
	

Automatic	DAC	Quality	Control		
Bachelor	Thesis:	HBO-IT	Software	Engineering

Ruud	Greven	(Graduation	Supervisor)	
Jeroen	Linssen	(Graduation	Supervisor)	
Willie	Aarnink	(Company	Supervisor)	
	

 df

Wybren Oppedijk

	 i	

1 ABSTRACT
Malvern Panalytical is the manufacturer of diffractometers. Diffractometers are used to
measure particle sizes and chemical composition. This project focuses on the sensor chip
inside the machine. In the assembly of a machine, chips are tested in three different stages:
first when the chips arrive on a wafer, secondly when a chip is mounted on chipboard and
finally when the chipboard is mounted in a sensor module. The chips value is increased by a
factor ten, for every assembly phase it proceeds.
The objective of this study investigates whether it is possible to create a model that uses the
historical test data to label defect digital analogue converters on chips automatically.
Automatically labelling should lead to a decrease in manual labour and fewer defect that
proceed to a next assembly phase.
The study researches two approaches. One approach is using a cluster algorithms and the
other by combining different statistical filters to classify defect chips.
The statistical model can consistently find more defect chips as that the human operator
would. This model is capable of reducing the number of defect chips that normally would
continue in the assembly process by 10 per cent. From this study also became clear that the
current tests process should be more standardised, and that the current way of labelling is not
specific enough. Further improvement may be to build model trained with all test data instead
of only the partial test data.

	 ii	

TABLE OF CONTENTS
1	 Abstract	___	i	

Table	of	Contents	 __	ii	

Table	of	Figures	___	iii	

Glossary	__	iv	

2	 Introduction	__	1	

3	 Working	Methodology	___	2	

3.1	 Planning	__	3	

4	 Business	Understanding	__	4	

4.1	 Company	Background	___	4	

4.2	 Product	Background	___	4	

4.3	 Project	Motivation	___	4	

4.4	 Research	Questions	__	6	

4.5	 Deliverables	__	7	

4.6	 Requirements	__	8	

4.7	 Project	Boundaries	__	8	

5	 Data	Understanding	___	9	

5.1	 Data	Gathering	___	9	

5.2	 Dashboard	___	12	

5.3	 Testing	___	16	

5.4	 Exploring	the	data	__	18	

6	 Modelling	__	21	

6.1	 Modelling	Techniques	__	21	

7	 Evaluation	___	27	

7.1	 Model	Validation	__	27	

8	 Deployment	___	30	

8.1	 Docker	___	30	

9	 Discussion	and	Advice	___	31	

10	 Conclusion	___	32	

11	 Bibliography	__	33	

12	 Appendices	___	i	

Appendix	1:	What	is	a	DAC	 ___	i	

Appendix	2:	Insatallation	Manual	___	ii	

Appendix	3:	API	Documentation	___	iii	

Appendix	4:	Cluster	Algorithm	Plots	___	 vi	

	
	

iii	

TABLE OF FIGURES
Figure	1:	CRISP-DM	..	2	
Figure	2:	Malvern	Panalytical	Diffractometer	..	4	
Figure	3:	Wafer	..	4	
Figure	4:	PCB	...	4	
Figure	5:	Sensor	Module	..	4	
Figure	6:	Chip	Life	Cycle	..	5	
Figure	7:	Gate	Test	Illustration	...	6	
Figure	8:	Software	Pipeline	..	7	
Figure	9:	Parsing	Diagram	...	10	
Figure	10:	Different	collections	inside	the	MongoDB	database	..	11	
Figure	11:	User	flow	of	the	dashboard	...	13	
Figure	12:	Sass	template	example	..	14	
Figure	13:	Home	Page	Dashboard	..	15	
Figure	14:	Test	Overview	Page	..	16	
Figure	15:	Overview	of	Cypress	tests	..	17	
Figure	16:	Percentage	Failed	Per	Test	..	18	
Figure	17:	DAC	curve	with	on	offset	in	the	vertical	direction	..	19	
Figure	18:	DAC	curve	with	oscillation	..	19	
Figure	19:	DAC	curve	with	a	sudden	deviation	...	19	
Figure	20:	Measurement	difference	in	different	testing	stages	...	20	
Figure	21:	Different	clustering	algorithms	compared.	Image	from	Scikit	Learn	22	
Figure	22:	Three	DAC	curves	with	a	plot	of	their	Gaussian	distribution	...	23	
Figure	23:	Example	of	a	good	result	with	Gaussian	Mixture	..	23	
Figure	24:	Example	of	a	less	optimal	result	with	Gaussian	Mixture	..	24	
Figure	25:	Statistical	Model	Filters	..	24	
Figure	26:	Increase/Decrease	Filter	..	25	
Figure	27:	Threshold	DAC	labelled	by	the	statistical	model	...	26	
Figure	28:	TprefA	DAC	labelled	by	the	statistical	model	..	26	
Figure	29:	Confusion	Matrix	..	27	
Figure	30:	Relation	Label	to	Prediction	...	29	
Figure	31:	Labels	compared	to	success/mistake	...	29	
Figure	32:	Example	Virtual	Machine	–	from	Docker	..	30	
Figure	33:	Example	Docker	Container	–	from	Docker	...	30	

	
	

iv	

GLOSSARY

API Application Programming Interface
CRISP-DM Cross-Industry Standard Process for Data Mining
CSS Cascading Style Sheets
DAC Digital to Analog Converter
KNN K nearest neighbours
OS Operating System
PCB Printed Circuit Board
PDF Portable Document Format
REST Representational State Transfer
SVM Support Vector Machine
URL Uniform Resource Locator
Wafer The semi-finished product that is used to create chips.

	
	

1	

2 INTRODUCTION
Recently big data is a hot topic, it can improve all kinds of processes such as; better processes
understanding being more effective in marketing or reducing costs by eliminating mistakes
and automate manual labour.

This project is done for Malvern Panalytical. Malvern Panalytical is located in Almelo, where
they build and develop diffractometers. Diffractometers are highly specialised measurement
devices that work by sending an X-Ray beam on a sample. Based on the diffraction of the
beams, particle sizes and chemical composition can be retrieved. An example use of a
diffractometer is to ensure the quality of milk powder for babies.

The assembly of a sensor module happens in three steps. First, the chip is sawed from a wafer
and placed on a circuit board, then the circuit board is mounted in a sensor module and finally
the sensor module is assembled in the final machine.

In all these stages the chip is tested on defects. This testing procedure is crucial because, with
a malfunctioning chip, the machine does not work or gives unexpected results.

The results of the different tests are currently manually reviewed. This review is prone to
errors and takes much time. The goal is to investigate if it is possible to automatically detect
defective chips with the tests data accumulated of the years.

	
	

2	

3 WORKING METHODOLOGY
The research and development of the prototype are entirely done according to the steps of the
CRISP-DM methodology, which stands for Cross-Industry Standard Process for Data
Mining [1]. CRISP-DM is the de facto standard for approaching data science-related projects.
It helps to approach the project in the right order and gives handlebars in considering if a
particular task has succeeded or not. It also helps to assess if the project is on the right track.
The CRISP-DM process is iterative, which means that a project can go through the cycle
multiple times. It is also possible to stop halfway and start back at the begin because things
might turn out different than anticipated at the beginning. One total iteration consists of six
steps;

Due to the limited time of this project, the goal is to go at least once through all steps. The
chapters in this report match the steps in the CRISP-DM model.

Business Understanding
The first step is Business Understanding and starts by asking the following questions:

• What	is	the	goal	of	the	project?	
• What	are	the	project	boundaries?	
• What	is	the	impact	of	solving	the	problem?	

	
Working on these questions should make it clear if it is feasible to succeed. At the end of this
phase, there should be a list of precise requirements.

Data Understanding
Data Understanding is probably the most critical and time-consuming step of the whole
project. The first question that should be asked is, is the data accessible? If this is answered
by no, then find a way to make it accessible. Maybe the data is accessible but not yet
insightful, and something should be developed to make it insightful. Also, a decision should
be made if the quality of the data is good enough to solve the business goals. If this is not the
case, the Business Understanding phase should be revisited and changed accordingly.

Figure	1:	CRISP-DM

1. Business	Understanding	
2. Data	Understanding	
3. Data	Preparation		
4. Modelling	
5. Evaluation		
6. Deployments	

	
	

3	

Data Preparation
In most cases, the data is not collected specifically for data science. Therefore, it needs some
tweaking to make it suitable. Think of cleaning the data, reformatting it or artificially adding
data if needed.

Modelling
In this phase, one knows what he can expect from the data and based on this knowledge, a
technique for creating a model can be chosen. Different techniques can be compared to find
the model that yields the best results. It is also essential to explain why a particular technique
is chosen because the commissioning party should put its trust in the results. Therefore a
technique which is easily explainable may have favour over something more advanced.

Evaluation
After the model is created, it has to be assessed if it is any good. The assessment will not only
go about the model itself but also about the entire process around the project. This evaluation
should give some points to improve upon next time combined with the how-to advice.
Possibly a list is created with next steps or goals in the project.

Deployment
The deployment phase is the last step in the CRISP-DM methodology. This phase should
make clear how an end-user can use the model in an application. Also, there will be a section
of how maintenance or tweaks on the model can be made. Finally, this step includes
presenting the results and writing those down in a report.

3.1 PLANNING
A planning methodology will be used to keep the project organised. This planning
methodology will be inspired by Scrum. A standard Scrum project consists of a product
owner, a scrum master and a development team. Because this a one-man project, this
formation is not entirely possible. However, Scrum does have some useful aspects. For
example, the project will have sprints of 1 week. Each sprint will be closed with a
retrospective, and it will be checked against the definition of done.

Beforehand, an estimation is made how many sprints each phase of the CRISP-DM model
will take, to ensure that at least one cycle has passed in the end. Every week two meetings
take place with the product owner at Malvern Panalytical. During the first meeting is checked
if tasks can be completed by the end of the week and if resources are needed to complete the
task. During the second meeting, a sprint retrospective is held, and new tasks are created for
the following sprint

The reason that an agile planning methodology fits well with CRISP-DM is that the process
can always take a different direction than could have been anticipated beforehand.

3.1.1 Definition of Done
A task is finished if it meets the following requirements:

• The	code	tasks	contain	tests	and	these	tests	pass		
• Acceptance	Criteria	are	met		
• A	short	presentation	of	the	task	can	be	given	to	Willie	Aarnink		
• Willie	Aarnink	agrees	that	the	task	is	finished.		

	
	

4	

4 BUSINESS UNDERSTANDING

4.1 COMPANY BACKGROUND
Malvern Panalytical is a high-tech company located in Almelo. The company is a spinoff of
Philips in Eindhoven. A couple of years ago the Panalytical fused with the English company
Malvern to bundle its knowledge. At Malvern Panalytical in Almelo, there are about 400
employees. The skillset of these employees is extensive. There are chemists, physicists,
embedded software engineers and more. Malvern Panalytical recently started to deepen itself
in big data and machine learning to optimise different processes.

4.2 PRODUCT BACKGROUND
One of Malvern Panalytical its products is the Empyrean. The
Empyrean is an X-Ray diffractometer. Among the capabilities of
the diffractometer are measuring particle size, particle shape and
chemical composition. An example of a company that uses a
diffractometer is a Japanese demolition company. The
government in Japan states that it is not allowed to demolish
apartment buildings with asbestos in the concrete. This company
uses the diffractometer to analyse the concrete and to see if it
contains asbestos. Another example is a chip manufacturer who
wants to know the thickness of the chip layers.

The machine itself contains multiple high-tech components. This project focuses on the
assembly of digital to analogue converter (DAC) in the chip inside the machine. More about
what a DAC is in Appendix 1: What is a DAC.

4.3 PROJECT MOTIVATION
The heart of the diffractometer is a sensor chip. The chip is an essential part of which the
quality must be very high. The sensor module in the diffractometer is fully assembled at
Malvern Panalytical. The assembly of a sensor module consists of 3 steps. First, a wafer
arrives at Malvern Panalytical, which contains 109 chips. Every chip can potentially become
a sensor module, see Figure 3. Each chip is tested on several different criteria. The testing of
a wafer is very complex and requires specialised equipment; therefore, this is done by an
external party. Each chip that meets the testing criteria is placed on a printed circuit board
(PCB), see Figure 4. After this step, the chip is tested again; if it still meets the criteria, it is
built into a sensor module. The same process happens one more time on the sensor module,
see Figure 5. When the chip still functions according to expectations, it is built into the final
machine.

Figure	2:	Malvern	Panalytical	
Diffractometer	

Figure	3:	Wafer Figure	4:	PCB
Figure	5:	Sensor	

Module

	
	

5	

Figure 6 is a schematic representation of the assembly process. The project mainly focuses
on the part of the tests that take place at wafer-level, specifically the tests that test DACs
inside the chip. Each chip contains 27 different DACs, all of which must have a particular
curve. A deviating curve can result in a disturbed measurement which makes the
diffractometer unusable.

In the current situation, the tester receives the raw data from the company testing the wafers.
This raw data is put in an excel file and studied with the bare eye by the tester. For each DAC
a point is determined with a lower and upper limit, if the DAC curve does not pass this gate,
the whole chip will be rejected. This way of testing is not accurate. There are a lot of chips
that pass this filter but still don't work. See the illustration in Figure 7, the black line in the
middle represents the gate where a DAC curve has to go through. The blue lines are broken
but do not cross this gate. Therefore the tester has to view the measurements chip by chip to
detect any deviations in a curve. This process is very labour intensive and takes almost 3
weeks for a batch of 25 wafers. This process is also sensitive to human error. For instance,
the average height difference per wafer is not taken into account. This randomness leads to
inconsistent classifications.

Figure	6:	Chip	Life	Cycle

	
	

6	

Figure	7:	Gate	Test	Illustration	

The goal of this project is to collect the test data centrally and make it insightful. With the
centrally collected test data, a model must be created that detects faulty chips that pass the
gate filter, thus detect the blue lines in Figure 7.

4.4 RESEARCH QUESTIONS
The main question in this project is: How can Malvern Panalytical automatically label faulty
DACs with historical measurement data? This question alone raises a couple of sub-
questions:

• How	can	the	test	reports	data	be	made	available	in	a	database?	
• How	can	faulty	chips	be	classified?	
• Is	it	possible	to	predict	failure	instead	of	classifying	it?	
• How	can	the	results	of	a	model	be	visualised?	

	
	

7	

4.5 DELIVERABLES
At the end of the project, a pipeline should be delivered that consists of three components.
This pipeline watches test directories for new raw test data. If new test data is added, the
pipeline will give it a label and stores it into a database. Eventually, a frontend application
can access the data through a REST API and visualise the data to the test operator.

4.5.1 DAC Test Result Parser
The current testing process stores its results in text files on a server. Every test generates a
new text file. In total, this means lots of directories with thousands of files inside it. Working
with this system is not easy because there is no automated process to look up specific test
data. Visualising is even worse since it is raw data. A parser could help to optimise this
process. This parser parses all data from different text files into a database. With the help of
the model, the DAC chips are classified as faulty or valid. After classification, the data is
stored in a database in a way it is easily searchable by all its properties. All the test result
should be accessible via a rest API so that a frontend can visualise the data.

4.5.2 DAC Failure Model
The model should be capable of identifying wrong DAC test curves. This model should work
for all the 27 different DAC tests. The model should have the same performance or better as
the current manual process.

4.5.3 Dashboard
The dashboard should visualise all the test data. Within this dashboard, a test operator should
be able to lookup; wafers, PCB and detector tests. The dashboard should also visualise curves
and show which are rejected. With this tool, an operator should see immediately, which
DACs on the chip are failing.

Figure	8:	Software	Pipeline

	
	

8	

4.6 REQUIREMENTS
The deliverables have the following technical and functional requirements.

4.6.1 Functional Requirements
Nr. Description
1. The model can classify defective chips.
2. The dashboard gives insight into why the chip is disapproved.
3. The dashboard shows a list of bad chips to the test operator.
4. The model can predict failure in a successive phase.

4.6.2 Non-Functional Requirements
Nr. Description
1. The backend programming language must be in C# or Python.
2. There is a manual to operate the software.
3. The software is easy to use.
4. The software is easy to deploy.
5. The software processes new data without manual interaction

needed.

4.7 PROJECT BOUNDARIES
This project includes some boundaries to ensure success in the end. The project has the
following boundaries.

• The	backend	will	be	programmed	in	Python	due	to	my	experience	and	the	experience	at	
Malvern	Panalytical.		

• The	frontend	is	programmed	in	Angular	due	to	my	experience.		
• Malvern	Panalytical	supplies	the	test	data	of	all	three	phases.	If	the	data	changes	later	on	

due	to	any	reason,	this	considered	outside	the	scope	of	the	project.	
• The	responsibility	of	verifying	the	quality	of	the	classification	model	lays	by	the	domain	

expert	at	Malvern	Panalytical.	
• Security	for	the	database	frontend	and	backend	is	not	applicable.	The	tools	will	only	be	

used	within	the	company.	

	
	

9	

5 DATA UNDERSTANDING
Understanding the data is a crucial part of the process. In the data understanding phase, the
goal is to explore the data and find out if the data quality is sufficient to reach the goals of
Malvern Panalytical. During the data understanding, a tool is developed to gather the data and
make it easier accessible for data science tools. Also, a frontend application is developed to
give the tester more insight into the data.

5.1 DATA GATHERING
As mentioned earlier, Malvern Panalytical tests its chips in three different stages. Among the
tests are the DAC tests. Each of the 27 different DACs is tested individually. All these tests
output text files containing the measurements. Finding the right file is hard due to the
complicated naming. The file itself contains raw numbers which are hard to interpret. The
first step is to make a tool which gives easy access to the data, so exploring the data becomes
more convenient. To answer the question "How can the test reports data be made available
in a database?" the test reports first have to be examined. These test reports are stored in a
directory as text files. The files together exceed 100GB, which lead to some challenges. For
instance, moving the files over the network is not an option because this takes too much time.
A better approach is to parse the text files from the storage server.

5.1.1 Parser
The goal of the parser is to transform the raw data stored in textfiles in different directories
into a database. With the data inside a database, it becomes easier to perform thorough data
analysis.
Let's take the wafer test files as an example to demonstrate the structure of such a data
directory.

• Data	
o Wafer	name	

§ Chip1	Test	A.txt	
§ Chip1	Test	B.txt	
§ Chip2	Test	A.txt	

	
The second top folder contains the name of the wafer. The folder stores all text files. The
name of the text file contains the chip identifier and which test result it contains. Per wafer,
there are 2943 text files for all DAC tests.

	
The parser starts indexing all folders inside the test directory. The indexing speeds up by
making use of multiple processor cores if these are available. Multithreading also introduces
some extra difficulties. For example, two threads that try to parse the same file. Every thread
has its folder, to prevent such behaviour. The operator can start the parser and can thereby
specify the test directory that needs to be processed.

Inside the data directory, the parser creates a file named parserDB. This file contains every
folder that the program has already successfully parsed. The program uses this file to prevent
itself from reparsing a folder over and over again. After the program finishes with parsing, it
starts up a file watcher. This file watcher detects changes inside the data directory. For
example, if a tester adds a new folder to the test directory, the program automatically detects
this and starts parsing the newly added folder.

	
	

10	

Figure	9:	Parsing	Diagram	

Before the parser stores the data in the database, it first gets a label from the model. The
reason that the test gets the label at parse time is that predicting a label is performance
demanding. Therefore it is better to classify a label well in advance instead of classifying a
label upon using the dashboard. If the model classified the data at request, it would slow
down the system unnecessarily because the test data does not change over time; more
information about the labelling in chapter 6 Modelling.

5.1.2 Database
There are several different database technologies available. All these technologies have their
advantages and disadvantages. In this chapter for every category, the most popular
technology is chosen to find which technology suits the project the best. An important factor
is how well it integrates with popular data science tools such as Matlab and Python, and if the
data fits the design conventions of the database.

Hadoop
Apache Hadoop [2] is a popular technology in the field of data science. It is an opensource
application written by the Apache foundation. The goal of Hadoop is to offer distributed
storage and processing of big data. Hadoop stores data inside its own Hadoop Distributed File
System. These files get distributed across nodes in a cluster. Besides storage Hadoop also
offers processing tools with its MapReduce paradigm. Hadoop is particularly useful with high
volume data streams and if you want real-time analytics.

The great thing of Hadoop is that it integrates well with python [3]. But Hadoop is mainly
built for high volume data streams. This application will incidentally have a set of new data
but does not have any streams. Another disadvantage is that Hadoop cannot cope with a large
number of small files [4] because every file will end up in an HDFS block of 64MB. The text
files are usually around 2KB, which creates an enormous memory overhead if stored in a
64MB block.

MySQL
MySQL [5] is one of the most established database technologies. It has excellent community
support which makes finding resources easy. MySQL is a relational database management
system. Relational databases reduce data duplication inside the database if there are relations
in the data.

MySQL has a perfect integration with popular Data Science tools [6] [7]. However, the test
data cannot benefit from reduced duplication since the data is not relational. MySQL requires
to create a table before data can be inserted. If the data later changes, the table must be
changed accordingly.

	
	

11	

MongoDB
MongoDB [8] is a relatively new technology in database land. Its first release was in 2009. In
opposite to MySQL, MongoDB is an unstructured database management system. MongoDB
stores data inside files named documents that are written in Bson. Bson is highly similar to
the data interchange format Json.

MongoDB has almost flawless integration with Python. Python data structures such as
dictionaries can be persisted in the database with the bare minimum of database-specific
query language [9]. Another advantage of MongoDB is that it does not require structure in
the data.

Conclusion
Hadoop does not suit this project well because of two reasons. There is no constant stream of
data, and the project is too small to make use of its distributed nature. Another disadvantage
is that this system deals with lots of small files which Hadoop cannot handle well. MongoDB
and MySQL are both valid options. However, there is also not an advantage to use MySQL
over MongoDB since the data is unstructured and cannot benefit the advantage of a relational
database. MongoDB, on the other hand, gives ease during development due to the great
integration with Python. Another point in its favour is that in the current situation, only the
data of DAC tests are stored. If later is decided to store additional tests data, this will be no
problem. Where MySQL likely needs to change its table structure to cope with the new data.
This comparison leads to the decision to use MongoDB for this project.

Database Design
The first approach to store the data inside MongoDB was to use one document for all the chip
test results. After testing this approach, it quickly became apparent that data was missing and
read queries were extremely slow. This behaviour had to do with MongoDB its limit of
16MB per document. Another design was made to cope with this limitation. Every single test
result will become a single document. In this way, the limit 16MB will likely not be
exceeded. This design also fits better with the conventions of MongoDB. After testing query
times again, it was significantly faster.

Three collections are made to categories the data. Each category corresponds to a test phase.
Every document is identifiable by the unique chipID in combination with the testName.

Figure	10:	Different	collections	inside	the	MongoDB	database	

	
	

12	

5.1.3 Data Service
After all the data has been converted from text files and stored in a MongoDB database, it is
essential to investigate how the data can be efficiently made available to external
applications.
Moving all the test files at once from one computer to another computer will create a slow
system due to the large number of test files. This makes a web API a perfect solution for this.
Because it only sends the data that is necessary over the network.

The API will be created following the REST convention instead of SOAP. This because
REST is more lightweight and takes less time to develop [10]. The central aspect of this
convention is that the API is stateless. Stateless means that you can make multiple requests in
any particular order, and it should always return the same response. The API can be hosted on
a server, and only the data that is necessary will be sent over the network to the end-user.

There are several different frameworks available to build a REST API. Malvern Panalytical
uses C# and Python as their primary programming languages. Based on the preferences of
Malvern Panalytical it is chosen to develop the application in Python. Python offers as most
popular frameworks Django [11] and Flask [12]. Django contains the most features, but it
takes more time to build an application with then Flask while Flask is lightweight and has not
many features out of the box [13]. This Rest API for Malvern Panalytical will be used
internally and will not be exposed to heavy load, nor is it vulnerable for outside attacks. For
that reason, there are no security requirements, and speed and scalability are not an issue.
This circumstance makes Flask the best framework since it is the quickest to implement. An
added pre is that most data science-related tools use Python; this makes combining the tools
more convenient.

The API itself only contains GET endpoints, since all data that will be added goes directly
trough the parser to the database. After this, there are not going to be any mutations to the
data. The URLs of the endpoint are built in a way they should explain which data can be
expected. Extensive API documentation is available in Appendix 3: API Documentation.

5.2 DASHBOARD
There are different answers to the question "How can the results of a model be visualised?".
The results of a model can be printed into a PDF or to a console. However, in this way,
interacting with the system will be very hard. Also finding the right results is not easy
because it is dependent on filenames and the file explorer of the operator's operating system.
A desktop app could be a solution, but it requires everyone to install the app. A hosted
dashboard, on the other hand, gives the possibility to interact with the data, and no one needs
to install anything to access the application. For this reason, in consultation with Malvern
Panalytical, it has been chosen to develop a dashboard web application.

To get the best out of the dashboard first, the wishes of the end-user must be clear. Therefore
an interview was organised about how the domain expert currently visualises tests results.
From this interview became clear that he visualises the data per wafer per one of the 27 DAC
tests. His wishes for a dashboard would be that it is easy to search for a specific wafer. It
should also be possible to visualise specific chips on a wafer, and the model should help to
find deviating curves. The list of deviating DACs should be printed somewhere in the
dashboard.

	
	

13	

With the wishes of the domain expert a list of goals for the dashboard was put up;

• Easily search and navigate through wafers,
• Switch between test phases, wafer, PCB and detector,
• Plot all test of wafer together,
• Show a list of failed DAC tests,
• Have the possibility to isolate a single test.

With the goals set, the main flow of the dashboard should look like Figure 11.

Malvern Panalytical had no requirements in which framework or language the dashboard
should be programmed. The three most used web frameworks according to the stack overflow
survey of 2019 [14] were; JQuery, React.js and Angular. All three frameworks are well-
documented, and communities are large. All three would get the job done perfectly. My
experience with Angular makes it the best choice because development will be the fastest.

Angular Material [15] is used to make the development of the frontend more efficient.
Angular Material is a package with frequently used components such as tables, pagination
buttons, switches. While using Angular Material, you are still free to change styles, but it is
not needed to develop everything from scratch.

Figure	11:	User	flow	of	the	dashboard

	
	

14	

The dashboard will use a custom CSS theme to keep
consistency in style all over the website. This is realised by
using a custom theme which is possible with the CSS
framework SASS [16]. SASS is an enhancement over
traditional CSS. It is easier to read and gives possibilities to
reuse your code. The dashboard has two files, one which
defines spacings such as font size, margins and padding and
the other which defines colours, see example in Figure 12.
The style template makes changing the values easy because
you only have to do it in one place instead of in every style
sheet all over the website. It also gives the advantage to add
other themes to a website at a later point such as dark mode
or a light mode.

Angular applications are single page websites which mean
there happens no real refresh on entering a new page. This
feature works great because you don't have to wait on page
loads but has a disadvantage that sharing a URL of a specific
page does not work out of the box. During the development of
the application, it must be kept in mind that the URL should
contain the state of the website. For example; the URL postfix "/wafer/W1025/Fbk" tells the
application three things, first that it goes about a wafer test, and that it should retrieve the data
for waferID "W2025". Fbk tells the website that it should visualise the results for the Fbk
test.

5.2.1 Dashboard Home Page
Figure 13 on the next page shows the home page of the dashboard. It has 4 components build
upon the wishes of the domain expert. Per component is explained what they do and how
they work.

$oppedijk-spacing:	(
		small:	10px,	
		medium:	15px,	
		large:	30px,	
		extra-large:	60px	
);	
	
$oppedijk-radius:	(
		small:	5px,	
		medium:	8px,	
		large:	10px	
);	
	
$oppedijk-font:	(
		small:	12px,	
		medium:	18px,	
		large:	24px,	
		extra_large:	48px	
)	

Figure	12:	Sass	template	example

	
	

15	

Test Phase Selection (1)
Upon entering the dashboard, there is the option to select the desired testing phase. The
button is disabled if the browser URL matches the test stage. A change in the test stage
updates the overview of devices (component 3) accordingly.

Search Field (2)
This search field searches within the backend for devices that match the query. The search
field makes use of a debounce mechanism in sending the requests. This debounce mechanism
prevents that a request is sent upon every keypress. Instead, after every keypress, a timer of
0.3 seconds is set. If a next keypress is detected within this time, the timer resets to 0.3. If the
timer hits zero, the request is sent to the backend. This mechanism helps to prevent excessive
load to the backend and database.

Tested Devices (3)
This grid shows all the tested devices, depending on the test phase; these are either wafers or
chips. Upon clicking one of the gird items, a new view opens with the corresponding test
results.

Pagination (4)
There is a lot of data available but to prevent the user from losing overview the webpage and
backend work with pagination. Pagination helps to keep the overview and speed up load
times. Instead of sending all tested devices to the dashboard, a subset of 16 devices is send.
Through the pagination component, the subset size and page can be changed.

5.2.2 Dashboard Test Overview
Figure 14 shows all the test results. And visualise the labels of the model.

Figure	13:	Home	Page	Dashboard

	
	

16	

Figure	14:	Test	Overview	Page	

Tests (1)
This grid shows all the 27 different DAC tests if one of these grid items is clicked the graphs
in component 3 updates to show this specific test.

Failed Tests (2)
This list shows all the tests that the model disapproved. The colour code gives information on
which criteria the test is disapproved. If the list item is clicked, component 3 gets updated so
that the operator can view the disapproved graph in detail.

Graph	(3)	
Based on the input of component 1, this graph plots the test measurements. Each line gets
assigned a colour based on the label that the model gave in the backend.

Home Button (4)
Upon clicking this button, the view changes back to the homepage. The button remembers the
test phase setting that was selected.

5.3 TESTING
The application is tested in several ways to make sure that it is reliable and works as
expected.

The first test is manual, does the code fulfil the acceptance criteria of the task? By answering
this question, most obvious bugs can be found. There is however a pitfall here, both the
frontend and backend are written in scripting languages. Programmes written in scripting
languages do not have to be compiled, which makes development fast. Still, simple
programming mistakes remain unseen until that particular piece of code with the mistake is
executed. Compiled languages such as Java find these mistakes before you can run the code.

	
	

17	

The backend has additional PyTests [17] to find the tiny mistakes and an end to end test
named Cypress [18] to test the whole package.

PyTest
PyTest is a lightweight testing framework which is similar to a Unit test. The backend
application broadly consists of three parts; the endpoints that expose the data, the parser that
converts text files into the database and the model which gives a classification to each
database entry (test). The parser is built from the ground up, and it must transfer the text files
into data in the database as intended. Therefore the tests cover every public method in the
parser. The code that gets the label from the model is an essential step in the application.
Therefore the classification part is entirely covered by tests. Lastly, the endpoints, none of the
endpoints mutates the data nor implements custom functionality.
For this reason, this part is omitted in the tests because a test would mainly test the
framework methods. For this application, the stability of the framework is taken for granted.
Despite this, the endpoints are also tested by the end-to-end tests. Every test consists of at
least one good weather test and where possible also bad weather tests.

End-to-end tests
End-to-end testing is a way to test the functionality of the application. The way these test
works is similar to how a user would use the application. There are several test frameworks
available most of them are based on Selenium [19]. Cypress is not; it is a new popular end-to-
end testing framework. The approach of Cypress is to test as close as a human would do it.
For example, if something may not work first, it will try again as most users would do.
Another great feature of Cypress is that if a test fails, it saves the state of the browser DOM.
Afterwards, you can inspect this state, and most of the time, it is easy to find the problem.

There are several testing strategies for an end-to-end test. For instance, do you use the real
database or a predefined test database? Do you mock the backend or do you use the real
backend? Etc. For this application, there is mocked as less as possible. By omitting mocks,
you test the entire cycle of the application instead of only the fronted. For some applications,
this may not be possible because the data can change. However, in this application data
cannot be changed. The frontend application is 100% covered by tests, that means every
function in the application is tested with an end-to-end test.

Figure	15:	Overview	of	Cypress	tests	

	
	

18	

5.3.1 Test Results
Both the end to end tests and the Pytests failed several times during development, which is
excellent because it means that the tests are doing their job. It made the whole development
process a lot quicker because fixing the issues right away is way quicker than realising later
on that something does not work, and start to searching what component is broken.

An improvement that still can be made is dividing the frontend application further down in
components, especially the dashboard test overview. At the start of development, it seemed
logical to make this one component. But during the different development cycles, more and
more functionality was added, which makes testing harder.

5.4 EXPLORING THE DATA
As mentioned in chapter 4.3 Project Motivation, there is test data of three stages; wafer, PCB
and detector. In every stage, the chip goes through 27 tests. The names of these tests can be
found on the graph labels in Figure 16. All the tests have a "Gate" this is a range on a
specific point which the test curve should pass see Figure 7. Unfortunately, the test result
data is not very specific. The tester only saves if a chip did or did not pass all tests instead of
which test it failed.

A good start to explore the data is to look at how many DAC tests do not survive this gate.
See the bar plot in Figure 16 below. On average for each DAC, about 3 % fails. The tests
Cas and Fbk are clear outliers here, which can have two reasons. One is that the gate is to
narrow and that too many proper curves are marked as wrong. Another explanation can be
that Fbk and Cas tests are more fragile and thus are more likely to fail.

Figure	16:	Percentage	Failed	Per	Test	

	
	

19	

5.4.1 Deviating patterns
As mentioned before many test curves pass the gate filter, but are still defective. After
consultation with the tester, it became clear that he looked for three kinds of patterns. He
explained that those three patterns do not belong to a DAC curve. However, there is no hard
proof that a curve with one of these patterns always results in a bad chip.

Figure	17:	DAC	curve	with	on	offset	in	the	vertical	direction	

Figure	18:	DAC	curve	with	oscillation	

Figure	19:	DAC	curve	with	a	sudden	deviation	

Chapter 6 Modelling will explain in-depth how these patterns can be detected.

The first pattern is a curve that has a so-called offset. The
curve has a good shape, but it has an offset in the vertical
direction.

The second pattern is an oscillation in the curve. This
oscillation should never happen in any DAC curve because it
should always descend or ascend not both.

The last pattern is curve that suddenly deviates from the
average curves.

	
	

20	

5.4.2 Test data differences
All tests at the wafer level take place at an external company. The other two test phases take
place at Malvern Panalytical. Because there are two parties involved in the process, this could
result in differences in measurement accuracy. See the graph in Figure 20 below.

Figure	20:	Measurement	difference	in	different	testing	stages	

All three curves in Figure 20 come from the same DAC on the same chip. The only
difference is the test phase of the measurement. The yellow line is the measurement taken on
wafer-level at the external company. The purple line is the measurement on the PCB and, the
blue line is the measurement taken on the sensor module. In theory, the lines should be all the
same. However, there is a clear difference between the wafer measurement and the PCB and
sensor module measurement. This difference is highly likely caused by the difference in the
measurement accuracy of the testing devices used. These differences must be kept in mind if
PCB and sensor module data are used; it needs preprocessing before it is fed into a model.

	
	

21	

6 MODELLING
To answer the question "How can faulty chips be classified?" it is essential to investigate
different modelling techniques to find out which results in the best fitting model.

6.1 MODELLING TECHNIQUES
Malvern Panalytical wants to expand her knowledge in the field of machine learning.
Therefore they would like to solve this problem with a machine learning algorithm.
Supervised machine learning algorithms work with a labelled dataset, which means that the
model can learn from already existing answers.

However, the problem is that this knowledge is missing in the dataset. The lack of
information has to do with the fact that it is complicated to test a chip when it is still on the
wafer. The test data from the wafer test only provides insight into how current flows through
the DACs and not whether a DAC is working or not.

Later in the second test phase, it is possible to test whether a chip works or not because the
chip is cut from the wafer and placed on a PCB. Firmware is available on the PCB to test full
functionality. Unfortunately, the data only tells if the chip works or not; this does not tell if a
DAC is working or not. It is possible that the DAC in the chip works perfectly but that the
problem is with another component in the chip. Therefore, the label whether the chip works
or not is not specific enough to train a machine learning model solely based on DAC curves.
Based on the fact that the labels are not sufficient enough, research has been performed to
find alternative methods.

6.1.1 Clustering
A side branch in machine learning is unsupervised learning. Unsupervised models do not
need labels. An example of unsupervised learning is clustering. Clustering works by looking
for clusters based on a specific set of properties. For example, imagine a model that has to
cluster apples and mandarins. The model can cluster them based on size or colour, without
knowing beforehand what an apple is and what a mandarin.

This principle can also be applied to the DAC curves with the hypothesis that a wrong curve
looks different from one that works properly. Based on the experience of the tester, false
DAC curves are typified by patterns described in 5.4.1 Deviating patterns.

Several algorithms can be used to apply clustering to a dataset. Figure 21 shows an overview
of a sample of different algorithms. Four algorithms are chosen to reduce the research scope.
These algorithms are picked based on the behaviour in the red-marked boxes in Figure 21.
These patterns in the red boxes are considered to look the closest to the DAC curves. The
chosen algorithms are:

• GaussianMixture	[20]	
• MeanShift	[21]	
• DBSCAN	[22]	
• OPTICS	[23]	

	
	

22	

Figure	21:	Different	clustering	algorithms	compared.	Image	from	Scikit	Learn	

All four algorithms are trained separately on all 27 different DAC curves. The test dataset for
every DAC curve consists of 1500 samples. For every algorithm, about an hour is spent on
optimising the parameters. These parameters are there to tweak the algorithm to better suit a
specific problem.

After visualising the plots, it became clear that GuassianMixture is the only algorithm
capable of clustering a substantial number of deviating curves. Both MeanShift and OPTICS
were not capable of detecting any abnormal behaviour. DBSCAN did create two clusters in
one of the plots; however, this was not an abnormal curve. Based on the results in the plots,
GuassianMixture is chosen for further research. A selection of the plots is available in
Appendix 4: Cluster Algorithm Plots. More plots are available in an external Jupyter
Notebook file.

	
	

23	

Figure	22:	Three	DAC	curves	with	a	plot	of	their	Gaussian	distribution	

First, how does Gaussian Mixture work? Gaussian Mixture clusters the curves based on the
gaussian distribution (sometimes named normal distribution) as property. Figure 22 is a
behind the scene representation how the Gaussian Mixture algorithm summarised works. On
the left is a plot of three different DAC curves and on the right is a plot of their Gaussian
distribution. An elaborate explanation can be found on Towards Datascience: Gaussian
Mixture Models Explained [24].

Figure	23:	Example	of	a	good	result	with	Gaussian	Mixture	

Figure 23 is a plot clustered by Gaussian Mixture of one of the 27 different DAC curves. In
this plot, the algorithm does a perfect job of finding deviating patterns.

	
	

24	

Figure	24:	Example	of	a	less	optimal	result	with	Gaussian	Mixture	

Figure 24 is the Gaussian Mixture cluster plot from a different DAC. The spread of good
curves is with this DAC bigger. This broad spread confuses the algorithm, and it starts
clustering within good curves. Furthermore, it seems that this algorithm has a particular
problem with detecting oscillating curves, as shown in Figure 18. This behaviour makes the
algorithm not usable for detecting defect DAC curves.

6.1.2 Statistical Model
An alternative can be to combine different statistical filters, to filter on a specific behaviour.
This method has the advantage that it does not require labels. However, there need to bee
consensus about what a failing DAC curve looks like. Another benefit of using statistics is
that it is easier to explain than a machine learning model.

The goal of this model is to emulate the behaviour of the tester. The model should be capable
of pointing out the same curves as the human tester would do manually. The patterns that the
tester looks for are explained in 5.4.1 Deviating patterns. These patterns are translated into
four filters. The filters are made by statistical knowledge, trial and error and through
interviewing a student who studies mathematics

Figure	25:	Statistical	Model	Filters	

The model starts with the already existing gate filter. This gate filter has an upper and a lower
bound at a specific point in the curve for every DAC test. If the curve does not pass this filter,
it is labelled as "Did not pass gate".

	
	

25	

The second filter checks the curves for kinks and flat lines which means a line that starts
ascending can never go descending or vice versa. There is a possibility to skip the first few
measurements since certain DACs have a threshold which means that they start with a flat
line.

The first two filters together filter out all rough outliers. Still, not all curves are good at this
point. The third filter takes during training the average of the training dataset every point in
the curve. These averages result in an average curve. Every line that passes this filter should
lay within an x amount of standard deviations above or below the average line. The advantage
of using a standard deviation over a fixed number is that it grows or shrink according to the
spread of the curves. If the line deviates, the model also returns the percentage that it deviates
from the bound.

The last filter is for all exceptional lines that are faulty but still passes the above filters. An
example of such a line is an oscillating curve that at every point, ascends or descends. This
filter works the same as the third filter. Instead, it takes the average gradient of each point in
the curve. If the curve its gradients lays within an x amount of standard deviations above or
below the average gradient it is approved. Also, for this filter, the model returns the
percentage that it deviates from the bound.

The x in both filers are independently configurable. The amount of standard deviation
tolerance is determined by the point of diminishing returns, which is tested on a test dataset
of 1962 curves and a validation dataset of 763 curves.

This model is a definite improvement over the clustering model. See Figure 27 and Figure 28
for the same set of curves but now with the statistical model labelling the DACs. It is not only
more accurate, but it also gives an explaining label. An extra advantage is that this can be
retrained on other DAC test of other machines which makes it reusable.

Label Description Colour
0 Valid
2 Did not pass gate
3 Neither ascending nor descending
4 Average too far off
5 Gradient too far off

line = line[skip:]
increase = True
for i in range(0, len(line)):
 if i + 2 < len(line):
 if (line[i] < line[i]) == (line[i] < line[i + 2]):
 increase = True
 else:
 return False
return increase

Figure	26:	Increase/Decrease	Filter

	
	

26	

Figure	27:	Threshold	DAC	labelled	by	the	statistical	model	

Figure	28:	TprefA	DAC	labelled	by	the	statistical	model	

	
	

27	

7 EVALUATION
In chapter 6 Modelling was made clear that the Statistical Modelling technique will be
applied for this project. In the evaluation phase, the results are validated against the goals
made in the Business Understanding phase. Also, a reflection on the process is made, and the
next steps are determined.

7.1 MODEL VALIDATION
Validating the quality of the statistical model is essential. If the model approves a defective
chip, this could cause reputational damage to Malvern Panalytical and a loss of money. Every
successive production phase adds much value to the chip.

The model is validated in two ways, first by visualising the results and looking together with
the tester. The hypothesis was: "The the tester would make the same decisions as the model
would". The result of this test was positive; the model indeed disapproved wrong curves.

A blind test is performed to remove any biases the tester may have had during the first test.
The model labels 18 wafers which are 1962 chips and is validated against 18 wafers labelled
by the domain expert. By comparing the results of the model and the domain expert, a
confusion matrix could be made. This matrix is made assuming that the domain expert makes
no errors.

The confusion matrix in Figure 29 works as follows. If a chip is rejected by the tester and the
model classifies the chip as working, the chip ends up in the upper-right corner. Conversely,
if the model disapproves the chip and the tester approves the chip, the chip ends up in the
lower-left corner.

At first glance, 8.8% of wrongly rejected chips seem inadequate, which would involve that
8.8% more chips are thrown away unnecessarily. However, this number is more nuanced; it
could be that the tester made mistakes. The labels of the tester cannot be validated because
the test data is at wafer-level. Another reason can be that the label of the tester is based on

Figure	29:	Confusion	Matrix

	
	

28	

other tests, while the model only looks at the DAC curves. For instance, if a chip is rejected
based on a power test and the DAC tests are fine, it will end up in the wrongly rejected box.

The number in the upper right box is 0%. This number is a good result which means that you
could make the model work independently without running the risk that it will pass wrong
chips. Even if this would be slightly above zero, it doesn't have to be a problem, as long as
the costs remain below the saved working time. If there are wrongly approved chips, they
will be detected in the PCB tests.

Besides the wafer-level labels of the tester, there is also a dataset of labels from the PCB test
phase. The advantage of these labels is that the chips at this stage are measured. So there is no
human randomness factor in the assessment of a chip works or not.

With these labels, it is possible to investigate the false negatives in Figure 29. The labels
show that the model could prevent 10% of the defect labelled chips in phase 2. This number
is calculated by counting the disapproved chips from the model in phase 1 and the measured
as defect chips in phase 2, divided by the total amount of broken chips in phase 2. These
numbers are based on a set of 31 wafers.

On the other hand, it is also possible to calculate the unfairly labelled as defect chips by the
model. These false positives are around 7%. Again the number is likely lower in reality
because the working / not working label is based on all test and not solely on the DACs. Also
preventing a defect chip on the wafer to become a PCB safe 10 times more then is lost with
throwing a wrongly disapproved chip away. In practice, this means there is already a cost
reduction if nine chips are wrongly thrown away, and there is 1 correctly disapproved.

Another thing to measure the performance of the model is to see if a particular filter has more
false positives then other filters and if a chip closer to the average is more likely to be a
correct classification then a chip further away.

	
	

29	

The hypothesis is that a curve that is far outside the average
has a higher chance of actually being wrong than a curve that
is closer to the average. In Figure 30, the distance to the
average is compared to whether it was the right
classification or a wrong one. Label 4 represents the distance
to the average height and label 5, the distance to the average
gradient. The graph does not show a clear correlation
between distance and the right classification.

Another question is whether certain filters are more error-
prone than others. Therefore, in figure Figure 31 also labels
2 (gate filter), and 3 (ascending/descending) are added.
These labels are plotted against the number of incorrect
and correct classifications. This graph does not give a
clear conclusion. At most can be concluded that label 5 is
more wrong than right, label 4 is near-random and label 2
and 3 are most of the times right.

It remains challenging to draw a proper conclusion from
both graphs. This is difficult because the numbers will most
likely look different in reality due to the earlier mentioned
problem that the labels from the PCB test are not specific
enough. Take the following example. A chip has 27 DACs.
And the model will label in the extreme case all 27 DACs
as faulty, while in reality only one DAC is broken. In that
case, 26 DACs wrongly get the conclusion that they are
correctly classified.

Figure	31:	Labels	compared	to	success/mistake

Figure	30:	Relation	Label	to	Prediction

	
	

30	

8 DEPLOYMENT
In many software projects, the deployment phase is hard. Thing work on local machines of
developers but on others, it doesn't. Also, the problem of specific components that require
preinstalled software can be a hassle. This software runs inside Docker [25] container to
solve these compatibility problems.

8.1 DOCKER
First, what is Docker and which problems does it solve. The application is developed on a
macOS with a specific python version and mongoDB version installed. If someone else wants
to run the software, he or she likely has a different operating system and python versions may
also differ. The differences in the operating environment may cause unwanted behaviour or
may result that the application does not work at all. In the era before Docker, a virtual
machine could be a solution. With a virtual machine, you can make sure that both
environments are precisely the same. But the downside of a virtual machine is that it occupies
a lot of memory space and it is difficult to scale. Docker solves these issues by eliminating
the guest OS. For reference compare Figure 32 and Figure 33.

An additional advantage of Docker is that the user who runs the application does not have to
configure and install additional software besides the docker deamon. All the required
packages and software with the right versions are automatically installed within the docker
container.

This application has a docker-compose file which contains all the necessary configuration to
run the entire pipeline. The only thing the end-user has to change is its data directory. For a
complete manual to run the software, consult Appendix 2: Insatallation Manual

Figure	32:	Example	Virtual	Machine	–	from	Docker Figure	33:	Example	Docker	Container	–	from	Docker	

	
	

31	

9 DISCUSSION AND ADVICE
The data is now easily accessible through a web interface and a database. The accessibility of
the data makes other data science-related studies on this data quicker. However, the testing
process can still be improved. In the current situation, the labels coming from the manual
review of DAC tests are not detailed enough. There is a label that the chip is disapproved but
not why it is disapproved. This label can also indicate that the chip failed on tests other than
the DAC test. Further specifying this label can help to assess this model better.

Another point for improvement could be to standardise the manual test process. The current
test process depends on a person's opinion. If this person leaves the company and is replaced
by someone else, the labels will most likely change slightly based on the test results. This
randomness can also be seen in figures Figure 31; label 4 is almost half the time right and the
other half the time wrong. When I show the wrong predictions of the model to the tester, he
tells me that he would also reject them, but that they were probably overlooked. On the other
hand, it can be argued that the test process is not good because the chip did work in the end.
To prevent this, I advise doing an extensive study on the effect of a broken chip on DAC
curves. This study has never been done so far due to the cost of placing a chip on a PCB. This
study could result in a more optimised model which leads to a further increase in cost savings
because fewer chips need to be thrown away incorrectly.

Altogether the model reaches the business goal of Malvern Panalytical. It is capable of
identifying faulty chips. This model can work standalone instead of a domain expert since it
is proven that it does not work worse. And thus can safe a lot of labour time. However, the
model can also work together with a human operator to form a perfect synergy. Since
identifying the faulty curves is the most time-consuming process. The human operator can
then make the final decision on approving or disapproving the chips.

While the current model is capable of classifying chips, it would be even better to predict
failure. It can happen that at a particular test phase, a chip look good, but in a later test phase,
it fails. With the current dataset of Malvern Panalytical it is likely possible to predict failure.

It is also interesting to build a model based on all test data. Training such a model can be
done with the current because a good/faulty label will suffice if all data is used. A model that
is trained based on all test results is likely to be much more accurate than the current model.

	
	

32	

10 CONCLUSION
This project was carried out for Malvern Panalytical to answer the question: "How can
Malvern Panalytical automatically label faulty DACs with historical measurement data?
Several components have been researched and developed to answer this question.

The first part of the research focused on interpretation and investigation of the data. Data
Science is still in its infancy at Malvern Panalytical. The data is readily available but difficult
to process because it is stored in text files. That is why the first step was to build a tool that
collects the data and puts it inside a database. This tool ensures that future data research can
be more easily done because popular data science tools such as Matlab and Pandas have good
integration with MongoDB and cannot handle text files.

Furthermore, it turned out that there is much manual work involved with the current test
methods. It became clear that the data had to be put in excel files, and graphs had to be
generated manually. This manual process takes much time. Also detecting deviating DAC
curves was difficult because the graphs do not give any help. Furthermore, it became clear
from the data that averages per wafer could vary considerably and therefore a chip with the
same value on wafer A was approved and not on wafer B because it could simply not be seen
with the bare eye. This problem led to the construction of a tool that collects the data
automatically and plots it in a clear way. It uses the results of the Statistical Model to give the
tester an indication that a line is deviating. It can then later be decided whether to rely on the
results of the model blindly or to let the tester make the final decision if a chip is working or
not. In any case, the tool reduces the number of randomness in the made decisions and safes
manual labour.

The model itself is built to emulate the decisions made by the tester. The disadvantage of this
is that the decisions of the tester are based on intuition, and not on research. Therefore, my
advice is to do extensive research on the influence of a broken DAC on the DAC curves.
With this information, a better model can be developed. The lack of detailed labels also
makes it difficult to give a well-founded assessment of the results of the model.
Nevertheless, in most cases, the model performs better than the human tester, but the most
significant advantage is the time gain. It is no longer necessary to manually identify
deviations chip by chip. This process can now work fully automatic.

All in all, it is possible to label the wrong DACs automatically. However, an even better
result can be achieved by gaining more insight into the DAC curves. That is why my advice
is to put several chips marked as "Broken" on PCB after all, to verify whether they are
broken. It is also advisable to give a more detailed description with the current labels instead
of working or not working. The more elaborate labels will make assessing the performance of
the model more reliable.

	
	

33	

11 BIBLIOGRAPHY
	
[1]		 S.	C,	"The	CRISP-DM	model:	the	new	blueprint	for	data	mining,,"	2000.		
[2]		 A.	Hadoop.	[Online].	Available:	https://hadoop.apache.org/.	
[3]		 S.	Collet,	"Creativ	Data,"	[Online].	Available:	

https://creativedata.atlassian.net/wiki/spaces/SAP/pages/61177860/Python+-
+Read+Write+files+from+HDFS.	

[4]		 S.	Balint,	"The	Small	FIles	Problem,"	[Online].	Available:	https://blog.cloudera.com/the-
small-files-problem/.	

[5]		 MySQL.	[Online].	Available:	https://www.mysql.com/.	
[6]		 MatLab,	"MySQL	with	Matlab,"	[Online].	Available:	

https://www.mathworks.com/help/database/ug/mysql-jdbc-windows.html.	
[7]		 MySQL,	"MySQL	pyton	connector,"	[Online].	Available:	

https://dev.mysql.com/doc/connector-python/en/connector-python-example-
connecting.html.	

[8]		 MongoDB.	[Online].	Available:	https://www.mongodb.com/.	
[9]		 W.	Schools,	"MOngoDB	Insert	Document,"	[Online].	Available:	

https://www.w3schools.com/python/python_mongodb_insert.asp.	
[10]		 S.	Bear,	"SOAP	vs	REST,"	[Online].	Available:	https://smartbear.com/blog/test-and-

monitor/soap-vs-rest-whats-the-difference/.	
[11]		 Django.	[Online].	Available:	https://www.djangoproject.com/.	
[12]		 Flask.	[Online].	Available:	https://flask.palletsprojects.com/.	
[13]		 M.	Solutions,	"Fask	vs	Django,"	[Online].	Available:	

http://www.mindfiresolutions.com/blog/2018/05/flask-vs-
django/#:~:text=Django%20is%20a%20full%2Dstack%20web%20framework%2C%20
whereas%20Flask%20is,by%20providing%20the%20required%20functionality..	

[14]		 D.	S.	2019.	[Online].	Available:	
https://insights.stackoverflow.com/survey/2019#technology.	

[15]		 A.	Material.	[Online].	Available:	https://material.angular.io/.	
[16]		 SASS.	[Online].	Available:	https://sass-lang.com/.	
[17]		 PyTest.	[Online].	Available:	https://docs.pytest.org/en/stable/.	
[18]		 Cypress.	[Online].	Available:	https://www.cypress.io/.	
[19]		 Selenium,	"Selenium	Web	Driver,"	[Online].	Available:	https://www.selenium.dev/.	
[20]		 S.	Learn,	"Guassian	Mixture,"	[Online].	Available:	https://scikit-

learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html.	
[21]		 S.	Learn,	"Mean	Shift,"	[Online].	Available:	https://scikit-

learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html.	
[22]		 S.	Learn,	"Mean	Shift,"	[Online].	Available:	https://scikit-

learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html.	
[23]		 S.	Learn,	"OPTICS,"	[Online].	Available:	https://scikit-

learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html.	
[24]		 O.	C.	Carrasco,	"Towards	Datascience,"	[Online].	Available:	

https://towardsdatascience.com/gaussian-mixture-models-explained-6986aaf5a95.	
[25]		 Docker.	[Online].	Available:	https://www.docker.com/.	
[26]		 "Wikipedia,"	[Online].	Available:	https://en.wikipedia.org/wiki/Cross-

industry_standard_process_for_data_mining.	

	
	

34	

[27]		 HBO-i,	"Methoden	Toolkit	HBO-i,"	[Online].	Available:	https://onderzoek.hbo-
i.nl/index.php/Methoden_Toolkit_HBO-i.	

[28]		 M.	S.	Brown,	"Dummies,"	[Online].	Available:	
https://www.dummies.com/programming/big-data/phase-1-of-the-crisp-dm-process-
model-business-understanding/.	

[29]		 C.	.NET.	[Online].	Available:	https://dotnet.microsoft.com/apps/aspnet.	

	
	

i	

12 APPENDICES

APPENDIX 1: WHAT IS A DAC

Digital to Analog Converter
It is impossible to build an accurate model that can predict failures of DAC (Digital to
Analog Converter), without knowing anything about this component. As the names says a
DAC converts a digitals signal to an analog signal. The digital signal represents a sequence of
discrete numbers. An analog signal represents continuous values. The number of inputs of a
DAC is always 2^n, where n is the number of inputs. The DAC has one analog output.

For the conversion every digital signal is
mapped to a voltage range. Where 0V being the
minimum and the max voltage represents the
max digital input.

Why do you need a DAC?
Everything around us is analog. Computers are
digital. If you produce a result with a computer
and want to make it understandable to the outside world, you have to convert it to an Analog
signal. For example,

a song created on a keyboard is saved binary on a computer. To listen to this song the binary
values have to be converted to an analog signal that we can hear as music.

	
	

ii	

APPENDIX 2: INSATALLATION MANUAL

prerequisites

• Windows	10	Pro/Enterprise/Education	or	a	Unix	based	system		
• The	Docker-compose.yml	from	the	git	repository	

	
Data Directory
Make sure that the data directory contains the following folders:

• wafer	
• pcb	
• detector	

	
Docker
Create an account on https://hub.docker.com/. Make sure that you get access to the private
repository "supertweaker/dac_test".

Install docker from: https://www.docker.com/. Make sure during the installation that docker
is added to the PATH so that you can use it in the terminal.

Open the docker-compose.yml and edit the following line:

Change the directory to the data directory on your machine, make sure that you leave the
":/data" at the end.

Open the terminal and make sure that the docker deamon is running. cd to the directory that
contains the docker-compose.yml file. Inside this directory execute the "docker-compose up"
command. This start downloading the correct images, after a couple of minutes the
application is accessible on http://localhost. Dependent on the amount of data and the amount
of CPU cores the initial run can take a while. This can be more then 30 minutes.

	
	

iii	

APPENDIX 3: API DOCUMENTATION

Functionality Returns list of chip id of a particular stage
URL /api/stage/<string:stage>/chips?skip=0&limit=1
Example Return [

 [

 {

 "totalCount": 265,

 "chipIDs": [

 "W1060A7"

]

 }

]

]

Functionality Returns list of wafersIDs
URL /api/stage/wafer/wafers?skip=0&limit=1
Example Return [

 [

 {

 "totalCount": 36,

 "wafers": [

 "V2CXAJH"

]

 }

]

]

Functionality Returns list of test values.
URL /api/stage/<string:stage>/test_name/<string:test_name>
Example Return [

 {

 "_id": {

 "$oid": "5ea030d0a0fd9a3d96896460"

 },

 "chipID": "V2CXAJHD2",

 "label": 2,

 "testName": "Cas",

 "value": [

 0.1644714018895878,

 0.1650207496227718,

 0.166057019210369,

],

 "wafer": "V2CXAJH"

 },

 …

]

	
	

iv	

Functionality Returns all tests of test stage object.
URL /api/stage/<string:stage>/test_names
Example Return [

 [

 {

 "_id": "null",

 "testNames": [

 "Cas",

 "DACDiscH",

 "DACDiscL",

 "DACtest",

 "Delay",

 "Disc",

 "DiscLS",

 "Fbk",

 "Gnd",

 "Ikrum",

 "Preamp",

 "Rpz",

 "Shaper",

 "Shapertest",

 "TPBufferIn",

 "TPBufferOut",

 "Threshold0",

 "Threshold1",

 "Threshold2",

 "Threshold3",

 "Threshold4",

 "Threshold5",

 "Threshold6",

 "Threshold7",

 "Tpref",

 "TprefA",

 "TprefB"

]

 }

]

]

Functionality Returns all tests of test stage object.
URL /api/stage/<string:stage>/search/<string:query>
Example Return [

 {

 "totalCount": 1,

 "wafers": [

 "W1221",

]

 }

]

	
	

v	

Functionality Returns all tests of test stage object.
URL /api/stage/<string:stage>/search/<string:query>
Example Return [

 {

 "totalCount": 1,

 "wafers": [

 "W1221",

]

 }

]

Functionality Returns all tests of test stage object.
URL /api/stage/<string:stage>/<string:id>/failed_test_names
Example Return [

 [

 {

 "_id": "null",

 "testNames": [

 "TPBufferOut",

 "Threshold3",

 "Threshold6"

]

 }

]

]

Functionality Returns all tests of test stage object.
URL /api/stage/<string:stage>/<string:id>/failed
Example Return [

 [

 {

 "failure": {

 "label": 2,

 "testName": "Fbk"

 },

 "chipID": "W1221A7"

 },

 {

 "failure": {

 "label": 4,

 "testName": "Delay"

 },

 "chipID": "W1221C2"

 }

]

]

	
	

vi	

APPENDIX 4: CLUSTER ALGORITHM PLOTS

Gaussian Mixture

	
	

vii	

Mean Shift

	
	

viii	

DBSCAN

	
	

ix	

OPTICS

	
	

x	

APPENDIX 5: VERSION CONTROL
Version	1	
Submission	date:	 6-5-2020	
Updates:	 	 Initial	version	
	
Version	2	
Submission	date:	 13-04-2020	
Updates:	 	 Spell	improvements		
	 	 	 Explanation	how	scrum	is	used		
	 	 	 Explanation	how	Crisp	DM	is	used	
	 	 	 Included	information	about	Gaussian	Mixture	
Version	3	
Submission	date:	 19-5-2020	
Updates:	 	 Explanation	about	statistical	model		
	 	 	 Chapter	about	Docker	
	 	 	 Added	the	chapter	about	evaluation	and	the	model	assessment.	
	 	 	 Added	abstract	
Version	3	
Submission	date:	 15-06-2020	
Updates:	 	 Fix	undescriptive	figure	captions	
	 	 	 Explanation	about	different	cluster	algorithms	
	 	 	 Included	research	about	different	database	technologies	
	 	 	 Added	proof	to	lose	statements		
	 	 	 Added	missing	literature	and	references	
	 	 	 Fixed	better	explanation	about	missing	label	problem	
	 	 	 Added	conclusion		

