
Capturing test flaking
“How do we manage flaking tests to reduce cost and preserve the mental

well-being of the developers?”

Thesis - Sanne Visser

Student Sanne Visser

Date of Internship 7 February – 5 June 2022
Education Computer Science – Software Engineering
 University of Applied Sciences Leiden

Graduation organization Velory

Version 3.0.0 – Final – 14 June 22

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022

Preface
Two years ago my partner asked me how cool it would be to live abroad for a
period. His best friend had completed two semesters in Boston not long before
that and he was really excited about his experience.

Hearing him talk about the different culture, all the friends he made and the
experiences he had ignited a little flame inside me. What if I could do that?

Truth be told, I was shy and unsure back then. The thought alone was already very
thrilling. Except this didn’t keep me from exploring the idea. As I would do with
anything that intrigues me, I started reading about it.

Reading all the positive experiences and encouragement of all the students that
have lived abroad, I was ready to take the next step. I started looking into my
options.

Feeling overwhelmed by the information, the corona pandemic and an operation I
had to go under, I took a step back. I finished my third-year internship and went
into the second half of my third year.

My partner brought it up again and let me know that if this is something I wanted I
should go for it and act on it now. This is the only moment I have left to experience
living abroad without all the commitments of a full-time job.

After his encouragement I reached out to the teacher that was involved with
internationalization. Having conversations with her solidified the idea of doing my
graduation internship, here, in Sweden.

Sanne Visser

June 1, 2022 - Gothenburg

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022

Acknowledgment
I’d like to express my deepest gratitude to my partner, Lars. Without his support
and encouragement throughout this period I never would’ve gone onto to this
journey and I never would’ve stayed sane without our weekly video breakfasts.

I would also like to thank Bart, the best friend of Lars. Without him this idea would
have never occurred to me and I wouldn’t have had this amazing experience.

I’m extremely grateful for my family. Thank you so much for being a support
system, for being there for me and for expressing interest in what I was doing.

I must also thank Carla, the teacher that is involved in internationalization. Thank
you for helping me find a great company and checking in with me during my
internship.

I would also like to thank Michiel, my education supervisor but also my study
career counsellor. Thank you so much for not only being there during my
internship but also before that.

I must also thank Thomas, my fellow student who was an intern at Velory before
me. Thank you for putting in a good word for me and thank you for the all the fun
conversations we’ve had and feedback we’ve exchanged.

This project would not have been possible without Jack, my company supervisor.
Without him I wouldn’t have had this fun project to work on, along side amazing
colleagues. Thank you for helping me through this period and sticking by me even
when you left Velory.

I’d also like to express my gratitude to CJ and Mickan, two of my colleagues that
worked with me in the Gothenburg office. Thank you for welcoming me with open
arms and for having fun lunches together.

I’d also like to acknowledge the help of Bruno, Adam and Martin, my colleagues
with whom I sparred and talked about my research. Thank you for being the fun,
kind and smart colleagues that you guys are.

Finally, I would like to thank Velory and the University of Applied Sciences Leiden
for this opportunity. I have learned a lot in this process and I’m very grateful.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022

Contents
1 Summary .. 1

2 Introduction ... 2

3 The Graduation Organization... 3

3.1 The Organization .. 3

3.1.1 What did the graduate do? ... 4

3.2 Stakeholders ... 5

3.2.1 Direct stakeholders.. 5

3.2.2 Indirect stakeholders ... 6

4 The Problem and Opportunity ... 7

4.1 Problem... 7

4.2 Opportunity .. 8

5 The Intended Result ... 8

6 Plan of action ... 9

7 What are flaking tests? ... 11

7.1 What is Jest and why is it important?..12

7.2 What type of tests are we going to focus on? ...12

7.2.1 The script .. 13

7.2.2 Results .. 15

8 How can you find flaking tests? .. 16

8.1 Keep running the test suite .. 16

8.2 Get the results from all the different machines and merge the result 16

8.3 Static analysis ... 17

9 Designing a solution ... 18

9.1 How do other companies solve this problem? .. 18

9.1.1 Spotify ... 18

9.1.2 Microsoft .. 19

9.1.3 Cypress .. 19

9.1.4 TestProject .. 20

9.1.5 Gradle ..21

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022

9.2 How are we going to solve it? .. 22

9.3 How do we visualise the problem? .. 22

9.3.1 Project dashboard .. 23

9.3.2 Run dashboard ... 24

9.3.3 Test dashboard .. 25

10 Creating the solution ... 26

10.1 Data modelling .. 26

10.2 Set-up of the project .. 27

10.2.1 What programming languages? .. 27

10.2.2 What environment? ... 29

10.2.3 How to deploy? .. 31

10.3 How do you make a Jest plugin? .. 32

10.4 When do we mark a test as flaking? .. 34

10.4.1 When did it stop flaking? ... 34

11 How could the project be sustainable? ... 35

11.1 When do you need pay? ... 35

12 Result and Discussion ... 36

12.1 Result ... 36

12.1.1 Research .. 36

12.1.2 Product ... 37

12.2 Discussion .. 38

12.2.1 Restrictions .. 38

12.2.2 Open ends .. 39

12.2.3 Improvements and opportunities .. 39

13 Reflection .. 40

13.1 Process ... 40

13.1.1 After those first few days .. 40

13.1.2 Brainstorming session .. 41

13.2 Product ... 42

13.3 Competences ... 43

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022

13.3.1 A-competences ... 43

13.3.2 B-competences ... 43

13.4 Experience .. 45

14 Afterword .. 46

15 Bibliography ... 47

16 Appendix: Figures ... 50

17 Appendix A: Get Test Results .. 65

18 Appendix B: Test Analysis Script .. 65

19 Appendix C: Result from script ... 71

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 1/71

1 Summary
The question we are going to answer is “How do we manage flaking tests to
reduce cost and preserve the mental well-being of the developers?”.

A flaking test is a test that can both succeed and fail without changing relevant
code. There is little to no awareness about this and some developers know of the
existence but don't realise it is flaking instead of failing.

These tests are detected by analysing the test result from both local and online
test runs. With the use of the Jest Watch plugin we make sure we only consider
the test results of tests that are testing unchanged code. The data is then being
send to the backend where the other analytics are done.

The problem of invisible flaking tests is solved by a tool that highlights the
frequency and the severity. It visualises the problem. This project is tightly coupled
to the JavaScript testing framework used by Velory: Jest.

By visualizing the flaking tests in different types of dashboards we not only provide
useful information for the developer via the ‘run’ and ‘test’ dashboard. We also
provide useful information for a tech lead or CTO by providing a project overview,
signalling any recurring problems or technical debt the team should focus on
next.

The project dashboard gives insight into the severity and the overall frequency of
the issue. The other two dashboards give more specific insight to help solve the
flaking tests. There is also a dashboard dedicated to all the flaking tests to help
decide what test should be solved first.

The project is open source, so it is free to use and other developers can add to the
product. The backend is written in NestJS, the frontend is written in ReactJS and
useful data is captured with a plugin build for the Jest testing framework. The
stack is based on JavaScript since it’s the most used language according to
StackOverflow. This way we hope to help as many people possible and find many
contributors for our open-source project.

Future modifications to the resulting project include monetization. Since it’s a
open source project there is currently no funding available. There are plans to use
the Freemium model where users can either host the software themselves or use
our (yet-to-be-build) premium hosting service optimized for our tool.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 2/71

2 Introduction
Before you, you find the thesis Capturing Test Flaking written by me, Sanne Visser.
This thesis has been completed within and with guidance by the company Velory
in Sweden.

Within this thesis you will read about the phenomenon of test flaking and about
the tool that has been made to capture this.

In short, a test can be marked as flaking when a test can both fail or succeed
without relevant changes in the code. Velory had a lot of flaking tests that
disrupted the workflow.

Before I came to Velory, it took them great time and effort to fix some of the
flaking test they had identified. In the end, two big fixes were implemented: fixing
known issues with the mocking server and intercepting error sensitive network
requests.

Even with these issues resolved, a lot of flaking tests were still left. The biggest
issues were not knowing which test to mark as flaking and how to resolve this.

The initial solution came from the company supervisor but, as will become clear
throughout the thesis, has been changed to suit the needs of the company better.

The subject of this thesis is a big and relatively untouched subject. This means
that it was already clear from the beginning that there was a possibility that the
project wouldn’t be completed in its entirety.

All the figures that will be used within this thesis can be found at readable scale in
the appendix. Any research I’ve done beside the main thesis subject are
referenced as a source in this document and can be found as external
attachments.

All the research that has been done can be found as an external attachment
(Visser, Research, 2022). The functional and technical design can also be found as
an external attachment (Visser, Functional and technical design, n.d.).

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 3/71

3 The Graduation Organization

3.1 The Organization

Velory is an Employee Experience Platform that provides companies and their
employees with Productivity-as-a-Service (PaaS), and offers a cushy process
when purchasing hardware, software and services. You could say Velory acts as a
bridge between companies and suppliers.

Velory also supports companies in becoming more sustainable in their
operations. They do this by managing the lifecycle of all the hardware, software
and services and deliver an overview of all the IT expenditures. To make the
process even more green they work with the One Device - One Tree solution. For
every device that gets replaced they plant a tree.

Velory consists of different departments to make the best product and experience
they can:

- Brand & Comms
- Operations & Analytics
- People & Culture
- Product
- Finance & Legal
- Sales & Partners

I was part of the product department, as was Jack-Edward Oliver who was my
company supervisor.

The product team, as the name suggest, is the development department that is
responsible for creating and maintaining the product.

The product consists of two platforms, Velory and Resellers. The platform for
companies and their employees and the platform for the “resellers” to manage all
the available products.

Companies can manage all the assets they have and view which employee has
what device. An employee can pick the devices they want based on a budget per
category or when they exceed the budget get a deduction in salary.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 4/71

3.1.1 What did the graduate do?

Coming into Velory I started working within the so called “portal” team, which is
the team working on the migration of the Ruby on Rails apps to React apps. When
I came in there was already a lot of progress with this migration.

The first weeks were spent on getting to know the team, the code and the way of
working. I worked on migrating components and functions to shared libraries and
creating primitive components.

During these weeks I sparred a lot with colleagues about different approaches
and I've done multiple pair-programming sessions with both a senior developer
and another frontend intern.

About a month into the internship, the portal team started with weekly sprints
instead of having sprints every other week. On Monday the different tasks are
distributed and on Friday everyone makes sure everything was finished and
merged. We also had a retrospective to check in with everyone. What were the
good things and bad things?

Beside this weekly retrospective I also had meetings every other week with my
company supervisor and sparring partner Jack.

My focus was on my thesis, but I've done a few work items on the side because it
was fun to work on and it helped with staying connected to the team.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 5/71

3.2 Stakeholders

The stakeholders for this thesis stretch beyond Velory. The stakeholders are split
into two categories: direct and indirect stakeholders.

3.2.1 Direct stakeholders

The direct stakeholders are the stakeholders who have a direct relationship with
the project. They are mostly the people in Velory and the people who benefit
directly form the results of this research.

These stakeholders are Jack, the direct colleagues within the portal team, the
colleagues within the other teams, the CEO and the CTO.

Jack has been the most involved, both as a supervisor and a developer. Besides
being a stakeholder he’s been responsible for quality control and proof reading,
biweekly strategy and progress meetings and helping with product design.

The colleagues within the portal team are directly benefiting from the research
and the product. They also pitch ideas and act as a "rubber duck" meaning you
can talk to them about the problems you face and they help you get through
them.

The CEO and CTO of Velory are mainly interested the project benefits for the
company, but they are not directly involved in the process. However, they can
give input and directions to the project where they see fit.

Being the Universities graduation supervisor, Michiel Boere has also been a direct
stakeholder. He is both interested and has influence over the scope and direction
of the project. His main interests lay with keeping the project realistic,
manageable and help bringing the graduation to a successful conclusion.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 6/71

3.2.2 Indirect stakeholders

Indirect stakeholders are stakeholders that have no direct involvement with the
project but must be taken into account when deciding on project requirements.
For this project they are mainly “developers around the world”. These developers
can be a part of a company or work on their own projects. If Jest is used in the
product, they are someone we need to take into account.

Since the tool that is made is open source, all developers can benefit from it and
thus save time, energy and headaches.

Below you can see each stakeholder in a diagram. Each category has their own
colour.

Velory
Education
Indirect stakeholders

Figure 1: Stakeholder analysis

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 7/71

4 The Problem and Opportunity
Within this thesis we don't just solve a problem, but we also makes use of an
opportunity that hasn’t been taken yet.

4.1 Problem

Many products and projects have automated tests. These tests usually succeed
until you change the code in a way so that the result is no longer the same. In
some cases, a test can succeed and fail without relevant code being changed.
This phenomenon is called test flaking.

First and foremost, this issues impacts the business side of a software project. For
example, when a build pipeline fails because of a flaking test you would have to
start it over and over again until the tests succeeds. This costs money for the
resources used to run the tests and time that is spend until the pipelines
succeeds and the software can be deployed.

Secondly, the issue impacts the developers. A developer often doesn’t know if a
test is flaking or if the code they wrote changed something that effects the test.
It’s often assumed that the tests fail for valid reasons after which the developer
needs to investigate which changes caused the failure. This takes a lot of
unnecessary time and energy impacting the confidence in the code and test
suites.

Tests without confidence result in delayed deployments and longer development
cycles. When a developer can’t trust in the test suite they’ll often take more time
developing and testing to make sure their changes aren’t breaking. This kind of
defeats the purpose of a testing suite all together.

This problem has been seen up close at Velory, resulting in two full weeks of
wasted time because a flaking test was failing without valid reason.

Due to the flaking tests the pipeline had to be run until all tests ran successful.
When a pipeline finally succeeded, the changes would be merged into the master
branch. Since tests are also required to run for the master branch we would start
all over again with flaking tests failing over and over again.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 8/71

These issues would often be brought up during retrospectives. All the developers
had flaking tests problems but there wasn’t enough time to actually fix the flaking
tests. Deleting the tests wasn’t an option as well because it tested some core
functionality.

4.2 Opportunity

Since test flaking is a pretty unknown area there are no tools for JavaScript
products yet. Creating an open-source tool for the world to use is a big
opportunity to add useful knowledge and tools to test JavaScript software.

The tool developed during this research will serve the purpose of MVP (Minimal
Viable Product). A fully fledged tool is out of scope since development is not the
only thing done. Research into test flaking and how to best identify flaking tests is
the main goal, the tool developed will demonstrate the results of this research.

Open-source means the tool is not only free to use, but other developers are free
to submit changes where they see fit. In the long run the hope is that this tool will
be a publicly developed and maintained tool.

Little research has been done in regards to test flaking. Besides resulting in a
useful tool with practical applications, the research done can help others address
flaking tests in their environment or it can serve as a base for future research or
solutions.

5 The Intended Result
Test flaking is a little known phenomenon for developers. With this research and
the accompanying tool we hope to create more awareness and help people
recognize flaking tests.

In the ideal situation, after reading this research, developers should be more
aware of the causes of failing tests and reduce the unnecessary amount of time
they spend in rerunning their test pipelines. The tool developed as result of the
research will help identify when a test might be flaking.

By creating a tool to discover the flaking tests and visualising this, it can help
streamline the company better.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 9/71

The focus of this tool can be summarized in 3 words

1. Visibility
2. Frequency
3. Severity

The biggest goal is to gain insight in what tests can flake, and when they usually
do this. This could be done by analysing the current test data and finding
correlations between different flaking reasons.

The second goal is to learn how often a test flakes, the frequency. Does it flake
every other run? Or is it once every 10 runs. This could give insight into what flaking
tests have priority to be fixed.

The third goal is severity, this means what is the impact of flaking tests? This could
be translated to money and or time. Usually, every test run on a CI (Continuous
Integration) pipeline costs money. In the case of Velory they run their pipelines
with CircleCI, which means they pay for every second of processing time.

6 Plan of action
Given the scope of the project, a tight set of deadlines were required.

The plan of action was set up quite specific. The process was already determined
and the deliverables were already set. The plan can be found as external
attachment (Visser, Capturing Test Flaking - Graduation Plan, 2022).

In short summary, the planning was set up as followed.

Training: Working with the Frontend team Week 1 & 2
Research: Causes of test flaking Week 3
Research: How does Jest run its tests? Week 4
Research: How to test each flaking cause efficiently? Week 5, 6 & 7
Research: What programming languages to use? Week 8
Developing: The server that processes all the data Week 9, 10 & 11
Developing: The Jest plugin to process the data via the server Week 12 & 13
Developing: The logging component to retrace the flaking Week 14 & 15
Developing: The server saves the flaking Week 16

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 10/71

However, during the research into the testing framework Jest it became clear that
a broader picture was missing. The research up to that point was already focused
on practical hands-on problems closely related to the situation of Velory.

The research focused too much on one given solution without taking other
opportunities or problems into consideration. After some much needed
brainstorming and reflection the focus was readjusted to research more general
questions like “What exactly is test flaking”, “What are practical ways to identify
test flaking” and “How do other companies solve similar problems”.

In the end, Jest was still taken as part of the solution for the test flaking
experienced by Velory. But starting with a specific framework is never a good start
for research into a deep and complicated subject like test flaking.

After reflecting on the direction of the research and desired solution the focus and
main question became: “How do we manage flaking tests to reduce cost and
preserve the mental well-being of the developers?”.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 11/71

7 What are flaking tests?
The definition of a flaking test is a software test that can both pass and fail
without changing relevant parts of the code. Having a test that fails to produce a
consistent result means it is unreliable, you cannot predict the outcome (Palmer,
Test Flakiness – Methods for identifying and dealing with flaky tests , 2019)
(Palmer, Assert(js) 2019: Jason Palmer (Spotify) - Test flakiness; methods for
dealing with flaky tests , 2019) (Avidon, 2019).

Flaking tests can occur in every kind of language and in all types of tests. The
reason behind this is that code can be very dynamic.

The type of test in which test flaking is the most common is integration testing.
With integration testing the individual software modules are combined and tested
as a whole (Integration testing , 2021). Within a frontend application this could be
rendering a page or the act of clicking through a page.

Common causes of test flaking are often related, but not limited, to:

- The (computer) environment in which a test is run
- The order in which tests are run
- The order of asserts
- The use of state
- The use of mocks
- Being too early with an assert.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 12/71

7.1 What is Jest and why is it important?

Jest is the testing framework that Velory uses. This means that all the results that
are gathered from the test suite are in the format that Jest came up with. It can
be used in any JavaScript project and it has been created to make and run tests
as easy as possible.

Jest has many ways of outputting data. This is often done by utilizing different test
reporters depending on the desired file type and output format. However, Jest
itself supports only two ways to output data out of the box. It can both output
directly to the console (stdout) or to a text file with the JSON format. The easiest
way to analyse the data is the JSON format, since it’s both human-readable and
easy to script.

The required data was extracted from Jest by utilizing an extension called
TestScheduler. TestScheduler is a feature provided by a core library used by jest
named aptly ‘jest-core’. How this was done can be read in more detail in the
research ‘How does Jest work?’ (Visser, How does Jest work?, 2022).

7.2 What type of tests are we going to focus on?

Test flaking exists in all kinds of tests. With the limited time available it’s important
to only research the most common cases of test flaking. To achieve this, all tests
needed to be analysed to determine which (kinds of) tests are flaking most often.

Given the thousands of tests Velory has, manually analysing them is out of the
question. To this extend a script has been created to automatically run all tests for
N amount of times and collect the results. This script was executed on a single
computer instead of in the default pipelines to account for any possible
instabilities. The script can be found in Appendix A: Get Test Results (Visser, Get
Test Results, n.d.).

Now there were two ways to aggregate the data. By hand, which would be time
consuming and prone to errors. Or the other option, that would be to create a
script. This was an easy decision.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 13/71

7.2.1 The script

To aggregate the data you need to have an idea what you want to aggregate it
to. It starts off with looking at what data you have.

When retrieving the data from Jest, you get the
test data either in JSON format or text format. The
interface, provided by Jest, of the JSON format
looks like Figure 2. The interfaces of some of the
fields, like testResults, assertionResults and
snapshot are found in Figure 3, Figure 4 and Figure
5.

Having these interfaces makes it easier to spot some useful
data or correlations.

Some basic calculations that can be made based on this
information are how many and the percentage of tests
failed, the average of tests
failing per test run and per
failing test the failure
message.

Figure 2: Interface of test result from Jest
Figure 3: Interface of SingleTestResult

Figure 4: Interface of
AssertionResult

Figure 5: Interface of SnapShot

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 14/71

Given the collected data and different scenarios, the following interface was the
best way to aggregate results. See: Figure 6.

As seen in Figure 6 there are fields like most common reason of failing and
reasons per test. For these fields the assertion results have been analysed and
categories have been setup.

These categories have been made into an enum (Enumeration) to make it easier
to work with and to have it more readable and dynamic in the interface. This
enum is visible in Figure 7.

When figuring out the error reason, the assertion
results are being checked to contain a specific
string. This is done in order of how specific the
string is.

When an error reason is found it is both noted as
the specific reason for that one test as it is being
tracked as a general reason of error failing.

With these results available per run there are a lot of different diagrams to make
both for an individual run as for a general dashboard. This means that this is a
good start for the tool.

The whole script can be found in Appendix B: Test Analysis ScriptAppendix (Visser,
Test Analysis Script, n.d.).

Figure 6: Interface analysis result

Figure 7: Enum for error reasons

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 15/71

7.2.2 Results

As seen in the results, Appendix C: Result from script, we can conclude that
integration tests are by far the most sensitive to flaking.

The main reasons for the flaking of the integration tests were:

- Certain texts could not be found,
- Components on the page could not be found,
- Functions were not called while this was expected.

The second thing that stood out was that there were a lot of timeout errors. All
these errors mainly occurred in integration tests.

Within Jest there are so called snapshot tests. Snapshot tests are tests in which
an entire page or just a component is being compared to a previously made
snapshot of the page or component. These snapshots are saved in a separate file
(Goss, 2022).

This snapshot testing is also called Visual Regression Testing. Here the test is
being rendered and the result is being compared to a premade “snapshot” of the
component (Bose, 2021). When snapshots don’t match up, the test fails.

The integration tests at Velory are Visual Regression Tests. Since these integration
tests are most common to flake, these are the tests that will be focussed on.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 16/71

8 How can you find flaking tests?
There are a few different ways of finding flakes. Some are easy but take a lot of
time and aren’t fully reliable. Others are complex and take time setting it up but
are thorough.

8.1 Keep running the test suite

The most obvious way is to run the test suite a few times and look at the results.
Whenever a test both fails and succeeds in different runs it can be marked as a
flaking test: you haven’t changed the code and it succeeds and fails sometimes.

There are a few big disadvantages to this technique. The first one is that it can
take a lot of time to run the test suite. This dependents on the size of the test suite.

The second disadvantages is that there is a big change you won’t find all the
existing flaking tests. It could be that a test flakes once every 100 runs. If you don't
run the suite 100 times you wouldn’t know about this test.

The third disadvantages is that tests are also dependent on the specific machine
it is run on. The result can be different on an older machine then on a brand new
one.

A big advantage is how easy and accessible it is to get results this way without
over-engineering a solution.

An example of a company implementing this technique is Microsoft. See chapter
"9.1 How do other companies solve this problem?" for more on their approach to
test flaking.

8.2 Get the results from all the different machines and
merge the result

A good effective way to get results from different environments is to hook into the
actual testing process. When hooking into the actual testing process we can also
take the covered code into account.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 17/71

The covered code is the production code that is covered by the current running
test. If this code has actually changed compared to the previous version there
might be a good reason for this test failing.

When taking the covered code into account we can exclude changed tests from
the flaking suspects since the change in the code might be the failing cause.

The data from the local machines plus the CI pipelines could be analysed to find
the flaking tests.

A disadvantage to this technique is that it could take quite some time to get
actual results.

8.3 Static analysis

With static analysis we can detect possible errors in the code before it is run. In
languages like Java or C# we call this kind of analysis “on compile time”. Which
means that the code is checked on errors before it is compiled to machine code.

In the JavaScript eco-system we have tools like ESLint that achieve something
similar. This option is quite inventive but unfortunately very complex. There are an
undetermined amount of reasons why tests might flake. It’s already tough to fix
these mistakes when a test has been identified as flaking, let alone detecting this
automatically.

However, there are a lot of principles and ideas about why a test can flake. All
these principles and ideas can be converted to a program that can detect the
possibility of flaking.

This principle is also used when detecting code smells. Certain patterns of code or
usage of libraries can be recognized as fault sensitive. Tools like SonarCloud use
this approach to warn developers of possible mistakes or security issues in their
code (SonarCloud, n.d.).

Since a flaking test is often just a test that’s written unsafely or instable, static
analysis could be used to recognise flaking tests before they flake. This is,
however, only in theory.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 18/71

9 Designing a solution
Given the research thus far, we can conclude that we have to solve at least two
main problems.

The first problem is the problem of visibility. It’s hard to distinguish normal failing
tests from flaking tests. In turn, this makes it difficult to estimate time spend on
these tests and monetary cost made in unnecessarily running these tests.

The second problem is that the developers lose confidence in the test suite and
get demotivated when they must retrigger the pipeline when they think a test is
flaking.

By making the flaking tests visible it can solve a part of the insecurity of the
developers. They can act on it to prevent it from flaking again.

9.1 How do other companies solve this problem?

There are a few companies that have said or wrote something down about test
flaking. Some of these are made for internal use only but there are a few
commercial options too. Here are a few examples of some bigger companies that
have done so.

9.1.1 Spotify

Spotify has written an internal tool for
detecting flaking tests called Odeneye. This
tool is visualised as a big schema. Every
individual run and test is visible in this
schema. A developer can look at it and draw
conclusions. For example when there is a
vertical stripe of yellow dots there was a
network failure (Palmer, Test Flakiness –
Methods for identifying and dealing with flaky
tests , 2019).

Figure 8: Visualisation of test flaking at Spotify

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 19/71

9.1.2 Microsoft

Microsoft also deals with flaking tests. In a talk they mentioned that for each green
CI build, meaning every test succeeded in that build, they would run it another
500 times. If any of the tests fails it would be marked as flaking. In such a case a
bug would be filed and the team would have to fix it (Microsoft Visual Studio,
2017).

Figure 9: Dashboard of all the test runs from Microsoft Visual Studio

9.1.3 Cypress

Cypress also has the option to
gain insights into flaking tests.
They even have a specific
dashboard for this.

However, this tool only works when
using the Cypress testing
framework and it's a paid feature.

In this dashboard they keep track
of the past results, they retry the
failing tests, they show different
graphs to gain insights and they
have the option to alert you about
a flaking test on GitHub or Slack
(Cypress, n.d.).

This means they use a similar technique as
Microsoft. They rerun the tests when it has
already failed. Compared to Microsoft they do offer more information to solve the
flaking tests.

Figure 10: Cypress Flaking Test Management

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 20/71

9.1.4 TestProject

TestProject is a specific tool for Selenium, another testing framework. This used to
be a paid service but during the research and developing of this project it
became a free and opensource project (TestProject, n.d.). They took creating tests
to the next level by implementing AI services to prevent mistakes.

TestProject uses AI to optimize locator strategies, preventing UI dependencies and
broken tests. They call this "Self Healing" because the tool does it for you.

The second thing they use AI for is to prevent failing tests due to variant loading
times and async event. They call this "Adaptive Wait". They adjust the waiting time
based on each individual test so that the developers doesn't have to build in the
waiting time themselves.

The third thing TestProject uses AI for is to avoid flaking tests. They do this by
analysing each step of a test to detect is a test reaches their target goal. If they

find an inconsistency they automatically fix in during the run (TestProject, n.d.).

TestProject has a progressive way of detecting flaking tests. They take good care
on the tests that flake because of UI shifts or the tests that would usually fail
because of run time related issues.

There are, however, many more causes of flaking tests.

Figure 11: Example TestProject AI

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 21/71

9.1.5 Gradle

Gradle, a build tool for Java, C++ and Python projects, also has an option to
detect flaking tests. This is an enterprise option, meaning you have to pay for it.

Gradle re-runs failed tests as part of the same build execution. When the tests
succeed after re-trying, the test is marked as flaky.

The interesting part about how Gradle analyses it is that they keep track of both
local and online test results. Giving them even more insights.

All this means they are quite similar to the other tools out there except they have
a more elaborate dashboard making it easier for developers to solve flaking tests
(Gradle, n.d.) (Gradle, 2020).

Figure 12: Gradle
dashboard

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 22/71

9.2 How are we going to solve it?

Looking at the dashboards of the other companies there are a lot of diagrams
instead of just numbers. In combination with the colours you can glance at the
screen and understand what is going. Unlike most of these companies there are
no resources to run the tests on a loop. So we're going for another approach.

Wanting to finish a MVP, there is unfortunately also isn't time for one of the more
advanced techniques to find flaking tests. The most effective and straight forward
approach is to Get the results from all the different machines and merge the
result.

This in combination with more advanced analytics and extensive dashboards
make for a perfect MVP.

The dashboard are partially inspired by Spotify, Cypress and Gradle. There are
more aspects to it which will be discussed in the following chapter.

9.3 How do we visualise the problem?

One of the three purposes of the tool is to visualise the problem. Since a flaking
test can impact an entire project and an entire run it is important to show the
impact on both.

Beside that it is important to give the developer all the relevant information to
determine an approach to solve the flaking test.

This resulted in the idea of having three different dashboards:

- A general dashboard for the entire project,
- A general dashboard for a specific run and
- A dashboard for a specific test.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 23/71

9.3.1 Project dashboard

The project dashboard has all the basic information about the project and a
general overview of the results. This overview is all about giving a good analysis of
where the project is at. You’ll see the frequency and severity.

This dashboard can be used by a tech lead or a CTO to get a direct sense of how
severe the test flaking issue is. This is the first screen an user seen when opening a
project and developers can click on runs or tests to gain more insights on the
tests.

To highlight a few items within this
dashboard.

- You have diagrams that tell you
how many builds have failed or
are flaking,

- You have an overview of the
latest runs,

- You have the top three categories
of why the tests are flaking,

- You can see the total of the
severity of flaking tests per
severity level

To help developers determine what
flaking tests to solve first and to help
them solve them, they can navigate to
a special flaking test dashboard.

This dashboard will only contain all
the flaking tests and details about
these tests. It is shown in order of
severity.

Figure 13: Wireframe project dashboard

Figure 14: Design project dashboard

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 24/71

Things the flaking test dashboard
includes for all the tests marked as
flaking within the project:

- The latest test results,
- What was the reason of the

flake?,
- How often has it flaked in

total,
- What was the last date time

of the flake,
- During what runs did it

flake?,
- What test suite is the test a

part from.

9.3.2 Run dashboard

The run dashboard is all about the in
and outs of a specific run. What were
the conditions of a run, how long did
it take to complete (or fail)?

With this dashboard a developer can
answer the question if the run failed
because of network reasons or
another collective issue. This is also a
good view to get a sense of what
tests are in a project.

To highlight a few items in this
dashboard.

- The results of every test suite,
- Why did these tests fail,
- If there are any first time

flakes.
Figure 16: Design run dashboard

Figure 15: Design flaking test overview

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 25/71

There is also a general overview of
the runs with the flaking details as
well. This could give insights in the
reoccurrence of the amount of flaking
tests.

9.3.3 Test dashboard

The test dashboard includes
all the specific information
about a single test. It contains
the following items:

• First + last time it
flaked,

• Latest error message,
• Does it always have a

similar error message?,
• Overview of all the

times it flakes
o Reason of the

different flakes
This dashboard is designed to
help solve the flake(s) within
this specific test. By giving
insights into the different
reasons of the flakes a
developer can determine if there is
one or maybe more than one flake
in the test. They also have a direction to search into.

Figure 17: Design overview of runs

Figure 18: Design test dashboard

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 26/71

10 Creating the solution
Now with a concrete idea and the visualisation done it was time to get started. A
lot of time has passed by at this point. It was important to get started right away
to be able to deliver a product.

10.1 Data modelling

With the visualisation done it was time to create a data model.

Looking at the different dashboards you could get a sense of the general data
that needs to be available. At first glance you would need the information about a
company, about a project, the different test suites within a project, the different
tests and the test results and general data per run.

Since a lot of this data is static, meaning it
wouldn’t change too often, the first idea
was to use a NoSQL database, like
MongoDB. This would be super easy to set
up, implement and it would have a large
free tier. Within a NoSQL database the data
could look like Figure 19.

While modelling it became clear there
were a lot of relations. Meaning that there
would have to be a lot of get-requests or
that a lot of unnecessary data would have
to be retrieved each time.

To explorer the
option of having
an SQL database
there was
another data
model made.
That one is seen
in Figure 20.

Figure 20: SQL Data Model

Figure 19: NoSQL Data Model

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 27/71

The SQL option would be faster and more dynamic in the long run. If there would
be performance issues a View could be added. If it turns out the analyses take a
long time or require a lot of power an additional aggregate table with the results
could easily be added.

10.2 Set-up of the project

When you start setting up projects there are a few questions you need to ask
yourself. What kind of project is it? What programming languages fit best with the
criteria for the project? How am I going to deploy the project? And what is the best
programming environment for the project?

On the first question we already have an answer: it’s a tool to capture flaking tests.
It’s going to be open source and it should work well with the existing Jest Testing
Framework.

10.2.1 What programming languages?

The question with the biggest impact on the project is what programming
languages and, in extend to that, what frameworks are going to be used? The
complete research can be found in the external attachment (Visser, What
programming language is going to be used?, 2022).

10.2.1.1 Programming languages

While discussing this question there were a few things that need to be considered.
The first is that it must work alongside the Jest Framework. The second thing is
that it must be accessible for other developers to contribute to.

A lot of different languages like JavaScript, Rust and Ruby were looked at. But even
though Rust and Ruby could be very useful we decided on JavaScript.

Jest is written in JavaScript, it’s used in a lot of open-source projects, it’s an
accessible language and when used with Typescript it is a typed language which
will make the error margin smaller. Besides that, JavaScript is the most used
programming language (Stack Overflow, 2021).

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 28/71

10.2.1.2 Frameworks

Now the second biggest question on this subject, what frameworks will be used?

There are many more frameworks than there are programming languages. Since
the language has been selected it can already be narrowed down.

We must decide on a framework for both the frontend and the backend.

The decision was made to have a separate REST API backend because it would
make the boundaries between frontend and backend more clear. It would force
the developer to think about the different API routes and which ones to expose to
the outside world.

It would also separate the business logic better, having all the analysis on the
backend.

10.2.1.2.1 Frontend framework

For the frontend the following frameworks were considered. These frameworks
were chosen based on previous experience with the framework and the learning
curve of the framework.

- ReactJS
- NextJS
- Remix

All three frameworks are React based. React has several advantages over other
know frameworks like Vue or Angular, namely:

- React is developed and used by Facebook which means it will be
maintained in the near future and it is build with scale in mind,

- React itself is more of a view library which makes it an all-round flexible
tool,

- It is one of the most used and most popular front-end frameworks.

Weighing out the pros and cons of each framework ReactJS was chosen. This
gives a lot of freedom in the chosen packages but there are no unnecessary
packages meaning it will be a more lightweight tool.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 29/71

10.2.1.2.2 Backend framework

For the backend another JavaScript framework was chosen with similar
reasoning. It also had to be connected to a SQL database so it should be able to
communicate with that.

The following options were considered.

1. Express
2. NestJS

Express would be the most basic option. It is a fast, unopinionated, minimalist web
framework. NestJS is built on Express, meaning it has the same features and more.

Since NestJS already has Typescript build in and has an out-of-the-box
application architecture, this framework is the best option.

The stack that was decided on is ReactJS, NestJS and Postgress.

10.2.2 What environment?

The environment of the project is about the programming environment. Will the
project be a monorepository or two single repositories? And where will the code
be stored?

10.2.2.1 Code hosting platform

The easiest question in this category is where the code will be stored. The two
most mainstream options are GitHub or Gitlab.

The biggest differences between GitHub and Gitlab are the configurations. Gitlab
had a build-in CI/CD workflow and offers a complete software development
solution. GitHub has less build-in services but offers a lot of integrations with
many different programs and services. Besides that Visual Studio Code, the
overall preferred code editor (Stackshare, 2022), has easier integrations for
GitHub.

These are the reasons why GitHub was chosen to be the code hosting platform.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 30/71

10.2.2.2 Monorepository or single repositories

The more elaborate question: will the project be in a monorepository or in two
single repositories?

First, what are the differences and what are the effects of choosing either one.

A monorepository, also known as a monorepo, is a single repository with multiple
projects. This could be a single frontend + backend but it could also consist of
more than two projects. In fact, most of the Google products exist in a monorepo
(Levenberg & Potvin, 2016).

An advantage of a monorepo is that there is more consistency within a
monorepo. You have possibilities to make shared libraries which could include
types, models or even components. But there could also be more consistency
while deploying. When adding a feature, a single pull request can be made for
both the frontend and the backend meaning there is no need to navigate
between the two, or possibly more, projects.

Some disadvantages are that it is harder to separate the responsibilities of each
project and it can be more tough to deploy. You must find a platform that
supports the deploying of a monorepo (Powell, 2022) (Nx, n.d.).

We decided to keep all the code for this project in a monorepo based on the
advantages above.

Nx was chosen as the tool to maintain the code repo because it simplifies and
automates a lot of work. It has a predefined structure, and you can easily
generate a project or library and all required configuration will be added
automatically

Nx makes scaling different applications easier by doing code change analysis to
see what apps or libraries are affected by a particular pull request

Nx also has a plugin for Visual Studio Code called Nx Console. It does what the
command-line version of Nx does - it analyses the same meta information to
create the needed UI. This means that anything you can do with Nx, you can do
with Nx Console. This makes developing and testing even easier (Nx, n.d.) (Nx,
n.d.).

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 31/71

10.2.3 How to deploy?

There are different ways to deploy an NX app. You can deploy it as a whole,
having it update in its entirety every time an update is pushed. Or you can deploy
the apps separately, which would mean there is more networking going on if it’s a
backend and frontend.

The three options that directly came to mind were AWS (Amazon Web Services),
DigitalOcean and Heroku. AWS, DigitalOcean and Heroku are cloud infrastructure
providers. These providers have are in different price ranges, they are mainstream
and they provide what would be necessary to deploy this project.

You could say AWS is the most flexible, you can do anything and make all different
types of configurations. This is also the tricky part.

DigitalOcean is still flexible but you have a lot of preconfigured options and guides
on how to use the different services.

Heroku is the most rigid of the three. However, they do offer full stack deploying of
NX apps which the other services don’t.

Pricewise AWS would be the cheapest option, especially when the product is
being used more. Heroku is the most expensive when the product is being used a
lot but starts with a free tier. DigitalOcean starts at $5 but the price doesn’t
increase as fast.

For these reasons the project is being set up with Heroku.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 32/71

10.3 How do you make a Jest plugin?

Having the frontend and backend set up it is now time to get the data of each test
run into the database. The most efficient way of doing this is to hook into Jest
itself.

Jest has the option to add a watch plugin to a project. This means you can add
your own code and make use of the hooks Jest exposes.

Hooks that Jest exposes are shouldRunTestSuite, onTestRunComplete,
onFileChange. The names do speak for themselves.

The hook that will be used to retrieve the data and to send it to the API is the
onTestRunComplete hook. The hook gets the results in the format seen in Figure
22 (JestJS, n.d.).

To create a watch plugin for Jest all you have to do is generate a project with
Node and import this in the project you would like to hook up.

Creating such a project is done by picking or creating a folder, opening a
terminal, switching to the right directory and writing “npm init” in the terminal. This
generates a package.json file.

In this folder you will create a file index.js (or ts if it’s going to be Typescript). In this
file you will create a JavaScript class which could look like the class in Figure 21.

Once this is created it can be pointed towards from within the jest.config.ts file of
the project.

Now the only issue is that this cannot be reached from outside the computer it
has been created on. To solve this a NPM package can be made, now it can be
imported from within any Node project.

This is done by writing “npm publish [<folder>]” in the terminal.

Figure 21: Example of a Jest Watch plugin

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 33/71

Figure 22: Test result type from Jest

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 34/71

10.4 When do we mark a test as flaking?

One of the most important things is to differentiate between a test that is flaking
and a test that is failing.

The criteria of a failing test is that the code has been changed. One of the Jest
hooks that is available is the onFileChange hook. As the name suggests it
retrieves all the test paths that Jest is watching.

The files retrieved from this hook in combination with the test results can conclude
if the test has been changed, and thus if the test is failing or flaking.

The only issue we have is that Jest Watch is disabled in CI pipelines. This means
there will have to be another solution to retrieving the flaking tests in online
environment. Since there is no time to follow up on this this would be a great next
step in research.

10.4.1 When did it stop flaking?

As easy as it is to mark a test as flaking, it is a little harder to decide when it
stopped flaking.

As we know a flaking test is not predictable. There is a possibility a test flakes once
every 100 runs. This means that you can’t unmark a flaking test if it has passed 10
times.

You need to find a balance. You could say that if there has been a change to the
test you remove the marker and add it again if it flakes again. Or you could
remove the marker if it has been changed and wait a few runs to remove the
marker.

In this case it makes more sense to remove the marker after a change in the test.
If the test flakes again after the marker will be added again. Taking this approach
a developer can feel better about his work because their effort is rewarded.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 35/71

11 How could the project be sustainable?
The project will be open source, meaning there is no direct payment for the usage
of the tool. However there are costs for the tool. The tool needs to be hosted and
the data needs to be stored.

If the tool won’t be used, it won’t cost much because there are a lot of free tiers to
host both the apps as the database. But when it will be it would already have
been taken into account.

A structure that comes along often in the open-source community is pay for what
you use, also called freemium. If you can host the apps yourself you can use
everything for free. If you want the convenience of having it hosted, you can pay
for that service.

There will also be a free tier which is designed to get a sense of how the tool works
or that can be used for small projects.

11.1 When do you need pay?

As said before, if you want the service to be hosted for you, you will have to pay.
The question is, when do you need to pay?

Within this project you cannot focus on how many projects or runs a person or
company has tracked because the size of the project depends on the total of runs
and the run depends on how many tests there are within a project.

This means that if a company can track one project for free and they’ll track it for
a year it will cost a lot of money.

Looking at the data model, it is quite easy to see what datatype is being used the
most. In this case it is the TestResult table. For every test there are multiple test
results, one for each run.

Putting a cap on the maximal test results mean a person or company can track
multiple projects, and thus get familiar with the tool, but cannot drain all the
resources.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 36/71

12 Result and Discussion

12.1 Result

In this chapter we quickly summarize the results produced by this research. Next
to the written research we also developed a proof of concept to prototype the
findings from the research.

12.1.1 Research

The definition of a flaking test is a test that can either fail or succeed without
having changed any relevant code. The category of tests that flake the most
within the product of Velory are the Visual Regression Tests/integration tests.

To gain insights in the bigger picture and in the specifics of why a test can
possibly flake an analysis script had been made. These results are being used to
visualize the problem.

With inspiration from similar products and the results from the analysis different
dashboards have been composed. There are three general dashboards and
some additional dashboards with more specific information.

The project dashboard has general information about the project and some
insights on how severe the flaking problem is. The test dashboard in which you
find the specifics of that test and the history of flaking of that test. This gives the
information that could help solve the flake. The run dashboard has more specific
information about the run and the statistics of test flaking within that run, which
could also help solve the flaking tests.

The flaking test dashboard shows the current flaking tests within the project in
order of severity (how often it has flaked). This can be used to determine what
test has a priority to fix.

The project is realised with ReactJS, NestJS and Postgress. The code is stored on
GitHub and will be deployed on Heroku. It will be sustainable by making use of the
freemium model.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 37/71

Beside all the research that has already been carried out and the questions that
are already answered there are still a few unanswered questions.

Are the results from the analysis similar to other companies? This use case has
been specifically for Velory so the biggest problem of Velory had to be solved, but
would the results of other companies also point out that integration tests are the
most prone to flaking?

Could this tool be more than a test flaking capture tool specifically for Jest? The
backend and frontend are not Jest specific, in theory this would mean that any
testing framework could sent data to the backend and have it analysed.

Are there more possible insights about test flaking based on the current data?
Having more eyes and more minds could result in gaining more insights in the
test results we currently have. This is an exiting thought because it could mean
that solving flaking tests can be made easier.

What is the best way to test a Jest plugin? During the development process this
felt like it was impossible. Having more time to research this could make the
process of developing this way easier.

How do we get test results from the CI pipeline? At first it seemed possible to get
the test results from a CI pipeline via a Jest Watch plugin. After reading an article
it became clear it wasn't because the Jest Watch option is not available in CI
pipelines because usually it uses unnecessary computing power. There has to be
an alternative way of achieving this result.

12.1.2 Product

The product will be an open-source test flake capture tool for software projects
that use Jest. It captures the flaking tests both from CI pipelines and from local
test runs. Developers can use the different dashboards to help solve flaking tests
and a tech lead or CTO can gain useful information about the current status of
test flaking. The product can be used by anyone following the freemium model.

Currently, the complete foundation of the product has been made. The database
is set up, the backend has all the API routes, the first dashboard is completed, and
a start has been made on the Jest plugin.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 38/71

The MVP planned for this project was a working backend and frontend including
all the base features like collection and aggregating test results and displaying
them in a useful manner. Unfortunately, not all dashboards have been finished in
time. Due to a delay in design and wireframing only the general overview is
finished. This, however, still demonstrates the intent and usefulness of the project
(Visser, Grimalkin, n.d.).

From here on the other dashboards can be developed, since the designs are
ready to be implemented. Furthermore, to complete the original vision a
dedicated server and payment system can be implemented to support the
freemium model.

12.2 Discussion

In this chapter I discuss any flaws, open ends or continuations for this research
and accompanying project.

As told before there are a few unanswered questions that need some attention.
There also are a few subjects that would be amazing if continued upon.

12.2.1 Restrictions

Most of the research is done within the boundaries set by Velory. The project has
mainly been for their benefit. Since it’s an open source project it could be useful to
research different projects and include the findings in further product design. By
taking open source projects as use case we can analyse a broad set of different
types of projects. Running their test suites N amount of times and injecting the
data into the tool could result in a more complete picture and a more general
useful product for other use cases.

This project has been restricted to the use of Jest only. However, there are a lot of
other testing frameworks. The current backend and frontend are test-framework
agnostic. This means, that when other frameworks allow to extract the testing
data on runtime, they could be used as input for our tool as well.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 39/71

12.2.2 Open ends

What is the best way to test a Jest plugin? For this question there has to be desk
research. In the short time I've researched this nothing came up. If there is no
proper answer then it could be asked on forums like StackOverflow or there are
some experiments that could be done.

How do we get test results from the CI pipeline? This is a big question and it feels
terrible that I haven't been able to answer this yet! The approach that can be
taken with this is to look at how Gradle has done this. Do they run their pipelines
themselves? If they do, is there another way to hook into Jest to retrieve the test
data? Maybe in the form of a reporter?

12.2.3 Improvements and opportunities

An improvement that can be made to matching the error categories. A division
can be made for the "toMatch" category. This error often contains more
information, like what it couldn't match to. Having this split up would give more
insights and it would help developers fix flakes faster.

An opportunity that would be fun to follow up on are the different ways to find the
flaking tests. Writing a script that puts the numbers of the coverage of the code to
the amount of flaking tests is a very cool concept!

Another opportunity is to pick up another framework for the frontend. RemixJS
sounds like it would suit the project very well. If I ever get the chance to rewrite it, I
would.

A big and innovative opportunity is to dive deeper into solving the flakes. An idea I
have to continue upon what TestProject has made is to run every test in a single
environment. This could show tests that flake because of shared data, other
environment issues or mocking issues.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 40/71

13 Reflection
Having worked at a really fun company with amazing colleagues in a wonderful
city has giving me a lot to reflect on as well.

As elaborated in the preface I have been doing this internship abroad. In Sweden
to be specific. I've been living on my own for the past 6 months and I have learned
a lot, both about myself as in the field of work.

Living abroad has played a big part during this internship.

13.1 Process

When I started at Velory I was warmly welcomed by the colleagues in the
Gothenburg office. Bruno, one of my direct colleagues, was assigned to get me
started.

He helped me setup a few things and showed me around in both the physical
office as in the product they've been working on. The first few days I was to
shadow Bruno.

He picked up an important item and he walked me through his process of getting
this into the product. I quickly caught on and realized he was working on
something that would consume a lot of time that he would have to delete later
on. I brought it to his attention and we discussed it.

Having this as my first day felt like a big win and I was ready for more!

13.1.1 After those first few days

I started on getting to know more about flaking tests. I had done a bit of research
before to see if the assignment was achievable but I didn't really get the chance
to dive deeper.

I watched a lot of video's, read a lot of articles and tried to find out as much as I
could.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 41/71

After a week of watching Bruno work and the pipeline failing at his pull-requests I
quickly realized how big the issue was. I logged some of the issues but there were
too many. I noticed some of the issues were reoccurring which was inline with
what I had learned about test flaking.

When I started working on according to my planning, meaning I started my Jest
research, I realized that this wasn't a priority.

The reason why I put Jest as a starter was to gain more insight into why tests
would flake but I learned more from reading about it else where then looking into
Jest. Jest was just the test runner, all I could get from that were the test results.

I chose to review all of my choices in the planning and in the deliverables. I sat
down with a lot of post its and I started brainstorming.

13.1.2 Brainstorming session

I didn't want to do this project with the wrong end in mind. So doing a
brainstorming session meant having a clean slate and get ideas from the "why's"
and "what's".

I started with what is the problem? And why is it a problem? I tried to find the
minimal solution to fix this problem.

A few of the issues Velory had was that a flaking test costs a lot of time to fix, that
it costs money, that the developers lost faith in the testing suite and that the
developers felt really bad every time a test flaked.

With this in mind I could setup the right question to answer in this thesis: “How do
we manage flaking tests to reduce cost and preserve the mental well-being of
the developers?”.

Now, beside the reasons behind why this was an issue I had to find a solution that
I would be able to finish in set time and that meant specifying what different
solutions there could be.

At first, how can we detect flaking tests? There are four ways to detect flaking test,
two of which are more advanced.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 42/71

The first two proven ways of detecting flaking tests are to get the test results from
each run or to brute force the test suite, meaning running it over and over again.
These ways are similar but the difference is that the brute force way takes up a lot
of resources and that the gathering of the results take time.

The two innovative ways of detecting flaking tests are to look at the test results in
combination with code coverage or to analyse the code for code smells.

To incorporate code coverage means that if the code coverage is different for
each run while the code hasn't been changed there is something wrong with the
tests.

To incorporate code smells is really advanced. This technique would look at the
different angles of the code to see if there are code smells. There is a theory that if
you have clean code, meaning no code smells, there will be way less flaking tests.

Taking the time that I had left into consideration I thought it'd be best to start off
with the first way. With this solution I had the biggest shot at finishing a product.

13.2 Product

Going into this thesis I expected myself to deliver a completely functional product,
a MVP. Having not completely delivered that I am a little disappointed.

I knew this journey was going to be tough but it still wasn't what I expected. Having
more struggles in my personal life and within the company, I'll come back to this
later, I get why this is the way it went down.

At the time of writing this reflection I have the absolute basics setup for the
product, there is a functional frontend and backend and the wireframes are being
turned into actual pages. The database is setup and the basics of the Jest plugin
stand.

Jack and I even thought of a name! Grimalkin. Which refers to a witch that can
transform into a grey cat. The cat in this name is a wink to Schrodinger's cat.

This product is far from done and I will continue working on this after this thesis.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 43/71

13.3 Competences

During this thesis there were a few competences that needed to be proven. Those
were categorised in two categories. The A-competences, which are about the
general attitude and skills of a student, and B-competences, which are about the
field of expertise, so in this case Software Engineering.

13.3.1 A-competences

The A-competences are Research, Learn to Learn, Work professionally and
Innovation.

Research is a big part of a thesis. As seen in the Jest research, the document has
a clear and function format. The results are ordered by question and can be
referred back to when necessary.

The Learn to Learn competence is already being fulfilled by moving to Sweden.
The learning curve of finding a company to work at, finding a place to live at,
learning about the culture is already big. Let alone doing all of it, like moving and
having to live there on your own, it is massive.

Work professionally, meaning being in a work place and communicating and
planning accordingly went well. I've talked a lot with my company supervisor and I
had a lot of communicating to do when the company went through a
reorganisation.

Innovation wasn't hard with this subject. Besides having the brainstorm session to
figure out the problem even better. There had to be a lot of out-of-the-box
thinking to figure out how to deal with certain issues like how to deal with the
reorganisation and how to work from home.

13.3.2 B-competences

The B-competences were harder to keep an eye on. In the graduation plan these
competences were chosen and it was explained how these would be proven.

There has been a big change in schedule and deliverables which made it harder
to track. Besides of having examples in the content of this thesis there is a chapter
for each competence to show how I complied with them.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 44/71

13.3.2.1 Analysing software

This competence was focussed on the research within the Software Engineering
field of expertise.

There were a lot of researches that took place. Some were thorough and got a
dedicated document to it. Others were less formal and noted were taken in
Notion, the program I used to keep track of all my sources, summaries and to-do
items.

Some of the more official researches that took place were " What are flaking
tests?", "How does Jest work?", "How can you find flaking tests?", "What
programming languages are we going to use?" and "How do you make a Jest
plugin?".

Some of the more unofficial but important researches were "How do I aggregate
test data to a useful format?", "How do other companies solve this problem?",
"When do we mark a test as flaking? And when did it stop?" and "How could the
project be sustainable?".

13.3.2.2 Software engineering

This competence is shown by the research, "What programming languages are
we going to use?".

By researching what programming languages could be used, and with that what
frameworks, I have shown I can weigh out the pros and cons to come to the best
decision. I took into account that the project will be open-source and that the
options I chose would be around for a while.

Beside the programming languages I had to look into where to deploy the apps
and what the ideal environment (monorepo vs single repos) would work best for
this application.

All these decisions were made after a discussion about my findings with
colleagues.

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 45/71

13.3.2.3 Developing software

This competence is shown in the script to analyse the test data, the Jest plugin
and in the source code for the project, Grimalkin. All the code can be found on my
GitHub page as public projects.

The source code for Grimalkin exist of both a frontend and backend. The
components within this project have been carefully chosen to be easy to learn
and be readable.

To keep the standard of the project high all the pull-request will be reviewed. This
means that all the code that is submitted to the main branch, meaning the code
that will be deployed and continued to be worked on, will be checked and tested
by another developer.

13.4 Experience

As talked about before, I have been living in Sweden on my own during my entire
thesis.

To me this meant being away for half a year. Being away from family (including a
1 year old nephew!), friends, my cat and, the biggest one of all, my partner who I
had been living with for the past few years.

This was a challenge on it's own and video calling with them has helped a bunch.

A big, tough lesson I learned during my time at Velory was that you never know
what a company is going through.

Everything was well and things seemed to go amazing, until one Monday when a
reorganisation was announced. This meant that half of the company was being
laid off.

This in combination with Jack leaving to take on a new challenge meant a lot
more people were leaving too. Jack was close friend with Bruno and Adam and
they both took on new challenges too. This left the Gothenburg office with only
one employee, me.

They closed the office and this meant I had to work from home the last week. This
was a hard pill to swallow but a really valuable lesson!

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 46/71

14 Afterword
I would like to thank you for reading this thesis. It means a lot to me and I'm very
grateful for this opportunity and the time you have given me to share my
research and my experiences.

I hope you have learned something and maybe I even inspirited you to get the
absolute most out of the situation you're in!

I would love to get your feedback, questions or ideas and I'm always open for a
discussion! Reach out to me on LinkedIn if you are up for any of those things.

https://www.linkedin.com/in/sanne-visser-dev/

I can't express how grateful I am to the people who have sticked by me till the end.

Thank you Jack, for helping me even when you've left the company and being
there for me when I needed it.

Thank you Lars, for being my biggest supporter even with this big distance
between us.

And thank you reader, for your time and energy. I appreciate it!

Cheers,
Sanne

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 47/71

15 Bibliography
Avidon, E. (2019, May). flaky test. Retrieved from TechTarget:

https://whatis.techtarget.com/definition/flaky-test

Bose, S. (2021, January 18). Introduction to Visual Regression Testing. Retrieved
from BrowserStack: https://www.browserstack.com/guide/visual-
regression-testing

Craske, A. (2021, June 18). How Google Does Monorepo. Retrieved from QE Unit:
https://qeunit.com/blog/how-google-does-monorepo/

Cypress. (n.d.). Flaky Test Management . Retrieved from Cypress:
https://docs.cypress.io/guides/dashboard/flaky-test-management

Goss, D. (2022, February 23). Snapshot Testing. Retrieved from JestJS:
https://jestjs.io/docs/snapshot-testing

Gradle. (2020, June 5). Best Tool for Managing Flaky Tests. Retrieved from
Youtube:
https://www.youtube.com/watch?v=C5_jgsRANuI&ab_channel=Gradle

Gradle. (n.d.). Failure Analytics. Retrieved from Gradle: https://gradle.com/gradle-
enterprise-solutions/failure-analytics/

Integration testing . (2021, October 11). Retrieved from Wikipedia:
https://en.wikipedia.org/wiki/Integration_testing

JestJS. (n.d.). Watch Plugins. Retrieved from JestJS: https://jestjs.io/docs/watch-
plugins

Levenberg, J., & Potvin, R. (2016, July). Why Google Stores Billions of Lines of Code
in a Single Repository. Retrieved from Google Research:
https://research.google/pubs/pub45424/

Microsoft Visual Studio. (2017, October 25). Eliminating Flaky Tests. Retrieved from
Youtube:
https://www.youtube.com/watch?v=Q4c5cvt1b3k&ab_channel=MicrosoftV
isualStudio

Nx. (n.d.). Monorepos. Retrieved from Nx: https://nx.dev/guides/why-monorepos

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 48/71

Nx. (n.d.). Nx Editor Plugins. Retrieved from Nx: https://nx.dev/using-
nx/console#nx-console-for-vscode

Palmer, J. (2019, October 8). Assert(js) 2019: Jason Palmer (Spotify) - Test
flakiness; methods for dealing with flaky tests . Retrieved from Youtube:
https://www.youtube.com/watch?v=38pW08_nY_k

Palmer, J. (2019, November 18). Test Flakiness – Methods for identifying and
dealing with flaky tests . Retrieved from At Spotify:
https://engineering.atspotify.com/2019/11/test-flakiness-methods-for-
identifying-and-dealing-with-flaky-tests/

Palmer, J. (2019, November 18). Test Flakiness – Methods for identifying and
dealing with flaky tests . Retrieved from atspotify:
https://engineering.atspotify.com/2019/11/test-flakiness-methods-for-
identifying-and-dealing-with-flaky-tests/

Powell, R. (2022, May 13). Benefits and challenges of monorepo development
practices. Retrieved from Circle CI: https://circleci.com/blog/monorepo-
dev-practices/

SonarCloud. (n.d.). Save time and effort with higher Code Quality. Retrieved from
sonarcloud: https://sonarcloud.io/code-quality

Stack Overflow. (2021, June 15). 2021 Developer Survey. Retrieved from Stack
Overflow: https://insights.stackoverflow.com/survey/2021#most-popular-
technologies-language-prof

Stackshare. (2022, May 26). IntelliJ IDEA vs Visual Studio Code. Retrieved from
Stackshare: https://stackshare.io/stackups/intellij-idea-vs-visual-studio-
code

TestProject. (n.d.). AI That Works For You . Retrieved from testproject:
https://testproject.io/ai-tools/

TestProject. (n.d.). TestProject. Retrieved from Github:
https://github.com/testproject-io

Visser, S. (2022, February 17). Capturing Test Flaking - Graduation Plan. Retrieved
from Google Drive:
https://drive.google.com/file/d/118yctL8c4ck5e9yaur7sam1kxq41H9jT/view?
usp=sharing

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 49/71

Visser, S. (2022, March 4). How does Jest work? Retrieved from Google Drive:
https://drive.google.com/file/d/12M1W1Bqqj1xUBdn9Q59KAhElqxOAnrcS/vie
w?usp=sharing

Visser, S. (2022, June 11). Research. Retrieved from Google Drive:
https://drive.google.com/file/d/1H7tsD6SE7kx28_1Yv853t9uPcHdNQ8Ke/vie
w?usp=sharing

Visser, S. (2022, June 11). What programming language is going to be used?
Retrieved from Google Drive:
https://drive.google.com/file/d/1GuoSWZvvqanllJFBXFYDUVwlN2WWNoUk/vi
ew?usp=sharing

Visser, S. (n.d.). Functional and technical design. Retrieved from Google Drive:
https://drive.google.com/file/d/1Jh-
ovnYveyfxYTWbOM3QZnHQ1BVpr8fO/view?usp=sharing

Visser, S. (n.d.). Get Test Results. Retrieved from Github:
https://github.com/VisserSanne/AnalyseJestTests/blob/main/getTestResul
ts.bash

Visser, S. (n.d.). Grimalkin. Retrieved from GitHub:
https://github.com/VisserSanne/grimalkin

Visser, S. (n.d.). Test Analysis Script. Retrieved from Github:
https://github.com/VisserSanne/AnalyseJestTests/blob/main/analyzeTest
s.ts

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 50/71

16 Appendix: Figures
Figure 1: Stakeholder analysis

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 51/71

Figure 2: Interface of test result from Jest

Figure 3: Interface of SingleTestResult

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 52/71

Figure 4: Interface of AssertionResult

Figure 5: Interface of SnapShot

Figure 6: Interface analysis result

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 53/71

Figure 7: Enum for error reasons

Figure 8: Visualisation of test flaking at Spotify

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 54/71

Figure 9: Dashboard of all the test runs from Microsoft Visual Studio

Figure 10: Cypress Flaking Test Management

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 55/71

Figure 11: Example TestProject AI

Figure 12: Gradle dashboard

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 56/71

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 57/71

Figure 13: Wireframe project dashboard

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 58/71

Figure 14: Design project dashboard

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 59/71

Figure 15: Design flaking test overview

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 60/71

Figure 16: Design run dashboard

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 61/71

Figure 17: Design overview of runs

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 62/71

Figure 18: Design test dashboard

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 63/71

Figure 19: NoSQL Data Model

Figure 20: SQL Data Model

Figure 21: Example of a Jest Watch plugin

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 64/71

Figure 22: Test result type from Jest

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 65/71

17 Appendix A: Get Test Results

18 Appendix B: Test Analysis Script

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 66/71

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 67/71

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 68/71

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 69/71

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 70/71

 Capturing test flaking - Thesis Sanne Visser

V3.0.0 14 June 2022 71/71

19 Appendix C: Result from script

