developers must have
access to the following
functions in an IDE:

 Compiler
 Debugging tools
 Code

completion

Must Currently
being
improved

Yes

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 79 | 98

 Refactor
UR-03 Developers have

access to plugins for
testing

Could Currently
being
improved

Yes

UR-04 Artifacts must be built
automatically

Must Yes yes

UR-05 Developers must have
access to a version
control and merge
support.

Must Yes Yes

UR-06 Developers must have
access to an artifact
storage.

Must Yes Yes

UR-07 The design must support
a static code check for
example SonarQube
and Coverity.

Could Yes Yes

UR-08 The advantages and
disadvantages of
possible solutions must
be described

Must Yes Yes

UR-09 The features of different
solutions must be
described and
documented

Must Yes Yes

Table 15 User requirements

 ID Description MoSCoW GitLab Lift and
Shift

Sy
st

e
m

 re
q

ui
re

m
e

nt
s

SR-01 The finished product must
run in a local
environment with no
access to the internet
and be managed locally.

Must Yes Yes

SR-02 The system must have
high availability.

Should Yes Yes

SR-03 The system should have
scalability for at least 500
engineers.

Should Yes Yes

SR-04 The new environment
must have auto scaling
capabilities.

Could Yes Yes

Table 16 System requirements

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 80 | 98

BUSINESS REQUIREMENTS

BR-01 – Both solutions are off the shelf solutions and available for any company.

BR-02 – While tested on only one solution (Kubernetes) but the software packages also
function on other container solutions.

BR-03 – Both designs are well documented solutions, and have a big community
supporting it with tutorials.

BR-04 – The guides made in this document will help create the prototype.

BR-05 – For the GitLab solution it can be considered vendor lock-in as it is the only
vendor of the whole system, but they do offer great export solutions in case a company
is willing to switch. The lift and shift solution use different vendors and has other export
solutions.

USER REQUIREMENTS

UR-01- For GitLab it is easily possible, Visual Studio Code has their own web IDE, it has
not been tested but it nearly functions the same.

UR-02 – For the GitLab solutions it is under construction due to a bug found in the
newest update (Dec 19, 2022). With Visual Studio Code all these features exist.

UR-03 – Exactly the same answer as UR-02.

UR-04 – Both solutions offer pipeline and focus on CI/CD

UR-05 – Both solutions offer their own version management systems.

UR-06 – Both solutions have their own artifact storage solution.

UR-07 – Both solutions have support on their own for static code checks, the GitLab
solution is a bit better, but Jenkins has better plug-in integration to improve it.

UR-08 – The advantages and the disadvantages of both solutions have been well
documented.

UR-09 – The features of both solutions are well described in both “Closer look” appendix.

SYSTEM REQUIREMENTS

SR-01 – Both solutions are working in a local environment and both solutions work
without internet and only in localhost.

SR-02 – Kubernetes offers extensive list of features to improve high availably, like rolling
updates, in case a container gets errors a new one spins up and autoscaling.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 81 | 98

SR-03 – Depending on the available resources it can be scaled to as many containers
needed.

SR-04 – Both solutions offer auto scaling from Kubernetes, and both solutions offer
integration with these functions.

12.7.3 CONDITIONS EVALUATION
- Must work within a Cloud-native Environment.

o Nearly all popular solutions on the market have the possibility to run on a
Cloud-native environment.

- Solution must work within a Linux based operating system.
o All mentioned solutions work on Linux as Linux is a popular OS for servers.

- Preferred solution with a Kubernetes orchestrator.
o All solutions shown can and have been run on a Kubernetes environment

with a Kubernetes orchestrator.
- Applications in a solution must be able to work together while running stand

alone.
o The GitLab solution does run by itself, but in the lift and shift environment

each application used can run by itself and is not dependent on another
application.

- Solution must have an ease of management.
o The core idea of Cloud-native is to make an environment easier to

manage.
- The system should be able to run in a production environment.

o Unfortunately, this has not been tested due to not having access to a
production environment.

- Must integrate with different applications to improve further.
o Each solution that has been tested offers a way to integrate applications

in every step of the DevOps cycle.

12.7.4 DESIGN PRINCIPLES EVALUATION

ID Design principle Used? Comment

DP 1 If Thales want a new development environment
that makes use of the newest technologies, then
Thales should use a Cloud-native development
environment, because the Cloud-native trend is
relatively new and supported by world leading
companies help design the newest techniques in
an open-source fashion.

partly GitLab is using the
newest techniques.
While the lift and shift
solution might not use
the newest and greatest
techniques in their
application.

DP 2 If Thales does not want a vendor lock on their
systems, then a Cloud-native solution can help
Thales because the CNCF is designed with the
idea of multiple applications and micro services

Yes Both solutions offer a
wide variety of vendors
that can integrate with
their systems.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 82 | 98

working together and have possibilities to
integrate which each other.

DP 3 If Thales want to save money eventually, then
Thales should go for a Cloud-native solution,
because Cloud-native solutions are built with the
idea of scalability and can auto scale with the
demand. This together with the fact that Cloud-
native solutions are designed to be more efficient
with the resources.

Yes A Cloud-native solution
has the possibility to
save resources as it can
scale down when the
demand is lowering.

DP 4 If Thales want to have a simple way to manage
their systems, then a Cloud-native solution can
help Thales, because Cloud-native application
try their best with an ease of configuration
mindset. Most Cloud-native solution have a way
to connect another application to theirs with just
an API.

Yes Cloud-native
applications are made
to be as easy to
implement as possible,
managing an
application is part of it.

DP 5 If Thales want to have multiple ways to
implement a new system, then moving to a
Cloud-native solution can help Thales because
there are at minimum 4 ways to choose from in
moving their systems to a Cloud-native
environment

Yes Both solutions offer a
wide variety of products
and can be setup up
completely different
with other applications
and still do the same
job.

DP 6 If Thales want to have an on the shelf solutions,
then Thales can consider a Cloud-native solution
because in the Cloud-native landscape a lot of
different applications exist which Thales can use
to create their own solution.

Yes Cloud-native
applications is an active
trend in the IT, many
new companies and
startups are developing
applications to make
certain tasks automatic.

DP 7 If Thales is looking for an All-in-one solution, then
Cloud-native can be a great option because
there is great application in the Cloud-native
landscape like GitHub and GitLab.

Yes Applications like GitLab
are great all-in-one
solutions for any
company, the make a
great base on which
can easily be built to
improve further.

DP 8 If Thales needs to have their environment in run
locally then Cloud-native can help Thales
because Cloud-native does not mean that it is
only accessible in the Cloud, most Cloud-native

Yes While Cloud-native
sounds like only an
online solution, it is not.
Some solutions offer to

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 83 | 98

applications can be run locally on an on-premise
server.

be run locally. Like both
tested solutions.

Table 17 Design principle evaluation

12.8 TESTING RESULTS

12.8.1 SETTING UP THE TEST ENVIRONMENT

Setting up the test environment was done with a simple Minikube single node cluster. A
both solutions are put in a different namespace inside of the cluster, these splits both
solutions from each other and still have the same settings.

For GitLab the first step was to read into deployment solutions, run it directly on Ubuntu
or deploying it on Kubernetes. In consultation with the stakeholder “Willy” the choice
has been set on the Kubernetes solution. GitLab has a large community and offers
installation guides for all their deployment possibilities. One of these ways is Helm, which
is a package manager for Kubernetes that allows maintainers extra control and
manageability. First Helm has been installed into the environment, which helped setting
up the environment. Adding the right repository made sure that with a handful of
commands a whole environment consisting of multiple applications can be deployed.
In the Helm charts there is the possibility to make changes to the deployment and
configuration before deploying, the Helm charts are written in YAML code and editing
values inside can change the amount of application setup, scalability and more. With
the application deployed a problem came up that a free license is not accepted. So,
the deployment did run and was accessible in the browser but the account created
with a free license was not accepted. So other tests have been performed using the
web version.

The second environment was the lift and shift method, with the goal of moving the four
most important applications of the current development environment to a Cloud-
native solution. The idea was to move all the applications to Kubernetes as the
underlying Cloud-native platform. The next step was to find the best way to deploy the
applications. All the options considered it seemed again that Helm was by far the
better solution. It gives more control on the deployed application compared to
deploying it the default way directly on Kubernetes. So again, Helm has been chosen
to deploy the application. Ignoring the warnings on the Atlassian website about
needing a license to just try it anyway which made it so that the Bitbucket stack could
not deploy. The other solutions gave no problems and just came to life after some long
waiting times. The configuration files are stock and no changes have been made in the
Helm charts.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 84 | 98

The Visual Studio Code remote development environment asked for an extra
application called Docker Desktop, as it would be considered a middle man for Visual
Studio to talk to and deploy the containers on the Kubernetes platform.

12.8.2 TESTING THE IDES

The first test was to see if the IDEs function work as intended. This test consists of the
basics of writing, running and debugging code. This test also checks if the IDE can be
run on a Cloud-native platform.

GITLAB IDE TEST

The IDE is considered one of the few basic functions, it is important to know what GitLab
offers, if it can run on a Cloud-native platform and gives the developer the option to
perform their work.

The test has been performed using test code.

Figure 33 Shows that GitLab has a web IDE

Figure 34 Run/debug option

In the screenshots above it is visible that code can be typed, managed and there is an
option to run/debug, this is temporally disabled due to the following message.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 85 | 98

Figure 35 Store warning being closed

While this is the web version of GitLab, with a full license it can be run locally.

Figure 36 GitLab instances running

As shown in the pictures GitLab offers a great IDE solution based Visual Studio Code.

VISUAL STUDIO CODE IDE TEST

Visual Studio Code is an IDE on its own so knowing that it functions like an IDE. So, the
key is that it can be done remotely. To set it up it requires Docker desktop downloaded
and that is it. Furthermore, the next step is to install the following plugin:

Figure 37 Remote development plugin

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 86 | 98

After this is installed that is it, run the code and this will pop up.

The logs will show the following, while this might not be the fastest method of running
code, it will take the load of the Citrix environment and the

Figure 38 Container run code

12.8.3 VERSION MANAGEMENT SYSTEM

The second test is the version management system, this system stores the code and
shows the latest changes to code. This test in GitLab is done with editing code using the
web editor and committing the code. For the Bitbucket environment it is important to
see if it can run on a Cloud-native environment.

GITLAB VERSION CONTROL SYSTEM

The following picture shows a new commit (commit 37f756) which is a change from the
previous code. The new commit has 9 additions and 1 line has been deleted.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 87 | 98

Figure 39 GitLab version control system

BITBUCKET VERSION CONTROL MANAGEMENT

Bitbucket will also be deployed using Helm, there is a warning that you need a license,
see step 7:

Figure 40 license key message

The deployment did not work, as this is Atlassian configuration and the Helm charts
come from the original Atlassian web site it would mean that it can be run on
Kubernetes, it is not possible in a test environment without a license.

12.8.4 CODE BUILDING TEST

The code building function is used for build and test code.

GITLAB CODE BUILDING

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 88 | 98

GitLab offers a test pipeline to show you what it does and what code building is. Just
running this test shows that there is an option to build a pipeline that works.

Figure 41 GitLab pipeline

The pipeline builds/tests and deploys the code as it is supposed to do.

JENKINS PIPELINE TOOL

To test Jenkins, it has been installed using Helm. Jenkins is an open-source tool with a big
community. So, there are up to date GitLab Charts for Kubernetes. These charts contain
all the settings to run and start up Jenkins on a Kubernetes platform. Making sure that it
works.

Figure 42 Jenkins pods running

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 89 | 98

Figure 43 Jenkins main page

In the pictures above, it is shown that Jenkins can run on a Kubernetes environment.

12.8.5 ARTIFACT STORAGE TEST

The artifact storage is the final needed function, here are the artifacts stored after they
are built and tested. The artifacts can be used in newer code or be used as a guideline
for new code.

ARTIFACT STORAGE IN GITLAB

The artifact storage in GitLab was not able to be tested. Due to it being a free trail and
the test code not giving any artifacts is the only thing that can be done is showing
where the artifacts were supposed to be.

ARTIFACT STORAGE IN NEXUS

So, the goal is to move the Nexus on a Cloud-native platform

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 90 | 98

12.9 GUIDES AND MANUALS

12.9.1 KUBERNETES INSTALLATION

SETUP DOCKER

Setup a fresh Ubuntu install to start with root permissions. Also make sure the
environment has the latest updates.

Get all the updates for the apt package index

 sudo apt-get update

Install ca-certificates (necessary for docker), Curl, gnupg and lsb-release.

 sudo apt-get install \

ca-certificates \

curl \

gnupg \

lsb-release

Next step Is adding the Docker’s GPG key.

 sudo mkdir -p /etc/apt/keyrings
 curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor

-o /etc/apt/keyrings/docker.gpg

The following command can be used to setup a repository.

 echo \

"deb [arch=$(dpkg --print-architecture) signed-
by=/etc/apt/keyrings/docker.gpg] https://download.docker.com/linux/ubuntu
\

$(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list >
/dev/null

Now update the apt package index again.

 sudo apt-get update

The final step is to download docker using the following command

 sudo apt-get install docker-ce docker-ce-cli containerd.io docker-compose-
plugin

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 91 | 98

SETUP MINIKUBE

Start with making Docker the default driver.

 minikube config set driver docker

Download and install Minikube using the following commands.

 curl -LO https://storage.googleapis.com/minikube/releases/latest/minikube-
linux-amd64

 sudo install minikube-linux-amd64 /usr/local/bin/minikube

Minikube is installed and now start it using

 Minikube start

SETUP NAMESPACES

The following commands to create namespaces and separate both environments from
each other. Both commands will create a different namespace so the command must
be performed once for both environments.

 kubectl create namespace GitLab
 kubectl create namespace LaS

To switch between both namespaces the following command can be used.

 kubectl config set-context –current –namespace=<name>

SETUP HELM

Helm is easy to setup and important for quick application setup as a package
manager for Kubernetes

Installing and setting up Helm can be done with the following commands.

 curl https://baltocdn.com/helm/signing.asc | gpg --dearmor | sudo tee
/usr/share/keyrings/helm.gpg > /dev/null

 sudo apt-get install apt-transport-https --yes
 echo "deb [arch=$(dpkg --print-architecture) signed-

by=/usr/share/keyrings/helm.gpg] https://baltocdn.com/helm/stable/debian/
all main" | sudo tee /etc/apt/sources.list.d/helm-stable-debian.list

 sudo apt-get update
 sudo apt-get install helm

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 92 | 98

12.9.2 SETTING UP THE GITLAB ENVIRONMENT

The following commands are used to setup a default GitLab solution for tests.

helm repo adds gitlab https://charts.gitlab.io/

helm repo update

helm upgrade --install gitlab gitlab/gitlab \

 --timeout 600s \

 --set global.hosts.domain=example.com \

 --set global.hosts.externalIP=10.10.10.10 \

 --set certmanager-issuer.email=me@example.com \

 --set postgresql.image.tag=13.6.0

Now nothing more must be done except wait for all the containers to spin up.

12.9.3 SETTING UP THE LIFT AND SHIFT SOLUTION ENVIRONMENT

After all the previous steps have been completed except for the GitLab environment
setup then the following steps can be performed to setup the lift and shift solution.

To start install the application Visual Studio Code from the official website.

Same goes for Docker Desktop and add your user to the Docker group. (Possibly
already done in during the previous setup)

 sudo usermod -aG docker $USER

This step connects Docker to the account used and recognizes Minikube to run
containers.

Inside of Visual Studio Code go to marketplace and install the Remote development
environment. It gives the user the option to select open in container in the bottom left.
(This can be done with a server in a different place but in the test environment there is
only 1 place)

INSTALL JENKINS

Jenkins can be installed using Helm with 3 simple commands.

 helm repo add jenkins https://charts.bitnami.com/bitnami
 Helm repo update
 Helm install jenkins jenkins/jenkins

The first command adds the repository where the correct Helm charts can be found.

The second command updates the repository list in Helm.

The third commands pull and deploys the code from the repository.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 93 | 98

INSTALL NEXUS REPOSITORY

To start installing Nexus repository the repository must be added to the repository list. This
can be done using the following command:

 Helm repo add sonatype https://sonatype.github.io/helm3-charts/

Update the repository list using:

 Helm repo update

The following command can be used to deploy Nexus:

 Helm install nexus-rm sonatype/nexus-repository-manager

This automatically pulls the latest version from the repository and deploys it.

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 94 | 98

13 REFERENCES

Amazon. (2022). Microservices. Retrieved from Amazon:
https://aws.amazon.com/microservices/

Atlassian. (2022). What is version control? Retrieved from Atlassian:
https://www.atlassian.com/git/tutorials/what-is-version-control

Cloud Native Computing Foundation. (2022). CNCF Cloud Native Interactive
Landscape. Retrieved from Cloud native landschape: https://landscape.cncf.io/

Community of Wikipedia. (2022, 10 17). Integrated development environment.
Retrieved from Wikipedia:
https://en.wikipedia.org/wiki/Integrated_development_environment

community on Wikipedia. (2022, 06 16). Software build. Retrieved from Wikipedia:
https://en.wikipedia.org/wiki/Software_build

Docker. (2022). Install Docker Engine on Ubuntu. Retrieved from Docker docs:
https://docs.docker.com/engine/install/ubuntu/

Easy, D. M. (Director). (2022). Deploy Nexus Repository on DigitalOcean using Helm
Charts [Motion Picture].

G2. (2022). Top 10 Git Alternatives & Competitors. Retrieved from G2:
https://www.g2.com/products/git/competitors/alternatives

Gartner. (2022). JIRA Software vs Azure Boards vs GitHub Enterprise vs GitLab. Retrieved
from Gartner: https://www.gartner.com/reviews/market/enterprise-agile-
planning-tools/compare/product/atlassian-software-vs-azure-boards-vs-github-
enterprise-vs-gitlab

Git. (2022). Branching and Merging. Retrieved from Git: https://git-
scm.com/about/branching-and-merging

GitHub. (2022). Actions. Retrieved from GitHub: https://github.com/features/actions

GitHub. (2022, 05 23). DevSecOps explained. Retrieved from GitHub:
https://resources.github.com/devops/fundamentals/devsecops/

GitHub. (2022). Features. Retrieved from GitHub: https://github.com/features

GitHub. (2022). GitHub integrations. Retrieved from GitHub:
https://github.com/integrations

GitHub. (2022). Marketplace. Retrieved from GitHub: https://github.com/marketplace

GitHub. (2022). Pricing. Retrieved from GitHub: https://github.com/pricing

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 95 | 98

GitLab (Director). (2021). DevOps Platform - GitLab Product Overview Demo [Motion
Picture].

GitLab. (2022). Azure DevOps vs GitLab. Retrieved from GitLab:
https://about.gitlab.com/devops-tools/azure-devops-vs-gitlab/

GitLab. (2022). Deploy the GitLab Helm Chart. Retrieved from GitLab:
https://docs.gitlab.com/charts/installation/deployment.html

GitLab. (2022). DevOps Tools Landscape. Retrieved from GitLab:
https://about.gitlab.com/devops-tools/

GitLab. (2022). GitLab Integrations. Retrieved from GitLab:
https://docs.gitlab.com/ee/integration/

GitLab. (2022). GitLab vs GitHub. Retrieved from GitLab:
https://about.gitlab.com/devops-tools/github-vs-gitlab/

GitLab. (2022). Learn GitLab with tutorials. Retrieved from GitLab:
https://docs.gitlab.com/ee/tutorials/

GitLab. (2022). Pricing. Retrieved from GitLab: https://about.gitlab.com/pricing/

GitPod. (2022). Pricing. Retrieved from GitPod: https://www.gitpod.io/pricing

Helm. (2022). Installing Helm. Retrieved from Helm: https://helm.sh/docs/intro/install/

Hull, B. (2020). What is the diffrence between GitHub and Artifactory? Retrieved from
Quora: https://www.quora.com/What-is-the-difference-between-GitHub-and-
Artifactory

Jenkins. (2022). Kubernetes. Retrieved from Jenkins:
https://www.jenkins.io/doc/book/installing/kubernetes/

Jetbrains. (2022). Remote development. Retrieved from Jetbrains:
https://www.jetbrains.com/remote-development/#why-go-remote

katalon. (2022). Best 14 CI/CD Tools You Must Know. Retrieved from Katalon:
https://katalon.com/resources-center/blog/ci-cd-tools

Linthicum, D. (2015, 06 16). The pros and cons of going cloud-native. Retrieved from
InfoWorld: https://www.infoworld.com/article/2935616/the-pros-and-cons-of-
going-cloud-native.html

Marcin Aman, M. W. (2022, 09 29). Pros and Cons of Cloud IDE. Retrieved from virtuslab:
https://virtuslab.com/blog/pros-and-cons-of-cloud-ide/

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 96 | 98

Mind tools content team. (2022). Mindtools. Retrieved from Stakeholder analysis:
https://www.mindtools.com/pages/article/newPPM_07.htm

Minikube. (2022, 12 29). Get Started! Retrieved from Minikube:
https://minikube.sigs.k8s.io/docs/start/

odalovic. (2020, 03 04). The clash of the giants - IntelliJ Ultimate vs Visual Studio Code.
Retrieved from odalovic: https://www.odalovic.com/blog/intellij-ultimate-vs-
visual-studio-code-battle

Opengroup. (2022). The TOGAF® Standard, 10th Edition. Retrieved from Opengroup:
https://www.opengroup.org/togaf

Oracle. (2022). Wat is cloud-native? Retrieved from Oracle:
https://www.oracle.com/nl/cloud/cloud-native/what-is-cloud-native/

Prometheus. (2022). Prometheus. Retrieved from Prometheus: https://prometheus.io/

Sahid. (2022, 08 5). Kubernetes Namespace: Everything you need to know. Retrieved
from K21 acedemy: https://k21academy.com/docker-kubernetes/kubernetes-
namespace/#:~:text=Working%20with%20Kubernetes%20Namespaces,-
Create%20a%20new&text=Because%20this%20can%20be%20time,%E2%80%93cu
rrent%20%E2%80%93namespace%3DK21

Sonatype. (2021). nexus vs artifactory. Retrieved from sonatype:
https://info.sonatype.com/nexus-vs-artifactory/

Sysdig. (2022). What is Kubernetes CrashLoopBackOff? Retrieved from Sysdig:
https://sysdig.com/blog/debug-kubernetes-crashloopbackoff/

Telerik. (2022). Pricing. Retrieved from Telerik:
https://www.telerik.com/purchase.aspx?filter=web

Verites. (2022). DevOps Services. Retrieved from Verites:
https://www.veritis.com/solutions/devops/

VMware. (2022). Containers. Retrieved from VMware:
https://tanzu.vmware.com/containers

VMware. (2022). What are Microservices? Retrieved from VMware:
https://www.vmware.com/topics/glossary/content/microservices.html

Wikipedia. (2022, 12 13). List of mergers and acquisitions by Microsoft. Retrieved from
Wikipedia:
https://en.wikipedia.org/wiki/List_of_mergers_and_acquisitions_by_Microsoft

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 97 | 98

14 TABLE OF FIGURES AND TABLES

Figure 1 Thales Nederland headquarters (GIB) ... 7

Figure 2 The TOGAF standard (The Open Group) ..11

Figure 3 Cloud-native trend (Oracle) ...15

Figure 4 Conceptual model ..16

Figure 5 power/interest grid example ...21

Figure 6 Power/Interest Grid ..22

Figure 7 Development environment drawn ...30

Figure 8 Cloud-native landscape (CNCF) ..31

Figure 9 Cloud-native trend (Oracle) ...32

Figure 10 Containers ...32

Figure 11 Microservices ..32

Figure 12 DevOps drawing ...33

Figure 15 What is GIT ...36

Figure 16 Cloud-native computing foundation CI/CD ..37

Figure 15 Current situation maintainer ..45

Figure 16 Future situation maintainer ..45

Figure 17 Current situation Developer ..46

Figure 18 Future situation with GitLab developer...46

Figure 19 New development environment test environment ...49

Figure 20 Architecture drawing current developer ...64

Figure 21 Architecture drawing current maintainer ..65

Figure 22 Future development environment GitLab..66

Figure 23 Future maintainer environment GitLab ..67

Figure 24 Future Development environment Kubernetes ...68

Figure 25 Future Maintainer environment Kubernetes ...69

Figure 26 GitLab logo ...70

Figure 27 GitLab features (GitLab, 2023) ..70

Figure 28 Applications integration GitLab ..72

Figure 29 GitHub logo ...73

Figure 30 GitHub integration ..74

Figure 31 Azure DevOps logo ..75

Thesis – UNCLASSIFIED- Web-based development environment for TACTICOS
applications implemented on a cloud-native platform.

U N C L A S S I F I E D P a g e 98 | 98

Figure 32 Lift and shift methods ...76

Figure 33 Shows that GitLab has a web IDE ...84

Figure 34 Run/debug option ..84

Figure 35 Store warning being closed ...85

Figure 36 GitLab instances running ...85

Figure 37 Remote development plugin ..85

Figure 38 Container run code ..86

Figure 39 GitLab version control system ..87

Figure 40 license key message ..87

Figure 41 GitLab pipeline ...88

Figure 42 Jenkins pods running ..88

Figure 43 Jenkins main page ...89

Table 1 Version management .. 1

Table 2 Contact information supervisors and graduate .. 1

Table 3 Glossary and abbreviations ... 5

Table 4 MoSCoW table ... 9

Table 5 Interviewees and goals ...10

Table 6 Sub question descriptions and coverage ...18

Table 7 Stakeholders and their function ...20

Table 8 Sort primary/secondary stakeholder ...20

Table 9 Stakeholder’s categorization ...22

Table 10 Business requirements ..23

Table 11 user requirements ..24

Table 12 System requirements ...24

Table 13 Comparison between solutions ..43

Table 14 Business requirements ..78

Table 15 User requirements ..79

Table 16 System requirements ...79

Table 17 Design principle evaluation ..83

