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Abstract

This paper aims to shed light on what becomes of discrete torsion within heterotic orbifolds when they 
are resolved to smooth geometries. Gauged Linear Sigma Models (GLSMs) possessing (0,2) worldsheet 
supersymmetry are employed as interpolations between them. This question is addressed for resolutions of 
the non–compact C3/Z2 × Z2 and the compact T 6/Z2 × Z2 orbifolds to keep track of local and global 
aspects. The GLSMs associated with the non–compact orbifold with or without torsion are to a large extent 
equivalent: only when expressed in the same superfield basis, a field redefinition anomaly arises among 
them, which in the orbifold limit reproduces the discrete torsion phases. Previously unknown, novel reso-
lution GLSMs for T 6/Z2 ×Z2 are constructed. The GLSM associated with the torsional compact orbifold 
suffers from mixed gauge anomalies, which need to be cancelled by appropriate logarithmic superfield de-
pendent FI–terms on the worldsheet, signalling H–flux due to NS5–branes supported at the exceptional 
cycles.
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1. Introduction

Given the current astrophysical, collider and cosmological data, the standard cosmological 
and particle physics models may provide viable parameterisation of all observational data up the 
Planck scale. Obtaining further insight into the basic origin of these parameters necessitates the 
synthesis of the gauge quantum field theories with gravity. The most developed contemporary 
mathematical framework to explore the gauge–gravity unification is string theory.

The consistency conditions of string theory require the existence of a finite number of degrees 
of freedom beyond those observed in contemporary experiments. These degrees of freedom may 
appear in different guises. They may be interpreted as extra target space dimensions with vector 
bundles, or as two dimensional fields propagating on the string worldsheet. Ultimately, the differ-
ent representations may describe the same physical objects and it is vital to extract the physical 
characteristics, irrespective of the particular language used.

The Z2 × Z2 orbifolds of six dimensional toroidal compactifications are among the most 
studied string constructions to date. They have been used to derive phenomenological string 
models and to study how the parameters of the Standard Model may be derived from string 
theory, using their free fermionic [1–6] and orbifold [7–10] realisations, and their smooth 
resolutions [11]. Other phenomenological interesting smooth compactifications have been in-
vestigated in e.g. [12–18]. These phenomenological studies encompass supersymmetric and 
non–supersymmetric string vacua [19–23] with symmetric and asymmetric boundary condi-
tions [24,25] and the Z2 ×Z2 orbifolding can enable the fixing of all of the untwisted geometrical 
moduli [26].

The relation between worldsheet string models and their effective field theory geometrical 
limits presently occupies much of the discourse in string phenomenology in the form of the so–
called “swampland program”. This program aims to address the question when does an effective 
field theory model of quantum gravity have an ultra–violet complete embedding in string theory, 
and hence can be viewed as a bottom–up approach to the study of this relation. An alternative 
top–down approach seeks to find the imprint of worldsheet symmetries in the effective field 
theory target space models. Notable examples of this approach include mirror symmetry [27]
and spinor–vector duality [28–34].

The worldsheet constructions of string vacua consist of a perturbative expansion in string am-
plitudes. They are constrained to preserve the classical symmetries of reparameterisation and 
Weyl invariance, i.e. they are invariant under modular transformations of the worldsheet param-
eter, and are encoded in the one–loop partition function. The requirement of modular invariance 
entails that the partition function is a sum over different sectors that combine to form a mod-
ular invariant object. While most of the signs in this sum are dictated by modular invariance, 
some other may be arbitrary and play a vital role in determining the physical properties of the 
string models. In particular, the origins of mirror symmetry and spinor–vector dualities may be 
traced back to (generalised) discrete torsions. Discrete torsions typically arise in the worldsheet 
constructions as a result of multiple modding out operations. For example, we may mod out by 
several twists of the internal dimensions; or by identifications by translations of points in the 
internal compactified space; or we may combine actions of these shifts and twists. Additionally, 
in the heterotic–string these may be combined with an action on the gauge bundles, which results 
in a reduction of the gauge symmetry. The spinor–vector duality, for example, arises due to the 
action of Wilson lines on the gauge bundles.

The interpretation of (generalised) discrete torsions from the geometrical effective field theory 
point of view is obscured as one does not have an exact partition function description in which 
3
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these discrete torsion phases are present. It is therefore of interest to elucidate the manifestation 
of the discrete torsions in the effective field theory limit. If there is a discrete action on the target 
space, this can be accompanied with discrete torsion in the form of some non–trivial action on the 
B–field [35–37]. However, in this paper we wondered what happens to the discrete torsion be-
tween orbifold twists, if one fully resolves the orbifold so that no discrete symmetries are left on 
the smooth target space. We aim to investigate this manifestation using the Gauged Linear Sigma 
Model (GLSM) representation of string vacua. GLSMs provide a particularly appealing frame-
work to explore this question, as they provide a single framework in which one can interpolate 
between different regimes, like the singular orbifold limit and smooth compactifications.

1.1. Main paper objectives

One of the central objectives of this paper is to systematically study the discrete torsion phases 
in smooth string compactifications using the GLSM language to bridge the gap between the 
orbifold CFT formulations and the effective field theory descriptions for smooth target spaces. 
Concretely, this program is considered for Z2 × Z2 orbifolds of free CFTs where the discrete 
torsion is known as the Vafa–Witten phase.

First resolutions of the non–compact C3/Z2 ×Z2 orbifold are considered in the GLSM lan-
guage. To have a particular simple context the focus is on line bundle resolutions generated by 
physical blowup modes, twisted string states without oscillator excitations. The precise identi-
fication of such resolution GLSMs from this data was worked out in the past [38]. Since only 
the standard embedding bundles would allow for a (2, 2) worldsheet description, the incorpora-
tion of line bundles requires a (0, 2) GLSM language. For both orbifold CFTs without and with 
torsion the corresponding resolution GLSMs are constructed. In order to compare them at the 
Lagrangian level on the worldsheet, one has to ensure that one uses the same superfield basis. 
(In the path integral formulation it only make sense to compare theories using their classical 
actions when the same integration field variables are employed.) Hence, as the charges of the 
superfields in the GLSMs of the non–torsion and the torsion orbifolds do not agree, superfield 
redefinitions are needed before this comparison is possible. As a cross check of the applied meth-
ods the GLSMs are considered in the deep orbifold regime to investigate how the torsion phases 
may be recovered.

The study of compact models with torsion is particularly intriguing since certain fluxes cannot 
be pushed to infinity and thereby out of the realm of the used description. Hence, the second part 
of the paper focuses on resolutions of compact T 6/Z2 × Z2 orbifolds without or with discrete 
torsion switched on. Before, a careful study of the imprints of discrete torsion can be investigated, 
first GLSMs for resolutions of T 6/Z2 ×Z2 have to be set up. In the past GLSMs for compact orb-
ifold resolutions were worked out in [39]. Even though the necessary techniques were developed 
there, GLSM resolutions of T 6/Z2 × Z2 were not considered explicitly. Moreover, that paper 
used the (2, 2) language throughout. However, to match up with the considerations of the non–
compact cases, it is necessary to describe resolutions of T 6/Z2 × Z2 here using (0, 2) GLSM 
terminology. Having fixed the geometrical aspects in the GLSM description, similar blowups are 
considered induced by non–oscillator twisted states as in the non–compact context. However, for 
the compact GLSM resolutions this leads to more complicated bundle constructions which take 
features of standard embedding bundles on the underlying torus cycles mixed with line bundles 
on the resolved Z2–singularities. With all this in place, the resolution GLSMs of the compact 
orbifolds without and with torsion can be investigated.
4
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1.2. Paper organisation

The main part of the paper starts with a short review in Section 2 of some features of Z2 ×
Z2 orbifolds to provide the necessary foundation for the subsequent investigations. Section 3
summarises some essential prerequisites about (0, 2) GLSMs without which the remainder of 
this manuscript might be a bit hard to follow for non–experts. Further technical details on this 
topic are diverted to Appendix A. Next, Section 4 focuses on GLSM resolutions of non–compact 
C3/Z2 ×Z2 without and with torsion. Some properties described there rely on charge matrices 
which are collected in Appendix C not to interrupt the main flow of this section. Section 5
repeats these exercises for compact T 6/Z2 × Z2 GLSM resolutions focusing on the additional 
features and complications that compactness brings. Appendix B derives gauge anomalies in two 
dimensions and provides (0, 2) superspace expressions for them which are used frequently in 
Sections 4 and 5.

2. Properties of ZZZ2 ×ZZZ2 orbifolds

The purpose of the present section is to recall some crucial information about heterotic 
Z2 × Z2 orbifolds to understand their resolutions using GLSM methods that are laid out in 
subsequent sections. Hence, it does not aim to give a complete review of heterotic orbifolds (for 
more comprehensive discussions see e.g. [40–44]). In particular, properties of Z2 ×Z2 orbifolds 
may be found in e.g. [10,45–48]. A crucial feature of Z2 ×Z2 is that they may posses discrete tor-
sion [27,49]. As is recalled here this feature determines which twisted states survive the orbifold 
projections.

2.1. Orbifold twists and gauge shift vectors

The bosonic description of the Z2 × Z2 orbifold starts with the introduction of two twist 
vectors

v1 = (
0,0, 1

2 , - 1
2

)
, v2 = (

0, - 1
2 ,0, 1

2

)
, (2.1)

which act on the complex coordinate fields zu with u = 0, 1, 2, 3. Here z0 denotes the four di-
mensional non–compact directions in light–cone gauge. (Since the main interest is on the internal 
coordinates, u is taken to label the internal coordinates and then runs over u = 1, 2, 3 only.) 
Thus the first entries of the twist vectors indicate that the twists act trivially on the four dimen-
sional Minkowski space. For the non–compact orbifold C3/Z2 × Z2 the coordinates zu ∈ C
parametrise three complex planes. While for the compact orbifold T 6/Z2 ×Z2 they parametrise 
the three underlying two–tori T 2. An arbitrary element g of the Z2 × Z2 orbifold point group 
then corresponds to the twist vector

vg = t1 v1 + t2 v2 , (2.2)

where t1, t2 = 0, 1 label its four elements.
To complete the definition of the orbifold actions gauge shift vectors have to be given. In the 

orbifold standard embedding the gauge shift vectors are taken to be equal to these twist vectors 
augmented with the appropriate number of zero entries:

V1 = (
0, 1

2 , - 1
2 ,05)(08) , V2 = (

- 1
2 ,0, 1

2 ,05)(08) , (2.3)

and define the gauge shift embedding
5



A.E. Faraggi, S. Groot Nibbelink and M. Hurtado Heredia Nuclear Physics B 988 (2023) 116111
Vg = t1 V1 + t2 V2 , (2.4)

for each of the four orbifold point group elements. As the notation of the shift vectors suggest, 
this paper uses the E8 × E8 heterotic string for concreteness. In addition a heterotic orbifold 
might feature a number of discrete Wilson lines. In this paper the consequences of them are not 
considered.

2.2. Discrete torsion phase

At the one loop level it is conventional to distinguish between constructing elements g, h of 
the orbifold group, which define the different orbifold sectors of the theory, and the projecting 
elements g′, h′, which implement the appropriate orbifold projections. Hence, on the one loop 
worldsheet torus a heterotic orbifold model is defined uniquely by the properties introduced 
above up to a possible discrete torsion phase [27,49]

�×t1,t2
t ′1,t ′2

= eπi ε×(t1t
′
2−t2t

′
1) (2.5)

in its one loop partition function [49]. The possible torsion phase leads to a specific interplay 
between the constructing and projecting orbifold group elements. Clearly, if ε× = 0 there is no 
torsion as the torsion phase is equal to unity, but if ε× = 1 the model possesses discrete torsion 
as the phase is non–trivial.

An alternative equivalent way that discrete torsion can be introduced is by so–called brother 
models, i.e. models with gauge shift vectors that differ from the original ones by appropriate 
lattice vectors [50]. In particular, for the model (2.3) the brother model has gauge shift vectors

V×
1 = −V1 = (

0, - 1
2 ,

1
2 ,05)(08) , V×

2 = −V2 = ( 1
2 ,0, - 1

2 ,05)(08) , (2.6)

so that their differences are indeed lattice vectors.

2.3. Orbifold spectra with(out) torsion

Any state in the orbifold spectrum may be characterised by two shifted momenta

pg = p + vg , Pg = P + Vg , (2.7)

where the vector p is an element of the lattice V4 ⊕ S4 and P of (O8 ⊕ S8) ⊗ (O8 ⊕ S8). (Using 
the common notation Vn, On and Sn for the vector, adjoint and spinor lattices in n dimensions, 
respectively.) The shifted momenta of level matched massless states are subject to the following 
two conditions

1

2
p2
g = 1

2
− δcg ,

1

2
P 2
g = 1 − δcg − ωg · Ñg − ω̄g · Ñg , (2.8)

where the orbifold vacuum shift

δcg = 1

2

∑
u

ωg,u(1 − ωg,u) (2.9)

is defined in terms of ωg,u ≡ (vg)u and ω̄g,u ≡ −(vg)u which satisfy the inequalities: 0 <

ωg,u, ω̄g,u ≤ 1. Finally, (Ñg)u and (Ñg)u are the number operators that count the number of 
right–moving oscillators acting on the state. Only the states that survive the orbifold projection 
conditions,
6
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Table 1
This table lists the twisted sector spectra obtained from non–oscillator excitation states and indicates 
whether they are in the physical spectrum without or with torsion, ε× = 0 or 1, respectively.

Sector Shifted momentum Pg Repr. ε× = 0 ε× = 1

1 = (1,0)
(
1, - 1

2 , - 1
2 ,05)(

08)
(1) in out(

-1, - 1
2 , - 1

2 05)(
08); (0, 1

2 ,
1
2 ,±1,04)(

08); ( - 1
2 ,0,0, - 1

2
e
, 1

2
5−e)(

08)
(27)(

-1, 1
2 ,

1
2 ,05)(

08)
(1) out in(

1, 1
2 ,

1
2 ,05)(

08); (0, - 1
2 , - 1

2 ,±1,04)(
08); ( 1

2 ,0,0, - 1
2
o
, 1

2
5−o)(

08)
(27)

2 = (0,1)
(

- 1
2 ,1, - 1

2 ,05)(
08)

(1) in out(
- 1

2 , -1, - 1
2 ,05)(

08); ( 1
2 ,0, 1

2 ,±1,04)(
08); (0, - 1

2 ,0, - 1
2
e
, 1

2
5−e)(

08)
(27)( 1

2 , -1, 1
2 ,05)(

08)
(1) out in( 1

2 ,1, 1
2 ,05)(

08); ( - 1
2 ,0, - 1

2 ,±1,04)(
08); (0, 1

2 ,0, - 1
2
o
, 1

2
5−o)(

08)
(27)

3 = (1,1)
(

- 1
2 , - 1

2 ,1,05)(
00)

(1) in out(
- 1

2 , - 1
2 , -1,05)(

08); ( 1
2 ,

1
2 ,0,±1,04)(

08); (0,0, - 1
2 , - 1

2
e
, 1

2
5−e)(

08)
(27)( 1

2 ,
1
2 , -1,05)(

08)
(1) out in( 1

2 ,
1
2 ,1,05)(

08); ( - 1
2 , - 1

2 ,0,±1,04)(
08); (0,0, 1

2 , - 1
2
o
, 1

2
5−o)(

08)
(27)

Pg · Vg′ − pg · vg′ ≡ 1

2

(
Vg · Vg′ − vg · vg′

) + (
Ñg − Ñg

) · vg′ + ε×

2

(
t1t

′
2 − t2t

′
1

)
, (2.10)

are part of the physical orbifold spectrum. The last term in these projection conditions encodes 
the consequences of discrete torsion on the massless spectrum. Consequently, the discrete torsion 
phases only affect the twisted sectors. The resulting orbifold spectrum is conventionally divided 
in a number of sectors.

2.3.1. Untwisted sector
The untwisted sector is identified by (t1, t2) = (0, 0). This sector corresponds to so–called 

bulk states which live everywhere within the internal geometry. It contains the metric, the anti–
symmetric tensor and the dilaton degrees of freedom as well as the target space gauge fields 
and all their superpartners in ten dimensions. The non–Abelian unbroken gauge group in four 
dimensions is E6 × E8. In addition, there are three copies of charged matter in the (27) + (27)
of E6 independently of whether torsion is switched on or not.

2.3.2. Twisted sectors
There are three twisted sectors with t = (t1, t2) : 1 = (1, 0), 2 = (0, 1) and 3 = (1, 1)

which only possess N = 1 supersymmetry in six dimensions1: On the non–compact orbifold 
C3/Z2 × Z2 the corresponding twisted states are localised at the three complex codimension 
two singularities of the three non–trivial orbifold twists. Each twisted sector is supported on 16 
fixed two–tori within the compact orbifold T 6/Z2 × Z2. Half of these states are projected out 
by the orbifold action of the second orbifold element. Which half depends on whether torsion is 
switched on, see Table 1, which gives the twisted states without twisted oscillator excitations.

1 Also sometimes referred to as N = 2 sectors from the four dimensional point of view.
7



A.E. Faraggi, S. Groot Nibbelink and M. Hurtado Heredia Nuclear Physics B 988 (2023) 116111
Table 2
This table specifies the left– and right–Weyl dimensions, L and R, the R–charge and the gauge charges Qi of the 
operators ∂, ̄∂, D± and the superfields which may be used in a (0,2) GLSM. The physical components of these multiplets 
are indicated as well as the indices that label them; the third line gives the total number of these multiplets.

Superfield ∂ ∂̄ D+ �a 	m 
A �M Vi Ai Fi �I ϒI

Phys. Comp. (za,φa) (λm,hm) (yA,ψA) (γM,fM) (Ai
σ ,A

i
σ̄
, ϕi ,Di) (sI ,χI )

# N� N	 N
 N� NV N�

L 0 1 0 0 1
2 0 1

2 0 1 1 1
2

1
2

R 1 0 1
2 0 0 0 0 0 0 1

2 0 1
2

R 0 0 −1 0 0 1 1 0 0 1 0 1
Q 0 0 0 (qi )

a (Qi)
m (qi )

A (Qi )
M n.l. n.l. 0 0 0

3. Geometries and bundles from (0, 2) gauged (linear) sigma models

3.1. (0,2) superfields

Two dimensional theories with (0, 2) supersymmetry admit a number of different types of 
superfields (or multiplets). Appendix A gives a short review of (0, 2) superfields on superspace 
and sets notations and conventions used in this work. Gauged sigma models are a special class 
of (0, 2) theories with bosonic and possibly also fermionic gaugings. The superfields used in 
this work are summarised in Table 2 and the labels used to enumerate them are indicated there. 
In addition, their gauge charges, left– and right–Weyl dimensions and R–charges (defined in 
Appendix A.3) are given.

The most important matter superfields are chiral and chiral Fermi multiplets. A chiral mul-
tiplet � = (z, φ) contains a complex scalar z and a right–moving fermion φ. A chiral Fermi 
multiplet 	 = (λ, h) consists of a left–moving fermion λ and an auxiliary scalar field h. In 
addition, there are chiral multiplets 
 = (y, ψ) and chiral Fermi multiplets � = (γ, f ). The dis-
tinction between these chiral and chiral Fermi superfields is made by their R–symmetry charge: 
� and 	 are neutral while 
 and � carry charge 1. The last line of this table gives the gauge 
charges and dictates the super gauge transformations of these matter superfields.

For the corresponding bosonic gaugings vector multiplets have to be introduced consisting of 
two real bosonic superfields V and A from which gauge invariant super field strengths F can be 
constructed

F = − 1
2D+

(
A − i∂̄V

)
. (3.1)

The physical components of these multiplets are the gauge field Aσ , Aσ̄ with field strength 
Fσσ̄ = ∂σAσ̄ − ∂σ̄Aσ and a right–moving fermion ϕ and a real auxiliary field D.

On the chiral Fermi multiplets fermionic gauge transformations

	 → 	 + U(�)·� , � → � + 
W(�)·� (3.2)

may act with chiral Fermi super gauge parameters. To obtain invariant action under these trans-
formations, Fermi gauge multiplets � need to be introduced with super field strengths

ϒ = D+� . (3.3)

Their physical components are complex scalars s and left–moving fermions χ .
A few comments are in order. The theories that are studied here do not define proper string 

theories as their worldsheet actions are not fully conformal. In particular, dynamical gauge fields 
8
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on the worldsheet are not scale invariant as their gauge coupling is dimensionfull. Nevertheless 
it is useful to use characterisations, like the left– and right–moving Weyl dimensions, as in the 
scale invariant limit the corresponding superconformal symmetries are recovered. Moreover, the 
“linear” in GLSMs signifies that only kinetic terms quadratic in the fields are considered, while 
in non–linear sigma models this restriction is lifted for chiral superfields.

The main reason why GLSMs are of interest for string theory is that they can provide inter-
esting insights in how geometries and vector bundles on them can arise.

3.2. Emergent effective geometry

The scalar part of GLSMs can be associated to target space geometries like weighted projec-
tive spaces, complete intersection Calabi–Yaus and many generalisations of these as was realised 
by the pioneering paper [51]. The scalar components z of the chiral multiplets � can be inter-
preted as the homogeneous coordinates of projected spaces, where the C∗–scalings are encoded 
by the scalar part of the super gauge transformations:

z → eqi ·θ z , θ = 1
2 a − i α ∈CNV . (3.4)

In the Wess–Zumino gauge the sizes of these projective spaces are set by the D–term equations∑
a

(qi)
a|za |2 = ri , (3.5)

for each i = 1, . . . , NV . (In principle there is a second sum over the scalars yA here, but they are 
typically all forced to zero as discussed below.) Here the parameters r are the real parts of the 
Fayet–Iliopoulos (FI) coefficients ρ(�) which define superpotentials involving the super gauge 
field strengths

WFI = ρ(�)·F , ρ(z) = 1
2 r + i β ∈CNV . (3.6)

This is gauge invariant if the functions ρ(�) are neutral. The target space interpretation of r are 
moduli, that set the radii of certain cycles, and β may be interpreted as axions in the effective 
geometry.

String backgrounds, like Calabi–Yaus, are often defined as hypersurfaces in such projected 
spaces. In the GLSM language this can be encoded in a (0, 2) superpotential

Pgeom = �P(�) . (3.7)

In the conformal limit, the scalar components of the algebraic equations of motion of chiral Fermi 
superfields �M lead to F–term equations:

PM(z) = 0 , (3.8)

for M = 1, . . . , N�, which precisely cut out such hypersurfaces. Consequently, the dimension of 
the resulting target space manifold M equals:

dimC(M) = N� − NV − N� . (3.9)

This should be equal to 2 or 3 if one only considers the internal manifold of complex dimension 
2 or 3; or 4 if the complete spacetime in light–cone gauge is described by the GLSM.

In addition, the GLSM description can be used to determine an atlas of coordinate patches: in a 
given phase one or multiplet set(s) of scalar fields are necessarily non–zero. Hence, by analysing 
the combined D–term and F–term equations, (3.5) and (3.8), all the coordinate patches within a 
phase of the GLSM can be determined.
9
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3.3. Emergent effective vector bundle

The part of (0, 2) GLSMs that involve the chiral Fermi multiplets can be interpreted as vector 
bundles (or as sheafs if they are not fully regular) [51–53]. The fermionic components λ of the 
Fermi multiplets 	 are line bundle sections on this manifold as their C∗–scalings read

λ → eQi ·θ λ . (3.10)

If there are no fermionic super gauge transformations and no chiral superfields 
 in the model, 
then the target space gauge background is simply a collection of line bundles.

However, in general, they describe a more complicated vector bundle V which is derived from 
a complex (generalisation of a monad construction), since they have to satisfy the constraints

M(z)λ = 0 , (3.11)

due to the lowest components of the algebraic equations of motion of 
 that follows from the 
bundle superpotential

Pbundle = 
M(�)	 (3.12)

and are subject to gauge transformations

λ → λ + U(z)·ξ , (3.13)

which are the lowest components of the fermionic super gauge transformations (3.2). Combined 
the equations (3.11) and (3.13) imply that a vector bundle V = Ker(U)/Im(M) is constructed 
from the complex

0 → ON�
U−→

Ñ	⊕
m=1

O(Qm)
M−→

N
⊕
A=1

O(−qA) → 0 . (3.14)

Here Ñ	 ≤ N	 denotes the number of interacting Fermi multiplets in the GLSM. (The numbers 
in the Os of such complexes are conventionally integers. But in the normalisations used in this 
paper they might be fractional (like 1/2), hence they should then be multiplied by an appropriate 
common factor. In addition, the charges of the chiral superfields 
 are negative in the conven-
tions used in this work and they set the degrees of the constraints (3.11) on the fermions.) The 
dimensionality of the fibres of resulting vector bundle V is given by

dimC(V) = Ñ	 − N� − N
 , (3.15)

provided that M(z) and U(z) have maximal ranks N
 ≤ N	 and N� ≤ N	, respectively [52]. (If 
this is not everywhere the case, this indicates that there are singularities in the bundle instead.) In 
order that this bundle can be embedded in the gauge degrees of freedom of the heterotic string, 
the dimension dimC(V) should be less than eight so as to fit within an E8–factor. (The bundle 
might also fill up part of both E8–factors, but then it has to split accordingly.) Since the full 
rank of E8 × E8 is 16, the total number of Fermi multiplets is given by N	 = 16 + N� + N
. 
Hence, there are a number of spectator (non–interacting and neutral) Fermi multiplets 	n, n =
1, . . . , N	 − Ñ	, which lead to the unbroken gauge degrees of freedom in target space.

The superpotential (3.12) has another important consequence: If M(z) has maximal rank, the 
equations of motion of 	 induced by the bundle superpotential (3.12) imply that all yA = 0. This 
was implicitly assumed when (3.5) were written down, since, in general, also contributions from 
the scalars yA should be present in these equations.
10
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The fermionic gauge transformations (3.2) only leaves the superpotentials (3.7) and (3.12)
combined inert when the following compatibility conditions hold

WA
IM(�)PM(�) + MAm(�)UmI (�) = 0 . (3.16)

In general, it is not so straightforward to find functions such that these conditions are fulfilled. 
However, when the superpotentials and the fermionic gaugings are taken to lie on the (2, 2) locus 
discussed below, these conditions are automatically satisfied.

3.4. The (2,2) locus

The interacting part of (0, 2) GLSMs (or at least the part that involves fermionic gaugings) 
might possess a higher amount of supersymmetry. For this to happen the (0,2) multiplets need 
to be able to pair up. This means in particular, that there are the following relations between the 
number of interacting multiplets:

Ñ	 = N� , N� = N
 , N� = NV . (3.17)

This allows to identify various indices: m = a, M = A and I = i; we use the latter indices for 
each type of indices. Furthermore, the gauge charges of chiral and Fermi multiplets need to line 
up:

Qi = qi , Qi = qi . (3.18)

When some of these relations are not satisfied it is impossible to deform the interactions of the 
(0, 2) GLSM to become (2, 2). If this is possible, then the (0, 2) theory is said to be on the (2, 2)
locus.

On the (2, 2) locus of the space of (0, 2) GLSM, exact (2, 2) models possess various inter-
actions encoded in the various functions introduced that need to be of a very specific form. The 
relations given here are subject to specific normalizations; but the implied proportionalities are 
essential. First of all, the functions U(�) and W(�) that describe the Fermi gauge transforma-
tions now read

Uai(�) = (qi)
a�a , WA

iB = (qi )
BδBA . (3.19)

They are fully dictated by the index structure and the gauge charges (qi)a and (qi )
A. The func-

tions M(�) are determined as the derivatives of P(�):

MAa(�) = PA,a(�) , (3.20)

where F,a(�) denotes the partial derivative of F(�) with respect to �a . Consequently, the in-
variance of the superpotential action under fermionic gauge transformations (3.16) reduces to the 
gauge invariance of the superpotential:

(qi )
APA(�) + PA,a(�)�a(qi)

a = 0 . (3.21)

3.5. Worldsheet instantons and flux quantisation

It is possible that on the worldsheet non–trivial gauge configurations, like instantons, are re-
alised. The involved gauge fluxes need to be properly quantised [54]:
11
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∑
j

(
qj

)a ∫
F

j
E2

2π
∈Z ,

∑
j

(
qj

)A ∫
F

j
E2

2π
∈Z (3.22)

for all charged chiral superfields �a and 
A. Here the subscript E indicates that the gauge fluxes 
are computed in the Euclidean theory.

3.6. Anomaly consistency conditions

On a GLSM there are a number of requirements in order that the theory is both consistent as 
a quantum theory and that it is likely to have the right properties in the conformal limit.

First of all, like any gauge theory, the GLSM has to be free of gauge anomalies. With the 
gauge charges given in Table 2, this amounts to the following conditions

Aij = −
∑
a

(qi)
a(qj )

a −
∑
A

(qi )
A(qj )

A +
∑
m

(Qi)
m(Qj )

m +
∑
M

(Qi )
M(Qj )

M != 0 ,

(3.23)

for all i, j = 1, . . . , NV . The signs in these equations are determined by whether the fermions in 
the matter multiplets are right– or left–moving. For j = i this corresponds to pure and for j 
= i

to mixed gauge anomalies.
The left–, right–Weyl dimensions and R–charge correspond to bosonic parts of super confor-

mal symmetries in the scale invariant limit of the GLSM. For this limit not to be obstructed the 
mixed left– and right–Weyl gauge anomalies should vanish. In detail, from Table 2 it follows that 
the left–Weyl – gauge anomalies vanish provided that∑

m

(Qi)
m +

∑
M

(Qi )
M != 0 , (3.24)

for all i, since the only charged superfields that carry L–charge are 	 and �. These conditions 
can be summarised by the demand that the sum of the charges of all chiral Fermi superfields need 
to vanish for each gauge symmetry separately.

In addition, the charged right–moving fermions φ and γ are obtained by hitting chiral multi-
plets � and 
 with D+, hence the right–Weyl – gauge anomalies are absent when∑

A

(qi )
a +

∑
A

(qi )
A != 0 , (3.25)

for all i. Thus, these conditions say that the sum of the charges of all chiral superfields need to 
vanish for each gauge symmetry separately. At the same time these conditions ensure that the 
FI–parameters (3.6) do not renormalise. If this isn’t the case, it would not be possible to interpret 
them to set the scales of target space cycles as they would always run off to zero or infinity.

Finally, the R–symmetry survives quantisation provided that∑
a

(qi)
a +

∑
M

(Qi )
M != 0 , (3.26)

for all i, since the right–moving fermions φ and the left–moving fermions γ have R–charges −1
and +1, respectively, and opposite chiralities. When these equations are combined with (3.25), 
they can be stated as the sum of the charges of the chiral Fermi superfields � have to be equal to 
that of the chiral superfields 
.
12
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3.7. Worldsheet Green–Schwarz mechanism: torsion and NS5–branes

When the gauge anomalies do not vanish, i.e. not all Aij in (3.23) vanish, the GLSM is anoma-
lous. It is sometimes possible that certain field dependent none gauge invariant FI–terms (3.6)
are precisely able to cancel these gauge anomalies [55,56]. The FI–term coefficients ρ(�) then 
need to transform as a shift under the anomalous gauge symmetries. This can be viewed as a 
Green–Schwarz mechanism on the worldsheet and might have some far reaching consequences 
for the geometry and the interpretation of the theory.

To understand how this comes about, note that in the naive conformal limit, the kinetic 
terms of the vector multiplets V, A can be set to zero and their equations of motion become 
non–dynamical. In particular, the superfields A appear linear in the actions of the chiral mul-
tiplets (A.26) and the FI–terms (A.30), hence their equation of motion lead to superfield con-
straints:

�e2q·Vqi � = ρi(�) + ρ̄i (�) . (3.27)

Thus after enforcing the equations of motion of A, the vector multiplets V become (implicit) 
functions of the chiral superfields � and their conjugates �. In the Wess–Zumino gauge the 
lowest component of these equations are the D–term constraints (3.5). However, in any gauge 
from (3.27) it can be inferred which (scalars of the) chiral multiplets are necessarily non–zero in 
a given phase with a certain choice of the FI–parameters. Hence, a unitary gauge can be chosen 
such that all chiral superfields, that are necessarily non–zero, are set to such values that the 
solution for the vector superfields V are all zero when all of the remaining chiral superfields are 
vanishing.2

Non–constant FI–terms (3.6) modify the target space geometry and generically introduces 
torsion onto it in the form of non–vanishing H–flux [54,57,58]. Indeed, since by (3.27) the 
vector superfields V become (implicit) functions of the chiral multiplets. Inserting them in the 
kinetic terms of the chiral multiplets shows that the torsion tensor, the three–form H ,

Habc ∼ ρ,[a ·V,b]c , (3.28)

is non–zero in general, see Appendix A.6 or ref. [56] for a derivation. (It reads here in general, 
because if both ρi and Vi only depend on a single chiral superfield this expression still anti–
symmetrises to zero.) Since typically, the GLSM only contains chiral superfields �, that are 
linearly charged under the gauge symmetries, the required FI–coefficients can only be made by 
taking logarithms of combinations of them. As was argued in [55,56,59] such logarithmic singu-
larities can be viewed as the imprints of non–perturbative physics in the form of NS5–branes on 
the worldsheet as the target space exterior derivative of (3.28) lead to delta–function–like sources 
in the Bianchi identity of the three–form.3

3.8. Orbifold resolution GLSMs

Even though this section so far described properties of GLSMs in general, the main focus 
of this work is on GLSMs which are associated to (toroidal) orbifold resolutions. The study 

2 In the remainder of this paper for presentational simplicity, the D–term equations (3.5) are given in the Wess–Zumino 
gauge, while for the analysis of the torsional effects (3.27) the unitary gauges, as defined here, are used implicitly.

3 In addition, the inclusion of log–dependent FI–terms may lead to a back reaction to the geometry [56,59]; in this 
paper these consequences are not studied in detail.
13
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of resolution of singularities using (0, 2) GLSMs has a long history. Some pioneering works 
are [52,53]. A GLSM orbifold resolution construction has the advantage over other methods 
to match the singular orbifold situations for which exact CFT descriptions exist with smooth 
compactifications using effective field theory methods. Within a single GLSM framework one 
has both access to the orbifold phase as well as completely resolved (and potentially many other) 
phases. The trade off here is that a GLSM is not (yet) a full blown CFT description.

A fully complete correspondence between orbifold CFTs and GLSMs does not exist, but two 
methods have been uncovered in the past which apply to partially overlapping situations:

A Twisted shifted momenta as (0,2) GLSM charges [38]:

As was recalled in Section 2.3, twisted states are uniquely identified by their shifted right– 
and left–moving momenta (2.7). In particular, the right– and left-moving shifted momenta 
of non–oscillator massless twisted states automatically satisfy the pure anomaly cancellation 
conditions when they are interpreted as GLSM gauge charges of chiral and chiral Fermi 
superfields, respectively. In target space these configurations may have the interpretation of 
line bundles on the resolved local singularities.

B (2,2) GLSMs for toroidal orbifold resolutions [39]:

Contrary, full global orbifold resolutions in the standard embedding can be obtained in 
(2, 2) GLSMs. The underlying two–tori are described using (variants of) the Weierstrass 
models. On some of their homogeneous coordinates additional (exceptional) gaugings are 
implemented. For certain ranges of their FI–parameters the fixed point structure of toroidal 
orbifolds, while for others resolved compact Calabi–Yaus emerge.

In the next section method A is employed, while in Section 5 method A is combined with a 
partial (0,2) reduction of method B for the case of T 6/Z2 ×Z2 orbifold resolutions that were not 
discussed in the literature before explicitly.

4. Non–compact CCC3/ZZZ2 ×ZZZ2 resolution GLSMs

This section focuses on heterotic resolutions of the non–compact C3/Z2 × Z2 using (0,2) 
GLSMs. (Some ingredients of the present discussion are inspired by ref. [38].) The three complex 
coordinates zu, u = 1, 2, 3, of C3 augmented with three exceptional coordinates xr , r = 1, 2, 3, 
to describe the resolution. These coordinates become part of the chiral superfields �u and �′

r on 
which three U(1) gauge symmetries Er act according to the charge Table 3. In this table the unit 
charged chiral superfields �r are composite, i.e. functions of the fundamental superfields �u and 
�′

r .

4.1. Geometrical interpretation

The analysis of the geometrical interpretation of this GLSM starts with writing down the 
D–term equations

1

2
|z2|2 + 1

2
|z3|2 = b1 + |x1|2 , (4.1a)

1 |z1|2 + 1 |z3|2 = b2 + |x2|2 , (4.1b)

2 2

14
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Table 3
Superfield charge table for resolutions of the non–compact C3/Z2 ×Z2 orbifold.

Superfield �1 �2 �3 �′
1 �′

2 �′
3 	 = (	1, . . . ,	16) �1 �2 �3

U(1) charge z1 z2 z3 x1 x2 x3 λ = (λ1, . . . , λ16) ω1 ω2 ω3
E1 0 1

2
1
2 −1 0 0 Q1 = (Q1

1, . . . ,Q
16
1 ) 1 0 0

E2
1
2 0 1

2 0 −1 0 Q2 = (Q1
2, . . . ,Q

16
2 ) 0 1 0

E3
1
2

1
2 0 0 0 −1 Q3 = (Q1

3, . . . ,Q
16
3 ) 0 0 1

1

2
|z1|2 + 1

2
|z2|2 = b3 + |x3|2 . (4.1c)

Here the three parameters br are the real parts of the three FI–parameters ρr associated with the 
three gaugings Er which are assumed to be constant. An equivalent but useful representation of 
these equations is obtained by adding two of them and subtracting the third:

|z1|2 + |x1|2 = b2 + b3 − b1 + |x2|2 + |x3|2 , (4.2a)

|z2|2 + |x2|2 = b1 + b3 − b2 + |x1|2 + |x3|2 , (4.2b)

|z3|2 + |x3|2 = b1 + b2 − b3 + |x1|2 + |x2|2 . (4.2c)

Depending on the relative values of the three FI–parameters the model can be in a number of 
phases which have different geometrical interpretations [38]. Here not all of them are listed and 
discussed, instead, the focus is on a number of particular interesting phases: the orbifold phase 
and the three full resolved phases which are characterised by having all three FI–parameters 
negative or positive, respectively. Other phases, in which some FI–parameters are positive while 
others are negative, correspond to partial blowups and are ignored here. (In ref. [38] some aspects 
of these other phases were investigated.)

Some topological properties of the effective geometries in the various phases can be deter-
mined. The divisors in the effective geometry can be identified by setting one of the complex 
coordinates to zero while satisfying all the D–term equations. The ordinary divisors are defined 
by Du := {zu = 0} and the exceptional ones by Er := {xr = 0}. The results of this analysis are 
summarised in Table 4.

For each set of non–vanishing fields Z(P) = (Z1
(P ), Z

2
(P ), Z

3
(P )), that defines a coordi-

nate patch within a phase of the resolution GLSM, the other complement set of fields 
{Z̃1

(P ), ̃Z
2
(P ), ̃Z

3
(P )} ∈ R3 then define a coordinate patch. The resulting patches are also given 

in Table 4. A gauge can be chosen such that the phases of these non–zero fields Z(P) are all 
trivial, i.e. multiplets of 2πi. This only leaves residual discrete gauge transformations in each of 
these patches:

Za
(P ) → ei(Q(P ))

a
r α

p

Za
(P )

!= e2πi ma

Za
(P ) , (4.3)

where Za
(P ), a = 1, 2, 3, are the three scalar fields that do not vanish in patch (P ) with charges 

(Q(P ))
a
r and ma are integers. For the coordinate patches under investigation the charge matrices 

are given in (C.1). Hence, the gauge parameters of the residual gauge transformations read:

αT = 2π mT Q−T
(P ) , (4.4)

with α = (
α1, α2, α3

)
and mT = (

m1, m2, m3
)
. This induces residual gauge transformation on 

the coordinates of the coordinate patch (P ) transform
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Table 4
This table indicates which combination of fields are necessarily non–vanishing in the orbifold and the 
three full resolution phases. This in turn determines the coordinate patches of the phases and hence 
the curves and intersections that exist within the patches. The notation (ru) of the patches of the fully 
resolved geometries signify that the coordinates xr and zv 
=u are non–zero.

Phase Non–zero fields Patches Curves Intersection

Orbifold x1, x2, x3 
= 0 (O) := {z1, z2, z3} D1D2, D2D3, D3D1 D1D2D3

S–triangulation z1, z2, z3 
= 0 (S) := {x1, x2, x3} E1E2, E2E3, E3E1 E1E2E3
z1, z2, x3 
= 0 (33) := {x1, x2, z3} E1E2, E2D3, D3E1 E1E2D3
z1, x2, z3 
= 0 (22) := {x1, x3, z2} E1E3, E1D2, D2E3 E1E3D2
x1, z2, z3 
= 0 (11) := {x2, x3, z1} E2E3, E2D1, D1E3 E2E3D1

E1–triangulation z2, z3, x3 
= 0 (31) := {x1, x2, z1} E1E2, E2D1, D1E1 E1E2D1
z1, z2, x3 
= 0 (33) := {x1, x2, z3} E1E2, E2D3, D3E1 E1E2D3
z2, z3, x2 
= 0 (21) := {x1, x3, z1} E1E3, E3D1, D1E1 E1E3D1
z1, z3, x2 
= 0 (22) := {x1, x3, z2} E1E3, E3D2, D2E1 E1E3D2

E2–triangulation z1, z3, x3 
= 0 (32) := {x1, x2, z2} E1E2, E2D2, D2E1 E1E2D2
z1, z2, x3 
= 0 (33) := {x1, x2, z3} E1E2, E2D3, D3E1 E1E2D3
z2, z3, x1 
= 0 (11) := {x2, x3, z1} E2E3, E3D1, D1E2 E2E3D1
z1, z3, x1 
= 0 (12) := {x2, x3, z2} E2E3, E3D2, D2E2 E2E3D2

E3–triangulation z2, z3, x1 
= 0 (11) := {x2, x3, z1} E2E3, E3D1, D1E2 E2E3D1
z1, z2, x1 
= 0 (13) := {x2, x3, z3} E2E3, E3D3, D3E2 E2E3D3
z1, z2, x2 
= 0 (23) := {x1, x3, z3} E1E3, E3D3, D3E1 E1E3D3
z1, z3, x2 
= 0 (22) := {x1, x3, z2} E1E3, E3D2, D2E1 E1E3D2

Z̃a
(P ) → ei(Q̃(P ))

a
r α

p

Z̃a
(P ) = e2πi (Rm)a Z̃a

(P ) , R(P ) = Q̃(P )Q−1
(P )

(4.5)

where Q̃(P ) are the charges of the coordinates of the patch which are given in (C.3). Thus if R(P )

is integral, the residual gauge transformations are trivial.

4.1.1. Orbifold phase
In the orbifold regime all three Kähler parameters are negative: b1, b2, b3 < 0. The D–term 

equations (4.1) then imply that all three exceptional coordinates are non–vanishing:

|x1|2 = −b1 + |z2|2 + |z3|2 > 0 , (4.6a)

|x2|2 = −b2 + |z1|2 + |z3|2 > 0 , (4.6b)

|x3|2 = −b3 + |z1|2 + |z2|2 > 0 , (4.6c)

hence there is a single coordinate patch: {z1, z2, z3}. In particular, the D–term equations allow 
to set all these three coordinates to zero at the same time. Moreover, it is clear that none of the 
exceptional divisors Er exist in this phase. Instead the intersection of D1D2D3 exists.

By exploiting the gauge symmetries it is possible to fix the phases of x1, x2, x3 to some arbi-
trary values (which are typically taken to be zero for simplicity). However, these gauge fixings 
do not fix the gauges completely, since the matrix (4.5) in this case,

R(O) = Q̃(O)Q−1
(O) = −Q̃(O) =

⎛
⎝ 0 1

2
1
2

1
2 0 1

2
1
2

1
2 0

⎞
⎠ , (4.7)

is non–integer, therefore, there are non–trivial residual Z2 gauge transformations which act as
16
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E1 : (z1, z2, z3) → (z1,−z2,−z3) , (4.8a)

E2 : (z1, z2, z3) → (−z1, z2,−z3) , (4.8b)

E3 : (z1, z2, z3) → (−z1,−z2, z3) (4.8c)

on the remaining coordinates. The first two are precisely the transformations that defined the 
C3/Z2 × Z2 orbifold and the third one is simply the combination of the first two and hence 
redundant in the orbifold phase.

4.1.2. S–triangulation full resolution phase
In the S–triangulation the Kähler parameters satisfy the following inequalities:

0 < b3 < b1 + b2 , 0 < b2 < b1 + b3 , 0 < b1 < b2 + b3 . (4.9)

From (4.1) it follows that at least two of the three zu are non–zero. Hence, there is one coordinate 
patch {x1, x2, x3} when all three zu are non–vanishing. Taking (4.2) into account, there are, in 
addition, three coordinate patches {zu, xp 
=u} for u = 1, 2, 3 when xu and zp 
=u are non–zero.

There is no non–trivial residual gauge transformation on the coordinate patch (S) :=
{x1, x2, x3}, since fixing the phases of all three zu fixes all gauge parameters θr up to mul-
tiples of 2πi, hence the actions on the coordinates xr are trivial. For the coordinate patch 
(33) := {z1, x2, x3} the non–vanishing coordinates of which the phases can be set to unity are 
x1, z2, z3, consequently, the gauge parameters θ2,3 are fixed modulo multiples of 4πi and θ1
modulo multiplets of 2πi. But the residual gauge transformations on coordinates

z1 → e
1
2 θ2+ 1

2 θ3z1 , x2 → e−θ2x2 , x3 → e−θ3x3 (4.10)

in the patch (33) only involve the gauge parameters θ2,3, and hence these phase transforma-
tions are trivial. Similar arguments can be provided for the other patches (22) := {x1, x3, z2} and 
(11) := {x2, x3, z1}. The fact that all the coordinate patches of this triangulation are regular can 
also be verified by showing that the matrices R(P ) defined in (4.5) are all integral.

It follows that in the S–triangulation all the divisors Du and Er exist, though not in all co-
ordinate patches. Aside from the curves ErDu 
=r , all three exceptional curves E1E2, E2E3 and 
E3E1 exist. In particular, the intersections

E1E2E3 = E2E3D1 = E1E3D2 = E1E2D3 = 1 (4.11)

are all equal to unity as there is just a single solution to the D–term equations and there is no 
residual gauge transformation acting on the coordinates in any given coordinate patch. All this 
information is encoded in the toric diagram for the S–triangulation:

D2

E3

D1

E2

D3E1

Indeed, all the divisors are indicated as dots. The existing curves are represented as lines between 
two adjacent dots and the unit intersections are the smallest triangles in the diagram. At the same 
time these smallest triangles also indicate the four coordinate patches.
17
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4.1.3. E1–triangulation full resolution phase
In the E1–triangulation the Kähler parameters satisfy the conditions

0 < b2 + b3 < b1 , 0 < b3 < b1 + b2 , 0 < b2 < b1 + b3 . (4.12)

Again at least two of the three zu are non–zero. In light of the first inequality above, it is conve-
nient to write the equation (4.2a) as

|x2|2 + |x3|2 = b1 − b2 − b3 + |z1|2 + |x1|2 . (4.13)

Hence either x2 or x3 is non–zero. If x2 
= 0 then (4.2c) implies that z3 is non–vanish as there 
needs to be at least two zu 
= 0. Similarly, if x3 
= 0 then (4.2b) says that z2 is non–vanishing. 
Therefore, in total there are four coordinate patches: {x1, x2, z1}, {x1, x2, z3}, {x1, x3, z1}, 
{x1, x3, z2}. Again all these patches are regular; there is no residual orbifold action on them.

In this phase the exceptional curves E1E2 and E1E3 exist but E2E3 does not. Instead the 
curve D1E1 is allowed by the D–term equations. The following intersections

E1E2D3 = E1E3D2 = E1E2D1 = E1E3D1 = 1 (4.14)

are all equal to unity. All this information is encoded in the toric diagram for the E1–triangulation:

D2

E3

D1

E2

D3E1

A similar analysis can be performed for the other two full resolution phases corresponding to 
the triangulations E2 and E3. A summary of the results is given in Table 4.

4.2. Pairs of GLSMs associated to torsion related orbifolds

The charges of the Fermi superfields are kept arbitrary in Table 3. In order that the GLSM is 
free of gauge anomalies these charge vectors are subject to the conditions [38]

Q2
1 = Q2

2 = Q2
3 = 3

2
, Q1 · Q2 = Q2 · Q3 = Q3 · Q1 = 1

4
(4.15)

and the sum of charges for each of the three gaugings vanishes, see Subsection 3.6. The first 
three equations indicate that consistent choices for the charge vectors are given by the shifted 
momenta of the three twisted sectors without oscillators, see Table 1, since they all square to 
3/2. The latter three equations can be satisfied by taking the shifted momenta

Q1 = (
0, 1

2 ,
1
2 , -1,0,0,02)(08) ; Q2 = ( 1

2 ,0, 1
2 ,0, -1,0,02)(08) ;

Q3 = ( 1
2 ,

1
2 ,0,0,0, -1,02)(08) (4.16)

out of the three twisted sectors of the orbifold model without discrete torsion or by

Q×
1 = -

(
0, 1

2 ,
1
2 , -1,0,0,02)(08); Q×

2 = -
( 1

2 ,0, 1
2 ,0, -1,0,02)(08);

Q×
3 = -

( 1
2 ,

1
2 ,0,0,0, -1,02)(08) (4.17)
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Table 5
This table gives the explicite non–singular forms of �r the orbifold and the full 
resolution patches in the three triangulations.

Phase Patch Non–singular superfield representation of

(P) �1 �2 �3

Orbifold (O) �′−1
1 �′−1

2 �′−1
3

S–triangulation (S) �2�3�
−1
1 �1�3�

−1
2 �1�2�

−1
3

(33) �2
2�

′
3 �2

1�
′
3 �′−1

3
(22) �2

3�
′
2 �′−1

2 �2
1�

′
2

(11) �′−1
1 �2

3�
′
1 �2

2�
′
1

E1–triangulation (31) �2
2�

′
3 �2

3�
−2
2 �′−1

3 �′−1
3

(33) �2
2�

′
3 �2

1�
′
3 �′−1

3
(21) �2

3�
′
2 �′−1

2 �2
2�

−2
3 �′−1

2
(22) �2

3�
′
2 �′−1

2 �2
1�

′
2

E2–triangulation (32) �−2
1 �2

3�
′−1
3 �2

1�
′
3 �′−1

3
(33) �2

2�
′
3 �2

1�
′
3 �′−1

3
(11) �′−1

1 �2
3�

′
1 �2

2�
′
1

(12) �′−1
1 �2

3�
′
1 �2

1�
−2
3 �′−1

1

E3–triangulation (11) �′−1
1 �2

3�
′
1 �2

2�
′
1

(13) �′−1
1 �2

2�
−2
3 �′−1

1 �2
3�

′
1

(23) �−2
1 �2

2�
′−1
2 �′−1

2 �2
1�

′
2

(22) �2
3�

′
2 �′−1

2 �2
1�

′
2

of the orbifold model with torsion. Notice that this is precisely how the brother gauge shift vectors 
were related to the original ones as discussed in Subsection 2.2.

These certainly do not represent unique choices, but for any choice of anomaly free charge 
vectors from shifted momenta of the physical twisted states without oscillators in the orbifold 
model without torsion, the choice of the same charge vectors, but all with the opposite sign, is an 
anomaly free choice with torsion. Hence, switching torsion on or off corresponds to the mapping

Q1 ↔ Q×
1 = −Q1 , Q2 ↔ Q×

2 = −Q2 , Q3 ↔ Q×
3 = −Q3 (4.18)

of all the charges in the two associated resolution GLSMs simultaneous. This suggests that there 
is a field redefinition from the Fermi superfields 	 in the non–torsion model to the Fermi super-
fields 	× in the torsion model. Formally, in terms of the chiral superfields �r defined in Table 3
this superfield redefinition can be stated as

	 → 	× = e−2 log�·Q	 , (4.19)

since this precisely reverses all the charges of 	. In order that this field redefinition is well–
defined �r should be non–singular. Given that in various coordinate patches within the phases 
of the theory, there are always three superfields non–vanishing they can be used in this field 
redefinition. Table 5 summarises the choices for �r in the patches under investigation here.

Notice that (4.19) precisely looks like super gauge transformations (A.28) but with the super 
gauge parameters � replaced by −2 log�. Since only the Fermi multiplets are involved in these 
superfield redefinitions, they are anomalous. Because these superfield redefinitions are of the 
same form as super gauge transfromations, the form of the anomaly is known to be
19
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Wsf redef anom = − 1

2π

∑
r,s

Ars log�rF s = − 1

2π

{3

2

∑
r

log�r F
r + 1

4

∑
s 
=r

log�s F
r
}
,

(4.20)

using the general form of the super gauge anomaly (B.14). The latter form is obtained by using 
the explicit expression (4.15) of the anomaly matrix Ars = Qr · Qs given by

A =
⎛
⎜⎝

3
2

1
4

1
4

1
4

3
2

1
4

1
4

1
4

3
2

⎞
⎟⎠ . (4.21)

The superfield anomaly (4.20) is of the form of superfield dependent FI–actions (A.30) but with 
the FI–parameters ρr replaced by

ρT → ρ×T = ρT − 1

2π
log�T A , (4.22)

where ρT = (
ρ1, ρ2, ρ3

)
and log�T = (

log�1, log�2, log�3
)
.

The field redefinition anomaly (4.20) is not gauge invariant: it gives a phase in the Euclidean 
path integral

δ�Ssf redef anom ⊃ −i

∫
αr Ars

F s
E2

2π
. (4.23)

However, since it is only obtained under the assumption that the field redefinition (4.19) is non–
singular, it only receives discrete phase contributions from the scalar fields in Table 4 that do not 
vanish.

The flux quantisation conditions (3.22) for the present GLSM read∫
F 1
E2

2π
∈Z,

∫
F 2
E2

2π
∈ Z,

∫
F 3
E2

2π
∈Z , (4.24a)

1

2

∫
F 2
E2

2π
+ 1

2

∫
F 3
E2

2π
∈Z,

1

2

∫
F 1
E2

2π
+ 1

2

∫
F 3
E2

2π
∈Z,

1

2

∫
F 1
E2

2π
+ 1

2

∫
F 2
E2

2π
∈Z .

(4.24b)

The first three conditions follow from the charges of the chiral superfields �′
r and the latter three 

from those of �u. Thus all gauge fluxes are integers and the sums of two gauge fluxes are even 
integers. The latter quantisation conditions are solved by adding two equations and subtracting 
the third:

1

2π

∫ ⎛
⎜⎝

F 1
E2

F 2
E2

F 3
E2

⎞
⎟⎠ = F n , F = Q−1

(S) , (4.25)

in terms of three integers nT = (
n1, n2, n3

)
. Here, Q(S) is one of the charge matrices defined 

in (C.1) of Appendix C and their inverse transposed forms in (C.2). As can be seen from there, 
F is an integral matrix, the first three quantisation conditions are fulfilled as well. As was argued 
in [54] possible vacuum phases in (orbifold) partition functions may be recovered in the GLSM 
as non–invariances of the path integral encoded in

δ�Ssf redef anom ⊃ −2πi mTM(P ) n , M(P ) = Q−T
r AF = Q−T

(P )AQ−1
(S) . (4.26)
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Hence, the path integral is invariant if M(P ) is an integral matrix. By explicit matrix multi-
plications it may be confirmed that M(P ) is indeed integral for all charge matrices (C.1) that 
correspond to any of the patches of the three fully resolved phases. On the contrary in the orb-
ifold phase one finds:

M(O) =
⎛
⎜⎝

1 - 3
2 - 3

2

- 3
2 1 - 3

2

- 3
2 - 3

2 1

⎞
⎟⎠ ≡

⎛
⎜⎝

0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

⎞
⎟⎠ . (4.27)

The final expression is obtained modulo integral matrices. This shows that in the orbifold phase 
the discrete torsion phases are reproduced by the residual gauge transformations of the field 
redefinition anomaly.

To summarise, the two non–compact resolution GLSMs associated to the orbifold theories 
with and without torsions are both free of gauge anomalies and hence consistent models. The 
effect of discrete torsion between the two models is recovered in their orbifold phases, if both 
models are expressed in the same field basis (i.e. with chiral Fermi multiplets with the same 
gauge charges in both models) because of a field redefinition anomaly (4.20). Even though in 
this expression there are logs of chiral superfields, these are non–singular, because the superfields 
which appear in the field redefinition (4.19) do not vanish in the patch where the particular field 
redefinition is defined (see Table 5). In particular this does not signify that the geometry has 
torsion or should be augmented with NS5–branes, since in the unitary gauge the FI–terms are 
constants in each patch, hence the three–form flux (3.28) vanishes.

5. GLSMs for resolutions of T 6/ZZZ2 ×ZZZ2

The study of (0, 2) resolution GLSMs of the toroidal orbifold T 6/Z2 ×Z2 is more involved 
than those for the non–compact orbifold C3/Z2 × Z2 considered in the previous section. First 
of all, additional ingredients are needed to describe the geometry as the orbifold is compact. 
And partially because of this also the description of possible gauge backgrounds is more compli-
cated. Only with these aspects understood, the consequences of discrete torsion in the underlying 
orbifold model can be properly investigated. Therefore, first Subsections 5.1 to 5.4 are used to 
develop a both accurate and manageable description of resolution GLSMs associated with the 
singular T 6/Z2 × Z2 geometry dubbed a minimal full resolution model. Subsection 5.5 then 
gives the GLSM for a particular gauge background using the same blowup modes as in the 
non–compact model studied in the previous section. Finally, Subsection 5.6 the GLSM for the 
compact orbifold model with discrete torsion is studied.

5.1. Construction of resolution GLSMs for compact Z2 ×Z2 orbifolds

To construct GLSMs that describe resolutions of toroidal orbifold geometries, the following 
steps need to be taken [39]:

1. Give GLSM descriptions for each of the three underlying two–tori compatible with the orb-
ifold symmetries.

2. Add so–called exceptional gaugings to introduce the orbifold actions and define the excep-
tional cycles.

3. Confirm that there is a regime where the GLSM description can be interpreted as the orbifold 
geometry under consideration.
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Table 6
Superfield charge table for the GLSM for three two–tori admitting
Z2 symmetries.

Superfield �u1 �u2 �u3 �u4 �u �′
u

U(1) charges zu1 zu2 zu3 zu4 γu γ ′
u

Ru′ 1
2 δu′u 1

2 δu′u 1
2 δu′u 1

2 δu′u −δu′u −δu′u

4. Determine the regimes in which the GLSM description can be interpreted as resolved ge-
ometries.

This program was discussed in [39] for (2, 2) models, but these steps can equally well be exe-
cuted in the (0, 2) language, which is used throughout this work.

It is important to realise that there are a number of different T 6/Z2 × Z2 orbifolds depend-
ing on their underlying six–torus lattice, see e.g. [48,60–63]. The construction here is aimed to 
resolve the particular one with Hodge numbers (51, 3). Moreover, one single orbifold geometry 
may be associated to many different GLSMs, even if the target space gauge configurations are not 
considered. The descriptions differ in the number of exceptional gaugings. Descriptions in which 
for all exceptional cycles of the resolved geometry there are exceptional gaugings, were dubbed 
maximal full resolution GLSMs in ref. [39]. On the other end there are GLSMs descriptions 
with the least number of exceptional gaugings such that still the effective geometry in appropri-
ate regimes corresponds to fully resolved orbifold resolutions. Such models were called minimal 
full resolution GLSMs. Between these two extremes there is a whole variety of GLSMs. Some of 
these models cannot describe fully resolved geometries; while others do [39]. The focus in this 
paper is on full resolution GLSMs only. Such resolution GLSMs might possess many different 
phases. Only the orbifold phase and fully smooth resolution phases are investigated in this work 
in detail, while all kinds of interesting other phases will be ignored.

Maximal full resolution GLSMs are the most complete in the sense that all the Kähler pa-
rameters associated to the volumes of the exceptional cycles are made explicit. On the down 
side, this means that such models typically contain a large number of U(1) gauge symmetries. 
As is discussed below the maximal full resolution GLSM for the toroidal orbifold T 6/Z2 ×Z2
contains 51 U(1) gaugings: for each of the 51 Kähler parameters there is a dedicated gauging 
available. The minimal full resolution GLSM for this orbifold only requires six U(1) gaugings: 
The radii of the three two–tori and collective volumes of the three types of exceptional cycles are 
explicit in that description.

Below, first the GLSMs description of a two–torus with Z2 symmetries is recalled. After that 
the basic ingredients of the maximal full resolution GLSM are laid out. Details of the resulting 
geometry and the consequences of the discrete torsion of the orbifold model are investigated in 
the minimal full resolution GLSM only for simplicity.

5.2. Two–tori GLSM with Z2 symmetries

In ref. [39] it was argued that a convenient description of two–tori that admit Z2 involutions 
is given by the superfields given in Table 6 with the superpotential

Pthree two–tori =
∑
u

(
κu �

2
u1 + �2

u2 + �2
u3

)
�u +

(
�2

u1 + �2
u2 + �2

u4

)
�′
u , (5.1)

where
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κu = ℘τu(
τu
2 ) − ℘τu(

1
2 )

℘τu(
1+τu

2 ) − ℘τu(
1
2 )

(5.2)

parameterise the complex structures τu of the three two–tori in terms of the Weierstrass ℘ func-
tion. This description was obtained as a rewriting of the well–known Weierstrass model of an 
elliptic curve. On each of the four chiral superfields �ux of two–torus T 2

u a separate Z2 re-
flection symmetry �ux → −�ux can act leaving the superpotential invariant. In addition, there 
are two involutions per two–torus which can be identified with Z2 translation on the two–torus 
lattice [39]. The Kähler structures of the two–tori are encoded in the GLSM description as the 
FI–parameter au associated with the gauging Ru. The resulting D– and F–term equations in the 
conformal limit read:

|zu1|2 + |zu2|2 + |zu3|2 + |zu4|2 = au , (5.3a)

κu z
2
u1 + z2

u2 + z2
u3 = 0 , z2

u1 + z2
u2 + z2

u4 = 0 . (5.3b)

Because κu 
= 1 the two F–term conditions can never combine to an equation with just two terms. 
Together with the U(1) gaugings, which can remove a phase per u, this shows that each set of 
zu1, . . . , zu4 coordinates for a given u describes a geometry of real dimension two.

5.3. Maximal full resolution GLSM

The maximal full resolution GLSM for the toroidal orbifold T 6/Z2 ×Z2 has three ordinary 
gaugings R1, R2 and R3 to define three two–tori and 3 · 16 = 48 exceptional gaugings E1,yz, 
E2,xz and E3,xy associated to the exceptional cycles. The full charge table is given in Table 7. 
The Fermi superfields �1, �′

1, �2, �′
2 and �3, �′

3 feature in the superpotential to define the three 
underlying two–tori, see (5.1). Because the exceptional gaugings the superpotential has to be 
extended to

Pmax res =
(
κ1 �

2
1 1

∏
z

�′
2 1z

∏
y

�′
3 1y + �2

1 2

∏
z

�′
2 2z

∏
y

�′
3 2y + �2

1 3

∏
z

�′
2 3z

∏
y

�′
3 3y

)
�1

+
(
�2

1 1

∏
z

�′
2 1z

∏
y

�′
3 1y + �2

1 2

∏
z

�′
2 2z

∏
y

�′
3 2y + �2

1 4

∏
z

�′
2 4z

∏
y

�′
3 4y

)
�′

1

+
(
κ2 �

2
2 1

∏
x

�′
1 1x

∏
z

�′
3 1z + �2

2 2

∏
x

�′
1 2x

∏
z

�′
3 2z + �2

2 3

∏
x

�′
1 3x

∏
z

�′
3 3z

)
�2

+
(
�2

2 1

∏
x

�′
1 1x

∏
z

�′
3 1z + �2

2 2

∏
x

�′
1 2x

∏
z

�′
3 2z + �2

2 4

∏
x

�′
1 4x

∏
z

�′
3 4z

)
�′

2

+
(
κ3 �

2
3 1

∏
x

�′
1 1x

∏
y

�′
2 1y + �2

3 2

∏
x

�′
1 2x

∏
y

�′
2 2y + �2

3 3

∏
x

�′
1 3x

∏
y

�′
2 3y

)
�3

+
(
�2

3 1

∏
x

�′
1 1x

∏
y

�′
2 1y + �2

3 2

∏
x

�′
1 2x

∏
y

�′
2 2y + �2

3 4

∏
x

�′
1 4x

∏
y

�′
2 4y

)
�′

3

(5.4)

in order to make it gauge invariant under all exceptional gaugings. The resulting D– and F–term 
conditions are rather involved and not particularly illuminating. For this reason we refrain from 
giving them here and turn to the more transparent minimal full resolution model.

5.4. Minimal full resolution GLSM

The minimal full resolution GLSM has three ordinary and three exceptional gaugings. Con-
trary to the maximal full resolution GLSM, the charge assignments of minimal full resolution 
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Table 7
Superfield charge table that determines the geometry of maximal full resolution of T 6/Z2 ×Z2.

Superfield �1x �2y �3 z �1 �′
1 �2 �′

2 �3 �′
3 �′

1yz
�′

2xz
�′

3xy

U(1) charge z1x z2y z3 z γ1 γ ′
1 γ2 γ ′

2 γ3 γ ′
3 x1yz x2xz x3xy

R1
1
2 0 0 −1 −1 0 0 0 0 0 0 0

R2 0 1
2 0 0 0 −1 −1 0 0 0 0 0

R3 0 0 1
2 0 0 0 0 −1 −1 0 0 0

E1y′z′ 0 1
2 δy′y 1

2 δz′z 0 0 0 0 0 0 −δy′yδz′z 0 0

E2x′z′ 1
2 δx′x 0 1

2 δz′z 0 0 0 0 0 0 0 −δx′xδz′z 0

E3x′y′ 1
2 δz′z

1
2 δy′y 0 0 0 0 0 0 0 0 0 −δx′xδy′y

models are not unique as for each of the three exceptional gaugings there are 4 · 4 = 16 choices, 
which of the homogeneous coordinate superfields to be gauged.

Here only gaugings of the superfields �1 1, �2 1 and �3 1 are considered,4 as can be seen in 
Table 8. Consequently, the superpotential for the geometry reduces to

Pmin res =
3∑

u=1

�u

(
κu �

2
u1

∏
r 
=u

�′
r + �2

u2 + �2
u3

)

+
3∑

u=1

�′
u

(
�2

u1

∏
r 
=u

�′
2�

′
3 + �2

u2 + �2
u4

)
. (5.5)

The effective target space geometries are determined by six D– and six F–term equations. The 
six resulting D–term conditions read

|z1 1|2 + |z1 2|2 + |z1 3|2 + |z1 4|2 = a1 , |z2 1|2 + |z3 1|2 − 2 |x1|2 = 2b1 ,

|z2 1|2 + |z2 2|2 + |z2 3|2 + |z2 4|2 = a2 , |z1 1|2 + |z3 1|2 − 2 |x2|2 = 2b2 ,

|z3 1|2 + |z3 2|2 + |z3 3|2 + |z3 4|2 = a3 , |z1 1|2 + |z2 1|2 − 2 |x3|2 = 2b3

(5.6)

and the six F–term conditions

κ1 z
2
1 1 x2x3 + z2

1 2 + z2
1 3 = 0 , z2

1 1 x2x3 + z2
1 2 + z2

1 4 = 0 ,

κ2 z
2
2 1 x1x3 + z2

2 2 + z2
2 3 = 0 , z2

2 1 x1x3 + z2
2 2 + z2

2 4 = 0 ,

κ3 z
2
3 1 x1x2 + z2

3 2 + z2
3 3 = 0 , z2

3 1 x1x2 + z2
3 2 + z2

3 4 = 0 .

(5.7)

The properties of the resulting geometries depend crucially on the values of the Kähler parame-
ters. As can be seen from the three D–term conditions on the left in (5.6) the parameters a1, a2, a3
all need to be positive (since we have assumed that all yA = 0). The other Kähler parameters 
b1, b2, b3 may in principle have either sign.

5.4.1. Orbifold phase
Consider the phase in which all three parameters b1, b2, b3 are negative while the parameters 

a1, a2, a3 all positive. It follows that all three coordinates x1, x2, x3 are necessarily non–zero so 

4 Other choices would be equally well justified, however we expect that the physical understanding does not depend 
much on this, even though the detailed description will.
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Table 8
A choice for a superfield charge table that determines the geometry of a minimal full 
resolution of T 6/Z2 ×Z2.

Superfield �1x �2y �3z �1 �′
1 �2 �′

2 �3 �′
3 �′

1 �′
2 �′

3

U(1) charge z1x z2y z3z γ1 γ ′
1 γ2 γ ′

2 γ3 γ ′
3 x1 x2 x3

R1
1
2 0 0 −1 −1 0 0 0 0 0 0 0

R2 0 1
2 0 0 0 −1 −1 0 0 0 0 0

R3 0 0 1
2 0 0 0 0 −1 −1 0 0 0

E1 0 1
2 δy1

1
2 δz1 0 0 0 0 0 0 −1 0 0

E2
1
2 δx1 0 1

2 δz1 0 0 0 0 0 0 0 −1 0

E3
1
2 δx1

1
2 δy1 0 0 0 0 0 0 0 0 0 −1

that their phases can be fixed to some preset values. This does not fix the gauge symmetries 
completely, as there are residual Z2 actions left over:

Z2 : z2 1 → −z2 1 , z3 1 → −z3 1 ,

Z2 : z1 1 → −z1 1 , z3 1 → −z3 1 ,

Z2 : z1 1 → −z1 1 , z2 1 → −z2 1 .

(5.8)

For concreteness, focus on the first of these three Z2 actions. The fixed set of this action is given 
by z2 1 = z3 1 = 0. In the target space geometry this does not correspond to a single fixed set, but 
a collection of disjoint fixed sets. Indeed, inserting this in the second and third equations in (5.7)
gives the equations:

z2
2 2 + z2

2 3 = z2
2 2 + z2

2 4 = 0 , z2
3 2 + z2

3 3 = z2
3 2 + z2

3 4 = 0 . (5.9)

Each of these equations are quadratic with two roots:

z2 3 = ±i z2 2 , z2 4 = ±i z2 2 , z3 3 = ±i z3 2 , z3 4 = ±i z3 2 , (5.10)

where all the signs are independent, hence there are 24 = 16 solutions in total. Each of these 
fixed sets have the topology of a two–torus: The equations for the homogeneous coordinates 
z1x are those of the deformed two–torus used in Subsection 5.2 since the absolute values of the 
coordinates x2 and x3 are determined by the second and third equation on the right hand side in 
(5.6). This argumentation may be repeated for the second and third Z2 actions in (5.8). Hence 
one has in total 3 · 16 = 48 fixed two–tori; precisely the number of fixed two–tori to be expected 
in the T 6/Z2 ×Z2 orbifold.

The coordinate patches suggested by the minimal full resolution model for the orbifold ge-
ometry can be extracted from the D– and F–term equations (5.6) and (5.7). Since all blowup 
parameters b1, b2, b3 are negative, the three D–term equations on the right–hand–side of (5.6)
imply that x1, x2, x3 
= 0. Each of the other three D–term equations imply that at least one coor-
dinate in each is non–zero. But then the F–term equations (5.7) imply that two other coordinates 
are non–zero. Hence, three out of four z1x , z2y and z3z coordinates are non–zero. This leads to 
43 = 64 coordinate patches; the same number of coordinate patches as the (T 2)3 torus GLSM 
would have.
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5.4.2. Full resolution phases
In the full resolution phases all parameters b1, b2, b3 are positive but parametrically much 

smaller than the parameters a1, a2, a3. (If this is not the case, the GLSM might develop more 
exotic phases, like critical– and over–blowup phases [39].) In the full resolution phases it is 
useful to reshuffle the three D–term equations on the right hand side of (5.6) in the following 
fashion:

|z1 1|2 + |x1|2 = b2 + b3 − b1 + |x2|2 + |x3|2 .

|z2 1|2 + |x2|2 = b1 + b3 − b2 + |x1|2 + |x3|2 ,

|z3 1|2 + |x3|2 = b1 + b2 − b3 + |x1|2 + |x2|2 .

(5.11)

These equations contain important information as they decide which coordinate fields are neces-
sarily non–zero. For example, if the sign of the combination b2 + b3 − b1 is positive either z1 1
or x1 is necessarily non–zero, while if this combination is negative either x2 or x3 is necessarily 
non–zero.

The following divisors can be easily defined by setting one of the homogeneous coordinates 
to zero: the exceptional divisors Er := {xr = 0} and the ordinary divisors Du := {zu1 = 0}. 
The exceptional divisors consist of 24 = 16 disjoint components and the ordinary divisors of 
22 = 4 disjoint components. As was observed in [39] the inherited torus divisors Ru and R′

u

can be identified with the polynomials multiplying the chiral Fermi superfields �u and �′
u in the 

superpotential (5.5).

5.4.3. S–triangulation full resolution phase
In the S–triangulation phase of the GLSM the three Kähler parameters are of similar size in the 

sense that each one is smaller than the sum of the other two, e.g. the following three inequalities

0 < b1 < b2 + b3 , 0 < b2 < b1 + b3 , 0 < b3 < b1 + b2 , (5.12)

hold simultaneously. In this phase the intersection E1E2E3 exists because it is possible to satisfy 
all the D– and F–term equations while setting x1 = x2 = x3 = 0. In fact, in this case the F–term 
equations have 26 = 64 solutions. This number comes as no surprise, since the T 6/Z2 ×Z2 has 
64 Z2 × Z2 fixed points. When all resolved using the S–triangulation, one finds 64 times the 
intersection of these three exceptional divisors. Note that the first equation in (5.11) implies that 
not both z1 1 and x1 can be zero at the same time, hence, in particular, the curve D1E1 does 
not exist. All this is in accordance with the topological properties of the S–triangulation of the 
resolved T 6/Z2 ×Z2 orbifold.

5.4.4. E1–triangulation full resolution phase
In the E1–triangulation phase of the GLSM the Kähler parameter b1 is much larger than the 

sum of the other two:

0 < b2 < b1 + b3 , 0 < b3 < b1 + b2 , b2 + b3 < b1 . (5.13)

Then (5.11) implies that not both x2 and x3 can be zero at the same time, hence, in particular, 
the curve E2E3 and the intersection E1E2E3 do not exist in this phase. Contrary, in this phase 
the curve D1E1 does exist. All this is, again, in accordance with the topological properties of 
the E1–triangulation of the resolved T 6/Z2 × Z2 orbifold. The transition from the S– to the 
E1–triangulation phase thus provides the GLSM description of the flop transition. Note that in 
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the GLSM there is nothing singular at the transition b1 = b2 + b3 even though the target space 
geometry is singular there.

The other two full resolutions phases, the E2– and E3–triangulations may be defined in an 
analogous fashion.

5.4.5. Full resolution coordinate patches
To understand the coordinate patches in the full resolution phases, first observe that the three 

D–term equations on the right–hand–side of (5.6) lead to the same options for non–vanishing 
coordinates z1 1, z2 1, z3 1, x1, x2, x3 as obtained in the non–compact case summarised in Table 4. 
Hence, in the S–, E1–, E2– or E3–triangulation the following coordinate combinations

S : z1 1z2 1z3 1 
= 0 , z1 1z2 1x3 
= 0 , z1 1z3 1x2 
= 0 or z2 1z3 1x1 
= 0 , (5.14a)

E1 : z2 1z3 1x3 
= 0 , z1 1z2 1x3 
= 0 , z2 1z3 1x2 
= 0 or z1 1z3 1x2 
= 0 , (5.14b)

E2 : z1 1z3 1x3 
= 0 , z1 1z2 1x3 
= 0 , z2 1z3 1x1 
= 0 or z1 1z3 1x1 
= 0 , (5.14c)

E3 : z2 1z3 1x1 
= 0 , z1 1z2 1x1 
= 0 , z1 1z2 1x2 
= 0 or z1 1z3 1x2 
= 0 , (5.14d)

are non–zero, respectively. Next, observe that the first D–term equation on the left–hand–side 
of (5.6) implies that at least z1x is non–zero. If this happens to be z1 1 then the latter two D–term 
equations on the right–hand–side of (5.6) imply that x2 and x3 are also non–zero because a1 is 
parametrically larger than the parameters b1, b2, b3 so that cancellations are never possible. But 
the two top F–term equations (5.7) imply that two other z1x , x 
= 1 are non–zero. There are three 
options for this to happen. Finally, it is possible that all three z1x , x 
= 1 are non–zero. In total 
this gives four non–vanishing coordinate combinations for the first lines of the D– and F–term 
equations. A similar analysis can be performed for the second and third lines of these equations, 
leading to the following combinations of non–vanishing coordinates

z1 2z1 3z1 4 
= 0 , z1 1z1 3z1 4x2x3 
= 0 , z1 1z1 2z1 4x2x3 
= 0 or z1 1z1 2z1 3x2x3 
= 0 ,

(5.15a)

z2 2z2 3z2 4 
= 0 , z2 1z2 3z2 4x1x3 
= 0 , z2 1z2 2z2 4x1x3 
= 0 or z2 1z2 2z2 3x1x3 
= 0 ,

(5.15b)

z3 2z3 3z3 4 
= 0 , z3 1z3 3z3 4x1x2 
= 0 , z3 1z3 2z3 4x1x2 
= 0 or z3 1z3 2z3 3x1x2 
= 0 .

(5.15c)

Coordinate patches can now be composed by taking one out of four equations on each line 
of (5.15) combined with one out of the four equations from the line in (5.14) corresponding 
to the chosen triangulation. Not all combinations are valid however, in total there should be 12 
non–vanishing coordinates out of the 15 original ones, so that the coordinate patch has complex 
dimension three.

The results of this analysis are summarised in Table 9. The GLSM description leads to 76 
coordinate patches for each of the full resolution phases. There are 72 universal coordinate 
patches which exist independently of which triangulation is chosen: for each triangulation choice 
in (5.14) there is at least one combination of non–vanishing fields which is contained in the non–
vanishing set coordinates of that patch to the extent that precisely 12 coordinates are non–zero. 
54 of those patches do not involve any of the exceptional coordinates and therefore coincide with 
the coordinate patches of the orbifold discussed above. These coordinate patches are indicated 
above the line that splits the universal patches in Table 9. In addition, to the 72 universal co-
ordinate patches there are four patches that depend on the triangulation. The GLSM therefore 
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Table 9
The 76 coordinate patches of the full resolution phases of the minimal full resolution GLSM. There are 72 
universal coordinate patches which are the same for each of the full resolution phases. In addition, there are 
four coordinate patches which are specific for the triangulation chosen.

Phase # Non–zero fields Patches Conditions

Universal 54 z1x′ 
=x z2y′ 
=y zz′ 
=z x1 x2 x3 
= 0 {z1x, z2y , z3 z} x, y, z 
= 1
z1x′ 
=1 z2y′ 
=y zz′ 
=z x1 x2 x3 
= 0 {z1 1, z2y, z3 z} y, z 
= 1
z1x′ 
=x z2y′ 
=1 zz′ 
=z x1 x2 x3 
= 0 {z1x, z2 1, z3 z} x, z 
= 1
z1x′ 
=x z2y′ 
=y zz′ 
=1 x1 x2 x3 
= 0 {z1x, z2y , z3 1} x, y 
= 1

18 zu′ 
=u1z1x′ 
=1 z2y′ 
=1 zz′ 
=z x1 x2 
= 0 {zu1, z3 z, x3} u′, u = 1,2; z 
= 1
zu′ 
=u1z1x′ 
=1 z2y′ 
=y zz′ 
=1 x1 x3 
= 0 {zu1, z2y, x2} u′, u 
= 1,3;y 
= 1
zu′ 
=u1z1x′ 
=x z2y′ 
=1 zz′ 
=1 x2 x3 
= 0 {zu1, z1x, x1} u′, u = 2,3;x 
= 1

S–triang. 4 zux 
= 0 {x1, x2, x3} u = 1,2,3;x = 1, ..,4
zux 
=3 1x3 
= 0 {z3 1, x1, x2} u = 1,2,3;x = 1, ..,4
zux 
=2 1x2 
= 0 {z2 1, x1, x3} u = 1,2,3;x = 1, ..,4
zux 
=1 1x1 
= 0 {z1 1, x2, x3} u = 1,2,3;x = 1, ..,4

E1–triang. 4 zux 
=1 1x3 
= 0 {z1 1, x1, x2} u = 1,2,3;x = 1, ..,4
zux 
=3 1x3 
= 0 {z3 1, x1, x2} u = 1,2,3;x = 1, ..,4
zux 
=1 1x2 
= 0 {z1 1, x1, x3} u = 1,2,3;x = 1, ..,4
zux 
=2 1x2 
= 0 {z2 1, x1, x3} u = 1,2,3;x = 1, ..,4

E2–triang. 4 zux 
=2 1x3 
= 0 {z2 1, x1, x2} u = 1,2,3;x = 1, ..,4
zux 
=3 1x3 
= 0 {z3 1, x1, x2} u = 1,2,3;x = 1, ..,4
zux 
=1 1x1 
= 0 {z1 1, x2, x3} u = 1,2,3;x = 1, ..,4
zux 
=2 1x1 
= 0 {z2 1, x2, x3} u = 1,2,3;x = 1, ..,4

E3–triang. 4 zux 
=1 1x1 
= 0 {z1 1, x2, x3} u = 1,2,3;x = 1, ..,4
zux 
=3 1x1 
= 0 {z3 1, x2, x3} u = 1,2,3;x = 1, ..,4
zux 
=3 1x2 
= 0 {z3 1, x1, x3} u = 1,2,3;x = 1, ..,4
zux 
=2 1x2 
= 0 {z2 1, x1, x3} u = 1,2,3;x = 1, ..,4

dictates a gluing procedure in which ten of the coordinate patches of the orbifold are replaced by 
22 patches for the full resolutions.

5.5. Gauge background on the minimal full resolution of the non–torsional orbifold

The gauge charges of the Fermi and chiral multiplets that define a simple gauge bundle on the 
minimal full resolution model are given in Table 10. This gauge bundle is quite closely related to 
the standard embedding on the two–tori. The exceptional E–gauge charges are identical to those 
indicated in (4.15) of the non–compact resolution model. In order to avoid any of the four types 
of anomalies mentioned in Subsection 3.6, additional chiral multiplets 
u, 
′

u are introduced 
with identical charges as �u, �′

u and the sum of charges of all chiral superfields and all chiral 
Fermi superfields vanish separately.

In total there are 3 · 4 + 3 = 15 Fermi multiplets involved in the gauge bundle subject to 
3 · 2 = 6 constraints enforced by the chiral multiplets 
u, 
′

u. This leave nine Fermi multiplets 
part of the gauge background which cannot be fitted into a single E8 factor. Hence a number 
of fermionic gaugings are needed. If all six gaugings in the minimal resolution model are ac-
companied by fermionic gaugings, (a deformation of) the standard embedding is obtained. To 
make contact with the non–torsion line bundle model that was discussed in Section 4.2, only 
the inherited Ru–gaugings are accompanied with fermionic gaugings with parameters �u, while 
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Table 10
A choice for a charge table of the superfields that determine a gauge bundle on the minimal full 
resolution of T 6/Z2 ×Z2. The Fermi multiplets 	n , n = 1, . . . , 18, are spectators and generate the 
broken gauge group.

Superfield 	1x 	2y 	3z 
1 
′
1 
2 
′

2 
3 
′
3 	′

1 	′
2 	′

3 	n

U(1) charge λ1x λ2y λ3z ψ1 ψ ′
1 ψ2 ψ ′

2 ψ3 ψ ′
3 λ′

1 λ′
2 λ′

3 λn

R1
1
2 0 0 −1 −1 0 0 0 0 0 0 0 0

R2 0 1
2 0 0 0 −1 −1 0 0 0 0 0 0

R3 0 0 1
2 0 0 0 0 −1 −1 0 0 0 0

E1 0 1
2 δy1

1
2 δz1 0 0 0 0 0 0 −1 0 0 0

E2
1
2 δx1 0 1

2 δz1 0 0 0 0 0 0 0 −1 0 0

E3
1
2 δx1

1
2 δy1 0 0 0 0 0 0 0 0 0 −1 0

the exceptional Er–gaugings are not. With this choice of Fermionic gaugings 9 − 3 = 6 gauge 
bundle directions are left over, exactly matching the number in the non–compact resolution of 
the non–torsion orbifold model.

In target space this gauge background does not correspond to the standard embedding as there 
are no fermionic gaugings associated to the exceptional Er–gaugings. Neither can this back-
ground be interpreted as line bundles only because of the presence of the chiral multiplets 
u, 
′

u

that enforce constraints on the bundle degrees of freedom as well as the fermionic gaugings �u.
Given the charges of Table 10 the following superpotential can be written down:

Pmin res bundle =
3∑

u=1


u

(
2κu �u1

∏
r 
=u

�′
r 	u1 + κu �

2
u1

∏
r 
=s 
=u

�′
r	

′
s + 2�u2	u2 + 2�u3	u3

)

+
3∑

u=1


′
u

(
2�u1

∏
r 
=u

�′
r 	u1 + �2

u1

∏
r 
=s 
=u

�′
r	

′
s + 2�u2	u2 + 2�u4	u4

)
. (5.16)

This specific form of a general expression for this superpotential is inspired by the standard 
embedding following (3.20).

In the model under investigation only the Ru–gaugings are associated to fermionic gauge 
transformations, hence the only non–zero fermionic gauge transformations are:

δ	ux = 1
2 �ux �u , δ�u = −
u�u , δ�′

u = −
′
u �u . (5.17)

The specific form, given here, is obtained by requiring that the fermionic gauges are on the 
(2,2)–locus. In this case it follows automatically that (5.5) and (5.16) combined are inert under 
these fermionic transformations.

This construction leads to a regular bundle as for each of the three fermionic gaugings 
in (5.17) not all coefficients vanish simultaneously. The same goes for the six constraints coming 
from (5.16). It is straightforward to check this for all coordinate patches given in Table 9 for all 
four fully resolved phases of this GLSM. This should not come as a surprise as the fermionic 
gaugings (5.17) and the bundle superpotential (5.16) are precisely those that are dictated by the 
(2,2) locus, see Subsection 3.4.
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Table 11
A choice for a charge table of the superfields that determine a gauge bundle on the minimal full 
resolution of T 6/Z2 ×Z2 with torsion.

Superfield 	×
1x 	×

2y 	×
3z 
1 
′

1 
2 
′
2 
3 
′

3 	×′
1 	×′

2 	×′
3 	n

U(1) charge λ1x λ2y λ3z ψ1 ψ ′
1 ψ2 ψ ′

2 ψ3 ψ ′
3 λ′

1 λ′
2 λ′

3 λn

R1
1
2 0 0 −1 −1 0 0 0 0 0 0 0 0

R2 0 1
2 0 0 0 −1 −1 0 0 0 0 0 0

R3 0 0 1
2 0 0 0 0 −1 −1 0 0 0 0

E1 0 − 1
2 δy1 − 1

2 δz1 0 0 0 0 0 0 +1 0 0 0

E2 − 1
2 δx1 0 − 1

2 δz1 0 0 0 0 0 0 0 +1 0 0

E3 − 1
2 δx1 − 1

2 δy1 0 0 0 0 0 0 0 0 0 +1 0

5.6. Gauge background on the minimal full resolution of the torsional orbifold

In section 2.3 it was explained that the twisted states that survive the orbifold projections are 
precisely opposite when torsion is switched on to when it is absent. Since the shifted momenta of 
the twisted states without oscillators dictated the exceptional E1, E2, E3–charges in the GLSM 
of the Fermi multiplet 	, the charge Table 8, which determines the geometry, remains unchanged 
when torsion is switched on, but the charge table for the vector bundle is modified to Table 11: 
the Ri–charges remain the same while the Er–charges are all sign–flipped as compared to those 
in Table 10.

The flipping of the Er–gauge charges has various consequences. First of all, the fermionic 
gauge transformations (5.17) are not gauge covariant any more. This is easily alleviated by in-
serting appropriate factors of �′

r in the first column of fermionic gauge transformations of 	u1:

δ	×
u1 = 1

2

∏
r 
=u

�′
r �u1 �u , δ	×

ux = 1
2 �ux �u ,

δ�u = −
u�u , δ�′
u = −
′

u �u ,

(5.18)

for x 
= 1. Secondly, the bundle superpotential (5.16) has to be modified to

Pmin res bundle =
3∑

u=1


u

(
2κu �u1 	

×
u1 + κu �

2
u1

∏
r 
=s 
=u

�′
r�

′2
s 	×′

s + 2�u2	
×
u2 + 2�u3	

×
u3

)

+
3∑

u=1


′
u

(
2�u1 	

×
u1 + �2

u1

∏
r 
=s 
=u

�′
r�

′2
s 	×′

s + 2�u2	
×
u2 + 2�u4	

×
u4

)
(5.19)

by making the following replacements

	u1 → �′−1
r �′−1

s 	×
u1 , 	ux → 	×

ux , 	′
r → �′2

r 	×′
r , (5.20)

with x 
= 1 and r 
= s 
= u, to ensure that it is gauge invariant again. With these modifications of 
the fermionic gauge transformations and the bundle superpotential, it is not difficult to see that 
the full superpotential including the part for the geometry (5.4) is invariant under the fermionic 
gauge transformations.
30



A.E. Faraggi, S. Groot Nibbelink and M. Hurtado Heredia Nuclear Physics B 988 (2023) 116111
The replacements (5.20) are the same as the field redefinitions (4.19) in the non–compact case 
with the chiral superfields �r given by the ones in the orbifold case (O) of Table 5. It should be 
stressed that in the present case the replacements (5.20) in the bundle superpotential apply to the 
GLSM theory as a whole globally, not just to a particular (coordinate patch within a) phase of the 
theory. Moreover, it is unique in the sense that other factors, that would have the same charges 
(like the other combinations in Table 5), would always involve some powers of 
u or 
′

u, but 
that is forbidden because they are only allowed to appear linearly in the superpotential because 
of the R–symmetry, as was emphasised below (3.16).

5.6.1. Mixed anomalies and worldsheet Green–Schwarz mechanism
The flipped Er–gauge charges in Table 11 are irrelevant for most anomalies which still vanish 

identically as can be verified using (3.23) through (3.25). Only mixed RuEr 
=u–anomalies are 
now non–zero:

Aur = Aru = 1
2 · 1

2 − 1
2 · (− 1

2 ) = 1
2 , (5.21)

u 
= r . Hence, contrary to the GLSMs associated to the non–compact orbifold models, the 
GLSMs associated to the compact orbifold models without or with torsion are genuinely physi-
cally distinct.

These mixed anomalies need to be cancelled by field dependent FI–terms of the form

WFI anom = 1

4π

∑
u,r

cru

2
log(Nr)Fu + 1

4π

∑
u,r

1 − cru

2
log(Nu)F r , (5.22)

where the composite Nr and Nu have negative unit charge under the Ru– and Er–gaugings, 
respectively, and all other gauge charges zero. The arbitrary coefficients cru arise as it is possible 
by counter terms to shift two dimensional mixed anomalies around. The choice cru = 1/2 would 
treat all mixed anomalies symmetrically. (See e.g. ref. [55] for a more extensive discussion.) 
The composite chiral superfields Nu and Nr can be realised as rational functions of (fractional) 
powers of the chiral superfields. They may be expressed as

Nr = �′
r , Nu =

∑
x,y 
=1

nuxy �
−1
ux �

−1
uy + nu11�

−2
u1

∏
r 
=u

�′−1
r +

∑
x 
=1

nu1x �
−1
u1 �−1

ux

∏
r 
=u

�
′− 1

2
r ,

(5.23)

with some generically non–zero parameters nuxy , nu11 and nu1x . Since the chiral superfields 

u and 
′

u cannot appear here as they would break R–symmetry, the possible forms in these 
expressions are restricted.

The superfield dependent FI–terms (5.22) are defined on the level of the definition of the 
model and are singular independently of how the coefficients cru and nuxy , nu11 and nu1x are 
chosen, hence they signify the presence of NS5–branes [55,56]. The interpretation of the coef-
ficients cru is not so clear. However, if they are all set to zero: cru = 1, then the expressions of 
Nu become irrelevant. The NS5–branes are then located on the resolved exceptional cycles Er

and they would disappear inside the orbifold singularities in the blow down limit. Maybe other 
values of cru could be interpreted that the NS5–branes are moved around the resolved orbifold 
geometry and for cru = 0 they are pushed fully off the resolved singularities onto the two–torus 
cycles. This seems to signify that the NS5–branes can move around on the resolved geometry 
without losing their influx effects on the worldsheet. This interpretation may be more transparent 
in another parameterisation
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WFI anom = 1

8π

∑
u,r

cru log�′
rF

u

− 1

4π

∑
u,r

⎡
⎣∑

x 
=1

cuxr log�ux + cu1r

(
log�u1−

∑
r ′ 
=u

1
2 log�′

r ′
)⎤⎦F r (5.24)

of (5.22), since the coefficients determining the position of the NS5–branes are subject to the 
constraint cru + ∑

x

cuxr = 1.

5.6.2. Comparing the pair of torsion related GLSMs
Just like in the non–compact case, it is instructive to compare the resolution GLSMs of 

the orbifold theories without and with torsion with each other by working in the same super-
field basis. By interpreting (5.20) as a superfield redefinition (4.20), but now both Ru– and 
Eu–transformations are involved, the anomaly matrix A extends to

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
4 0 0 0 1

4
1
4

0 1
4 0 1

4 0 1
4

0 0 1
4

1
4

1
4 0

0 1
4

1
4

3
2

1
4

1
4

1
4 0 1

4
1
4

3
2

1
4

1
4

1
4 0 1

4
1
4

3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.25)

Notice that the lower 3 × 3–block is identical to (4.21). Since in the replacements (5.20) only the 
superfields �′

r feature, the superfield redefinition anomalies read

Wfield redef anom = − 1

2π

{1

4

∑
u 
=r

log�′
r F

u + 3

2

∑
r

log�′
r F

r + 1

4

∑
r ′ 
=r

log�′
r F

r ′}
.

(5.26)

The first contribution coincides with the general expression (5.22) provided that cur = 0 and 
Nr = �′

r , hence they cancel each other exactly. The latter two contributions were also obtained 
in the non–compact situation (4.20). Hence, the analysis performed in Subsection (4.2) can be 
repeated here as well. In particular in the orbifold phase, that analysis recovers the discrete torsion 
phases.

6. Conclusions

Discrete torsion within the Z2 × Z2 orbifolds corresponds to particular additional phases 
between the sum of partition functions of different sectors corresponding to different boundary 
conditions on the worldsheet torus. Smooth geometries are typically described by NLSMs which 
cannot be exactly quantised and the path integral cannot be represented as a sum over similar 
sectors as the orbifold theory. It is therefore unclear how to include effects of discrete torsion for 
smooth geometries. The main aim of this paper was to understand where discrete torsion goes 
when orbifolds have been resolved to fully smooth geometries. This question was addressed both 
for resolutions of the non–compact orbifold C3/Z2 × Z2 as well as the compact T 6/Z2 × Z2
orbifold with Hodge numbers (51, 3) to understand both local and global aspects.

GLSMs were chosen as the framework for this investigation, as they can both make contact 
with the orbifolds as well as with fully resolved smooth geometries within the same description. 
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From an effective field theory point of view orbifold resolutions correspond to giving VEVs to 
twisted states defining the blowup modes. Unless very particular blowup modes are selected, this 
leads to (0, 2) compactifications in which the gauge backgrounds are not dictated by the stan-
dard embedding. Therefore, in this work (0, 2) GLSMs were used for the interpolation between 
singular orbifolds and smooth compactifications.

The non–compact resolution GLSM of the C3/Z2 ×Z2 geometry had already been given in 
the literature, the same goes for the resulting line bundle backgrounds obtained by using non–
oscillator blowup modes on the three C2/Z2 singularities. The GLSM gauge charges of the chiral 
Fermi multiplets under the resulting three exceptional gauge symmetries are given as the shifted 
left–moving momenta of these blowup modes. The effect of discrete torsion on the orbifold is 
that the twisted states with the opposite left–moving shifted momenta survive the orbifold pro-
jections. Consequently, the chiral Fermi multiplets in resolution GLSM for the torsional orbifold 
have the opposite worldsheet gauge charges as the non–torsional case. The GLSM associated 
to the torsional orbifold is equally well defined as the non–torsional model in the sense that 
all (gauge) anomalies vanish. In many respects the two models look identical. However, if one 
wants to express the physics of the GLSM associated with the torsional orbifold in terms of the 
superfield basis of the non–torsional GLSM, one has to perform anomalous superfield redefini-
tions. Since, these superfield redefinitions have to be well defined in each patch where they are 
performed, the expression of the anomaly is harmless within the smooth resolution phases. But 
in the orbifold phase this anomaly turns out not to be invariant under residual discrete Z2 ×Z2
gauge transformations, precisely reproducing the torsion phases of the orbifold theory.

The story for the compact case is more involved. GLSMs for resolutions of the T 6/Z2 ×Z2
orbifold have not explicitly appeared in the literature. Moreover, GLSMs for other compact orb-
ifold resolutions have only been studied in the (2, 2) context. Therefore, before the question about 
discrete torsion on compact orbifold resolutions could be addressed, first resolution GLSMs for 
T 6/Z2 ×Z2 had to be constructed. Contrary to the existing literature on compact orbifold reso-
lutions, this was done immediately in the (0, 2) language. The simplest version of such a GLSM 
involves six gaugings on the worldsheet: three to define modified Weierstrass models to describe 
the underlying two–tori of the T 6 and three exceptional gaugings associated with the blowup 
process. In order to make comparisons with the non–compact situations most transparent, the 
same blowup modes were chosen as in the non–compact case, i.e. non–oscillatory twisted states. 
To pass all consistency conditions this resulted in a more complicated bundle that shares both 
features of line bundles on the resolved fixed two–tori as well as of the standard embedding on 
the underlying two–tori of the T 6.

The resolution GLSM of the T 6/Z2 ×Z2 with discrete torsion was obtained in a similar fash-
ion as its non–compact analog: the exceptional gauge charges were flipped, while the other three 
gauge charges remained unchanged. As a consequence the resolution GLSM associated with the 
torsional orbifold suffers from mixed gauge anomalies. These anomalies can be cancelled by 
superfield dependent FI–terms in the GLSM globally. This signifies that the target space geome-
try has torsion in the sense that the three–form H–flux is non–zero. Moreover, given the GLSM 
chiral superfield content, the field dependent FI–terms need to involve logs of chiral superfields. 
As argued in the past, this signals that there are NS5–branes in the system. The structure of these 
logs can be taken such that these NS5–branes are located at the resolved exceptional cycles. In 
the orbifold limit they would disappear inside these singularities.

It is striking to see the differences of the effect of discrete torsion in the resolution process for 
non–compact and compact orbifolds. In the non–compact case apart from a physically irrelevant 
flip of charge conjugated states the non–torsional and torsional orbifold resolutions are to a large 
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extent indistinguishable: only the relative signs of the gauge charges of the chiral and chiral 
Fermi multiplets distinguish them. In the compact case the GLSM associated to the torsional 
orbifold is really physically different from the non–torsional one as the mixed gauge anomalies 
and the related NS5–branes signify. These differences may be explained by realising that in the 
non–compact case the effect of flux can be pushed off to infinity while in the compact case this 
is impossible.

Outlook
The work presented here can be extended in a number of ways.
First of all, it would be interesting if it is possible by other means to show that the emerged 

picture that NS5–branes are located at the resolved singularities of the resolved torsional orbifold 
can be corroborated. And it would be interesting to confirm the interpretation of the coeffi-
cients that allow to shift mixed gauge anomalies around as moving around the NS5–branes of 
the resolved geometry. In addition, it would be interesting to investigate what the geometrical 
consequences are of the back reaction induced by the log–dependent FI–terms.

In this paper the focus was on only very simple bundles (would be line bundles on local 
resolved singularities combined with bundles that are on the (2,2) locus, hence closely related 
to the standard embedding). However, the procedures used here could be applied to other gauge 
backgrounds as well. In particular, by choosing other blowup modes, for example, those with 
oscillator excitations, see e.g. [38].

Moreover, in this work only the discrete torsion between two orbifold twists was considered. 
For possible applications of the spinor–vector duality on smooth geometries other generalised 
discrete torsion phases would be of interest. First attempts in this direction were performed us-
ing effective field theory techniques in [34]. Such phases are between orbifold twists and torus 
translations and associated Wilson lines or among two different torus translations. This requires 
that within the GLSM distinctions between the various (resolved) fixed tori can be made. Clearly, 
this is possible in the maximal full resolution model, which treats all 48 (resolved) fixed tori in-
dependently, or in certain full resolution GLSM that have a certain number of additional gauging 
so that at least some fixed two–tori in certain directions can be distinguished. The effect of the 
Wilson lines would then be that the exceptional GLSM charges (dictated by the shifted twisted 
state momenta) are not the same at the different fixed tori. Then, just like in the models consid-
ered here, the effect of generalised discrete torsion is that particular states are projected out or in, 
leading to different charge assignments for the Fermi multiplets. Presumably, the consequences 
of these differences could then be analysed in much the same fashion as done in the current work.
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Appendix A. Elements of (0, 2) sigma models

A.1. (0, 2) superspace

The (0, 2) superspace is spanned by a complex fermionic variable θ+ and its conjugate θ̄+
of positive chiralilty in two dimensions and worldsheet coordinates σ = 1√

2
(σ1 + σ0) and σ̄ =

1√
2
(σ1 − σ0). Using their derivatives denoted by ∂+, ∂̄+, ∂ = 1√

2
(∂1 + ∂0) and ∂̄ = 1√

2
(∂1 − ∂0), 

respectively, super covariant derivates D+ and D+ = −(D+)† can be defined as

D+ = ∂+ − iθ̄+ ∂ , D+ = ∂̄+ − iθ+ ∂ ,
{
D+,D+

} = −2i ∂ . (A.1)

These super covariant derivatives anti–commute with the supercharges

Q+ = ∂+ + iθ̄+ ∂ , Q+ = ∂̄+ + iθ+ ∂ . (A.2)

The supercharges generate the (0, 2) super algebra

{
Q+,Q+

} = 2P , (A.3)

where P = i ∂ is the right moving momentum generator.

A.2. (0, 2) superfields

A general (0, 2) superfield G is a complex function of (0, 2) superspace on which supersym-
metry acts as

δεG = (ε+Q+ + ε̄+Q+)G . (A.4)

Consequently sums, products and super covariant derivatives of superfields are again superfields.
The components of a superfield are defined by taking a number of super covariant derivates 

and then set all θ+ and θ̄+ to zero which is denoted as |+. A superfield G is called bosonic 
(fermionic) if its lowest component G|+ is bosonic (fermionic).

There are four fundamental multiplets of (0, 2) supersymmetry: the chiral multiplet, the chiral 
Fermi multiplet, the vector multiplet and the Fermi gauge multiplet.
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A.2.1. Chiral multiplet
A chiral multiplet � and its conjugate � are bosonic superfields defined by the chirality 

constraints:

D+� = 0 , D+� = 0 . (A.5)

Their components,

z = �|+ , φ = 1√
2
D+�|+ , z̄ = �|+ , φ̄ = − 1√

2
D+�|+ , (A.6)

are a complex scalar z, a negative chiral (right–moving) complex spinor φ and their conjugates 
z̄ and φ̄.

A.2.2. Chiral Fermi multiplet
A chiral Fermi multiplet 	 and its conjugate 	 are fermionic superfields defined by the chi-

rality constraints:

D+	 = 0 , D+	 = 0 . (A.7)

Their components,

λ = 	|+ , h = 1√
2
D+	|+ , λ̄ = −	|+ , h̄ = 1√

2
D+	|+ , (A.8)

are a positive chiral (left–moving) complex spinor λ, a complex scalar h and their conjugates λ̄
and h̄.

A.2.3. Vector multiplet
The vector multiplet (V , A) consists of two real bosonic superfields V and A subject to a 

bosonic super gauge transformation

V → V − 1
2

(
� + �

)
, A → A + i

2 ∂̄
(
� − �

)
, (A.9)

with a chiral superfield � gauge parameter and its conjugate �. (Non–Abelian gauge superfields 
are not considered in this work.) Their components are

�|+ = θ = 1
2 a + i α , 1√

2
D+�|+ = ζ, �|+ = θ = 1

2 a − i α , − 1√
2
D+�|+ = ζ̄ ,

(A.10)

where a and α are real fields. The two dimensional gauge field components are identified as

Aσ = 1
2

[
D+,D+

]
V |+ , Aσ̄ = A|+ , (A.11)

which transform as

Aσ → Aσ − ∂α , Aσ̄ → Aσ̄ − ∂̄α . (A.12)

The super field strengths

F = − 1
2D+

(
A − i∂̄V

)
, F = 1

2D+
(
A + i∂̄V

)
, (A.13)

are super gauge invariant chiral Fermi multiplets, since by construction D+F = D+F = 0. Con-
sequently, their components
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F |+ = 1√
2
ϕ , F |+ = 1√

2
ϕ̄ , D+F |+ = 1

2

(
D + i Fσ σ̄

)
, D+F |+ = 1

2

(
D − i Fσ σ̄

)
,

(A.14)

are identical in any gauge. In particular, D = 1
2 [D+, D+]A|+ − ∂∂̄V |+ and Fσσ̄ = F01.

The super gauge transformation can be used to set some of the components of the vector 
multiplet to zero: V |+ = D+V |+ = D+V |+ = 0. In this so–called Wess–Zumino (WZ) gauge 
all quadratic and higher powers of V vanish. Since V is a real superfield the WZ gauge does 
not fix the super gauge transformations completely, there is a residual gauge transformation with 
� = iα.

A.2.4. Fermi gauge multiplet
A Fermi gauge multiplet � and its conjugate � are complex fermionic superfields subject to 

fermionic super gauge transformations

� → � − � , � → � − � , (A.15)

where � is a Fermi multiplet and � its conjugate. The associated super field strength ϒ and its 
conjugate

ϒ = D+� , ϒ = D+� , (A.16)

are inert under the fermionic gauge transformations. Their components are

s = 1√
2
ϒ|+ , s̄ = 1√

2
ϒ|+ , χ = 1

2D+ϒ|+ , χ̄ = 1
2D+ϒ|+ . (A.17)

Using the fermionic gauge transformations, the following components of the Fermi gauge 
multiplet � are set to zero in the WZ–gauge: �|+ = D+�|+ = 0.

A.3. Super conformal transformations and scaling dimensions

Real conformal transformations of the worldsheet coordinates

σ → f (σ ) , σ̄ → f̄ (σ̄ ) , (A.18)

are characterized by two real functions f (σ ) of σ only and f̄ (σ̄ ) of σ̄ only. Consequently, their 
differential and derivatives transform

dσ → ω−1 dσ dσ̄ → ω̄−1 dσ̄ , ∂ → ω∂ , ∂̄ → ω̄ ∂̄ , (A.19)

where ω = (∂f )−1 and ω̄ = (∂̄f̄ )−1. Moreover, since θ+ is a complex parameter, there is a phase 
transformation, often dubbed R–symmetry,

θ+ → eiκ θ+ , θ̄+ → e−iκ θ̄+ , (A.20)

with κ ∈R. Requiring that the algebra of the super covariant derivatives transforms consistently 
with this implies:

D+ → ω
1
2 e−iκ D+ , D+ → ω

1
2 e+iκ D+ . (A.21)

The left– and right–Weyl dimensions and the R–charge (L, R, R) (often collectively referred to 
as Weyl charges) of a general complex superfield G, defined as

G → ω̄LωR eiRκ G (A.22)
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identify how it responds to these conformal transformations. Real superfields are necessarily 
inert under the R–symmetry. The Weyl and R–charges of the superfields used in this work can 
be found in Table 2.

A.4. Scale invariant matter actions

A.4.1. Scale invariant superspace integrals
Any real bosonic superfield R can be used to form a supersymmetric invariant by an integral 

over the full superspace:

Sfull superspace =
∫

d2σd2θ+ R =
∫

d2σ D+D+R|+ . (A.23)

This action is gauge invariant if R caries no gauge charges and scale invariant if it has Weyl and 
R–charges (+1, 0, 0).

Any chiral Fermi superfield � can be used to form a supersymmetric invariant by an integral 
over the chiral superspace:

Schiral superspace =
∫

d2σdθ+ � +
∫

d2σdθ̄+ � =
∫

d2σ
[
D+� + D+�

]|+ . (A.24)

This is gauge invariant if � carries no gauge charges and conformally invariant if it has Weyl and 
R–charges (+1, + 1

2 , +1).

A.4.2. Chiral superfield action
The gauge interactions of chiral superfields �a and their conjugates �

a
with Abelian vector 

multiplets (V , A)i are parameterized by the gauge charges (qi)a . In order to reduce the abun-
dance of indices, interpret q ·V as the diagonal matrix with on the diagonal 

∑
i (q

i)aVi and 
interpret � as standing and � as lying vectors of N� chiral superfields and their conjugates, 
respectively. Their super gauge transformations read

� → �eq·� , � → eq·� � . (A.25)

Their super gauge invariant kinetic action is given by

Schiral = i

4

∫
d2σd2θ+ [

�e2q·VD� −D�e2q·V�
]
, (A.26)

in terms of the super gauge covariant derivatives of the chiral superfields and their conjugates

D� = ∂̄� + q ·(∂̄V + iA
)
� , D� = ∂̄ � + �q ·(∂̄V − iA

)
. (A.27)

A.4.3. Chiral Fermi superfield action
The gauge and Fermi gauge interactions of the chiral Fermi superfields 	m and their conju-

gates 	
m

with the Fermi gauge multiplets are parameterised by the gauge charges (Qi)m and 
holomorphic functions UmI (�). The super gauge and super fermionic gauge transformations of 
them read

	 → (
	 + �·U(�)

)
eQ·� , 	 → eQ·� (

	 + U(�)·�)
. (A.28)

Here the notation 
(
U(�) ·�)m = UmI (�) �I is employed. The gauge charges of the holomorphic 

functions UmI (�) are (QI )m as well. Their super gauge invariant kinetic action is given by

SFermi = −1
∫

d2σd2θ+ (
	 + �·U(�)

)
e2Q·V (

	 + U(�)·�)
. (A.29)
2
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A.4.4. FI actions
The Fayet–Ililopoulos (FI) action is given by the chiral superspace integral

SFI =
∫

d2σdθ+ WFI + c.c. , WFI = ρ(�)·F + (κ(�)·ϒ)	 , (A.30)

where (κ(�) ·ϒ)	 = κIm(�)ϒI	
m employing holomorphic functions ρi(�) and κIm(�) of the 

chiral superfields �a . The lowest components of ρ(�),

ρi |+ = 1
2 ri + i βi , ρ̄i |+ = 1

2 ri − i βi , (A.31)

couple to the auxiliary field Di and the gauge field strength F i
01, respectively:∫

dθ+ ρ(�)·F +
∫

dθ̄+ ρ̄(�)·F ⊃ 1
2 r ·D − β ·F01 , (A.32)

where ⊃ indicates that the expression on the left includes terms given on the right.
Only when ρi(�) are super gauge invariant and κIA(�) carry the opposite charges as 	a , the 

FI action is gauge invariant. This action is only invariant under fermionic gauge transformation 
if

κIm(�)UmJ = 0 , (A.33)

for all I, J . A worldsheet variant of the Green–Schwarz mechanism involves chiral superfield 
functions ρi(�) that transforms as shifts under super gauge transformations.

A.5. None scale invariant actions

In GLSMs also actions are used that are not scale invariant. They involve parameters of mass 
dimension one or two in two dimensions. For simplicity all these parameters are assumed to be 
equal to m or |m|2, depending on whether these actions are chiral or full superspace integrals. 
Consequently, conformal invariance is broken by these actions unless these parameters are sent
to either 0 or ∞. Here, the conformal limit is taken to be the strong coupling limit |m| → ∞. 
In a more precise analysis one should study the renormalisation of the theory to understand if a 
conformal limit exists [64,65].

A.5.1. Gauge multiplet actions
Abelian vector multiplets (V , A)i have kinetic actions

Sgauge = 1

2|m|2
∫

d2σd2θ+ FF . (A.34)

The kinetic terms for Fermi gauge multiplets �I are given by

SFermi gauge = 1

2|m|2
∫

d2σd2θ+ ϒ∂̄ϒ . (A.35)

A.5.2. Superpotentials
To introduce gauge invariant superpotential actions, chiral superfields 
A and Fermi super-

fields �M are needed. They are given in Table 2. The super gauge transformations of 
 read


 → 
eq·� , 
 → eq·�
 . (A.36)
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The super gauge and super fermionic gauge transformations of � are given by

� → (
� + (�·W(�))


)
eQ·� , � → eQ·� (

� + (
W(�)·�)
)
. (A.37)

Here 
[

 (W(�) · �)

]M = 
AWA
IM(�)�I is parameterised by chiral superfield functions 

WAI
M(�).

The superpotential action contains two pieces associated to the target space geometry and the 
gauge bundle that supports it:

SSP = m

∫
d2σdθ+ (

Pgeom + Pbundle

)
+ c.c., Pgeom = �P(�), Pbundle = 
M(�)	 .

(A.38)

Here, � and 
 are interpreted as lying vectors of Fermi multiplets �M and chiral multiplets 
A, 
respectively; P(�) as a standing vector of chiral superfield functions PM(�) and M(�) as a 
matrix of chiral superfield functions MAm(�). This is gauge invariant if the functions PM(�)

carry the opposite gauge charges as �M and MAm(�) the opposite gauge charges as 
A	m. The 
superpotential action is only invariant under fermionic gauge transformations if (3.16) holds.

The structure of the superpotential is dictated by a large extent by the Weyl charges: The 
R–charge implies that 
A and �M can only appear linearly in this expression. However, the 
superpotential is not conformal invariant, hence the mass parameter m sits out front. This implies 
that in the conformal limit the superpotential has to vanish strictly.

To complete the description also kinetic terms need to be added for the field 
 and �. The 
super gauge invariant kinetic action for 
 is given by

Schiral = i

4

∫
d2σd2θ+ [


e2q·VD
 −D
e2q·V 

]
. (A.39)

The super gauge invariant kinetic action for � is given by

SFermi = −1

2

∫
d2σd2θ+ (

� + �·W(�)

)
e2Q·V (

� + 
W(�)·�)
. (A.40)

The are both scale invariant.

A.6. (0,2) non–linear sigma models

The general action of a (0, 2) non–linear sigma model consists of two parts: an action for 
the chiral superfields �α , α = 0, . . . , 3, and Fermi multiplets �μ, μ = 1, . . . , 16. Here the scalar 
components of the chiral multiplets are interpreted as the local coordinates of the target space 
manifold M and the fermionic components of the Fermi multiplets as the local coordinates in a 
section of the bundle V in the same coordinate patch.

A.6.1. Torsional non–linear sigma models
The most general conformal (0, 2) action of the chiral multiplets

Sn.l. chiral = i

4

∫
d2σd2θ+ [

K(�,�) ∂̄� − ∂̄�K(�,�)
]
, (A.41)

is parameterised in terms of a lying complex vector function K(�, �) with entries Kα(�, �)

and its conjugate, a standing vector K(�, �) with entries Kα(�, �). These functions are defined 
modulo additions
40
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K(�,�) → K(�,�) + k̄(�) , K(�,�) → K(�,�) + k(�) (A.42)

of holomorphic vector functions k(�) and k̄(�), as this would modify the full superspace inte-
grant by a sum of a chiral superfield and its conjugate which vanishes. The superfield functions 
K(�, �) and K(�, �) can be thought of as prepotentials for the metric

Gαα = 1
2

(
Kα,α + Kα,α

)
(A.43)

and the Kalb–Ramond two–form B2

Bαα = 1
2

(
Kα,α − Kα,α

)
, Bαβ = 1

2

(
Kα,β − Kβ,α

)
, Bαβ = 1

2

(
Kα,β − Kβ,α

)
,

(A.44)

combined, as can be seen by working out the kinetic action for the scalar components of the 
chiral superfields. The representation of the action for the scalar components is not unique due to 
B2-field gauge transformations. A gauge can be chosen such that the components of the B2–field 
with purely (anti–)holomorphic indices are absent. The non–vanishing components of the gauge 
invariant three–form field strength H3 = dB2 can also be expressed in terms of these prepotential 
functions:

Hαβγ = Hβγα = Hγαβ = Kα,βγ − Kβ,αγ , Hαβγ = Hβγα = Hγαβ = Kα,βγ − Kβ,αγ ,

(A.45)

if some of these components are non–zero the manifold possesses torsion.

A.6.2. Chiral superfield interactions with Fermi multiplets
The most general Weyl invariant action of Fermi multiplets is given by

Sn.l. Fermi = −1

2

∫
d2σd2θ+ {

�N(�,�)� + 1

2
�T n(�,�)� + 1

2
� n̄(�,�)�

T
}
,

(A.46)

parameterised by an Hermitean matrix N(�, �) with entries Nμν(�, �) assumed to be invert-

ible and a complex anti–symmetric matrix n(�, �) with holomorphic indices nμν(�, �) and its 
conjugate n̄(�, �) with entries n̄μν(�, �). They can be thought of as the prepotentials for the 
target space gauge fields

Aα(N) = N−1N,α , Aα(N) = N−1N,α , Aα(n) = n,α Aα(n̄) = n̄,α .

(A.47)

A.6.3. From (0,2) GLSMs to (0,2) NLSMs
By integrating out the gauge superfields (0, 2) GLSMs can be related to (0, 2) NLSMs. In 

particular, the equations of motion of A lead to the constraints (3.27) in the conformal limit. 
Then, by applying partial integrations on the derivative ∂̄ in the remaining (A independent) terms 
in the FI–interaction (A.30) and combining them with the remaining kinetic terms of the chiral 
multiplets (A.26), these actions can be cast in the form of the NLSM action (A.41) with the 
prepotentials

Ka = (
�e2q·V )

a
+ 2ρ,a ·V , Ka = (

e2q·V �
)
a
+ 2 ρ̄,a ·V . (A.48)

To see if these prepotentials for the metric and the B–field possess torsion, we compute the anti–
symmetrised derivative
41
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K[a,b] = Ka,b − Kb,a = (
�e2q·V q ·V,[b

)
a] + 2ρ,[a ·V,b] . (A.49)

This expression can be simplified by taking the partial derivative w.r.t. �a of equation (3.27) and 
after that contracting it with Vi,b. This gives(

�e2q·V q ·V,b

)
a + 2�e2q·V (q ·V,a)(q ·V,b)� = ρ,a ·V,b , (A.50)

hence anti–symmetrised:(
�eq·V q ·V,[b

)
a] = ρ,[a ·V,b] . (A.51)

From which in general it may be concluded, that there will be torsion if the FI–functions ρi(�)

are not constant

K[a,b] = 3ρ,[a ·V,b] . (A.52)

From this the three–form H expression (3.28) follows immediately.

Appendix B. Anomalies in two dimensional GLSMs

B.1. Chiral anomaly

Let ψ be a Dirac fermion in two dimensions and ψ̄ its conjugate. Consider the chiral trans-
formation

ψ → eiα
1+γ̃

2 ψ , ψ̄ → ψ̄ e−iα
1+γ̃

2 . (B.1)

Here γ̃ = γ 0γ 1 is the chirality operator in two dimensions satisfying γ̃ 2 = 1. The anti–
symmetrised product of two gamma matrices is proportion to this operator:

γ μν = 1
2 [γ μ, γ ν] = εμν γ̃ , (B.2)

where εμν = −ενμ is the anti–symmetric epsilon tensor in two dimensions with the normalisa-
tion ε01 = 1. The Dirac operator of this fermion is assumed to couple chirally to a gauge field 
Aμ:

/D = /∂ + i /A
1+ γ̃

2
, (B.3)

where /A = γ μAμ as usual. Note that

/D
2 = D2 + i

2
γ̃ εμνFμν , (B.4)

where iFμν = [Dμ, Dν] is the invariant gauge field strength or expressed as a two form

F2 = 1
2 Fμνdσμdσν = 1

2 εμνFμν d2σ = F01 d2σ . (B.5)

If the path integral measure

DψDψ̄ → DψDψ̄ eiAchiral (B.6)

is not invariant under this transformation, the chiral transformation is said to be anomalous. The 
anomaly can be expressed as the trace

Achiral = Tr[α γ̃ ] (B.7)
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over both the full Hilbert and spinor space. This trace needs to be regularised. In case of anoma-
lies a standard procedure is to use Fujikawa’s regularisation

Achiral =
∫

d2σ α tr〈x|γ̃ e
/D

2
/M2 |x〉 , (B.8)

where M is a regulator mass taken to be infinitely large. Using a plane wave expansion with a 
momentum variable p, scaling it as p → M p and keeping only the leading terms this expression 
can be evaluated to

Achiral =
∫

d2σ α

∫
d2p

(2π)2 e
−p2

tr
[
γ̃ i

2 γ̃ εμνFμν

]
(B.9)

where all the M dependence dropped out (after taking the limit M → ∞). Using the Gaussian 
integral∫

d2p e−p2 = π , (B.10)

the chiral anomaly can be expressed as

Achiral =
∫

i
2 α

F2

2π
. (B.11)

B.2. Super gauge anomalies

The result for the chiral anomaly above can be used for chiral gauge theories as well where 
then the parameter α is interpreted as the gauge parameter of a U(1) symmetry. For left–moving 
charged fermion the result can immediately be taken over, while for a right–moving fermion the 
expression will have an additional minus sign. If we have a set of left– and right–moving fermions 
with charges Qi and qi under a number of U(1) gauge symmetries, the result generalises to

Agauge =
∫

i
2 αi Aij

F
j
2

2π
, (B.12)

where the anomaly matrix is given by

Aij = Qi · Qj − qi · qj . (B.13)

Here the dot product indicates the sum over all charged left and right fermions present in the 
theory. Assuming the existence of a supersymmetric regulator, the general form of super gauge 
anomalies in two dimensions can be written as

Sanom =
∫

d2σdθ+ 1

4π

∑
i,j

Aij �
iF j +

∫
d2σdθ̄+ 1

4π

∑
i,j

Aij �
i
F

j
. (B.14)

Appendix C. Charge matrices

In Section 4 a number of so–called charge matrices are used to perform certain computations. 
In a given patch of a given phase of the GLSM a number of charged superfields are necessarily 
non–zero. Their charge matrices are given by:
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Q(O) =
⎛
⎝ -1 0 0

0 -1 0
0 0 -1

⎞
⎠ , Q(S) =

⎛
⎜⎝

0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

⎞
⎟⎠ , (C.1a)

Q(11) =
⎛
⎝ -1 0 0

1
2 0 1

2
1
2

1
2 0

⎞
⎠ , Q(12) =

⎛
⎝ -1 0 0

0 1
2

1
2

1
2

1
2 0

⎞
⎠ , Q(13) =

⎛
⎝ -1 0 0

0 1
2

1
2

1
2 0 1

2

⎞
⎠ ,

(C.1b)

Q(21) =
⎛
⎝ 1

2 0 1
2

0 -1 0
1
2

1
2 0

⎞
⎠ , Q(22) =

⎛
⎝ 0 1

2
1
2

0 -1 0
1
2

1
2 0

⎞
⎠ , Q(23) =

⎛
⎝ 0 1

2
1
2

0 -1 0
1
2 0 1

2

⎞
⎠ ,

(C.1c)

Q(31) =
⎛
⎝

1
2 0 1

2
1
2

1
2 0

0 0 -1

⎞
⎠ , Q(32) =

⎛
⎝ 0 1

2
1
2

1
2

1
2 0

0 0 -1

⎞
⎠ , Q(33) =

⎛
⎝ 0 1

2
1
2

1
2 0 1

2
0 0 -1

⎞
⎠ .

(C.1d)

Their transposed inverse are:

Q−T
(O) =

⎛
⎝ -1 0 0

0 -1 0
0 0 -1

⎞
⎠ , Q−T

(S) =
⎛
⎝ -1 1 1

1 -1 1
1 1 -1

⎞
⎠ , (C.2a)

Q−T
(11) =

⎛
⎝ -1 1 1

0 0 2
0 2 0

⎞
⎠ , Q−T

(12) =
⎛
⎝ -1 1 -1

0 0 2
0 2 -2

⎞
⎠ , Q−T

(13) =
⎛
⎝ -1 -1 1

0 2 0
0 -2 2

⎞
⎠ ,

(C.2b)

Q−T
(21) =

⎛
⎝ 0 0 2

1 -1 -1
2 0 -2

⎞
⎠ , Q−T

(22) =
⎛
⎝ 0 0 2

1 -1 1
2 0 0

⎞
⎠ , Q−T

(23) =
⎛
⎝ -2 0 2

-1 -1 1
2 0 0

⎞
⎠ ,

(C.2c)

Q−T
(31) =

⎛
⎝ 2 -2 0

0 2 0
1 -1 -1

⎞
⎠ , Q−T

(32) =
⎛
⎝ -2 2 0

2 0 0
-1 1 -1

⎞
⎠ , Q−T

(33) =
⎛
⎝ 0 2 0

2 0 0
1 1 -1

⎞
⎠ .

(C.2d)

The charge matrices associated to the superfields that define a given patch read:

Q̃(O) =
⎛
⎝ 0 1

2
1
2

1
2 0 1

2
1
2

1
2 0

⎞
⎠ , Q̃(S) =

⎛
⎝ -1 0 0

0 -1 0
0 0 -1

⎞
⎠ , (C.3a)

Q̃(11) =
⎛
⎝ 0 1

2
1
2

0 -1 0
0 0 -1

⎞
⎠ , Q̃(12) =

⎛
⎝ 1

2 0 1
2

0 -1 0
0 0 -1

⎞
⎠ , Q̃(13) =

⎛
⎝ 1

2
1
2 0

0 -1 0
0 0 -1

⎞
⎠ ,

(C.3b)
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Q̃(21) =
⎛
⎝ -1 0 0

0 1
2

1
2

0 0 -1

⎞
⎠ , Q̃(22) =

⎛
⎝ -1 0 0

1
2 0 1

2
0 0 -1

⎞
⎠ , Q̃(22) =

⎛
⎝ -1 0 0

1
2

1
2 0

0 0 -1

⎞
⎠ ,

(C.3c)

Q̃(31) =
⎛
⎝ -1 0 0

0 -1 0
0 1

2
1
2

⎞
⎠ , Q̃(32) =

⎛
⎝ -1 0 0

0 -1 0
1
2 0 1

2

⎞
⎠ , Q̃(33) =

⎛
⎝ -1 0 0

0 -1 0
1
2

1
2 0

⎞
⎠ .

(C.3d)
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