
`

Table of Contents
1. Introduction 5

2. Graduation assignment 6

2.1 Introduction 6

2.2 Problem definition 6

2.3 The assignment 7

2.4 Research questions 8

2.5 Stakeholders 8

2.6 Development 8

2.6.1 Entry point 9

2.6.2 Tooling 9

2.6.3. Version Control 9

2.6.4 Technologies 9

2.6.5 Code quality 9

3 Process description 10

3.1 Research methodologies 10

3.1.1 How to optimize the new website base workflow for marketing team
needs? 12

3.1.2 How to manage different Fixico websites using 1 shared admin
panel? 12

3.1.3 How to securely login to the new website admin panel using the
company’s Google account? 13

3.1.4 How to support internationalization and localization? 13

3.1.5 How to define metrics used for website user experience by
improving performance, accessibility, best practices and SEO that are
defined by google lighthouse? 13

3.1.6 What is going to serve as the deployment for the website-base? 14

3.1.7 How to optimize website building and deploying processes to
archive speed, reliability and performance? 14

1

3.1.8 How to securely and reliably store future content of the website? 14

3.2 Planning 15

3.3 Methodology 15

3.4 Sprint planning 15

4 Research outcomes 16

4.1 How to optimize the new website base workflow for marketing team needs? 16

4.2 How to manage different Fixico websites using 1 shared admin panel? 16

4.3 How to securely login to the new website admin panel using the company’s
Google account? 17

4.4 How to support internationalization and localization in a new website base? 19

4.5 How to define metrics used for website user experience by improving
performance, accessibility, best practices and SEO that are defined by Google
Lighthouse? 21

4.6 What is going to serve as the deployment for the website-base? 22

4.7 How to build and optimize website building and deployment process? 24

4.8 How to securely and reliably store future content of the website? 26

4.8.1 Assets storage 26

4.8.2 User storage 27

4.8.3 Storage of web pages and their content 27

5. The solution 29

5.1 Functional Design 29

5.1.1 Requirements 29

5.1.2 Control Panel core functionality 31

5.1.3 User Groups 31

5.1.4 Addons 32

5.2 Technical Design 33

5.2.1 Deployment 33

5.2.2 Introduction to Continuous Integration and Deployment 35

5.3.2.1 Continuous Integration 35

2

5.3.2.2 Continuous Deployment 36

5.2.3 Testing 36

5.2.3.1 Source code testing 36

5.2.3.2 Editors acceptance 37

5.2.3.3 Visitors experience testing 37

5.2.4 Storage 40

5.3.4.1 Assets storage 40

5.3.4.2 User storage 44

5.3.4.3 Content storage and retrieval 44

5.2.5 Authentication using Google Identity Provider 45

5.2.6 Addons 45

5.3.6.1 Statamic Activity Book addon 45

5.3.6.2 Multi-User Collaboration addon 46

5.2.7 System Architecture 46

5.2.8 Development frameworks 47

5.3.8.1 Statamic Antlers 47

5.3.8.2 Alpine JS 47

5.3.8.3 Tailwind CSS 48

5.3.8.4 Helper environment 48

5.2.9 Manual on how to run the project 48

5.2.9.1 Environment prerequisites 48

5.2.9.2 How to run the project 48

5.2.9.3 Further website development recommendations 49

6. Conclusion & Recommendation 50

6.1 Proof of concept 50

6.2 Recommendation 50

6.3 What is delivered to Fixico? 51

6.4 Reflection 51

3

Appendices 53

1. Use of Research methodologies 54

1.1 Interviews 54

2. Project timeline 56

3. Research additional information 57

3.1 Google Lighthouse metrics, and how do they influence 57

3. List of references 60

4

1. Introduction
As a Software Engineering student I was able to complete my graduation assignment at Fixico
B.V. in Amsterdam. Fixico is the largest vehicle repair platform in Europe. With Fixico, car
owners and business partners can easily find a suitable repair company and save on repair
costs. Their platform connects supply and demand in the car repair industry.

The assignment I was completing was to analyze existing Fixico websites and especially their
drawbacks to design a new website system that would solve and handle maintainer problems.

This document explains the assignment context, the approach taken per each research
question, their outcomes, and the design of the solution made. This document is aimed to
inform the reader regarding the path, decisions and expectations the student will follow during
completion of his graduation assignment.

Company supervisor University supervisor Graduation intern

Name Gareth Dutrieux Jan Jaap Sandee Mark Kravchuk

Position Projects Manager Teacher Graduation Intern

Email gareth@fixico.nl j.m.j.sandee@saxion.nl mark.kravchuk@fixico.nl

Table 1. Graduation contacts

5

2. Graduation assignment
2.1 Introduction
Fixico is the largest vehicle repair platform in Europe. With Fixico, car owners and business
partners can easily find a suitable repair company and save on repair costs. Their platform
connects supply and demand in the car repair industry in a completely new and innovative way.

Fixico innovative solutions offer clear benefits for the entire market. Whether customer need
them as a car owner or for business, Fixico put ease of use, quality and transparency for all our
users first:

● Car owners: Finding the right repair shop is often a tedious and time-consuming task for
car owners. Prices can be unclear, warranty is not always included and there are often
nasty surprises afterwards. With Fixico, car owners can easily and quickly compare the
best repair shops. This way our users can make the best choice with peace of mind, and
they know in advance exactly what the damage will be for their wallet.

● Repair shops: Partner repair shops can respond quickly and easily to requests from local
car owners via Fixico platform by submitting quotes. Via Fixico they can increase
turnover, increase online findability, collect reviews and easily optimize workplace
occupancy. Fixico only works with recognized repair shops that meet high quality
requirements and offer a minimum of 4 years warranty.

● Business partners: Fixico has unique and innovative solutions for insurers, lease
companies, rental companies, fleets and other organizations that deal with car damage
on a daily basis. Fixico service is aimed at reducing the total cost of claims, shortening
lead times, increasing customer satisfaction and being able to work a lot more
efficiently.

2.2 Problem definition
Fixico currently has a wide variety in the website assortment. Right now, 7 business websites
are active, and they are built using 3 different content management systems (CMS). While 20
accompanied repositories are handing the source code for them.

Such variety of websites are settled using different CMS (Content management systems)
creates multiple maintaining problems:

● Design themes, each CMS used at Fixico has different implementation, so therefore
each theme has its source code on different frameworks. This is a problem for the
engineering team to make changes (updates) to the theme.

● Updating the core modules used within the website. Due to different technological
stack, all the updates are made differently and vary on each CMS that’s being used.

● The technological stack, that implies engineers to know a variety of different skill sets
for the changes.

● Content Management System implementations, that makes impossible to make
changes to some website elements that could be easily changed from the admin panel.

6

Therefore, right now tickets are being created by other teams within the company for
engineers to make desired hardcoded changes.

● Admin accounts, as being said that Fixico has 7 websites, means there are 7 different
admin panels where the credential and access per each website differs, this makes
employees from different departments a headache to gain admin rights to the right
website.

● Technological implementation: current deployment method is hard to complete due to
its git-sync implementation. It requires many unnecessary steps that can be handled
automatically.

2.3 The assignment
Based on the problems of maintaining current websites, Fixico wants to create a new website
base where eventually all websites would be migrated. This base should be implemented with
the described problems above in mind.

The technological stack was already defined for the student. And those are:

● The core should be built using Statamic - a Laravel framework on PHP
● Antlers - templating engine will be used for creating template types
● Alpine.js – JavaScript framework for composing JS behavior in templates
● Tailwind CSS – stylesheet framework created for optimization of the stylesheet sizes

Basically, the company has chosen these technologies, because Fixico is already using Tailwind
CSS framework within the software they provide, Alpine JS promises to have similar constraints
as React (JavaScript front-end framework) which is also widely used within the company.

Statamic is a great framework that satisfies the company’s requirements, like:

● It uses PHP programming language and Laravel framework, company makes active use
of the Laravel and the Statamic is a nice fit to the company’s tech stack

● The framework is lightweight, so the deployment processes should be easy and
optimally made

● Statamic already has rich features installed by default that satisfy the technical and
business needs

Other parts of my assignment are:

● Integrate the current CI/CD (continuous Integration / Continuous deployment) scripts to
the new website base.

The created website base will be served as a minimum viable product (MVP), and also that
serves as the proof of concept (POC) that the migration is possible.

Additionally, depending on the time that has been left after getting MVP done, one Fixico
website actually migrated would be an additional success factor.

7

2.4 Research questions
Main question: How can I solve Fixico’s “multiple website maintenance problem” which is
caused by decentralization and deprecation, using Statamic CMS platform in order to archive
unification for all known Fixico websites catered towards developers, end users and content
writers?

This question accurately encompasses everything mentioned in the problem description and
hints as to what the assignment entails. Answering this requires combining knowledge gained
from many modules.

Sub questions (sub chapters):

● What is the marketing team base workflow and how can the new setup improve this?

● How to manage different Fixico websites using 1 shared admin panel?

● How to securely login to the new website admin panel using the company’s Google
account?

● How to support internationalization and localization (where specific content is only
available to specific locales)?

● How to define metrics used for website user experience by improving performance,
accessibility, best practices and SEO that are defined by google lighthouse?

● What is going to serve as the deployment for the website-base?
● How to optimize website building and deploying processes to achieve reliability and

performance?
● How to securely and reliably store content of the website?

The approach taken per each research question is described in chapter 3.

2.5 Stakeholders
Stakeholders of the new website base:

● Website visitors: They are the most valuable stakeholders, the new system should
provide them smooth and fast website interaction. Depending on the type of website,
different websites are served.

● Engineering team within Fixico: They should understand the implementation of the
website base and be provided with the documentation.

● Marketing team within Fixico: They should access the admin panel and have smooth
and easy control over the content of the given website.

2.6 Development
This subchapter describes the environment where the student will be working with to approach
graduation assignment.

8

2.6.1 Entry point
The entry point of the assignment are the prerequisites described in the assignment
description (Chapter 2.3 The assignment) and a brand-new Github repository for the future
source code of the assignment.

2.6.2 Tooling
Jira management tool will be used as a main board for the graduate student. It is expected for
the student to create stories (defined at last sprint planning) and issues. The student is also
responsible for delivering up-to-date information about the status of the project to Jira.

2.6.3. Version Control
Version Control is handled with Git, the company is using GitHub as the remote storage of the
repositories. New repository for the graduate project will be created and all the source code
will be handled there.

Each time the student starts working on a new ticket a new branch is created for that issue.
Once the ticket is complete and reviewed, the pull request can be created to merge new
functionality to main.

2.6.4 Technologies
The main programming languages are PHP and JavaScript together with HTML and CSS

The student is going to use Confluence for documentation purposes. Confluence is a wiki-like
tool that is tightly integrated with Jira and other Atlassian products that Fixico makes use of.
The student will have access to all available documentation articles and will document himself
all the research decisions and implementation details about the project.

2.6.5 Code quality
Code quality is ensured with the help of tools within the WebStorm IDE, and with the
company’s internal processes. The student also needs to have a code review upon completion
of a ticket or story on the JIRA board.

9

3 Process description
In the previous chapter, the context of the research was mapped out. In this chapter, the
problem statement of the previous chapter is further concretized in order to formulate a
solution challenge. The solution challenge is a description of a product that has to solve a
specific problem.

The solution challenge is further divided into several sub-questions with the chosen research
methods. These research methods are also explained further in this chapter.

The purpose of this chapter is to create an overview of the research questions and how the
researching of them will take place. The results are explained in chapter 4.

3.1 Research methodologies
This subchapter describes the approach per each research question the student is going to
make during the researching phase of the assignment.

The table below gives an overview about the research questions.

1.0 How to optimize the
new website base
workflow for
marketing team
needs?

1.1 What are the
requirements from the
marketing team that
websites should have?

Interview

2.0 How to manage different Fixico websites using 1 shared
admin panel?

Technical desk
research/ Interview
regarding
implementation

3.0 How to securely login
to the new website
admin panel using the
company’s Google
account?

3.1 Does Statamic support
login using third party
authorities?

Desk research

3.2 How to make it possible
to login using Google
corporate account?

Desk research

10

4.0 How to support
internationalization
and localization in a
new website base?

4.1 What is the solution for
internationalization?

Technical desk
research

4.2 What is the solution for
localization?

Technical desk
research

5.0 How to define metrics
used for website user
experience by
improving
performance,
accessibility, best
practices and SEO that
are defined by google
lighthouse?

5.1 What is user
experience, and what
are the metrics for that,
what developer tools
are used for this?

Desk research

5.2 How to test and
evaluate user
experience within a
website base?

Technical desk
research / Interview

6.0 What is going to serve
as the deployment for
the website-base?

6.1 What is an existing
deployment solution for
Fixico websites?

Analyze Fixico stack

6.2 What is an alternative
to the existing Fixico
deployment process?

Desk research

7.0 How to build and
optimize website
building and
deployment process?

7.1 What is the CI/CD
current solution for
Fixico?

Analyze Fixico stack

11

7.2 What is the deployment
process for current
Fixico websites?

Analyze Fixico stack

7.3 How to implement
building and
deployment automatic
processes to a new
website base?

Technical desk
research / Interview

8.0 How to securely and reliably store future content of the
website?

Technical desk
research, Analyze
Fixico stack,
Competitive research

Table 2. Research methodologies overview.

The following sub questions create a step-by-step approach to answer the main question.

3.1.1 How to optimize the new website base workflow for marketing team
needs?
Marketing team is a part of the stakeholders of the websites, because they are actively involved
in website content management.

To understand what are the needs and requirements of the marketing team to have in a new
website for keeping their website management responsibility.

To answer the question the Interview with a person from the marketing team will be conducted.
The person should be somebody who is actively involved in website maintenance, so the
interview would be accurate.

The outcome of this research question are requirements from editors perspective to the
website base.

3.1.2 How to manage different Fixico websites using 1 shared admin
panel?
The idea here is to research how to develop a system that will handle 1 project merging
websites to 1 system – Whether possible and how to create a system where multiple, not
related to each other, websites will be handled via 1 system and admin panel?

Answering this question should start with the research technological desk research of current
technologies/plugins supported by Statamic framework and the existing implementations
available on the internet using competitors analysis.

12

The second step here is to have an interview with the technical supervisor about what he thinks
about whether the solution seems to be a good thing to have from functional, technical and
architectural wise.

The outcome is expected to be the approach that has to be taken to develop described
functionality.

3.1.3 How to securely login to the new website admin panel using the
company’s Google account?
Using Google authentication is a fast and reliable compromise as the solution for the marketing
team as long as it has turned out that it’s technically impossible to archive the “shared admin
panel” feature.

Therefore, research should be made on this topic, whether it’s possible to configure Statamic to
login to the admin panel using google identity provider in a secure way that only admins and
editors can access that control panel.

To answer the question, a desk research of the official website documentation of Statamic and
Google Cloud Platform on the information whether it’s possible and how to implement the
requested feature.

And as outcome, the implementation of the feature will be made to the pilot version of
Statamic website.

3.1.4 How to support internationalization and localization?
Statamic needs to be researched to a topics on how to develop system that will handle:

● Internationalization (i18n) of the website – How will the translations of the same content
in different languages be implemented?

● Localization (l10n) – How to create conditions to display parts of specific content in a
specific language?

These 2 features above are crucial for starting a Statamic project, because Fixico is interested
only in the solutions that handle i18n and l10n problems.

To answer this question, a desk research on existing implementations/official plugins of given
framework that support upper described functionality.

The result here would be the design and approach taken to implement requested features.

3.1.5 How to define metrics used for website user experience by
improving performance, accessibility, best practices and SEO that are
defined by google lighthouse?
This is an important question, because it is about improving the website visitors' experience
and improving the grades given by search engine ranking.

13

To answer this question, a desk research would be made on how to test the user experience,
what are the tools available for this, what are their scores, and what should be kept in mind to
achieve the most out of it.

An outcome here would be the strategy of testing user experience.

3.1.6 What is going to serve as the deployment for the website-base?

This is an important topic, where insights on the process of website availability, reliability and
scalability would be answered.

This research question will be answered using analyzing Fixico stack on how Fixico arranges
current websites with similar architecture, as an architecture consistency is something that
Fixico looks forward to.

The second step would be to approve the points of view with Fixico’s CTO to define the best
strategy to secure, reliable and available public versions of the website base.

The outcome would be the decision and its insights on the website architecture alongside the
setting-up remote environment process.

3.1.7 How to optimize website building and deploying processes to
archive speed, reliability and performance?
Building and deploying processes are an important part of the development Statamic website,
because it would reduce risks of finding bugs at a late stage, and ensure the deployment
process goes smoothly.

To answer this question, a desk research is made on what approach should be taken to add a
new website base to integrate the building and deployment process within the company.

As a proof of right approach is made, an interview with the technical supervisor or Fixico CTO
would be made to discuss the approach details.

The answer to the question would be the plan and actual integration of the CI/CD process to
graduation assignment.

3.1.8 How to securely and reliably store future content of the website?

This research question was initially not planned, however during answering the research
question #6 about the deployment process, it has turned out that the current question has to
be researched and answered properly.

Content of the website is the dynamic content that changes during the updating website
pages, users, assets and other manipulations via control panel of the website made by website
maintainers.

14

Answering this question consists of 3 different problems where each subquestion should have
its own, opinionated solution on how it works currently with existing Fixico websites, and
whether there can be any improvements made into it.

3.2 Planning
The company makes use of Scrum as its work methodology. This methodology fits the way the
graduate has been conducting their own work up until this point, and it fits the current
assignment as well. The graduate will keep themselves within scope and can determine the
pace of the progress while employing this work methodology.

The student will be having a 2 week sprint that starts on Monday and finishes on Friday next
week. At the time when sprint finishes, the sprint review and sprint planning would be made
together with the company and technical supervisors.

Upon competition of 2-3 sprints, the sprint pace would be evaluated, and in case sprint takes
longer or shorter time span, re-evaluated to get the most optimal planning.

3.3 Methodology
As far as processes are concerned, the graduate will participate in daily stand-ups, in which the
graduate will provide insight into their work to the company supervisor. At the end of each
sprint graduate will have to present a summary of their work in front of the whole company
during sprint reviews.

As described before, Jira will be used as the tool for tracking progress throughout the
development period. The board is split into 5 lanes:

● To Do
● In Progress
● In review
● In functional review
● Done

There might be 2 board sections unclear: “In review” and “In functional review”, the difference
is the “In review” section is made for conducting code reviews and technical overview of made
solution, and the “functional review” means to check the developed functionality with the
company supervisor where the solution functionally fits the assignment correctly.

3.4 Sprint planning
The sprint planning is included in the appendix with the amount of sprints, their timelines and
expected work delivered.

15

4 Research outcomes
This chapter describes sub-questions outcomes that were listed earlier in chapter 3. In this
chapter it is made clear what the design choices for the website base are based on.

4.1 How to optimize the new website base workflow for
marketing team needs?
The primary research method here is an Interview that was conducted with a marketing
manager. The person who was interviewed was Isabell Heller, who is a marketing specialist and
main maintainer of current Fixico websites.

During the interview the list of requirements was set together with their prioritization. The list of
requirements is included in the chapter 5.1 Functional Design (Interview with person from
marketing team, March 2022).

Together with discussion of requirements, the drawbacks of existing websites were listed too,
where almost all of them overlap with the listed drawbacks in the Chapter 2 section 2 - Problem
Definition.

Moreover, an ideation phase was executed during an interview, where the additional functional
features were discussed, such as :

● Solve saving problems of the webpage content that was under work at the same time.
● Create Activity tracking tool, with an overview of the most recent changes made to the

website.
● Create the possibility to change content of different Statamic websites using only 1

admin panel.

In conclusion, the answer of the research question is the list of functional and technical
requirements that will be added to Functional Design.

4.2 How to manage different Fixico websites using 1
shared admin panel?
Having 1 admin panel that manages the content of all the websites Fixico has is a feature
requested by the Marketing team as a should requirement.

The graduate has answered this research question by doing a research on an official framework
documentation regarding following questions:

1. How to use 1 admin panel that can change the content on multiple websites that are
located in different website projects?

2. How to create 1 common website project, where the theme, content and locales of
different not related to each other websites would be stored in 1 place that ensures
success using 1 admin panel for management?

16

Answering 1st sub question: apparently there is no functional support of using 1 admin panel
among different website projects, no following information was available on official framework
documentation website, and no related discussions were made on framework forums.

The implementation approach discussed in the 2nd sub question, where all the website themes
and content will be made in 1 project, so the admin panel would have access over all the
content easily, has many disadvantages that overcome the possible advantage for the
marketing team. To ensure the graduate is taking into account the right cons, an interview with
technical supervisor was made, where the points make a decision to go against developing this
feature, because:

● Website structure will get too messy. Each website, and it’s locales would make a
massive list of all versions of the website, that will be harder and harder to maintain
(Interview with developer supervisor, March 2022).

● Website theme will be very hard to configure to have multiple configurations, because:
○ Layouts that serve as an entry point of an html document are impossible to have

more than in 1 configuration.
○ Different globals (like header, foot, etc.) would be almost impossible to

configure to be displayed only on specific pages.

In conclusion, the answer is that Statamic is not made to support multiple, not related to each
other, websites in 1 admin panel. Which means it’s sort of impossible to implement a
researched feature.

Main reason for such a request is to make login as easy and as fast as possible, which can also
be achieved using different methods. During an interview with Isabell from the marketing team,
different ideas were suggested, such as using One Password - a Fixico tool that stores safely all
passwords on device, using Fixico google account as identity proof. The idea with verifying
identity using Fixico Google account was interesting for Isabell, and therefore further research
was continued, that is below.

If talking about decentralization and deprecation covered in the problem definition and as a
possible solution (answer) in the main question, these 2 things would not be a problem,
because in future all websites would be made of Statamic, where the deprecation can be easily
controlled and fixed, by doing repetitive solutions to the needed websites, and
decentralization, a problem with a big technological stack required to maintain different
websites would be replaced with 1 similar architecture around Statamic.

4.3 How to securely login to the new website admin panel
using the company’s Google account?
Logging in the admin panel using Google corporate Fixico account is possible. Statamic
supports extending it’s core functionality and their adapters, so therefore a Laravel Socialite
OAuth2 identity provider was found and integrated into Statamic website.

OAuth2 authorization is a specific way to verify or retrieve account information without using
the client's password, which makes the website and the client safer (Cobb & Mann, 2020).

17

Instead of proving the client’s credentials, the client is redirected to the official identity provider
webpage (in our case - Google), where the user chooses the account to be authorized, and
then is redirected back to the original website with access to a temporary token serving as
credentials.

To accomplish the described goal, the research can be divided into 2 parts

1. How to configure Statamic for the authentication using third party providers
2. How to create a Google application that will be connected to the Statamic, so the

credentials of Google Fixico account will be verified.

Laravel Socialite has a list of providers supported out of the box, where Google is included. In
case Google was not included, additional configuration should have been made. Also, a set of
configuration manipulations to Statamic configs should be made to treat Statamic using also
different identity providers.

Image 1 Actual authorization process.

The source code above shows an actual authorization process. Google Authentication is
successful only if the user with authorized email is already registered in the admin user system.
Otherwise the user would be redirected to the main page of the website with an error
message.

Answering the second part of a question, a special app-authenticator should be created in
Google Cloud Platform. While creating the authenticator project the details about the app
should be provided such as: name, data to be used and the logo. In case the project requires
too many data parameters from the users who sign in, google support would have to manually
verify the project authenticator.

Once the project is successfully created, the secret codes of the app will be revealed, such as
Client ID and Client Secret. These keys are needed to be configured in Statamic so the admin
panel would know the exact details to redirect users to the Google authentication page.

In the end, users while logging in would have 2 options how to log in to their admin accounts:

18

Image 2. Selector of a login option

4.4 How to support internationalization and localization in
a new website base?
Internationalization and localization are important features that the marketing team finds as a
must requirement, because the company operates in different countries and the websites need
to be adopted to each operated region.

First of all, the Statamic supports the researching topic, and mainly it’s possible to configure
system files, where the routing and localization would be handled. Talking short, the following
set of actions need to be performed to get the desired feature:

1. Configure website router and add following values: the translated name of the website,
language and it’s relative URL would be provided to each language of the website.

Image 3. The configuration of URLs to provide to certain locale webpages
2. Adding a plugin ‘multisite’ together with manual replacement of website content trees

to the subdirectories with locale names taken as the name of those directories (Statamic
Multi-site).

19

Image 4. Markdown files containing webpage content are split under locale folder
3. Complete the configuration in the control panel of the website, where each page can

be on demand available in certain languages and translated as well. Besides, content of
each localized version of a website can be easily changed, deleted or added according
to the local needs.

Image 5. The selector of the website local versions, where it’s possible to change the
content to localized version

20

4.5 How to define metrics used for website user
experience by improving performance, accessibility, best
practices and SEO that are defined by Google
Lighthouse?

Google Lighthouse is a free tool designed to measure and to help improve website
performance (Google Documentation). It’s open-source software so it can be used on any
website. This tool audits the accessibility and SEO of web pages, with a particular focus on core
web vitals (Backlinko).

Image 6. The Google Lighthouse main screen before running website audits.

This instrument will be used to measure the metrics described above for the graduate’s website
base, so the graduate during building website base will always take into account the ranking
Google Lighthouse metrics.

A desk research is made on the metrics and their evaluation on what steps or decisions should
be made to plan, and implementation to the website base with the best lighthouse matrics in

21

mind. All the information about the metrics Google Lighthouse uses for measurement can be
found in Appendix (Research additional information, Google Lighthouse metrics)

The Google Lighthouse audit tool will be used for the graduate to test and evaluate the
performance of the website base the graduate is doing.

The goal for the graduate is to set up Google Lighthouse testing, where metrics will be at the
level of not lower than 90% grade, otherwise the search engine ranking will consider the
website as not optimized.

4.6 What is going to serve as the deployment for the
website-base?

This research question is very important, because it defines the structure of implementing
CI/CD and usage/maintenance of other modules, related to the structure of the website-base.

Using a Desk research method, the information about existing deployment was gathered.
Fixico uses Kubernetes (platform for managing Docker containerized workloads and services)
architecture for their projects, because it has many advantages while handling many different
unrelated to each other environments and applications:

● Very simple deployment with Docker containers
● No need to handle server states, as only containers define the environment they work

with
● Integrated Version-Control system - a storage of previous versions of the pods (single

deployable objects) with their content inside. In case the current version of pod breaks,
there is an immediate replacement to fulfill 0-downtime-deployment

● Has a private network, where pods originally can communicate only with other pods. It
adds a security aspect and is a great solution for using microservices.

● Easy usage and integration of different configurations.
● Easy environment manager, where different environments (staging and production, etc.)

can be handled.

That being said, the graduate has found an alternative to Kubernetes that can also be
considered as a deployment server for the project, and that is - usage of Virtual Machine.

It could be an alternative to the existing Kubernetes architecture, because it can be:

● Simpler configuration to store website project,
● Local hard disk environment can be used to store the content of the website

22

With this given information the interview was conducted, where during discussions and
defending different ideas, the result was agreed on - using Kubernetes. As an outcome of an
interview, the comparison table was created describing each feature needed for website-base
and it’s integration into deployment.

Feature Virtual Machine (VM) Kubernetes (KB)

Configuring the
development environment
before releasing a new
project into it

-
The whole virtual machine
should be configured before
accepting projects to work
with.

+
Kubernetes is already
configured and working,
there is a need to define the
new project’s name in GUI
deployment manager app,
where all Kubernetes features
and integrations can be
configured to work with each
specific project

Arranging environments -
VM should be additionally
configured to arrange 2
environments (staging and
production)

+
KB is configured, and already
arranges environment among
pods

Zero downtime deployment -
VM should be additionally
configured, and website-base
project configured as well to
support the desired feature

+
KB natively supports feature

Arranging secret keys and
secret files

-
VM should be configured
alongside project as well to
securely share keys

+
KB has integrated Google
Secret application that has
GUI and securely stores and
arranges environment
variables

Storing website content +
VM can use own local
storage for secure website
content storage

-
Kubernetes does not have
any local storage that can be
allocated with desired
feature, and each time a new
deployment is released, the
website content will be
replaced with fresh clean
install. Therefore, additional
content management should

23

be provided.

Communication with other
Fixico services (e.g. MySQL
database)

-
Fixico’s MySQL database is in
KB, and communication layer
should be arranged, which
would result in exposed
public ports of MySQL and
therefore potentially lead to
security issues.

+
KB has a private network
where pods can easily
communicate with each other
reliably. MySQL is one of the
pods located there.

Table 3. Comparison table of different deployment approaches.

Concluding the features and their connectivity in different deployment environments, it is
clearly seen that a website base would easier and faster be deployable using Kubernetes.

4.7 How to build and optimize website building and
deployment process?
The Continuous Integration and Continuous Deployment (CI/CD) are a coding philosophy and
set of practices that drive development teams to frequently implement small code changes and
check them into a version control repository and automates application delivery to selected
environments (Sacolic, 2022)

This technology is relevant to every project that is in active development or that is used by
clients or users. The same applies to the graduate’s project.

Fixico makes use of CircleCI as a platform to perform the CI/CD processes in their projects.
CircleCI is a powerful small-to-large scale devops tool (P.Jain, 2020) that has nice features that
Fixico makes active use of. Main advantages of using CircleCI are:

● Easy to set-up the first pipeline. CircleCI makes use of 1 config.yaml file where the
workflows, jobs and steps are described on how to run.

● Runs cloud-based. Every new workflow runs in a new environment which is maintained
by CircleCI themself.

● SSH feature. In case the pipeline fails, the developer has an opportunity to SSH to the
failing environment and make an inspection for the problems. I myself have been using
this feature a lot, and it has turned out helpful to reduce the time significantly to fix
pipeline.

● CircleCI orbs. It’s a register of packages of YAML configuration files that are being
imported for repeated pieces of config YAML file. Fixico has many different projects
running on same or similar bases, that use orbs to avoid repeating the same lines of
config and adds flexibility.

24

Usually, the pipeline (set of automated processes) triggers on push events to the configured
remote Version-Control System (which is Github for Fixico). In case the pipeline fails, the email
is sent to the person who triggered the pipeline with the information what and how it has
failed.

There are 2 types of deployment process for Fixico websites, where the CI/CD pipeline is the
following:

1. Adding new code to the repository. Developer runs a command Git Push with his
changes to the remote master (main) branch of Git repository. The CircleCI detects
changes to the repo and starts building the website and the Docker image of the PHP
server with the website on it, together with another Nginx web server to process and
proxy the requests coming to the website. The next command would replace the
Docker images on the hosting environment with the recently built. The new website will
be available in a staging environment.

Image 8. Visualization of the CI/CD process for pushing new code to the repository in
existing websites.

2. Creating a new version of the website. In this scenario, a new version of the website is
officially released in a representative tab of the website repository.

Image 9. The overview tab of releases.

25

Once the new release of a website is made, the same CI scripts run as in section 1, and
after that the command runs to deploy Docker images to the production environment,
where the changes made to the website are visible and available to users accessing the
website.

4.8 How to securely and reliably store future content of
the website?

The website, and it’s content can be split up into 2 major groups:

1. Static content of the website, such as templates, configurations, and other parts of the
website that define the behavior of the system.

Such content is going to be stored in the representative GitHub repository, and in case
the changes need to apply to it, developers can update the website with representative
commits to the project’s repository.

2. Dynamic content of the website, such content is going to be changed during the
website usage. Primarily, it’s going to be pages, their components, assets, and users
who have access to the control panel.

Statamic stores such type of content in the project directly under specific directories.
This approach is completely fine for small scale projects, where there are no staging and
production environments and are deployed to simple web servers.

For the project’s case, where project is going to be deployed to the Kubernetes
environment, and have 2 different environments, where content of each would be
stored separately, the content storage should be arranged differently.

Therefore in the next 3 subchapters the storage flow would be described for asset, content and
user storage. The precise implementation of these 3 topics are described in the Technical
Design.

4.8.1 Assets storage
Doing an internal desk research on how the visual content is handled, the following was
discovered.

Fixico uses Google Cloud Storage (GCS) as a primary place, where images are stored. Website
maintainers store only the specific URL to the images in the website. Which means in case any
manipulations should be made, maintainers go to the GCS and apply changes there directly.

That being said, the existing approach of arranging assets on the websites is poor, because it
requires maintainers to know the technical aspects of how and where images are stored.

Therefore, doing my desk research, I have researched that Statamic supports GUI for asset
management, where the assets’ location is on GCS. To achieve the desired functionality, an

26

additional driver connecting GCS with Statamic website-base should be configured. The
implementation is described in Technical Design in chapter 5.

4.8.2 User storage
Users are people who have access to the website’s control panel.

By default, Statamic stores users in files, under the /users/ project folder. However this solution
would mean that users would be lost each time a new deployment is made.

Therefore, a desk research was made, regarding the locations, where users could be stored.
Apparently, Statamic has support for storing users in databases. Reasons for Statamic to create
a user management system to work with remote environments as a large-scale solution for
websites with huge numbers of users, because user arrangement using a file system by itself is
slow.

Fixico already has a database in the Kubernetes environment, and it is MySQL.

Therefore, users would be stored in the database as a solution for saving users in the Docker
Kubernetes environment.

4.8.3 Storage of web pages and their content

Right now, Fixico stores web pages in the separate Github repositories. So each time there is a
change of the content, a special tool, called GitSync would update remote repository with
updated content. Main reason for separating a website and its content is because content is
much more frequently updated, and its commit history looks like a mess.

A research was made on how to store content files remotely, it has turned out that Statamic can
work only with content files stored on the project itself. Main reason for it is the timing (speed)
it takes to retrieve the content file from remote storage and return it to the website visitor.
While reading local system files is super fast.

In total, there are 3 options to store website content remotely:

1. Using database. Statamic can be configured using many adapters and libraries to store
the content on a remote database, but this approach has 2 major disadvantages. First
disadvantage is the complicity of transitioning the content data from staging to
production environment and other ways around. And the second disadvantage is the
complicity of doing such transition. It would require reconfiguring core principles of
Statamic workflow, and will increase the difficulty of maintaining the website with a
given approach.

2. Using GitHub repo. This method is used among many Fixico websites. Officially
Statamic supports automatic github connectivity, but apparently configuring Statamic to
use completely another repository for the content is difficult to make. During an
interview with Mujib, company CTO, a topic of using repository as a content storage
was discussed. Apparently, he strongly advises to avoid doing such implementation,
because maintaining such type of content arrangements is a hussle (Interview with
Fixico CTO). Main reason for choosing github repo is for its version control system. The

27

idea here was that other Fixico departments would be able to revert certain changes.
Apparently the outcome was different, it is too complicated a solution for other
departments and they did not take advantage of it, and it is hard to maintain by
developers as well.

3. Using back-up process. This implementation has a similar idea as the content
repository, but different implementation. It is a process, where backups of the content
directories would be stored on a remote under different folders that specify the date
and time the backup was made. Statamic, as a framework built on PHP Laravel has an
extension that is capable of arranging backups, which is a plus in the system
architecture and simplicity. As the remote place, Google Cloud Storage is a great
solution because it would bring more consistency to the project because there already
are assets that are stored there.

With an overview of these 3 frameworks and their justifications, the decision goes to the last
one that is about backups, because it seemed simpler and more reliable.

28

5. The solution

In this chapter the solution is described from a functional and non-functional perspective. This
chapter covers all the functionality desired and achieved together with the description of
processes going under-the-hood.

5.1 Functional Design
5.1.1 Requirements
The requirements were gathered during answering research question 3.1.1. To get more
insights about how requirements were obtained, please refer to the Chapter 4.1 of this
document.

The requirements are sorted by the type of the website’s stakeholder and its priority from top
to bottom.

№ Type Requirement (User story) Priority Functional/
Non-
Functional

Notes

1 User Editor As an editor, I want to login to
the admin panel, so I can
securely work on the website.

Must Functional User can only login if he was
already defined in the system

2 User Editor As an editor, I want to login to
the admin panel as fast as
possible.

Should Non-
Functional

Look for an opportunity to log
in using Identity providers (like
Google).

3 User Editor As an editor, I want to have
CRUD rights on pages

Must Functional Show a prompt to the editor to
verify the delete action on a
page.

4 User Editor As an editor, I want to have
CRUD rights on components
on the pages

Must Functional ● Update an order of the
components on the page.

● Show a prompt to the
editor to verify the delete
action on the component.

5 User Editor As an editor, I want to optimize
the SEO values of the page.

Must Functional Provide functionality to
add/change meta-data

6 User Editor As an editor, I want to have a
language picker, to work with
specific locale versions of the
website.

Must Functional

29

7 User Editor As an editor, I want to have a
“Preview” feature to have
private access to the page so I
can double check for possible
errors or mistakes.

Must Functional

8 User Editor As an editor, I want to have
access to all websites

Could Functional To research whether it’s
possible to manage all
websites using 1 shared admin
panel.

9 User Editor As an editor, I want to be able
to edit global components

Should Functional Global components are the
reusable components seen on
many pages and having 1
implementation. Most common
are components like header or
footer, etc.

10 User Editor As an editor, I want to see the
list of the most recent activities
made to the website

Must Functional

11 User Editor As an editor, I want to have the
component I work with, locked
for other editors who work on
website admin panel

Must Functional

12 User Editor As an editor, I want to have
interactable window where I
have CRUD rights on website
assets

Should Functional

13 User Admin As an admin, I want to have
CRUD rights on users.

Must Functional

14 User Admin As an admin, I want to update
user rights/permissions for all
users

Must Functional

15 User Admin As an admin, I want to update
user profiles

Could Functional

16 Technical The website has to be
optimized for Search Engine
Ranking using tool like
Lighthouse

Must Non-
Functional

17 Technical The website should be Must Non- The website should work with

30

configured to work on remote
environments.

Functional Staging environment, that is
available for website
stakeholders (Editors, Admins,
Engineers) and Production
environment that works publicly
to everyone trying to access it

18 Technical The website should have a
build and deployment
pipelines

Must Functional

19 Technical The website should be built
using Statamic Laravel,
TailwindCSS and AlpineJs

Must Non-
Functional

20 Technical The website should use assets
from Google Cloud Storage

Should Non-
Functional

21 Technical The website should store and
retrieve website content from
backups

Should Non-
Functional

Table 4. List of requirements for the graduation assignment

5.1.2 Control Panel core functionality
Statamic by itself does not support rich functionality in the control panel. Therefore a solution
was brought to use a starter kit that would satisfy the editor requests functional-wise and satisfy
technical-wise implementation.

Therefore, the best solution on the market is Statamic Peak - a free custom starter kit that
extends the default control panel with most of User requirements in the table above. On top of
that, peak has integrated support for the frontend frameworks described in chapter 5.3.8
Development frameworks.

5.1.3 User Groups
Statamic framework supports having multiple user groups, where the rights per each group are
divided. Analyzing Fixico stakeholders of the website admin panel, there are 2 user groups:
Editor and Admin users. The difference is the limitations to the content changes editors have,
while admin users are granted with all permissions. It is expected that the marketing team
would inherit editor roles, while developers would be treated as super users in the control
panel.

Editor rights:

● CRUD rights on collection of pages
● CRUD rights on navigation bars of pages
● Read, Update rights on global (reusable) components
● CRUD rights on Assets
● CRUD rights on Forms (if they are present on the website)

31

● Read rights on Utilities, a tab where user can get functional and technical information
about the website

While Admis have more rights on top of Editors:

● CRUD rights on Blueprints, the page editor template editor
● CRUD rights on Fieldsets, the editor of fields to be displayed on page/component in

control panel
● CRUD rights on Users and their roles (rights)

Blueprints may be considered dangerous to be used by editors. Because they represent the
functionality behind the UI, and in case an attribute would be slightly changed, it might break
the functionality of the website. The same applies to Fieldsets, in case a handler (interpreter
variable supplying html template with variable’s data) would change, the website would stop
displaying some parts of the content.

5.1.4 Addons
During an interview with Isabell from marketing department where the ideas and requirements
for the website were gathered, an idea was introduced to implement the following additional
features:

1. Multi-user-collaboration - is an add-on feature that locks the component of the page
that somebody is editing. It is a helpful tool that prevents overriding the same
component while 2 or more people want to save their changes on it.

This add-on shows that the component is locked and disables the interaction with it
until the 1st person changing it is done.

This is a Statamic add-on and has easy integration to the project.

2. Activity Book - is an addon that stores all the changes made to the content of the
website. It stores information like when, who and what change was applied.

The page with changes in the control panel can be found on Utilities tab -> Activity
Book.

The UI of addon looks the following:

32

Image 10. UI of Activity Book addon.

5.2 Technical Design
5.2.1 Deployment
This topic is one of the most important, because it's an important architecture decision that has
direct impact on decisions made on other modules of the website.

The website-base is configured to support staging and production environments:

● Production environment is an environment where the website is live to the intended
users (Techopedia, 2020).

● Staging environment is an isolated copy of the production website that is accessible
only to Fixico employees. It is a place where the testers or developers run the
inspections on the website behavior or design (Umbraco).

However the website works right now only on staging, because the website-base by itself has
nothing to show to Fixico clients.

The deployment of the website-base is implemented as part of existing Fixico infrastructure -
called Kubernetes, which is a platform for managing Docker containerized workloads and
services. It is a perfect large-scale tool to create and maintain containers (Kubernetes
Documentation, 2022).

The website-base works in a pod - single deployable object in Kubernetes, where 2 containers
(services) are held inside:

1. PHP FastCGI Process Manager (PHP-FPM) is a PHP extension, making high optimization
for online small to large scale websites. The website project together with the source
code and library packages are stored there. The container exposes port 9000 - which is
typical for PHP servers as an income for HTTP requests.

33

2. Nginx is a web server that supports out of the box tools like reverse proxy, load
balancer, mail proxy and HTTP cache (Kinsta, 2022). Nginx is the best combination
solution for PHP FPM for its high-scalable asynchronous structure and low memory
consumption performance.

Image 14. Visualization of Statamic website being part of Kubernetes environment

Besides, additional configuration of the Kubernetes itself is stored in .yaml files under
/deployment/templates/ relative from the project’s root.

Some of the Kubernetes configurations that are used by website-base:

1. Deployment - a set of rules to Kubernetes on how to manage the pod, how many
previous versions of pod should be stored, and other behavior of pod itself

2. Service - internal pod router, that exposes the ports of the pod’s containers to
communicate inside of Kubernetes environment.

3. Ingress - outer pod router, arranges network traffic that goes outside of the Kubernetes.
4. Certificate - a less-encrypt service that arranges the valid SSL certificates for secure

HTTPS connection.
5. Secret - a service that arranges secure allocation of credential environment variables to

the pod services environment.

In case the website goes down, the special registry called Sentry would detect that and run the
command to restart the Pod of the website, in case the website does not goes live, the special
message would be sent to relevant Slack channel

34

Taking the approach of using Pod architecture with Kubernetes environment would mean to
keep the architecture in mind, because a solution for storing any content-based data in the pod
would have to be restructured.

The main feature using Kubernetes is the impossibility to store relevant to the website data in
the container. It is related to the architecture and the main cause for this is the way how the
containers are created and how they work. Each time the new version of the website is created
and 2 Docker images are created (more information on this in CI/CD part), the deployment pod
gets replaced with a newer version. While the previous pod with the possible content data
inside - is stored to the history of unused pods.

The outcome of this is to use the approach of not storing the website data in the pod, but
rather use other 3rd party remote data storages, where the Statamic website-base would have
the CRUD rights on. Such possible solutions are remote Databases and Cloud Storages (like
Google Cloud Storage that is actively used by Fixico).

5.2.2 Introduction to Continuous Integration and Deployment
The pipeline created for the Statamic CMS for website base project is the following:

Image 11. The pipeline for website base

The pipeline has 6 stages in total, where first 3 of them are CI and the rest - CD.

5.3.2.1 Continuous Integration

The pipeline has 3 jobs defined, and they are the following:

1. fixico/php-build - Is a Fixico orb that checkouts the code, defines the devops
environment variables, installs composer dependencies and saves everything to
localstorage (to use in later stages)

2. fixico-php-test-style - is a Fixico orb that checks the styling of PHP source code of the
project. Fixico has created its own coding standards and this job inspects this
specifically.

3. lighthouse-test - is a job that prepares the environment and actually runs Lighthouse.
More about Lighthouse testing is described in the next subchapter.

35

Usually the jobs 1 and 2 run the same amount of time as on image 11, while the job number 3
with lighthouse tests is time consuming. Main reason is because the Lighthouse runs 3 times on
each page of the website, and testing each page in total takes around 30-50 seconds.

5.3.2.2 Continuous Deployment

After the tests, other jobs start running:

4. fixico/docker-build-and-push-php-fpm - is a job where Docker image of PHP server with
the project in it is built and pushed to Docker registry.

5. fixico/docker-build-and-push-nginx - is a job where the Docker image of the NGINX
server is built and pushed to the Docker registry.

6. staging - is a job, where a Fixico tool, called Deployment Manager, receives a signal
about creating/updating deployment environment and starts the Deployment process.

Deployment manager is a tool, created by Fixico, that is responsible for creating and
updating the project containers on Kubernetes environment together with connecting
the following containers:

● Secret - Is a Google Kubernetes container storing the environment variables
together with credential variables that will be used by the project container to
authenticate and work with the other 3rd party systems.

● Other containers that are not used by website base

Once the step with deployment manager is finished, the next step makes sure the
deployed website is available by doing HTTP requests to the deployed website’s URL.

After the verification about successful deployment, the website is registered to Sentry
watcher - a tool used by Fixico that monitors the websites for their availability and
speed. In case the website goes down at any time, a special notification would be sent
to Slack channel - with the basic information about the website failure.

If the pipeline passes successfully, the updated website-base is accessible.

5.2.3 Testing
Testing is an important part in quality assurance of the project. For the graduation assignment,
3 main testing approaches are described below.

5.2.3.1 Source code testing

The project uses the Statamic CMS package as the core source code for the project. Statamic
have their own quality assurance standards that assure that the platform is stable and reliable
to use out-of-box.

On top of the Statamic CMS package, a new add-on was developed for graduation
assignments. This package does not have any unit or integration testing written, mainly
because the package relies on specific development choices (like working with external
databases). Therefore as a QA part for the addon, the following tests were performed after the
delivery of the package:

36

● Monkey testing - a technique where the user tests the application or system by
providing random inputs and checking the behavior, or seeing whether the application
or system will crash (Wikipedia).

● Functional testing - is a type of software testing that validates the software system
against the functional requirements/specifications (T.Hamilton, 2022).

The tests described above were made manually after the deployment of the addon.

5.2.3.2 Editors acceptance

As editors, who are primarily marketing team, as an important stakeholder of the websites in
Fixico, the control panel should be as much adopted to marketing teams needs as possible.

Therefore, an acceptance interview with a person from the marketing team was held, where the
control panel functionality was reviewed (Acceptance interview with Isabella).

An outcome of an interview is that the control panel has all the core features for editors to be
able to work with the website in future. Additionally, some new requirements were gathered to
improve the editor’s work.

5.2.3.3 Visitors experience testing

Currently, Fixico uses only Google Lighthouse as a main metrics tool to measure the website
parameters for the visitor experience. More details into what metrics and how they are used are
in the research outcomes chapter.

The best idea to develop and maintain a production website is to always be sure about the
highest ranks of Google Lighthouse, because it has a direct impact on Google Search Engine’s
ranking.

Therefore the Google Lighthouse testing was integrated into a continuous integration pipeline,
where a fresh server installs all required dependencies and runs the tests automatically.

Lighthouse has released a tool that is easily integratable into CI/CD’s pipelines - Lighthouse CI,
it is a command line tool, where the configuration per lighthouse is defined in lighthouserc.js
file in the root of the project. The tests run 3 times on each defined page

37

Image 13. The Google Lighthouse configuration file.

The file has the following configuration:

● URLs that have to be tested. Unfortunately, the solution to test all available website
URLs automatically was not found, so therefore URLs have to be specified manually.

● Simulation concerning the device to be tested. As it can be seen, the website is tested
for desktop sizing, however the website must support all possible screen sizes. The
desktop is used to measure the most contentful variant of the website, because there is
content that is hidden if the display size is not sufficient (phones, tables) to display it.

● The metrics and their values. Each metric should have at least 90% score to pass the
pipeline.

The 1st argument of metric definition is logging type, what for the project’s case is
“error”, that means in case the metric result does not fulfill the minimum score, the error
logging would be printed with expected and actual results.

The 2nd argument of metric definition is the aggregation method - that defines what
resulting value should be compared with expected value. For the project purpose, the
best value out of 3 runs will be compared

And the 3rd argument is the expected score to be for the metric, it ranges from 0 till 1,
where 1 means 100%. The project is configured to expect a 90% score on each metric.
That is the bottom line of the green testing level.

When the metrics succeed, the pipeline obviously continues, and the similar logging for testing
will be the following.

38

Image XX. The successful pass of the tests in CircleCI.

However, it might be the case that tests do not run successfully. In that situation the pipeline
would fail, and the job logging would be as in an example below.

39

Image 14. Example of failing job on testing website using Google Lighthouse

5.2.4 Storage
As described above in the 5.2.1 Deployment with the given architecture the extra storage
places should be involved in the website base for the correct and accurate performance of
Statamic.

Statamic has 3 core things that have to be considered to be located remotely, and they will be
described below.

5.3.4.1 Assets storage

Assets are visual contents that are used to be displayed on the website.

40

Fixico already uses Google Cloud Storage as the main remote location for storing the assets in
connectivity with an image driver that makes images dynamic, compressed and responsive -
Imgix.

Right now Fixico employees have direct CRUD rights to Google Cloud Storage (GCS) and
Imgix to insert image URLs on the website. But apparently, this approach is not convenient to
those, who are editors of the website and do not know how the asset architecture works.

Imgix has an official support plugin to the Statamic CMS, but its functionality does not align
with the Fixico needs: building URL queries to display images exactly how the company wants.
Therefore an adapter for Imgix was created where with the given properties of width, height
and crop attributes an image with desired URL is created.

Statamic supports image containers, basically the GUI to have CRUD rights on the images. Out
of box Statamic supports only local assets driver, meaning only from the localstorage. Therefore
an additional driver was installed to the website-base that configures Statamic to support an
additional GCS driver using Google Application Credentials. Once the adapter works
successfully, the Google Cloud Storage disk is available for editors to use:

Image 15. UI of asset picker.

The image above shows the UI of the image picker component. Here an editor can choose the
image under the label “Asset” in a pop-up window and give it settings below. Once the image
with configuration is saved in the control panel, the following data would be stored in the
content of the component.

41

Image 16. Example of what data Statamic stores for each image.

The Statamic saves the relative path from the Google Cloud Storage bucket name to the path
of the file together with the sizing properties of the image.

When the component containing an image is rendering, an Imgix adapter indicates all the
image settings properties, and generates the complete URL to the images with desired settings
in it.

<img
src="https://next-website-assets.imgix.net/test1.png?w=400&h=500&crop
=edges&fit=crop" alt="test image">

The HTML image result sent to the website visitor.

Imgix was configured to transpile the subdomain of the URL like above (next-website-assets) to
the Google Cloud Storage bucket URL, where the filename (test1.png) is the relative path from
the root of the bucket. Besides this, Imgix is configured to store cache already requested
images and to automatically compress images to webimage-standards.

42

Diagram 1. Sequence diagram of image request.

On the diagram above the flow of image request is shown. Here it is clearly seen that Imgix is a
middleware that serves as the caching and filtering images tool.

And once the image is already cached, the image retrieval flow is smaller and faster.

Diagram 2. Sequence diagram of cached image request.

43

5.3.4.2 User storage

Users are people who have access to the website’s control panel.

By default, Statamic stores users in files, under the /users/ project folder. However this solution
would mean that users would be lost each time a new deployment is made.

Therefore, an alternative solution was brought, which is to arrange the user storage in the
database. Statamic supports this functionality, because for large-scale websites user
arrangement using a file system would be really slow.

Fixico obviously already has database in the Kubernetes environment, and it is MySQL data
base.

In order to start the process of migration, MySQL credentials should be allocated to the
/config/database.php list of adapters.

Statamic makes use of the Eloquent driver, which does all operations with databases. It is a
handy tool to work with databases and build small-to-large queries. Using Eloquent all the user
authentication and further processes would be held.

To start the flow of using database, the migration - a database schema should be created. This
schema is a set of PHP files, where the insights about tables and their columns are described.
For the Statamic users, a handy command line tool creates migration files.

When there is anything to be migrated to the database, PHP Laravel has a command line tool
that automatically arranges that - php artisan migrate

5.3.4.3 Content storage and retrieval

The website-base content is stored under /content/ folder. it has the information about
pages, their content, navigation links, and tree structure of the website pages with
components.

Statamic natively supports only content storage in the local filesystem, which is not the solution
for using Kubernetes deployment.

Therefore a solution was brought to implement the back-up feature for the content. All the
website-base content would be stored locally and remotely, the contents of those 2 will be
identical. And a backup tool will be installed and integrated that will synchronize local version
with remote each time the change is detected. The remote would be Google Cloud Storage
(GCS), because it’s fast and reliable storage.

This approach is good, because it would also include the version control system. As it has been
described above, Kubernetes stores unused previous versions of the same pod with all the
information in it. Meaning that in case of the current website production, there is always a
chance to revert the content changes made in the last build to the previous version.

(Activity diagram on how this stuff would work in different cases will be added before the final
submission, because the solution is not stable on 29.05)

44

5.2.5 Authentication using Google Identity Provider
Statamic supports extending it’s core functionality and their adapters, so therefore a Laravel
Socialite OAuth2 identity provider was found and integrated into Statamic website by adding a
new dependency to composer.json file.

Laravel Socialite by default supports only the most popular identity providers, and Google is
one of them. The configuration of Google OAuth2 requires to provide Statamic the following
values:

● Google client id - a string value of Google project that will be authorized to client’s
google account

● Google client secret - a password of Google project that will be authorized to the
client's google account.

● Redirect - a URL that the user will be redirected to after the login is successful.

These values firstly need to be generated and retrieved in the Google Cloud Console web
application user APIs&Services -> Credentials tab.

Image 17. An example of how the Google Authentication identity provider looks like.

Besides this, additional configuration is required to the Statamic modules to finish the Google
OAuth2 implementation. The details can be found on Statamic Documentation - OAuth.

5.2.6 Addons
The website project has 2 addons that work with Statamic:

5.3.6.1 Statamic Activity Book addon

Activity Book is activity tracking addon that tracks all changes made by the users of Control
Panel.This addon stores the activity log to the database configured next to the project. Which
makes it a perfect solution to the Kubernetes/Docker architecture. (Statamic Activity Logger,
2022)

This is a requested feature by maintainers of websites.

Statamic addon marketplace does not have a solution for desired feature, so therefore a new
addon was created.

45

This addon registers event listeners on CRUD operations with content of the website, and each
time an event listener triggers, a new log is stored.

With the given Kubernetes architecture, logs should be stored securely, so they won’t get lost
when new deployment releases. Therefore, all logs are stored in the database configured to
the project.

A new tab with the logs overview is created in the control panel. The page is located in the
Utilities tab. It has a list of activities ordered by time from the latest to the earliest supporting
search by activity functionality.

Addon has a ServiceProvider.php file that serves as the starting point for registering routes and
subscribes on CRUD Statamic events.

Statamic Activity Logger was considered to be published to the Statamic Addon Marketplace,
because it adds flexibility to updating the package. Statamic website base is expected to be
expanded and maintain many Fixico websites, and therefore a solution to have reusable activity
book should be implemented. Therefore, Activity Book has its own repository and is publicly
registered in composer packages. This way, all future Fixico websites working on Statamic
would have a composer dependency with activity book. In case the changes should apply for
activity book, the representative repository will be updated, and it will be only a matter of
updating an Activity Book version in the composer file of Statamic projects.

The manual on how to install and configure an addon is available on the official website of
Statamic addons: https://statamic.com/addons/mark-fixico/statamic-activity-logger

5.3.6.2 Multi-User Collaboration addon

This is another addon requested by the marketing team for a secure collaboration with different
people in 1 webpage.

Statamic has released its own addon that supports requested functionality.

Addon uses a pusher broadcast tool as a notification tool for other Statamic users working in a
control panel with information about client and locked components.

More information about the addon is available on its readme manual.

5.2.7 System Architecture
With the given information about architecture parts described above, an overview of the whole
system architecture is present.

46

https://statamic.com/addons/mark-fixico/statamic-activity-logger

Diagram 3. Architecture diagram

In the diagram above there are all the outer and inner components of the system that are
communicating. The same architecture works on local environments (if somebody runs the
project) and on remote Kubernetes environments.

5.2.8 Development frameworks
The project right now serves as the base that is easily extendable, so therefore an overview of
the technologies to be used to create new website pages and components is described below.

5.3.8.1 Statamic Antlers

Antlers is a simple and powerful templating engine provided with Statamic. It can fetch and
filter content, display and modify data, tap into core features like user authentication and
search, and handle complex logic. (Statamic Documentation - Antlers templates). I have used it
for templating demo components, and apparently it’s super easy to use, and makes the html
templates much more readable to user developers than Blade, Twig and other templating
engines used by Fixico.

As it’s a Statamic’s inner templating engine, it’s available out of box, and to start using it, the
template file in /resources/views/ should have .antlers.html file extension.

5.3.8.2 Alpine JS

A frontend lightweight framework that inherits JQuery behavior and performs all frontend
manipulations. It can be used to hide, show, change, or replace any sort of information
depending on the behavior inside of the web page or component.

Alpine is loaded to the website base and can be used by adding the behavior that needs to be
followed to the templated html file.

47

5.3.8.3 Tailwind CSS

It's a CSS framework that is used to decrease the CSS class files loaded to the website visitor.
Using only Tailwind CSS classes, it’s possible to achieve any visual appearance. The framework
loads its classes depending if they are called from the project, which makes it an optimal
solution for storing and using only used classes.

During development of website components and their appearance, it is common to use
development Tailwind watcher that would update CSS whenever there are new changes to
them, it can be called using the following command npm run watch. That would trigger a
watcher that updates the website each time there are new changes to it.

Before the newly developed website pages and components would go to remote
environments, the production compilation of javascript and Tailwind CSS will be generated
using a command npm run production.

Tailwind still needs to be configured to support the color palette the website is using, and
whether it’s needed to change the default definitions of classes used by Tailwind. Website base
has a tailwind.config.js file, where all custom properties used by the demo html files
and color palette were added.

5.3.8.4 Helper environment

As it can be noticeable above, the project uses NPM (Node Package Manager) during
development. NPM is a great tool that assists working with frontend frameworks during
development.

Laravel Mix is used as a powerful bundler that is compatible with PHP and prepares JavaScript
and CSS for the browser. It inherits webpack core principles.

There is a webpack.mix.js configuration file of Laravel Mix that defines the behavior of
primarily usage of Tailwind CSS classes.

5.2.9 Manual on how to run the project
5.2.9.1 Environment prerequisites

To run the Statamic project, the environment should have:

● PHP version 8.0
● Composer - 2.0 - a dependency management tool for PHP packages

To develop Statamic project, more development should be:

● Node js - 16.0 - a JavaScript runtime build environment
● NPM (Node Package Manager) - a dependency management tool for JS packages

5.2.9.2 How to run the project

It is expected that the person who reads this chapter already has a clean installed project.

1. Install dependencies using composer install

48

2. Generate the Application key using command php artisan key:generate
3. Create a .env file and allocate there the values of the internal and external

components that Statamic would work with

If the project needs to run, so it will be accessible on browsers:

● php artisan serve

If the project is going to be extended, and more functional and frontend development is going
to be performed:

● npm run watch

5.2.9.3 Further website development recommendations

The website base that I have been working on is complete. It is expected that a new repository
for each website migrated will be created, and website development would be done in a
separate repository.

To start developing the website, the following should be configured:

1. Define the languages the website is going to use, by following the approach described
in answer to a research question 4.2.4 - support of internationalization and localization.

2. Configure remote storages, such as Google Cloud Storage and MySQL database with
new buckets and databases. This step is necessary, because system architecture highly
relies on external providers described above. Also it’s important to store all the
credential environment variables in a .env file, and update .env.example file with the
key names of secret values.

3. Start developing website components by following the guides given in the Statamic
Peak manual on how to create components (Peak Screencasts, 2021), and following the
frontend structure of using configured frontend frameworks that are described in
chapter 5.3.8 - Development frameworks.

4. Configure CircleCI app to expect the website repository’s CI/CD pipeline, otherwise
CircleCI would not run the pipeline.

5. Keep in mind Lighthouse testing that will be running each time a new push is launched
to GitHub repository, so therefore Lighthouse optimization should be kept in mind
during the whole development process.

6. Configure deployment environment, where 2 website environments will be arranged
such as staging and production, with representative website URLs.

These are the main concepts of starting development process on a Fixico website migration.

49

6. Conclusion & Recommendation
This project was proposed by Fixico BV to answer the following question:

“How can I solve Fixico’s “multiple website maintenance problem” which is caused by
decentralization and deprecation, using Statamic CMS platform in order to archive unification
for all known Fixico websites catered towards developers, end users and content writers?”

The answer I came up with is the optimal solution, where all website stakeholders should
benefit from. This chapter describes an overview of what has been delivered at the end of the
graduation project, what are the further recommendations on continuing with the website
base, and reflection on the assignment that was done.

6.1 Proof of concept
The Proof of concept was described in chapter 2.3 The assignment , in short POC has the
following:

● Website components that together serve as the homepage of an existing Fixico website
● Configurable remote environment, where website is running
● All implementation decisions that constrains Fixico websites architecture

○ Uses existing environments for deployment of the website
○ Handles all possible website data savings in predefined places
○ Uses existing continuous integration and deployment environment
○ Is adopted to editor needs
○ Is adopted to website user experience

All the functionality described and desired from POC has been archived. This means, the
website base made on the Statamic CMS framework is ensured for Fixico websites to be
rebuilded on.

However, it could be debated that the additional success factor of actual migration of 1
website, or at least a part of it was actually done. Unfortunately, there wasn’t much time for
website migration, and therefore only 1 page was migrated and serves as a proof of concept
that Statamic is capable of handling FIxico website architectures.

6.2 Recommendation
The Fixico company has come up with an idea to find a way to create a new, united CMS that
would be used to arrange all websites Fixico has. Moreover, the field of view was predefined
for me, as I had to use a specific CMS because it has many justified good advantages. After
researching a topic to have 1 shared admin panel among all different websites that will be
made on Statamic (Research question 3.2) the research has correlated with answering the
question whether it’s possible to have multiple, not related to each other websites in 1 project,
or in 1 place. As the research has shown, Statamic is not supported for the described feature
(Research question 4.2). However, I find Statamic as a great framework that can be used for

50

optimal solution that would benefit all new websites stakeholders: to have many different
Statamic projects for different websites, that would share the same base between each other.

This way, an optimization of management and control of locales on some websites can be
achieved using 1 Statamic project as a handle for the website with its locales. For example:
Fixico customer websites have 3 different languages and each website locale is stored and
handled as a separate website, so the admin panel is only 1 per locale, rather than 1 admin
panel per website.

In general, approaching having multiple Fixico websites running on Statamic would be
beneficial to the system architecture consistency and would help all the developers to be
proficient with 1 specific technological stack that would be needed for adjusting Statamic
projects whenever needed, rather than knowing 5-10 different frameworks that are used among
all Fixico websites.

The recommendation on how to start with the development can be found in chapter 5.2.9.3
Further website development.

To summarize, I recommend Fixico to go with Statamic as a core framework for website
migration, because it supports a lot of new good features and would be a good upgrade as
functional-wise as technical-wise for Fixico, where additionally more websites can be grouped
together.

6.3 What is delivered to Fixico?
At the end of graduation assignment, Fixico would receive a proof of concept Statamic project
that ensures that migration to Statamic CMS is possible, and also Fixico would get the
Graduation report document, where all the decisions and technical implementation are
described.

The Statamic project has a demo page, and implemented all architecture decisions from the
CMS perspective that comply and align with Fixico architecture.

6.4 Reflection
All in all, it was not an easy assignment, where I had to prototype an ambitious project that
would be really beneficial. To have more insights on the timewise perspective, please go to
chapter 2 project timeline in Appendices.

On a technical level, I believe I conducted myself in a way that satisfied the expectations of my
supervisor and other developers. When it comes to the result, management was happy with my
progress and the prototype that I delivered. While in the beginning, I seriously doubted my
capabilities, thinking that I bit more than I can chew, by working on concepts that flew over my
head at the time, I managed to rise to challenge, and I am quite proud of what I have achieved.
However, I enjoyed it and learned a lot of new concepts, and how to use them. It was the first
time I designed and worked with a static website architecture, and all the people around me
were incredibly supportive and helpful, and I am very grateful for the help, for I could never
have finished this assignment without their help.

51

With a 0 background knowledge of how static websites do work, I had to learn a lot of different
concepts and practices used among Fixico and competitors' website projects. This has brought
me quite some pressure because of the knowledge to be gained and the time I was limited to,
but in the end I am happy with what I have learned, archived and delivered.

That's being said, there are plenty of things I feel I could have done better:

1. Sprint failures. In total I have had 2 failed sprints. Main reasons for it were wrong time
estimations for the tickets where I had more to guess the amount of hours the ticket
would take to be done. This has resulted in shifting planned features to be developed.
Also it has resulted in fewer UI components that were migrated to Statamic base.

2. Understanding the editor's concept of working with website page components. I have
run into a small misunderstanding problem, where I estimated that only the text or an
image can be defined from the control panel, while all the layout properties will be
handled from the template files only. This is a mistake, because as the time has shown,
editors always want changes in the layouts of components they are working with (such
as change the text position, colors, wrappers, background colors) and others. So the
problem I have run into is the limitation of a freedom for editors on the layout part of
the editing. I realized it too late, at the time when a lot of components were already
developed and there was no time for the changes. However if I had a choice to do
something differently, I would pick this problem, because the more flexibility the control
panel has for components, the less maintenance work developers should do.

52

Appendices

53

1. Use of Research methodologies
The graduate has made an extensive research on new and unknown to him topics, where the
following methodologies were primary:

1. Desk research. The graduate has learned a lot about the tech stack, how to extend it
correctly, and how to arrange new things.

2. Interviews with stakeholders of the system the graduate has built, and with others who
are expected to know the answers on given questions.

3. Competitor analysis. The other project having the same or similar structure, where the
desired or researched feature works successfully.

1.1 Interviews
Interview with a person from the marketing team.
Marketing team is an active stakeholder of the websites, because they take the main role in
maintaining the website from the content part. This team actively maintains existing websites,
and therefore it was interesting to talk about what the marketing team expects from the new
website-base.

Therefore, an interview with Isabell Heller was conducted in March 2022, she is a marketing
manager and an active maintainer of current Fixico websites. Up to a graduate's mind, she is
the right person who should know all the drawbacks, problems and good parts that are
happening with the websites.

Before an interview, Isabell was informed about it, and asked to think about what would be
new great features that would improve the satisfaction level of website maintainers in future.

Another thing before an interview, a list of requirements that graduate has gathered doing a
desk research on what are the core things the content-management system should do,
alongside with existing features of admin panels. Those requirements were basic and didn’t
have prioritization, it was more of a point where to start from.

The list of requirements is described above:

As an editor, I want to login to the admin panel, so I can securely work on the website.

As an editor, I want to have CRUD rights on pages

As an editor, I want to have CRUD rights on components on the pages

As an editor, I want to optimize the SEO values of the page.

As an editor, I want to have a language picker, to work with specific locale versions of the
website.

The interview had 2 phases:

54

1. Requirements gathering and their prioritization.
2. Ideati ng on what could be improved where 2 feature ideas pitched:

a. Create or integrate a multi-user-collaboration tool - basically an opportunity to
work on the same page / component for multiple people without a risk to lose
entered data.

b. Create or integrate an activity tracking tool, where it will be seen who and what
has been working on.

As an outcome of the interview, a list of maintainers requirements was gathered alongside with
their prioritization using MoSCoW metrics.

Acceptance interview with Isabella from marketing team
This interview was introduced to showcase the functionality of the new website’s control panel.
The goal for the interview was to receive feedback from the marketing team, as they are
important stakeholders in the assignment.

Interview was conducted with Isabell Heller, she is marketing manager, and I already had an
interview with her before.

Before an interview, I have prepared 1 page of the Fixico website that Isabell also works with.
This way she can compare precisely the experience she has right now working, and potential in
future with Statamic. Another thing here can be the layout flexibility of Statamic components.

The outcome of an interview was the satisfaction level of Isabell with flexibility among many
things that Statamic is configured to support. This is a great result for me, because I
understand, the cms development goes in the right direction. However, Isabell has suggested
that I think more about the flexibility of layouts for components on web pages, because the
more layout is flexible, the more the editor can do with the control panel alone.

In conclusion, I am glad with the interview, and especially with the useful feedback point to add
more flexibility to layouts sections. This is definitely the direction I should take and go this way.

Interview with Fixico CTO
Fixico’s CTO is a person who is an architect of all solutions Fixico arranges for their projects,
and is an important person on each decision making process.

An interview with Mujib Azizi was conducted in April 2022, he is Fixico’s CTO and plays an
important role in the decision making process.

The reason an interview was held was to discuss the decisions and it’s ground a graduate has
on certain topics that do or do not align with company architecture infrastructure.

Before an interview, the following topics were planned to be discussed:

1. Does Fixico use tests or any testing frameworks on websites?
2. What solution should be for deployment: Virtual Machine, or Kubernetes?

55

This is a tricky question because Kubernetes is known to have many advantages
because it’s an existing platform and already supports many things that should be
configured to VM before accessing environments. However, the question was raised
because VM would solve a meaningful problem - content storage of the website.

3. What solution is better to store the content of the website: backups or repository?

This question has popped up after the Kubernetes environment was chosen in the
discussion of the previous question.

Main reason to ask this question is to get disadvantages of using a repository, because
at first glance it is widely used among Fixico websites.

4. How do fixico CircleCI orbs work, and how to get access to them.

It’s a technical question targeting to get insights on how the pipeline defines and what
reusable components I could take to build and deploy my project as much inline with
Fixico existing software as possible.

The interview was long and very interesting from technical perspectives that were touched
during answering planned questions.

As an outcome of this interview were the parts of answers to research questions 4.2.5 Metrics
used for website testing, 4.2.6 Deployment, 4.2.7 CI/CD, 4.2.8 Content storage

Interviews with developer supervisor
The graduate has frequent interview checkups, where problem solving figures are arizing, they
sometimes are unprepared, because it really depends on the cause of the interview:

● Opinion on unsure decision I am thinking of
● What is the problem with Pod in Kubernetes?
● How to solve X problem
● What would be suggested on a certain topic.

2. Project timeline
Sprint № Time What has been achieved

1 Q3 Week 1 - Q3 Week 2 Getting started with Fixico, researching how
everything works, researching basics of my
assignment

2 Q3 Week 3 - Q3 Week 4 Creating Plan of Approach, defining goals for the
gradation, Setting up Statamic boilerplate project.

3 Q3 Week 5 - Q3 Week 6 Answering research questions 1,2,3.
Implementing OAuth2 feature.

56

4 Q3 Week 7 - Q3 Week 8 Answering research questions 4, 6, 7.
Implementing CI/CD pipeline, and OAuth2
authorization.

5 Q3 Week 9 - Q3 Week 10 Working on an interim report, connecting CI/CD
pipeline with deployment method.

6 Q4 Week 1 - Q4 Week 2 Fixing interim report, Answering research
question 8. Starting to implement content
storages and connecting them also in a remote
environment.

7 Q4 Week 3 - Q4 Week 4 Adding 2 addons to Statamic to fulfill marketing
team requirements. 1 Addon had to be created
from scratch. Started developing the first page of
an existing website to Statamic.

8 Q4 Week 5 - Q4 Week 6 Finished with adding the first page to Statamic.
Working on a draft report and its deliverables.

9 Q4 Week 7 - Q4 Week 8 Fixed bugs on the website, prepared final report.

Table 1. An overview of the activities made to the graduation assignment time-wisely.

3. Research additional information
3.1 Google Lighthouse metrics, and how do they influence

Google Lighthouse has 5 basic metrics that rank different aspects of the website or web
application:

Image 1. The metrics overview after the report is completed.

1. Performance - is one of the most important metrics that measures all technical aspects
of loading the webpage. This section covers 6 main aspect keys that are taken into
account for the final score:

57

a. Total Blocking Time (TBT) - also known as ​​First Input Delay, and measures the
time in milliseconds between the user’s first action and the browser’s response
time. The other phrasing is a first page response speed score.

Best practices to avoid poor ranking of TBT are:

● Minimize the loaded JavaScript. JavaScript files directly
● Removing or minimizing third-party scripts. Relying on such scripts

usually leads to a negative impact on FID.
● Using browser cache. The scripts that do not change dynamically can be

cached after the first website load, which leads to way faster JS loading
tasks for website load.

Google considers this metric as the most important and gives it a score of 30%
of the overall ranking.

b. First Contentful Paint (FCP) - the metric measuring the first DOM element to be
displayed in the browser. It does not indicate the overall site speed, but reflects
the site speed from the user's perspective where the user sees the first element
of the site popping up. When any site content appears quickly, their perception
indicates a fast-loading site even if the rest of the site takes a bit longer to load.

Google gives FCP a score of 10% of the overall ranking.

c. Largest Contentful Paint (LCP) - is the time it takes for the largest section of the
content to appear on the browser window. It’s different from other metrics
described here, because the point of view is moved from the content loading
things to a user perspective, who should be able to see the majority of the
website as soon as possible, which means LCP focuses on what really matters to
start interacting with the web page.

Best practices to improve LCP:

● Use fast web hosting. The faster web server works, the better the user
experience is.

● Use Lazy loading. It’s a script that loads heavy content parts (like images,
videos, etc.) only when the content appears on the screen.

● Avoid using unnecessary third-party scripts. The less data to be loaded to
the web browser, the faster it loads.

Google finds LCP as a highly important metric, and gives 25% of the overall
ranking.

58

d. Cumulative Layout Shift (CLS) - is a measure of how much the website's content
shifts position above or below the fold as the page continues to load. It's only
when the elements on the web site move around without any input of the user.

Best practices to avoid CLS problem on the web page:

● Use size attribute dimensions for any media (videos, images, etc.). This
way the user browser knows exactly how much space element takes up
on the page, and will reserve the space for the media element on html
layout until the media loads.

● Make sure to dynamically add UI elements below the fold as much as
possible. This way the new UI will not push the existing page content
down, and user better orients on the page.

Google gives CLS a score of 15% of the overall ranking.

e. Speed Index - the metric measuring the timing to load and render all content
above the fold.

Google gives Speed Index a score of 10% of the overall ranking.

f. Time to Interactive (TOT) - the amount of time that takes for the page to
become fully interactive. Page can be considered fully interactive when the page
displays useful content, all event handlers are registered and the page responds
to user interaction within 50 milliseconds.

To improve the TOT, the Javascript files have to be as much as possible
optimized together with reducing the main thread work.

Google gives TOT a score of 10% of the overall ranking.

2. Accessibility - is a metric verifying the website is accessible to people with disabilities
too. This includes tests on important elements like buttons or links, to see whether they
are sufficiently well described, or whether images have been assigned an alt-attribute so
that the visual content can also be described by screen readers for visually impaired
users.

3. Best Practices - is a list of audits that check common mistakes in a website to comply
with standards of the web.

Best practices analyzes whether HTTPS and HTTP/2 are used, whether resources come
from secure sources and assesses the vulnerability of JavaScript libraries. Other best
practices look at secure database connections and avoiding the use of non-secure
commands, or incorporating deprecated APIs.

59

4. SEO - is a ranking where various tests run to establish how well a website can be
crawled by search engines and displayed in the search results. These Lighthouse tests
that Google describes as “SEO” are extremely limited, but all the returned errors
should be fixed, so search engine optimization would offer more potential for other
improvements, which should certainly be explored and improved if necessary.

5. Progressive Web Application - these inspections are made for the web apps to be
evaluated, what is not the case for the graduate’s assignment. The graduate is building
a Content Management System, which is different from the PWA website approach.

60

3. List of references
Backlinko - Core Web Vitals

URL https://backlinko.com/hub/seo/core-web-vitals

Google Documentation - Lighthouse

URL https://developers.google.com/web/tools/lighthouse

I.Sacolic (2022) - What is CI/CD? Continuous integration and continuous delivery explained.

URL
https://www.infoworld.com/article/3271126/what-is-cicd-continuous-integration-and-continuou
s-delivery-explained.html

Kubernetes Documentation (2022) - What is Kubernetes?

URL https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

Kinsta (2022) - What is Nginx? A basic Look at what is is and how it works

URL https://kinsta.com/knowledgebase/what-is-nginx/

Michael Cobb, Stephanie Mann (2020) - What is OAuth and how does it work?

URL https://www.techtarget.com/searchapparchitecture/definition/OAuth

P.Jain (2020) - An Introduction to CircleCI

URL https://medium.com/xebia-engineering/an-introduction-to-circleci-aa9464a86673

Peak (2021) - Screencasts

URL https://peak.studio1902.nl/other/screencasts.html#statameet-2021

Statamic Official Documentation - Multisite

URL https://statamic.dev/multi-site

Statamic Official Documentation - Antlers Templates

URL https://statamic.dev/antlers

Statamic Official Documentation - OAuth

URL https://statamic.dev/oauth

Statamic Marketplace - Statamic activity logger

URL https://statamic.com/addons/mark-fixico/statamic-activity-logger

Techopedia (2020) - Production Environment

URL https://www.techopedia.com/definition/8989/production-environment

61

https://backlinko.com/hub/seo/core-web-vitals
https://developers.google.com/web/tools/lighthouse
https://www.infoworld.com/article/3271126/what-is-cicd-continuous-integration-and-continuous-delivery-explained.html
https://www.infoworld.com/article/3271126/what-is-cicd-continuous-integration-and-continuous-delivery-explained.html
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kinsta.com/knowledgebase/what-is-nginx/
https://www.techtarget.com/searchapparchitecture/definition/OAuth
https://medium.com/xebia-engineering/an-introduction-to-circleci-aa9464a86673
https://peak.studio1902.nl/other/screencasts.html#statameet-2021
https://statamic.dev/multi-site
https://statamic.dev/antlers
https://statamic.dev/oauth
https://statamic.com/addons/mark-fixico/statamic-activity-logger
https://www.techopedia.com/definition/8989/production-environment

T. Hamilton (2022) - What is Functional Testing

URL https://www.guru99.com/functional-testing.html

Umbraco - What is a Staging Environment?

URL https://umbraco.com/knowledge-base/staging-environment/

Wikipedia - Monkey testing

URL https://en.wikipedia.org/wiki/Monkey_testing

62

https://www.guru99.com/functional-testing.html
https://umbraco.com/knowledge-base/staging-environment/
https://en.wikipedia.org/wiki/Monkey_testing

