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Abstract

Resolutions of certain toroidal orbifolds, like T 6/Z2 × Z2, are far from unique, due to triangulation
dependence of their resolved local singularities. This leads to an explosion of the number of topolog-
ically distinct smooth geometries associated to a single orbifold. By introducing a parameterisation
to keep track of the triangulations used at all resolved singularities simultaneously, (self–)intersection
numbers and integrated Chern classes can be determined for any triangulation configuration. Using
this method the consistency conditions of line bundle models and the resulting chiral spectra can be
worked out for any choice of triangulation. Moreover, by superimposing the Bianchi identities for
all triangulation options much simpler though stronger conditions are uncovered. When these are
satisfied, flop–transitions between all different triangulations are admissible. Various methods are
exemplified by a number of concrete models on resolutions of the T 6/Z2 × Z2 orbifold.
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1 Introduction

String theory provides a perturbatively consistent approach to quantum gravity. An important ad-
vantage of string theory is that its consistency requirements mandate the existence of the gauge and
matter structures that form the bedrock of the Standard Model of particle physics. As such, it en-
ables the construction of phenomenological models, which in turn can be used to explore the theory
and its possible relevance to observational data. Its internal consistency predicts the existence of a
specific number of extra quantum fields propagating on a two dimensional string worldsheet, which in
some guise can be interpreted as extra spacetime dimensions beyond those observed in the physical
world. Therefore, it has been suggested that these extra dimensions are compactified and are made
sufficiently small to evade detection in contemporary experiments.

Phenomenological string models can be constructed by using exact worldsheet formulations of
string theory in four dimensions, as well as target space tools that describe the effective field theory
limit of string compactifications. Ultimately, a viable string theory model should have a low energy
effective field theory description. Conversely, an effective field theory representation, which is com-
patible with string quantum gravity, should have a consistent ultra–violet embedding in string theory.
However, at present the relation between these different regimes is poorly understood. The study
of the consistency constraints on effective field theories of quantum gravity is a subject of intense
contemporary research in the so–called “Swampland program” (for review and references see e.g. [1]).

An alternative route is to explore the effective field theory limit of exact string solutions. This is
hampered by the poor understanding of the moduli spaces of generic string compactifications. Exact
string solutions are typically studied by constructing the one–loop partition function and requiring
it to be invariant under modular transformations. A plausible way forward is therefore to seek the
imprint of the modular properties of the partition function in the effective field theory limit and their
phenomenological consequences in string models. Z2 × Z2 orbifolds of a six dimensional torus T 6

within the compactified heterotic–string are probably the most frequently studied examples of this
route. Such compactifications have been analysed by using the free fermionic formulation [2–4] and
the free bosonic formulation [5, 6] of the heterotic–string in four dimensions. These free bosonic and
fermionic worldsheet constructions are merely different languages to study the same physical object;
a detailed dictionary can be employed to translate the models between the two descriptions [7]. Both
languages were used to construct models that mimic the structure of the Minimal Supersymmetric
Standard Model, e.g. [8–13] provide examples of free fermionic models and [14–17] of free bosonic
constructions. Even though orbifolds are singular spaces, many quantities, like the full partition
function, can be computed exactly at the one–loop level (and partially beyond) because of the power
of the underlying modular symmetries.

However, these free worldsheet descriptions typically only apply to very specific points in the
string moduli space or, at best, only parameterise a very small portion of the entire moduli space.
In particular, to exploit the richness of the moduli space beyond the target space singularities, these
singularities need to be deformed and/or resolved to form smooth Calabi–Yau compactifications with
vector bundles [18]. A variety of effective field theory and cohomology methods have been developed
to study the resulting theories [19–29]. In particular, methods to resolve orbifold singularities using
well–established toric geometry methodology have been worked out in many cases [30–37].

The analysis of the effective field theory limit of Z2 × Z2 heterotic–string orbifolds and their
resolutions is therefore well motivated from the phenomenological as well as the mathematical point of
views. The analysis proceeds by the construction of toroidal T 6/Z2×Z2 heterotic–string orbifolds and
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resolving the orbifold singularities using these well–established methodologies. However, a problematic
caveat is the enormous number of possibilities that this opens up [35–37]: The T 6/Z2 × Z2 orbifold
has 64 C3/Z2 ×Z2 singularities where Z2–fixed tori intersect, which all need to be resolved to obtain
a smooth geometry. Each C3/Z2 ×Z2 singularity can be blown up in four topologically distinct ways
encoded by four triangulations of the toric diagram of the resolved singularity. This results in a total
of 464 a priori distinct possibilities. While the symmetry structure of the Z2×Z2 orbifold can be used
to reduce this number by some factor, it still leaves a huge number (of the order of 1033) genuinely
distinct choices. This is not a minor complication, as many physical properties of the resulting effective
field theories are sensitively dependent on the triangulation chosen. These range from the spectra of
massless states in the low energy effective theory to the structure and strength of interactions among
them. The only way to overcome this complication was by side stepping it: one simply makes some
choice for the triangulation of all these resolved singularities and analyses the resulting physics in that
particular case. This led to some insights in the structure of the theory in a somewhat larger part
of the moduli space, but it seemed hopeless to extract any meaningful generic information about the
properties of resolved T 6/Z2 × Z2 orbifolds.

A way forward is therefore to develop a formalism which allows computations for any choice of
the triangulation of the 64 resolved Z2 × Z2 singularities. This is the task that we undertake in this
paper. Moreover, having established such a method opens up the possibility to study some properties
of resolved T 6/Z2 × Z2 orbifolds which are independent of triangulation choices or that hold in all
possible triangulations simultaneously. To this end the paper has been structured as follows:

Outline

Section 2 lays the foundation of this work by first recalling some basic facts of resolutions of the
T 6/Z2 × Z2 orbifold and line bundle backgrounds on them. After that notation is developed to
parameterise the triangulation choice at each of the 64 resolved Z2 × Z2 singularities, in terms of
which the fundamental (self–)intersection numbers and the Chern classes are expressed. This allows
to obtain relatively compact expressions for the volumes of curves, divisors and the manifold as a
whole. Moreover, the flux quantisation conditions, the Bianchi identities and the multiplicity operator
to determine the chiral spectrum can all be written down for any triangulation choice.

In Section 3 it is argued that the flux quantisation conditions are, in fact, triangulation independent:
if satisfied in a particular choice of triangulation, it holds for all. In addition, having written down
Bianchi identities for any possible choice of triangulation of all 64 resolved singularities, one may
wonder what requirements are obtained if one insists that these conditions hold for all triangulation
choices simultaneously. Surprisingly, it can be shown that the resulting conditions are much simpler
than those in any particular triangulation.

The following two sections provide various examples of the general results of the preceding two.
In Section 4 models are considered without any Wilson lines so that all 64 resolved singularities
may be treated in the same way. In particular, it stresses that the flux quantisation conditions
are essential: when violated, the difference between the local multiplicities is not integral. Finally,
Section 5 revisits the so–called resolved Blaszczyk GUT model [17,37]. A model inspired by this GUT
model is considered, which is consistent for any possible choice of triangulation.

The paper is completed with a summary and an outlook. The Appendix A provides some useful
identities for second and third Chern classes for manifolds with vanishing first Chern class.
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2 Resolutions of T 6/Z2 × Z2

This section is devoted to develop some of the topological and geometrical properties of resolutions
of the toroidal orbifold T 6/Z2 × Z2. In fact, there are various T 6/Z2 × Z2 orbifolds [7, 38–40]: here
we focus exclusively on the orbifold with Hodge numbers (51,3). Techniques to determine resolutions
of toroidal orbifolds have been well–studied [35]; here, in particular, the methods exploited in [37] are
used. Also the resolutions of this orbifold have been considered before, however in the past one always
had to make some assumptions which triangulation(s) to be considered, as the total number of choices
(naively 464) is a daunting number. This section provides a brief review of this literature, but the
main purpose is to develop a formalism to treat all of these possible triangulations simultaneously.

2.1 The T 6/Z2 × Z2 orbifold

The orbifold geometry will be taken to be factorisable of T 6 on the simplest rectangular lattice. The
six torus coordinates are grouped into three complex ones on which two order–two orbifold reflections
R1, R2 and their product R3 = R1R2 act. They are representations of Z2 × Z2 with non–trivial
elements

diag(R1) = (1,−1,−1) , diag(R2) = (−1, 1,−1) , diag(R3) = diag(R1R2) = (−1,−1, 1) . (1)

Each reflection, R1, R2 and R3, has 4 · 4 = 16 fixed points: f1
βγ , f

2
αγ and f3

αβ. These singularities are
conveniently labeled by µ, ν, α, β, γ = 1, 2, 3, 4 = 00, 01, 10, 11; i.e. interpreting them as binary multi–
indices α = (α1, α2) is reserved for the first two–torus, β = (β3, β4) for the second and γ = (γ5, γ6) for
the third, with the entries take the values α1, α2, β3, β4, γ5, γ6 = 0, 1. The translation between both
conventions read: α = 2α1 + α2 + 1, β = 2β3 + β4 + 1 and γ = 2γ5 + γ6 + 1, respectively. (The
(multi–)indices µ, ν are used to label the fixed points in any of the three two–tori in order to write
compact expressions.)

Assuming that the tori have unit length, the fixed points may be represented as

f1
βγ =

(

0, β1+β2 i
2 , γ1+γ2 i

2

)

, f2
αγ =

(

α1+α2 i
2 , 0, γ1+γ2 i

2

)

, f3
αβ =

(

α1+α2 i
2 , β1+β2 i

2 , 0
)

. (2)

The fixed set of each reflection has the topology of a torus orbifolded by the action of the other
orbifold actions which leads to four fixed points on a fixed tori. Hence, in total the T 6/Z2 × Z2

orbifold possesses 64 C3/Z2 × Z2 singularities,

fαβγ =
(

α1+α2 i
2 , β1+β2 i

2 , γ1+γ2 i
2

)

, (3)

coming from every combination of the four fixed points in each of the three complex planes.

2.2 Geometry of the T 6/Z2 × Z2 Resolutions

The geometry of the resulting resolved orbifolds are characterised by the set of four-cycles (divsors),
which are obtained by setting one complex coordinate used in the resolution to zero. There are three
classes of divisors [35, 37]: 6 inherited divisors Ri := {ui = 0} and R′

i := {vi = 0} that descend from
each of the three torus of the orbifold (ui and vi, i = 1, 2, 3 are the coordinates of the elliptic curves
describing the two–dimensional tori that make up T 6), 12 ordinary divisorsD1,α := {z1,α = 0} ,D2,β :=
{z2,β = 0}, and D3,γ := {z3,γ = 0} (zi,µ i = 1, 2, 3 are the coordinates of the covering space) and finally
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Figure 1: The four different triangulation, the E1–, E2–, E3– and S–triangulation, of the projected
toric diagram are given of the resolved C3/Z2 ×Z2. The left–right–arrows indicate the possible flop–
transition between different triangulations, which shows that any flop–transition always involves the
S–triangulation.

48 exceptional divisors E1,βγ := {x1,βγ = 0} , E2,αγ := {x2,αγ = 0}, and E3,αβ := {x3,αβ = 0} (xi,µν
are extra coordinates used for the resolution) that appear in the blow–up process.

Not all these divisors are independent; there are a number of linear relations among them, namely:

2D1,α ∼ R1 −
∑

γ

E2,αγ −
∑

β

E3,αβ , 2D2,β ∼ R2 −
∑

γ

E1,βγ −
∑

α

E3,αβ

2D3,γ ∼ R3 −
∑

β

E1,βγ −
∑

α

E2,αγ , R′
i ∼ Ri

(4)

Here ∼ means that these divisors interpreted as (1, 1)–forms differ by exact forms. So in the end
3 Ri and 48 Er provide via the Poincaré duality a basis of the real cohomology group, i.e. of the
(1, 1)–forms, on the resolved manifold.
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Triangl. δE1

αβγ δE2

αβγ δE3

αβγ δSαβγ ∆1
αβγ ∆2

αβγ ∆3
αβγ 1−∆1

αβγ 1−∆2
αβγ 1−∆3

αβγ

E1 1 0 0 0 −1 1 1 2 0 0

E2 0 1 0 0 1 −1 1 0 2 0

E3 0 0 1 0 1 1 −1 0 0 2

S 0 0 0 1 0 0 0 1 1 1

Table 1: The values of the step functions δTαβγ and their variations ∆i
αβγ , defined in (5) and (7), resp.,

for the different triangulations are given.

2.3 Triangulation Dependence and Flop–Transitions

To complete the description of the geometry of a resolved orbifold, the intersection numbers of these
divisors have to be specified. A major complication to specify the intersection numbers of the resolved
T 6/Z2 ×Z2 orbifold is that there is an indeterminacy, because of the triangulation dependence: each
resolved C3/Z2×Z2 admits four inequivalent resolutions encoded by four different triangulations of the
toric diagram of the C3/Z2 × Z2 singularity. The local projected toric diagrams are given in figure 1.
There are three triangulations, E1, E2 and E3, where are all curves, that go through the interior of
the projected toric diagram, connect to one of these exceptional divisors. For example in triangulation
E1 the curves E1E2, E1E3 and E1D1 all exist. In the final triangulation, dubbed the S–triangulation,
all the exceptional divisors intersect since the curves E1E2, E2E3 and E3E1 all exist.

The four triangulations of the projected toric diagram given in figure 1 are related to each other
via flop–transitions. From this figure it can be inferred, that the E1, E2 and E3–triangulations are
all related via a single flop to the S–triangulation. For example, during the flop–transition from the
E1–triangulation to the S–triangulation, the curve E1D1 shrinks to zero size and disappears while the
curve E1E2 appears. To go from one E–triangulation to another one always has to go through the
S–triangulation. For example, for the transition from triangulation E1 to E2, first the curve E1D1 is
replaced by the curve E2E3 to form the S–triangulation and after that the curve E1E3 is replaced by
the curve E2D2 to arrive in the E2–triangulation. This shows that the special role the S–triangulation
plays in flop–transitions.

During a flop–transition some curve shrinks to zero size. This means that in this process the
effective field theory approximation in the supergravity regime breaks down and stringy corrections
could become important. Since, this work only makes use of effective field theory and geometrical
methods, the flop–transitions themselves are beyond our description. But the geometries and the
spectra on both sides of flops can be determined.

2.4 Parameterising Triangulations

Given that there are four triangulation for each C3/Z2 × Z2 and 64 Z2 × Z2 singularities, this gives
a naively total number of 464 possibilities (up to some permutation symmetries) [37]. As important
topological data such as the intersection numbers of the divisors varies for each triangulation, it is
particularly useful to develop some formalism to study spectra and the consistency conditions (such

5



as Bianchi identities) for all triangulation choices simultaneously. Next, a formalism will be laid out
that is capable of doing just that.

Define the following four functions:

δTαβγ =







1 if triangulation T is used,

0 if other triangulation is used,
(5)

of (α, β, γ) for the four possible triangulations T = S, E1, E2 and E3. Since at any of the 64 singularity
resolutions one of the four triangulations has to be used, it follows that

δE1

αβγ + δE2

αβγ + δE3

αβγ + δSαβγ = 1 . (6)

Thus, say, δSαβγ is a function of the others. The following combinations of the remaining three inde-
pendent functions prove particularly useful:

∆1
αβγ = −δE1

αβγ + δE2

αβγ + δE3

αβγ ,

∆2
αβγ = δE1

αβγ − δE2

αβγ + δE3

αβγ ,

∆3
αβγ = δE1

αβγ + δE2

αβγ − δE3

αβγ .

(7)

For example, this means that ∆1
αβγ equals −1 if singularity fαβγ is resolved using triangulation E1, 1

if E2 and E3 and 0 if S. The values that these functions take can be easily read off from the Table 1.
It follows immediately that

1−∆1
αβγ −∆2

αβγ −∆3
αβγ = δSαβγ , 1−∆i

αβγ = 2 δEi

αβγ + δSαβγ . (8a)

and

∆2
αβγ +∆3

αβγ = 2 δE1

αβγ , ∆1
αβγ +∆3

αβγ = 2 δE2

αβγ , ∆1
αβγ +∆2

αβγ = 2 δE3

αβγ . (8b)

2.5 Triangulation Dependence of (Self–)Intersections and Chern Classes

The fundamental (self–)intersection numbers of the basis of divisors read:

R1E
2
1,βγ = R2E

2
2,αγ = R3E

2
3,αβ = −2 , R1R2R3 = 2 ,

E1,βγE
2
2,αγ = E1,βγE

2
3,βγ = −1 + ∆1

αβγ , E3
1,βγ =

∑

α

(

1 + ∆1
αβγ

)

,

E2,αγE
2
1,βγ = E2,αγE

2
3,βγ = −1 + ∆2

αβγ , E3
2,αγ =

∑

β

(

1 + ∆2
αβγ

)

,

E3,αβE
2
1,βγ = E3,αβE

2
2,αγ = −1 + ∆3

αβγ , E3
3,αβ =

∑

γ

(

1 + ∆3
αβγ

)

,

E1,βγE2,αγE3,βγ = 1−∆1
αβγ −∆2

αβγ −∆3
αβγ .

(9)
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and all others are always zero. These (self–)intersection numbers can be partially inferred from the
results in ref. [37] as follows: as observed in that paper the (partially self–)intersection numbers involv-
ing the ordinary divisors Ri are triangulation independent. The (partial self–)intersection numbers
involving all three labels α, β and γ are fully local, i.e. defined only at the resolution of the single sin-
gularity fαβγ . Thus the intersection numbers for these (partial self–)intersections can be directly read
off from Table 4 of ref. [37]. (Using the functions ∆i

αβγ precisely the local intersection numbers of the
four different triangulations of that table are reproduced.) This leaves the cubic self–intersection num-
bers E3

1,βγ , E
3
2,αγ and E3

3,αβ. But these can be determined using the linear equivalence relations (4).
For example, since the divisors D1,α, D3,γ and E2,αγ lie on a straight line in the toric diagram, their
intersection vanishes: D1,αE2,αγD3,γ = 0. Inserting the linear equivalence relations then leads to the
identity

E3
2,αγ = −

∑

β

{

E1,βγE
2
2,αγ +E3,αβE

2
2,αγ + E1,βγE2,αγE3,αβ

}

=
∑

β

(

1 + ∆2
αβγ

)

. (10)

This expresses E3
2,αγ in fully local (partial self–)intersection numbers just determined. Inserting those

leads to the final expression in this equation. The other two cubic self–intersections are computed in
an analogous fashion.

With the fundamental (self–)intersection numbers fixed for any choice of triangulation of all of
the 64 resolved Z2 ×Z2 singularities, all kind of other quantities can be computed. For example, the
second Chern classes integrated over the basis of divisors can be determined to be given by

c2R1 = c2R2 = c2R3 = 24 , c2E1,βγ =
∑

α

(

1− 2∆1
αβγ

)

,

c2E2,αγ =
∑

β

(

1− 2∆2
αβγ

)

, c2E3,αβ =
∑

γ

(

1− 2∆3
αβγ

)

.
(11)

The third Chern class can be evaluated as

c3 =
1

3

∑

u

(−)uS3
u , (12)

using (A.8) given that the first Chern class vanishes. Since the inherited torus divisors Ri, R
′
i have

vanishing triple self–intersections, this expression reduces to a sum over all ordinary and exceptional
divisors

c3 =
1

3

∑

α

D3
1,α +

1

3

∑

β

D3
2,β +

1

3

∑

γ

D3
3,γ +

1

3

∑

β.γ

E3
1,βγ +

1

3

∑

α,γ

E3
2,αγ +

1

3

∑

α,β

E3
3,αβ . (13)

The first term can be written as
∑

α

D3
1,α = −

1

8

∑

α,γ

E3
2,αγ −

1

8

∑

α,β

E3
3,αβ −

3

8

∑

α,β,γ

(

E2
2,αγE3,αβ + E2,αγE

2
3,αβ

)

, (14)

using that there are no non–vanishing intersections of R1 with E2,αγ or E3,αβ . Adding similar expres-
sions involving D2,β and D3,γ , one can show that

c3 = −
1

8

∑

α,β,γ

{

E1,βγ

(

E2
2,αγ + E2

3,αβ

)

+ E2,αγ

(

E2
1,βγ + E2

3,αβ

)

+ E3,αβ

(

E2
1,βγ + E2

2,αγ

)

}

+
1

4

∑

β.γ

E3
1,βγ +

1

4

∑

α,γ

E3
2,αγ +

1

4

∑

α,β

E3
3,αβ . (15)
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Finally, inserting the triangulation dependent intersection numbers (9), gives

c3 =
1

4

∑

i,α,β,γ

(

1 + ∆i
αβγ

)

−
1

4

∑

i,α,β,γ

(

− 1 + ∆i
αβγ

)

= 96 . (16)

Note, in particular, that all the triangulation dependence in the form of the functions ∆i
αβγ drops out

and the final result equals the well–known Euler number 96.

2.6 Line Bundle Backgrounds

The line bundle backgrounds considered in this paper only have flux supported on the exceptional
cycles:

F

2π
=

∑

i,µ,ν

Ei,µν Hi,µν , Hi,µν =
∑

I

VI
i,µν HI . (17)

Here the Cartan generators HI are anti–Hermitian and therefore so is the field strength F . The entries
of the line bundle vectors Vi,µν are subject to flux quantisation conditions which are triangulation
dependent:

∫

C

F

2π
= LI

HI , L ∼= 0 , (18)

where ∼= means equal up to E8 × E8 lattice vectors, for any C inside the resolved orbifold. The
resulting conditions for any choice of triangulation are listed in Table 2.

2.7 General Bianchi Identities

Consistency of the effective field theory description demands that the integrated Bianchi identity
∫

D

{

trF2 − trR2
}

= 0 (19)

over any divisor D vanishes. Here R denotes the anti–Hermitian curvature two–form. (When non–
perturbative contributions of heterotic five–branes are taken into account this condition can be weak-
ened somewhat [41].) By considering the basis of divisors spanned by the ordinary divisors Ri and
the exceptional divisors E1,βγ , E2,αγ and E3,αβ the complete set of integrated Bianchi identities is
obtained.

The three Bianchi identities on the three ordinary divisors, R1, R2 and R3 are the ones one expects
on K3 surfaces:

∑

β,γ

V2
1,βγ = 24 ,

∑

α,γ

V2
2,αγ = 24 ,

∑

α,β

V2
3,αβ = 24 , (20a)

and do not depend on the triangulations chosen. In contrast the Bianchi identities on the exceptional
divisors are very sensitive to the triangulations used in the local resolutions. The sixteen Bianchi
identities on E1,βγ take the form

∑

α

[

(1 + ∆1
αβγ)V

2
1,βγ + (−1 + ∆1

αβγ)(V
2
2,αγ + V2

3,αβ) + 2(1−∆1
αβγ −∆2

αβγ −∆3
αβγ)V2,αγ · V3,αβ

+2(−1 + ∆2
αβγ)V1,βγ · V2,αγ + 2(−1 + ∆3

αβγ)V1,βγ · V3,αβ

]

=
∑

α

[

− 2 + 4∆1
αβγ

]

. (20b)
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Flux quantisation conditions for arbitrary triangulations

R1E1,βγ 2V1,βγ
∼= 0 D1,αE1,βγ

(

V1,βγ − V2,αγ − V3,αβ

)

δE1

αβγ
∼= 0

R2E2,αγ 2V2,αγ
∼= 0 D2,βE2,αγ

(

V2,αγ − V1,βγ − V3,αβ

)

δE2

αβγ
∼= 0

R3E3,αβ 2V3,αβ
∼= 0 D3,γE3,αβ

(

V3,αβ − V1,βγ − V2,αγ

)

δE3

αβγ
∼= 0

R1D2,β −
∑

γ

V1,βγ
∼= 0 D1,αE2,αγ −

∑

β

{

V3,αβ +
(

V1,βγ − V2,αγ − V3,αβ

)

δE1

αβγ

}

∼= 0

R1D3,γ −
∑

β

V1,βγ
∼= 0 D1,αE3,αβ −

∑

γ

{

V2,αγ +
(

V1,βγ − V2,αγ − V3,αβ

)

δE1

αβγ

}

∼= 0

R2D1,α −
∑

γ

V2,αγ
∼= 0 D2,βE1,βγ −

∑

α

{

V3,αβ +
(

V2,αγ − V1,βγ − V3,αβ

)

δE2

αβγ

}

∼= 0

R2D3,γ −
∑

α

V2,αγ
∼= 0 D2,βE3,αβ −

∑

γ

{

V1,βγ +
(

V2,αγ − V1,βγ − V3,αβ

)

δE2

αβγ

}

∼= 0

R3D1,α −
∑

β

V3,αβ
∼= 0 D3,γE1,βγ −

∑

α

{

V2,αγ +
(

V3,αβ − V1,βγ − V2,αγ

)

δE3

αβγ

}

∼= 0

R3D2,β −
∑

α

V3,αβ
∼= 0 D3,γE2,αγ −

∑

β

{

V1,βγ +
(

V3,αβ − V1,βγ − V2,αγ

)

δE3

αβγ

}

∼= 0

E1,βγE2,αγ 2V2,αγ δ
E1

αβγ + 2V1,βγ δ
E2

αβγ +
(

V1,βγ + V2,αγ − V3,αβ

)

δSαβγ
∼= 0

E1,βγE3,αβ 2V3,αβ δ
E1

αβγ + 2V1,βγ δ
E3

αβγ +
(

V1,βγ + V3,αβ − V2,αγ

)

δSαβγ
∼= 0

E2,αγE3,αβ 2V3,αβ δ
E2

αβγ + 2V2,αγ δ
E3

αβγ +
(

V2,αγ + V3,αβ − V1,βγ

)

δSαβγ
∼= 0

Table 2: The flux quantisation conditions on the line bundle vectors Vi,µν the resolved orbifold X
using arbitrary triangulation at the 64 C3/Z2×Z2 resolutions.

The sixteen Bianchi identities on E2,αγ take the form

∑

β

[

(1 +∆2
αβγ)V

2
2,αγ + (−1 +∆2

αβγ)(V
2
1,βγ + V2

3,αγ) + 2(1−∆1
αβγ −∆2

αβγ −∆3
αβγ)V1,βγ · V3,αβ

+2(−1 + ∆1
αβγ)V2,αγ · V1,βγ + 2(−1 +∆3

αβγ)V2,αγ · V2,αγ

]

=
∑

β

[

− 2 + 4∆2
αβγ

]

. (20c)

And finally, the sixteen Bianchi identities on E3,αβ take the form

∑

γ

[

(1 +∆3
αβγ)V

2
3,αβ + (−1 + ∆3

αβγ)(V
2
1,βγ + V2

2,αγ) + 2(1 −∆1
αβγ −∆2

αβγ −∆3
αβγ)V1,βγ · V2,αγ

+2(−1 + ∆1
αβγ)V3,αβ · V1,βγ + 2(−1 + ∆2

αβγ)V3,αβ · V2,αγ

]

=
∑

γ

[

− 2 + 4∆3
αβγ

]

. (20d)
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2.8 Multiplicity Operators

A convenient tool to compute the chiral spectrum on a resolution with a line bundle background is
the multiplicity operator N. It reads [31,32]:

N =

∫

X

{1

6

( F

2π

)2
−

1

24

(R

2π

)2} F

2π
(21)

and may be thought of as a representation dependent index. Hence, on all states it should be integral
provided that the fundamental consistency conditions, flux quantisation and the integrated Bianchi
identities, are fulfilled.

On the T 6/Z2 ×Z2 resolutions the multiplicity operator can be evaluated to be equal to:

N =
∑

α,β,γ

[

H1,βγ

{

1
3(H

2
1,βγ −

1
4 )−

(

1−∆1
αβγ

)

(

1
6(H

2
1,βγ − 1) + 1

2(H2,αγ − H3,αβ)
2
)}

+H2,αγ

{

1
3(H

2
2,αγ − 1

4)−
(

1−∆2
αβγ

)

(

1
6 (H

2
2,αγ − 1) + 1

2(H1,βγ − H3,αβ)
2
)}

+H3,αβ

{

1
3(H

2
3,αβ − 1

4 )−
(

1−∆3
αβγ

)

(

1
6(H

2
3,αβ − 1) + 1

2(H1,βγ − H2,αγ)
2
)}

−2H1,βγH2,αγH3,αβ

]

.

(22)

The triangulation dependance is isolated to the second terms on the first three lines of this expres-
sion. From Table 1 it may be inferred that only the terms in the first line are switched on (with a
multiplicative factor of 2) if triangulation E1 is chosen, the second for E2 and the third for E3; all
three are switched on (with a factor 1) for triangulation S.

Using the constraint (6) another representation of this operator can be obtained

N =
∑

α,β,γ

[

δE1

αβγ N
E1

αβγ + δE2

αβγ N
E2

αβγ + δE3

αβγ N
E3

αβγ + δSαβγ N
S
αβγ

]

, (23)

where

N
E1

αβγ = 1
4 H1,βγ +

1
12 H2,αγ

(

4H2
2,αγ − 1

)

+ 1
12 H3,αβ

(

4H2
3,αβ − 1

)

− H1,βγ

(

H
2
2,αγ + H

2
3,αβ

)

, (24a)

N
E2

αβγ = 1
4 H2,αγ +

1
12 H1,βγ

(

4H2
1,βγ − 1

)

+ 1
12 H3,αβ

(

4H2
3,αβ − 1

)

− H2,αγ

(

H
2
1,βγ + H

2
3,αβ

)

, (24b)

N
E3

αβγ = 1
4 H3,αβ + 1

12 H1,αβ

(

4H2
1,αβ − 1

)

+ 1
12 H2,αγ

(

4H2
2,αγ − 1

)

− H3,αβ

(

H
2
1,βγ + H

2
2,αγ

)

, (24c)

N
S
αβγ = 1

12 H1,βγ

(

2H2
1,βγ + 1) + 1

12 H2,αγ

(

2H2
2,αγ + 1) + 1

12 H3,αβ

(

2H2
3,αβ + 1) + H1,βγH2,αγH3,αβ

− 1
2 H1,βγ

(

H
2
2,αγ + H

2
3,αβ

)

− 1
2 H2,αγ

(

H
2
1,βγ + H

2
3,αβ

)

− 1
2 H3,αβ

(

H
2
1,βγ + H

2
2,αγ

)

. (24d)

These operators can be thought of as the local resolution multiplicities at the resolved singularity
(α, β, γ) using one of the four triangulations. In particular, when taking the same triangulation at all
fixed points, the expressions (56) and (58) of ref. [37] are obtained from (23). In general, (23) implies
that the spectrum in any triangulation can be determined from the local resolution operators (24)
times the functions that indicate which triangulation has been used at each of the 64 C3/Z2 × Z2

resolved singularities. It should be emphasised that these local multiplicity operators NT
αβγ for a given

triangulation T are not necessarily all integral; only their combination in (23) in general is.
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2.9 Jumping Spectra due to Flop–Transitions

For a flop–transition to be possible it is necessary that all fundamental consistency conditions, like flux
quantisation and the Bianchi identities, have to hold for both triangulation choices before and after
the flop. Note that this implies, that if at some resolved singularity fαβγ some of these fundamental
consistency conditions are not fulfilled for triangulation S, then no flop–transitions can occur and
resolution is frozen in one of the three triangulations E1, E2 or E3. Moreover, if at all resolved Z2×Z2

singularities triangulation S is not admissible, no flop–transition is possible at all!
Assuming that at a resolved singularity fαβγ a flop–transition can occur between triangulations S

to Ei, the difference multiplicity

∆N
i
αβγ = N

Ei

αβγ − N
S
αβγ (25)

measures the jump in the spectra when the flop–transition goes from triangulation S to Ei; −∆N
i
αβγ

the spectra jump in the opposite direction. This difference multiplicity operator has to be integral
because the multiplicity operator (22) before and after the flop–transition is integral by an index
theorem (since the fundamental consistency conditions are assumed to be fulfilled) and this operator
is simply the difference of the spectra in the two cases.

2.10 Volumes and the DUY equations

Using the (self–)intersections (9) various volumes can be computed using the Kähler form

J =
∑

i

aiRi −
∑

r

brEr , (26)

involving the Kähler parameters ai and br. The volumes of a curve C, a divisor D and the orbifold
resolution X are given by

Vol(C) =

∫

C

J , Vol(D) =

∫

D

1

2
J2 , Vol(X) =

∫

X

1

3!
J3 , (27)

respectively. The resulting expressions for any choice of triangulation are given in Table 3.
The volumes of the divisors are constrained by the DUY equations [42,43]. The one–loop correc-

tions to these equations are given by [24,36]

∫

1

2
J2 F

2π
=

e2φ

16π

∫

{

tr
(F ′

2π

)2
−

1

2
tr
(R

2π

)2}F ′

2π
+ (′→′′) , (28)

where F ′ and F ′′ denote the Abelian gauge fluxes in the first and second factor of the E8 ×E8 group,
respectively, so that F = F ′ + F ′′. This equation thus links the Kähler moduli ai, br and the dilaton
φ in general.

If the gauge background is embedded in just a single, say first E8, or if one considers the heterotic
SO(32) theory instead, this equation may be rewritten as

∫

1

2
J2 F

2π
=

e2φ

32π

∫

tr
(R

2π

)2 F

2π
= −

e2φ

16π

∫

c2
F

2π
, (29)
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Curves

R1R2 2 a3 D1,αE1,βγ

(

b1,βγ − b2,αγ − b3,αβ
)

δE1

αβγ

R1E1,βγ 2 b1,βγ D1,αE2,αγ a2 −
∑

β

{

b3,αβ +
(

b1,βγ − b2,αγ − b3,αβ
)

δE1

αβγ

}

R1D2,β a3 −
∑

γ

b1,βγ E1,βγE2,αγ 2 b2,αγ δ
E1

αβγ + 2 b1,βγ δ
E2

αβγ +
(

b1,βγ + b2,αγ − b3,αβ
)

δSαβγ

Divisors

R1 2 a2a3 −
∑

β,γ

b21,βγ

D1,α a2a3 −
∑

γ

a2b2,αγ −
∑

β

a3b3,αβ +
∑

β,γ

(

1− δE1

αβγ

)

b2,αγb3,αβ

+
∑

β,γ

δE1

αβγ

{

b1,βγ
(

b2,αγ + b3,αβ
)

− 1
2

(

b21,βγ + b22,αγ + b23,αβ
)

}

E1,βγ 2 a1b1,βγ +
∑

α

{

1
2

(

1 + ∆1
αβγ

)

b21,βγ +
(

1−∆1
αβγ −∆2

αβγ −∆3
αβγ

)

b2,αγb3,αβ

−1
2

(

1−∆1
αβγ

)(

b22,αγ + b23,αβ
)

−
(

1−∆2
αβγ

)

b1,βγb2,αγ −
(

1−∆3
αβγ

)

b1,βγb3,αβ

}

Full manifold

X 2 a1a2a3 −
∑

β,γ

a1b
2
1,βγ −

∑

α,γ

a2b
2
2,αγ −

∑

α,β

a3b
2
3,αβ −

∑

α,β,γ

{

1
2

(

∆1
αβγ − 1

)

b1,βγ
(

b22,αγ + b23,αβ
)

+1
2

(

∆2
αβγ − 1

)

b2,αγ
(

b21,βγ + b23,αβ
)

+ 1
2

(

∆3
αβγ − 1

)

b3,αβ
(

b21,βγ + b22,αγ
)

+ 1
6

(

1 + ∆1
αβγ

)

b31,βγ

+1
6

(

1 + ∆2
αβγ

)

b32,αγ +
1
6

(

1 + ∆3
αβγ

)

b33,αγ +
(

1−∆1
αβγ −∆2

αβγ −∆3
αβγ

)

b1,βγb2,αγb3,αβ

}

Table 3: Volume of a collection of possibly existing curves, divisors and the resolved orbifold X as a
whole using arbitrary triangulation at the 64 C3/Z2×Z2 resolutions. Similar expression of the other
curves and divisors can be obtained by permutations.

as F = F ′ and F ′′ = 0 using the integrate Bianchi identities (19). Inserting the expansion for the
gauge flux in terms of the exceptional divisors Er and using the integrated second Chern classes (11),
leads to

∑

β,γ

{

Vol(E1,βγ)−
e2φ

16π

∑

α

(1− 2∆1
αβγ)

}

VI
1,βγ +

∑

α,γ

{

Vol(E2,αγ)−
e2φ

16π

∑

β

(1− 2∆2
αβγ)

}

VI
2,αγ+

+
∑

α,β

{

Vol(E3,αβ)−
e2φ

16π

∑

γ

(1− 2∆3
αβγ)

}

VI
3,αβ = 0 . (30)

If the gauge background lie in both E8 factors simultaneously, then the trR2 term can be eliminated
using the Bianchi identities (19) instead. Moreover, since both E8 factors are independent, the DUY
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equation may be split into two equations; one for each E8 factor:

∫

1

2
J2 F ′

2π
=

e2φ

32π

∫

{

tr
(F ′

2π

)2
− tr

(F ′′

2π

)2}F ′

2π
,

∫

1

2
J2 F

′′

2π
= −

e2φ

32π

∫

{

tr
(F ′

2π

)2
− tr

(F ′′

2π

)2}F ′′

2π
.

(31)

Notice the relative sign difference between the otherwise very similar expressions in both E8’s. Eval-
uating these expressions further by inserting the intersection numbers (9) leads to rather lengthy and
not very illuminating expressions. For this reason we refrain from stating them here.

3 Triangulation Independence

The results obtained in the previous section hold for any particular choice of the triangulation of
each of the 64 resolved C3/Z2 × Z2 singularities. The aim of this section is to obtain results that
hold for all choices of triangulation simultaneously: such results can be uncovered by superimposing
the conditions for all the different choices of triangulation. It should be emphasised that we do not
wish to imply that it is necessary that such results apply in all triangulations from the supergravity
perspective. But surprisingly, superimposing consistency conditions leads to a huge reduction of the
complexity of these equations. However, if all consistency conditions are satisfied in any triangulation,
then arbitrary flop–transitions are admissible which opens up the possibility to study the resulting
transitions in the massless spectra.

3.1 Flux Quantisation

Even though the flux quantisation conditions might seem to be dependent on the choice of the trian-
gulations at the local singularities, in fact, they are all equivalent to

2Vi,µν
∼= 0 ,

∑

ρ

Vi,ρν
∼= 0 ,

∑

ρ

Vi,µρ
∼= 0 , V1,βγ + V2,αγ + V3,αβ

∼= 0 (32)

independently of the local triangulations chosen. To see this, notice first of all that the first three
relations derived from curves that exist for any triangulation, see Table 2. Now, if triangulation E1 has
been chosen at the resolution of fαβγ , one has to impose the condition associated to curve D1,αE1,βγ ,
if triangulation E2 the condition associated to curve D2,βE2,α,γ and if triangulation E3 the condition
associated to curve D3,γE3,αβ, respectively, while if trangulation S is used all the resulting three
conditions have to be superimposed. However, all three of them are equivalent to the last condition
in (32) using the first condition in this line which basically says that the signs of the bundle vectors
in the flux quantisation conditions are irrelevant modulo 2. In other words, if the flux quantisation is
satisfied for a single triangulation choice at all the 64 resolved C3/Z2×Z2 singularities, the fluxes are
properly quantised for any triangulation choice.

3.2 Reduction of Bianchi Identities

To determine the set of equations which guarantee that for any choice of triangulation of the 64
C

3/Z2 × Z2 resolutions, the Bianchi identities are solved, we can treat the triangulation dependent
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functions, ∆1
αβγ , ∆

2
αβγ and ∆3

αβγ , as arbitrary functions. Hence, to solve the Bianchi identities for
all choices, the coefficients in front of these functions need to cancel among themselves as well as
the remaining contributions which do not multiply any of them. This leads to four set of equations
for each set of sixteen Bianchi identities on each of the exceptional cycles. For the sixteen Bianchi
identities on E1,βγ they read:

∑

α

[

V2
2,αγ + V2

3,αβ − V2
1,βγ + 2V1,βγ · V2,αγ + 2V1,βγ · V3,αβ − 2V2,αγ · V3,αβ

]

= −8 ,

V2
1,βγ + V2

2,αγ + V2
3,αβ − 2V2,αγ · V3,αβ = 4 , V1,βγ · V2,αγ = V1,βγ · V3,αβ = V2,αγ · V3,αβ .

(33)

For the sixteen Bianchi identities on E2,αγ they read:

∑

β

[

V2
1,βγ + V2

3,αβ − V2
2,αγ + 2V2,αγ · V1,βγ + 2V2,αγ · V3,αβ − 2V1,βγ · V3,αβ

]

= −8 ,

V2
1,βγ + V2

2,αγ + V2
3,αβ − 2V1,βγ · V3,αβ = 4 , V1,βγ · V2,αγ = V1,βγ · V3,αβ = V2,αγ · V3,αβ .

(34)

And, finally, for the sixteen Bianchi identities on E3,αβ they read:

∑

γ

[

V2
1,βγ + V2

2,αγ − V2
3,αβ + 2V3,αβ · V1,βγ + 2V3,αβ · V2,αγ − 2V1,βγ · V2,αγ

]

= −8 ,

V2
1,βγ + V2

2,αγ + V2
3,αβ − 2V1,βγ · V2,αγ = 4 , V1,βγ · V2,αγ = V1,βγ · V3,αβ = V2,αγ · V3,αβ .

(35)

Note that every time the top equations have a sum over one of the fixed point labels, while the lower
three do not. Fortunately, many of these equations are redundant. The lower three relations for all
three exceptional divisors have the same content: for any choice of (α, β, γ) the three inner products
are constraint to:

V1,βγ · V2,αγ = V1,βγ · V3,αβ = V2,αγ · V3,αβ = 1
2

(

V2
1,βγ + V2

2,αγ + V2
3,αβ

)

− 2 . (36)

Inserting these in the top equations with the sums results in 3 · 16 equations
∑

α

[

V2
2,αγ + V2

3,αβ

]

= 12 ,
∑

β

[

V2
1,βγ + V2

3,αβ

]

= 12 ,
∑

α

[

V2
1,βγ + V2

2,αγ

]

= 12 . (37)

If these equations are satisfied, then also the three Bianchi identities on the inherited divisors are
automatically satisfied. Indeed, if one sums each of these sets of equations over the other two labels
and then add two and subtract a third, the inherited Bianchi identities are recovered. But in fact
these equations can be reduced even further by a similar procedure: Sum over one of the two free
labels in these equations. One of the two terms is then precisely of the form of one of the inherited
Bianchi identities equal to 24. Inserting that and rewriting leads to three sets of 2 · 4 = 8 (hence 24
in total) even simpler equations:

∑

β

V2
1,βγ =

∑

γ

V2
1,βγ = 6 ,

∑

α

V2
2,αγ =

∑

γ

V2
2,αγ = 6 ,

∑

α

V2
3,αβ =

∑

β

V2
3,αβ = 6 . (38)

Hence, if the equations (36) and (38) are simultaneously satisfied, then a solution is obtained of the
51 Bianchi identities that holds in any triangulation. In fact, in each of the three sets of 8 equations
there is one linear dependence, since summing over the free indices in both (four) equations in each
set, leads to the same equation.
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3.3 Blowup Modes Without Oscillator Excitations

Assuming that all line bundle vectors can be associated to twisted states without oscillators, then they
all square to:

V2
a,µν = 3

2 ⇒ Va,µν · Vb,ρσ = 1
4 ; (39)

the equation after the implication sign follows upon using (36), with ν = σ for a = 1 and b = 2, µ = σ
for a = 1 and b = 3, µ = ρ for a = 2 and b = 3, respectively. Since this solves all equations (36) and
(38), such choices solve all Bianchi identities in any triangulation simultaneously.

3.4 Consequences of Triangulation Independence for the Multiplicity Operator

Contrary to the fundamental consistency conditions, the multiplicity operator does not simplify in
any particular way, when line bundle resolutions models are considered that are admissible in any
choice of triangulation of the 64 Z2 × Z2 resolved singularities. However, it can be brought in a
specific form. Since the S–triangulation plays a special role in flop–transitions as any flop involves
the S–triangulation, the S–triangulation can be taken to be the reference triangulation at all the 64
Z2 × Z2 resolved singularities. Using this the total multiplicity operator N can be written as

N = N
S +

∑

α,β,γ

[

δE1

αβγ ∆N
1
αβγ + δE2

αβγ ∆N
2
αβγ + δE3

αβγ ∆N
3
αβγ

]

, N
S =

∑

α,β,γ

N
S
αβγ (40)

and ∆N
i
αβγ defined in (25). Both N

S and ∆N
i
αβγ are always integer: N

S is the multiplicity operator
when at all 64 resolved singularities triangulation S is taken, hence it has to be integral on all chiral
states in the spectrum; for the triangulation difference multiplicities ∆N

i
αβγ it was already established

in Subsection 2.9 that they are always integral. This means that in the most general case one can
define 3 · 43 +1 = 193 multiplicity operators (∆N

i
αβγ for i = 1, 2, 3, α, β, γ = 1, 2, 3, 4 and N

S) that all
have to be integral on any E8 × E8 root.

4 Models Without Wilson Lines

This section is devoted to a number of simple line bundle models to illustrate the main ideas about
dealing with the triangulation dependence. The focus is on demonstrating that the approach to
parameterise all triangulations in the way discussed in the preceding sections always lead to sensible,
e.g. integral spectra for any triangulation chosen provided that the consistency conditions have been
solved for all triangulations simultaneously. However, these models should not be considered as fully
realistic models. In particular, the consequences of the DUY equations will be mostly ignored.

4.1 T 6/Z2 × Z2 Orbifold Models

From the orbifold perspective these are models without Wilson lines, this means that such orbifold
models are characterised by just two gauge shifts Va. They satisfy

Va · Vb − va · vb ≡ 0 , (41)

for a, b = 1, 2. Here va denote the two independent four–component geometrical Z2 orbifold twists
and Va the sixteen–component shift embedding on the gauge lattice taken to be either the weight

15



Model Twists / Gauge Shift Embeddings

I v1 = (0, 0, 12 ,−
1
2) , v2 = (0,−1

2 , 0,
1
2) , v3 = (0, 12 ,−

1
2 , 0) .

I.a V1 = (0, 12 ,−
1
2 , 0

5)(08) V2 = (−1
2 , 0,

1
2 , 0

5)(08) V3 = (12 ,−
1
2 , 0, 0

5)(08)

I.b V1 = (0, 12 ,−
1
2 , 0

5)(1, 07) V2 = (−1
2 , 0,

1
2 , 0

5)(−1, 07) V3 = (12 ,−
1
2 , 0, 0

5)(0, 07)

II v1 = (0, 0, 12 ,
1
2 ) , v2 = (0, 12 , 0,

1
2 ) , v3 = (0,−1

2 ,−
1
2 , 1) ,

II.a V1 = (0, 12 ,
1
2 , 0

5)(08) V2 = (12 , 0,
1
2 , 0

5)(08) V3 = (−1
2 ,−

1
2 , 1, 0

5)(08)

II.b V1 = (0, 12 ,
1
2 , 0

5)(1, 07) V2 = (12 ,
1
2 , 0, 0

5)(−1, 07) V3 = (−1
2 ,−

1
2 , 1, 0

5)(0, 07)

Table 4: This table gives two different choices of the orbifold twist vectors va and two associated
inequivalent gauge shift embeddings Va for each choice.

lattice of E8 × E8 or Spin(32)/Z2. Furthermore, it is often convenient to introduce v3 ∼= v1 + v2 and
V3

∼= V1 + V2.
The geometrical twists v1 and v2 are conventionally chosen such as to preserve N = 1 target space

supersymmetry. On the level of the orbifold theory there are various equivalent choices for them. The
most commonly used choice I. is

v1 = (0, 0, 12 ,−
1
2) , v2 = (0,−1

2 , 0,
1
2) , v3 = v1 + v2 = (0,−1

2 ,
1
2 , 0)

∼= (0, 12 ,−
1
2 , 0) . (42a)

The first entry of these vectors corresponds to the four–dimensional Minkowski space in light–cone
gauge; the other three components to the twist actions on the three two–torus that make up the
T 6. The final expression for v3 obtained by adding a lattice vector (0, 1,−1, 0) making a permutation
symmetry between the entries of v1, v2 and v3 manifest. Note that with this form of v3

va · vb = −1
4 +

3
4 δab . (42b)

A second choice II. is given by

v1 = (0, 0, 12 ,
1
2) , v2 = (0, 12 , 0,

1
2 ) , v3 = v1 + v2 = (0, 12 ,

1
2 , 1)

∼= (0,−1
2 ,−

1
2 , 1) , (43a)

where the latter form of v3 in this case is obtained by adding (0,−1,−1, 0). With this form of v3 the
vectors va satisfy

va · vb =
1
4

(

1 + δab
)

+ δa3 δb3 . (43b)

On the level of the orbifold theory both choices are equivalent. For both these forms there are two
inequivalent choices for the gauge embedding, denoted by a and b. This leads to four possible gauge
shift embeddings referred to as I.a, I.b, II.a and II.b in Table 4. On the level of the orbifold only
the choices a or b lead to physically different models; as is shown below on the level of the resolution
the choice of twist I. or II. is of significance as only one of the two choices can be associated to a line
bundle model.
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4.2 Models with Three Independent Line Bundles

First some general facts about associated blowup models are given. In this section the line bundle
vectors are taken to be independent of the labels α, β, γ, i.e.:

V1,βγ = V1 , V2,αγ = V2 , V3,αβ = V3 . (44)

Consequently the triangulation independent flux quantisation conditions (32) reduce to

2V1
∼= 2V2

∼= 2V3
∼= V1 + V2 + V3

∼= 0 . (45)

Such bundle vectors, V1,V2 and V3, can be obtained from the orbifold gauge shift vectors V1, V2 and V3,
by adding appropriate lattice vectors L1,βγ , L2,αγ and L3,αβ. In this section they are chosen such that
the bundle vectors V1,V2 and V3 can be associated with twisted states without oscillators satisfying
the conditions (39).

The number NT of times, that triangulation T = E1, E2, E3, S has been chosen at the 64 resolved
C

3/Z2 ×Z2 singularities, can be determined by summing the functions δTαβγ over all of them, e.g.:

NT =
∑

α,β,γ

δTαβγ , (46)

hence, in particularly, for i = 1, 2, 3:
∑

α,β,γ

(

1−∆i
αβγ

)

= 2NEi
+NS , NE +NS = 64 , NE = NE1

+NE2
+NE3

. (47)

Then, if also the Cartan operators are abbreviated as

H1 = H1,βγ , H2 = H2,αγ , H3 = H3,αβ , (48)

the multiplicity operator (23) simplifies to

N = NE1
N
1 +NE2

N
2 +NE3

N
3 +NS N

S , (49)

expressed in terms of four multiplicity operators for each of the four triangulations

N
1 = 1

4 H1 +
1
12 H2

(

4H2
2 − 1

)

+ 1
12 H3

(

4H2
3 − 1

)

− H1

(

H
2
2 + H

2
3

)

, (50a)

N
2 = 1

4 H2 +
1
12 H1

(

4H2
1 − 1

)

+ 1
12 H3

(

4H2
3 − 1

)

− H2

(

H
2
1 + H

2
3

)

, (50b)

N
3 = 1

4 H3 +
1
12 H1

(

4H2
1 − 1

)

+ 1
12 H2

(

4H2
2 − 1

)

− H3

(

H
2
1 + H

2
2

)

, (50c)

N
S = 1

12 H1

(

2H2
1 + 1) + 1

12 H2

(

2H2
2 + 1) + 1

12 H3

(

2H2
3 + 1) + H1H2H3

− 1
2 H1

(

H
2
2 + H

2
3

)

− 1
2 H2

(

H
2
1 + H

2
3

)

− 1
2 H3

(

H
2
1 + H

2
2

)

. (50d)

Since NE1
, NE2

, NE3
and NS are arbitrary non–negative integers subject to (47), it follows that if we

substitute one of them away in (49), the resulting expression has to be integral on all E8×E8 weights
for any choice of the remaining numbers. In particular, taking the triangulation S again as reference,
i.e. solving NS from (47) and substituting this in (49), gives

N = NE1
∆N

1 +NE2
∆N

2 +NE3
∆N

3 + 64NS , ∆N
i = N

i − N
S , (51)

for i = 1, 2, 3. In line with the general observation in Section 3.4, this expression should always be
integral. Hence, in particular, the operators ∆N

i have to be integral on any state.
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4.3 SO(10) × SO(12) Line Bundle Models

Starting from the orbifold gauge embeddings II.b of the classification in Table 4 a set of three line
bundle vectors can be obtained

V1 = V1 + L1 = (0, 12 ,
1
2 , 0

5)(1, 0, 06) , L1 = (08)(08) (52a)

V2 = V2 + L2 = (12 , 0,
1
2 , 0

5)(0, 1, 06) , L2 = (08)(−1, 1, 06) , (52b)

V3 = V3 + L3 = (−1
2 ,−

1
2 , 1, 0

5)(0, 0, 06) , L3 = (08)(08) . (52c)

The bundle vectors satisfy the flux quantisation (45) for arbitrary triangulations. Note that, these
bundle vectors cannot be obtained from orbifold model I.b . Thus equivalent choices on the orbifold
level might lead to inequivalent choices from the smooth resolved perspective. The unbroken non–
Abelian gauge group is SO(10) × SO(12).

The line bundle charges Hi, the triangulation multiplicities Ni, NS and the triangulation difference
multiplicities ∆N

i of all the E8×E8 roots are given in Table 5. The triangulation multiplicities, and N
S

in particular, are not integrally quantised. This might seem problematic, but it is not: triangulation S
can be taken to be the reference triangulation at all 64 resolved singularities. Hence, if triangulation
S is chosen at all resolved singularities, the spectrum is 64 times the triangulation multiplicity N

S and
all states come in multiples of 16. Now, if at a certain resolved singularities one of the exceptional
triangulations is used then the spectrum always changes by an integral amount as the triangulation
difference multiplicities ∆N

i are integral, see Table 5. Indeed, using this table the full spectrum in
any triangulation can be determined to be:

16
{

(10)(1)0,0, -2;0 + (16)(1) -1, -1,1;0 + (1)(12)0;2,0 + (1)(12)0;0,2 + (1)(1) -2,0, -2;0 + (1)(1)0, -2, -2;0
}

+

48 (1)(1) -2, -2,0;0 +NE3
(1)(1)2,2,0;0 +NE2

(1)(1) -2,0,2;0 +NE1
(1)(1)0, -2,2;0+ (53)

32 (1)(1)0; -2, -2 +NE3
(1)(1)0;2,2 +NE1

(1)(1)0; -2,2 +NE2
(1)(1)0;2, -2 .

The five U(1) charges given here are two times the first three weight entries of the observable E8 and
the first two of the hidden E8. They can be used to distinguish otherwise vector–like states. When
triangulation S is chosen at all fixed points, e.g. NE1

= NE2
= NE3

= 0 , the spectrum does not
contain any vector–like pairs. For most other choices vector–like pairs do arise, but they presumably
acquire a mass at some stage in the effective field theory description.

4.4 A “swampland” SO(10) × SO(10) models

A seemingly closely related model with three independent bundle vectors is given by

V1,βγ = V1 = (0, 12 ,
1
2 , 0

5)(−1, 0, 0, 05) , (54a)

V2,αγ = V2 = (12 , 0,
1
2 , 0

5)(0,−1, 0, 05) , (54b)

V3,αβ = V3 = (12 ,
1
2 , 0, 0

5)(0, 0,−1, 05) . (54c)

This leads to a gauge group SO(10) × SO(10). The unbroken roots are given by (03,±1,±1, 03)(08)
and (08)(03,±1,±1, 03). At first sight this seems to be a valid choice as well, but this model has a
number of issues:
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weight H1 H2 H3 N
1

N
2

N
3

N
S ∆N

1 ∆N
2 ∆N

3 repr.

(1, 0, 0,±1, 04)(08) 0 1
2 −1

2 0 0 0 0 0 0 0 (10)(1)

(0, 1, 0,±1, 04)(08) 1
2 0 −1

2 0 0 0 0 0 0 0 (10)(1)

(0, 0, 1,±1, 04)(08) 1
2

1
2 1 −1

4 −1
4 −1

4 −1
4 0 0 0 (10)(1)

(12 ,
1
2 ,

1
2 ,−

1
2

e
, 12

5−e
)(08) 1

2
1
2 0 0 0 0 0 0 0 0 (16)(1)

(−1
2 ,

1
2 ,

1
2 ,−

1
2

o
, 12

5−o
)(08) 1

2 0 1
2 0 0 0 0 0 0 0 (16)(1)

(12 ,−
1
2 ,

1
2 ,−

1
2
o
, 12

5−o
)(08) 0 1

2
1
2 0 0 0 0 0 0 0 (16)(1)

(12 ,
1
2 ,−

1
2 ,−

1
2

o
, 12

5−o
)(08) 0 0 −1 −1

4 −1
4 −1

4 −1
4 0 0 0 (16)(1)

(1, 1, 0, 05)(08) 1
2

1
2 −1 −3

4 −3
4

1
4 −3

4 0 0 1 (1)(1)

(1, 0, 1, 05)(08) 1
2 1 1

2 −1
4 −1

4 −1
4 −1

4 0 0 0 (1)(1)

(0, 1, 1, 05)(08) 1 1
2

1
2 −1

4 −1
4 −1

4 −1
4 0 0 0 (1)(1)

(1,−1, 0, 05)(08) −1
2

1
2 0 0 0 0 0 0 0 0 (1)(1)

(1, 0,−1, 05)(08) −1
2 0 −3

2 0 −1 0 0 0 −1 0 (1)(1)

(0, 1,−1, 05)(08) 0 −1
2 −3

2 −1 0 0 0 −1 0 0 (1)(1)

(08)(1, 0,±1, 05) 1 0 0 1
4

1
4

1
4

1
4 0 0 0 (1)(12)

(08)(0, 1,±1, 05) 0 1 0 1
4

1
4

1
4

1
4 0 0 0 (1)(12)

(08)(12 ,
1
2 ,−

1
2
e
, 12

6−e
) 1

2
1
2 0 0 0 0 0 0 0 0 (1)(32)

(08)(12 ,−
1
2 ,−

1
2

o
, 12

6−o
) 1

2 −1
2 0 0 0 0 0 0 0 0 (1)(32)

(08)(1, 1, 06) 1 1 0 −1
2 −1

2
1
2 −1

2 0 0 1 (1)(1)

(08)(1,−1, 06) 1 −1 0 −1 1 0 0 −1 1 0 (1)(1)

Table 5: The line bundle charges Hi, the triangulation multiplicities N
i, N

S and the difference
multiplicities ∆N

i are given for all the E8 × E8 roots charged under the line bundle background
defined by (52). The underline of some of the entries in these roots denote all possible permutations
of them. Notice, that these difference multiplicities, that measure jumps in the spectrum when going
through a flop–transition, are always integral.
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First of all, even thought the bundle vectors clearly satisfy the strong conditions (39), this model
cannot be obtained as the blowup of any orbifold model. The first two bundle vectors are identical to
the model discussed in the previous subsection and can be obtained from orbifold gauge shift vectors
given there. But the third one does not differ by a lattice vector from V1 + V2:

V3 − V1 − V2 = (12 ,
1
2 , 0, 0

5)(0, 0,−1, 05)− (12 ,
1
2 , 1, 0

5)(0, 0, 0, 05) = (0, 0,−1, 05)(0, 0,−1, 05) . (55)

(If both −1–entries would have lain in the same E8, this would be a lattice vector, but they don’t.)
Moreover, this choice of line bundle vectors does not satisfy the final flux quantisation condition

in (45). As a consequence, the spectrum is not integral for a generic choice of triangulation at the 64
C

3/Z2 ×Z2 resolutions. This can be inferred from the appearance of multiplicities ±1/16 and −5/16
for the ∆N

1, ∆N
2 and ∆N

3 in Table 6 when the states are distinguished by their (implicitly given)
U(1) charges. Even if one ignores the U(1) charges, the spectrum combined is not necessarily integral:

16 (16)(1) + 48 (1)(10) + 4 (1)(16) + 36 (1)(16) + 1
8NE

{

(16)(1) + (16)(1) + 4 (1)(16)
}

+ singlets .
(56)

Note, that if the same triangulation is chosen at all 64 resolved C3/Z2×Z2 singularities, the spectrum
would be integral. But any single flop–transition would then lead to an inconsistent spectrum. This
demonstrates that satisfying the flux quantisation conditions in any triangulation is essential for the
difference multiplicities ∆N

i to be always integral.

4.5 Blaszczyk’s SU(3) × SU(2) Line Bundle Models

An example with very similar line bundle vectors, but where all their non–trivial entries lie in the
observable E8 can be obtained from the orbifold gauge embeddings I.a of Table 4. (But these bundle
vectors cannot be obtained from orbifold model II.a .) The defining set of three line bundle vectors
are given by:

V1 = V1 + L1 = (0, 12 ,
1
2 ,−1, 0, 0, 02)(08) , L1 = (0, 0, 1,−1, 0, 0, 02)(08) (57a)

V2 = V2 + L2 = (12 , 0,
1
2 , 0,−1, 0, 02)(08) , L2 = (0, 1, 0, 0,−1, 0, 02)(08) , (57b)

V3 = V3 + L3 = (12 ,
1
2 , 0, 0, 0,−1, 02)(08) , L3 = (1, 0, 0, 0, 0,−1, 02)(08) , (57c)

These bundle vectors were considered in Section 4.3 of ref. [37] before. In that work the spectra
were obtained when at all 64 resolved C3/Z2 ×Z2 singularities one of the four possible triangulations
were chosen. However, they satisfy the very restrictive conditions (39) that ensures that the Bianchi
identities are satisfied and the flux quantisation conditions (45) for all triangulations simultaneously.
Hence, this set of bundle vectors do not suffer from the flaws encountered in the section above.

Besides all the hidden E8 roots there are six unbroken SU(3) roots ±(06, 12) and ±(12
6
,±1

2

2
)(08)

and two unbroken SU(2) roots ±(06, 1,−1), consequently the unbroken non–Abelian gauge group is

SU(3) × SU(2) × E8. The Cartan generators of SU(3) are h1 = (12
6
,−1

2

2
) and h2 = (06, 12) and of

SU(2) h = (06, 1,−1).
The triangulation multiplicities evaluated on all observable E8 roots are given in Table 7. If the

same triangulation is used at all resolved singularities then the spectra given in Table 10 of ref. [37]
are reproduced. But with the formalism laid out in this paper an arbitrary triangulation of each of
the resolved fixed points can be considered. As the triangulation difference multiplicities ∆N

i are all
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weight H1 H2 H3 N
1

N
2

N
3

N
S ∆N

1 ∆N
2 ∆N

3 repr.

(−1
2 ,−

1
2 ,−

1
2 ,−

1
2

o
, 12

5−o
)(08) 1

2
1
2 0 1

8
1
8

1
8

1
16

1
16

1
16

1
16 (16)(1)

(−1
2 ,

1
2 ,

1
2 ,−

1
2
o
, 12

5−o
)(08) 1

2 0 0 1
8 0 0 1

16
1
16 − 1

16 − 1
16 (16)(1)

(12 ,−
1
2 ,

1
2 ,−

1
2

o
, 12

5−o
)(08) 0 1

2 0 0 1
8 0 1

16 − 1
16

1
16 − 1

16 (16)(1)

(12 ,
1
2 ,−

1
2 ,−

1
2
o
, 12

5−o
)(08) 0 0 1

2 0 0 1
8

1
16 − 1

16 − 1
16

1
16 (16)(1)

(−1,−1, 0, 05)(08) −1
2 −1

2 −1 1
4

1
4

1
4

1
4 0 0 0 (1)(1)

(−1, 0,−1, 05)(08) −1
2 −1 −1

2
1
4

1
4

1
4

1
4 0 0 0 (1)(1)

(0,−1,−1, 05)(08) −1 −1
2 −1

2
1
4

1
4

1
4

1
4 0 0 0 (1)(1)

(08)(−1, 0, 0,±1, 04) 1 0 0 1
4

1
4

1
4

1
4 0 0 0 (1)(10)

(08)(0,−1, 0,±1, 04) 0 1 0 1
4

1
4

1
4

1
4 0 0 0 (1)(10)

(08)(0, 0,−1,±1, 04) 0 0 1 1
4

1
4

1
4

1
4 0 0 0 (1)(10)

(08)(12 ,
1
2 ,

1
2 ,−

1
2

e
, 12

5−e
) −1

2 −1
2 −1

2
1
8

1
8

1
8

1
16

1
16

1
16

1
16 (1)(16)

(08)(−1
2 ,

1
2 ,

1
2 ,−

1
2
o
, 12

5−o
) 1

2 −1
2 −1

2 −1
8

1
8

1
8

3
16 − 5

16 − 1
16 − 1

16 (1)(16)

08)(12 ,−
1
2 ,

1
2 ,−

1
2

o
, 12

5−o
) −1

2
1
2 −1

2
1
8 −1

8
1
8

3
16 − 1

16 − 5
16 − 1

16 (1)(16)

08)(12 ,
1
2 ,−

1
2 ,−

1
2

o
, 12

5−o
) 1

2 −1
2 −1

2
1
8

1
8 −1

8
3
16 − 1

16 − 1
16 − 5

16 (1)(16)

(08)(0, 1, 1, 05) 0 −1 −1 −1
2

1
2

1
2

1
2 −1 0 0 (1)(1)

(08)(1, 0, 1, 05) −1 0 −1 1
2 −1

2
1
2

1
2 0 −1 0 (1)(1)

(08)(1, 1, 0, 05) −1 −1 0 1
2

1
2 −1

2
1
2 0 0 −1 (1)(1)

(08)(1,−1, 0, 05) −1 1 0 1 −1 0 0 1 −1 0 (1)(1)

(08)(−1, 0, 1, 05) 1 0 −1 −1 0 1 0 −1 0 1 (1)(1)

(08)(0, 1,−1, 05) 0 1 −1 0 −1 1 0 0 −1 1 (1)(1)

Table 6: The line bundle charges Hi and the triangulation multiplicities N
i, NS are given for all the

E8 × E8 roots charged under the line bundle background defined by (54). Note that for this model
many of the triangulation difference multiplicities ∆N

i are non–integral signifying that this model is
not fully consistent.

21



integral and the states come in multiples of 16 if triangulation S is used at all resolved singularities,
the spectrum is integral for any choice of local triangulations. Indeed, ignoring all U(1) charges, the
full charged SU(3) × SU(2) spectrum from the observable E8 can be compactly summarised as

48 (3,2) + 96 (3,1) + (96 +NE)
{

(3,1) + (3,1)
}

+ (176 − 2NE) (1,2) + (144 +NE) (1,1) . (58)

It can be easily confirmed from this spectrum that SU(3) cubed anomaly cancels for any NE and the
SU(2) Witten anomaly is always absent since the number of SU(2) doublets is always even.

Since in this model all the gauge flux is located in a single E8, the loop–corrected DUY equations
in the form (30) can be used. Since for this model there are only three bundle vectors V1, V2 and V3

which are clearly independent, the DUY equations reduce to three equations:

∑

βγ

e−2φ Vol(E1,βγ) =
1

16π

(

64 + 2NE1
− 2NE2

− 2NE3

)

,

∑

αγ

e−2φ Vol(E2,αγ) =
1

16π

(

64 + 2NE2
− 2NE1

− 2NE3

)

,

∑

βγ

e−2φ Vol(E3,αβ) =
1

16π

(

64 + 2NE3
− 2NE1

− 2NE2

)

.

(59)

Since, the sum of volumes all need to be non–negative, the right–hand–sides of these equations all
have to be positive. This leads to the conditions on the number of times the exceptional triangulations
may be chosen:

NE2
+NE3

−NE1
≤ 32 , NE1

+NE3
−NE2

≤ 32 , NE1
+NE2

−NE3
≤ 32 . (60)

Adding two of these three conditions shows that NEi
≤ 32. In addition, (6) implies that

NE1
+NE2

+NE3
≤ 64 . (61)

Thus apparently, one can only choose the S–triangulation at all 64 resolved singularities, but not one
of the exceptional triangulations. However, one can choose to use exceptional triangulations at all
resolved singularities, but not at all of them the same one. For example, the choice, NE1

= NE2
= 16

and NE3
= 32, would be allowed by the DUY conditions.

5 Jumping Spectra in a Blasczcyk–like GUT model

In ref. [37] a semi–realistic MSSM model line bundle model on a resolution of T 6/Z2 × Z2 was con-
structed with gauge group SU(5) × SU′(3) × SU′(2). This model possessed an freely acting invo-
lution that reduced the gauge symmetry to the standard model gauge group. For this model the
E1–triangulation was chosen at all 64 resolved C3/Z2 × Z2. In this section models similar to the
Blasczcyk’s GUT model are considered. The emphasis is not so much on finding a phenomenologically
satisfactory model but rather on illustrating the effects of flop–transitions on the spectrum.

5.1 Generalities of Blasczcyk–like GUT models

Models like the Blaszczyk’s GUT model are particular resolution of an orbifold theory with, in addition
to two shifts V1 and V2 associated to the twists v1 and v2, up to five Wilson lines in all torus directions
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Bundle vectors

V1000 = V1010 (−1
2 ,−

1
2 , 1, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)

V1100 = V1110 (0, 1, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0,−1
2 ,−

1
2)

V1001 = V1011 (14 ,
1
4 ,

3
4 ,−

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,−

1
4)(−

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,

1
4 ,

1
4 )

V1101 = V1111 (14 ,−
3
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4)(−

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,−

1
4 )

V2 00 = V2 10 (14 ,−
1
4 ,

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,−

1
4)(0, 0, 0, 0, 0, 0, 0,−1)

V2 01 = V2 11 (12 , 0,
1
2 , 0, 0, 0, 0, 0)(

1
4 ,

1
4 ,

1
4 ,

1
4 ,−

3
4 ,

1
4 ,−

1
4 ,−

1
4)

V30 0 (−1
4 ,

1
4 ,

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,−

1
4)(0, 0, 0, 0, 0, 0,−1, 0)

V31 0 (−1
4 ,

1
4 ,

3
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4 )(0, 0, 0, 0, 0, 0,

1
2 ,−

1
2)

V30 1 (0, 12 ,
1
2 , 0, 0, 0, 0, 0)(

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,−

3
4 ,−

1
4 ,−

1
4)

V31 1 (−1
2 , 0,

1
2 , 0, 0, 0, 0, 0)(−

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,

3
4 ,−

1
4 ,−

1
4)

Table 8: A set of bundle vectors associated to two shifts and four Wilson lines that satisfy the flux
quantisation conditions and the Bianchi identities in all triangulations.

are switched on. The Wilson lines in the second, fourth and sixth torus directions are all taken equal:
W2 = W4 = W6 and independent of the two remaining Wilson lines W3 and W5. The resulting line
bundle vectors are given by

V1,βγ = V1β3γ5(β4+γ6) = V1 + β3 W3 + γ5 W5 + (β4 + γ6)W2 + L1β3γ5(β4+γ6)

V2,αγ = V2 γ5(α2+γ6) = V1 + γ5W5 + (α2 + γ6)W2 + L2γ5(α2+γ6)

V3,αβ = V3β3 (α2+β4) = V3 + β3 W3 + (α2 + β4)W2 + L3γ5(α2+β4)

(62)

using the binary multi–index notation introduced in Subsection 2.1. Here L1β3γ5(β4+γ6), L2γ5(α2+γ6)

and L3γ5(α2+β4) are appropriately chosen E8 × E8 lattice vectors. The sum in between brackets is
defined modulo two (since two times a Wilson line is a lattice vector which can be absorbed in one
of the L’s). Thus, in total these kind of blowup models are defined by 8 + 4 + 4 = 16 line bundle
vectors and the 64 resolved fixed points are distinguished in 32 bunches of two fixed points as the
index α1 = 0, 1 still parameterises a twofold degeneracy. In addition, there is a freely acting symmetry
in such models: if one simultaneously adds 1 to the three indices α2, β4, γ6 modulo two:

(α2, β4, γ6) 7→ (α2 + 1, β4 + 1, γ6 + 1) , (63)

all bundle vectors are identical. This isometry was used in ref. [37] introduce a freely acting Wilson
line to break the SU(5) GUT to the standard model. This step won’t be considered here.
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Observable E8 Hidden E8

SU(5)–adjoint Singlets SU(4)–adjoint 14 (04, 0, 1, 0, 1)

24 (03, 1,−1, 03) 11 (1, 1, 0, 05) 15 (1,−1, 02, 04) 15 (04, 0, 0, 1, 1)

5–plets 12 (1, 0, 1, 05) 4–plets 16 (04, 1, -1, 0, 0)

51 (0, 1, 0, 1, 04) 13 (0, 1, 1, 05) 41 (1, 03, 0, 0, 1, 0) 17 (04, 1, 0, -1, 0)

52 (0, 0, 1, 1, 04) 14 (1, -1, 0, 05) 42 (1, 03, 0, 0, 0, 1) 18 (04, 1, 0, 0, -1)

53 (0, -1, 0, 1, 04) 15 (1, 0, -1, 05) 43 (1, 03, -1, 0, 0, 0) 18 (04, 1, 0, 0, -1)

54 (0, 0, -1, 1, 04) 16 (0, 1, -1, 05) 44 (1, 03, 0, -1, 0, 0) 110 (04, 0, 1, 0, -1)

55 ( -12 , -
1
2 ,

1
2 ,

1
2 , -

1
2
4
) 17 ( -12 , -

1
2 ,

1
2 ,

1
2
5
) 45 (1, 03, 0, 0, -1, 0) 111 (04, 0, 0, 1, -1)

56 ( -12 ,
1
2 , -

1
2 ,

1
2 , -

1
2

4
) 18 ( -12 ,

1
2 , -

1
2 ,

1
2

5
) 46 (1, 03, 0, 0, 0, -1) 112 (12

4
, 12 ,

1
2 ,

1
2 ,

1
2)

57 (12 , -
1
2 , -

1
2 ,

1
2 , -

1
2

4
) 19 (12 , -

1
2 , -

1
2 ,

1
2

5
) 47 (12 , -

1
2

3
, -12 ,

1
2 , -

1
2 , -

1
2) 113 (12

4
, -12 , -

1
2 ,

1
2 ,

1
2)

58 (12 ,
1
2 ,

1
2 ,

1
2 , -

1
2
4
) 110 (12 ,

1
2 ,

1
2 ,

1
2
5
) 48 (12 , -

1
2
3
, -12 ,

1
2 ,

1
2 ,

1
2) 114 (12

4
, -12 ,

1
2 , -

1
2 ,

1
2)

10–plet 10 (12 ,
1
2 , -

1
2 ,

1
2

2
, -12

3
) 49 (12 , -

1
2

3
, 12 , -

1
2 ,

1
2 ,

1
2) 115 (12

4
, -12 ,

1
2 ,

1
2 , -

1
2)

Singlets 116 (12
4
, 12 , -

1
2 , -

1
2 ,

1
2)

11 (04, 1, 0, 1, 0) 117 (12
4
, 12 , -

1
2 ,

1
2 , -

1
2)

12 (04, 1, 0, 0, 1) 118 (12
4
, 12 ,

1
2 , -

1
2 , -

1
2)

13 (04, 0, 1, 1, 0) 119 (12
4
, -12 , -

1
2 , -

1
2 , -

1
2)

Table 9: The identification between the roots and the states in the spectrum in both the observable
and hidden sectors. States in the same non–Abelian representation but with different U(1)–charges
are enumerated.

5.2 Triangulation independent Blaszczyk–like GUT models

The aim of this section is to engineer a modification of the Blaszczyk’s GUT model such that it fulfils
the Bianchi identities in an arbitrary triangulation. As this turned out to be a very difficult, here only
models are considered in which the Wilson lines W2 = W4 = W6 and W3 are switched on. Concretely
the orbifold data of the model under consideration here is given by:

V1 = ( - 12 , -
1
2 , 1, 0

5)(08) , V2 = (14 , -
1
4 ,

1
4 , -

1
4

5
)(06, 0, -1) ,

W3 = (0, 0, 12 ,
1
2
5
)(06, -12 , -

1
2) , W2 = W4 = W6 = (14 ,

1
4 ,

1
4 ,

1
4
5
)( - 14

6
, 14 ,

1
4) .

(64)

Using the freedom to add lattice vectors in (62) it is possible to obtain a set of bundle vectors that
satisfy the strong conditions (32)and (39), which guarantee that the flux quantisation conditions and
the Bianchi identities are satisfied in any triangulation. Such a set is given in Table 8.
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Resolved Spectra in S–triangulation Spectrum jumps due to flop–transitions

fixed points 4× N
S ∆N

1 ∆N
2 ∆N

3

fα10 00 γ50 , 52 + 54 + 55 + 10+ 11 + 317 + 18 + 19 17 15 16

fα11 01 γ51 41 + 42 + 45 + 46 + 11 + 12 + 13 + 14 + 215 + 17 + 18+ 15 111 111

19 + 110

fα10 10 γ50 , 51 + 52 + 53 + 57 + 11 + 213 + 14 + 15 + 316 + 317+ 16 51 + 57 + 13 + 14+ 17

fα11 11 γ51 318 + 110 18 + 110

42 + 46 + 12 + 14 + 215 + 18 + 110 + 2111 111 15

fα11 00 γ50 , 52 + 54 + 55 + 10+ 311 + 12 + 13 + 17 11 15 16

fα10 01 γ51 43 + 44 + 48 + 49 + 11 + 12 + 13 + 14 + 114 + 115 + 116+ 119 16 16

117 + 2119

fα11 10 γ50 , 51 + 53 + 11 + 12 + 13 + 14 + 15 + 316 16 14 11

fα10 11 γ51 43 + 44 + 47 + 49 + 11 + 12 + 15 + 216 + 19 + 110 + 113+ 16 113 119

114 + 115 + 116 + 117 + 119

fα10 01 γ50 , 54 + 58 + 12 + 213 + 218 + 19 13 18

fα11 00 γ51 42 + 44 + 46 + 48 + 12 + 13 + 214 + 15 + 16 + 218 + 3110+ 46 + 48 + 14 + 15+ 110 116

111 + 3116 + 117 + 3118 + 119 18 + 117 + 118 + 119

fα10 11 γ50 , 53 + 56 + 14 + 15 + 16 + 17 + 18 + 319 19 17 14

fα11 10 γ51 42 + 44 + 46 + 47 + 12 + 14 + 15 + 16 + 18 + 19 + 2110+ 110 117 14

111 + 112 + 113 + 116 + 117

fα10 00 γ51 , 54 + 58 + 212 + 13 + 18 + 219 19 12

fα11 01 γ50 41 + 43 + 45 + 49 + 211 + 12 + 13 + 15 + 16 + 317 + 19+ 45 + 49 + 11 + 15+ 115 17

111 + 114 + 3115 + 3118 + 119 19 + 114 + 118 + 119

fα10 10 γ51 , 52 + 53 + 56 + 57 + 12 + 13 + 14 + 15 + 16 + 217 + 19 + 110 13 17 14

fα11 11 γ50 43 + 49 + 11 + 12 + 16 + 111 + 112 + 3114 + 115 + 119 115 114 11

Table 10: Each big row corresponds to two sets of four resolved C3/Z2 × Z2 fixed points labelled
by α1, γ5 = 0, 1 (because their local bundle vectors are identical and thus so are their local spectra).
The lines with the white background give the observable spectra resulting from the first E8 and the
lines with grey background the hidden spectrum from the second E8. The charge states are labeled in
Table 9. (Since all singlet are charged it make sense to talk about a singlet state or its conjugate.) The
second column gives the contributions at the four local resolved singularities using the S–triangulation
combined. The columns ∆N

1, ∆N
2 and ∆N

3 indicate the jumps in the spectra for a single resolved
fixed point out of these sets of four singularities.

The resulting spectra are given in Table 10. The states used in that table are defined in Table 9
from the roots of both E8–factors. Notice, that not all E8–roots (up to conjugation) appear here;
only the states, that have a non–vanishing multiplicity in the models defined here, are listed. The
subscripts are used to distinguish states that have the same non–Abelian representation but different
U(1) charges. The second column gives the spectra from the local resolved singularities when the
S–triangulation is used at all 64 of them. Since the labels α1, γ5 = 0, 1 are arbitrary, there will be a
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fourfold degeneracy in the spectrum, this is already taking into account in the table by multiplying
the spectra in the S–triangulation by 4. The additional two–fold degeneracy due to the freely action
symmetry is made apparent by giving two sets of four resolved singularities. It is not difficult to see
that the full spectrum using the S–triangulation is free of non–Abelian anomalies.

The final three columns of Table 10 displays the jumps in the spectra when at a given singularity
the S–triangulation is flopped to the triangulation E1, E2 or E3. These are the jumps at a single
resolved fixed point. It can be seen that in accordance with our general findings this jumps are always
integral. Most jumps that occur in the spectra involve singlets only. At the resolved fixed points
fα10 10α50 and fα11 11 γ50 a 5 and 5 pair appears during a flop from the S to the E2–triangulation.
Similarly, a 4 and 4 pair appears at resolved fixed points fα10 01 γ50 and fα10 00 γ51. Thus, at most only
non–Abelian vector–like pairs can arise during a flop transition.

6 Conclusion

Summary

This paper has been devoted to a specific problem which occurs in resolutions of certain toroidal
orbifolds, namely that the resolutions of the local singularities is not unique at the topological level
and therefore leads to an explosion of topologically distinct smooth geometries all associated to one
and the same orbifold. As a concrete working example the focus was on the resolutions of a T 6/Z2×Z2

orbifold which contains 64 C3/Z2 × Z2 singularities, each of which admits four distinct resolutions
encoded by different triangulations of their toric diagram.

The key idea to overcome this complication is to use a parameterisation to keep track of the trian-
gulations chosen at all resolved fixed points simultaneously. It turned out not to be very cumbersome
to express the fundamental (self–)intersection numbers of the divisors of the resolution in terms of this
data. Once the (self–)intersection numbers were determined, many derived objects can be computed
without much more difficulty as determining them within a specific triangulation. In particular, we
checked our procedure by computing the integrated third Chern class directly and confirmed that
it equals 96 independently of any triangulation choice. We obtained expressions for the volumes of
curves, divisors and the manifold as a whole for any possible choice of the triangulation of the 64
Z2 × Z2 singularities. In addition, we worked out some of the fundamental consistency conditions of
line bundle models on the resolutions of the T 6/Z2 ×Z2 like the flux quantisation conditions and the
integrated Bianchi identities (which for simplicity were only considered without five branes). Even a
tool which is often used to compute the chiral part of the spectrum, the multiplicity operator, could
be determined once and for all for any choice of triangulation.

Having written down the fundamental consistency conditions for any possible choice of triangu-
lation, allowed for posing the question what conditions have to be enforced to ensure that they are
satisfied for all possible triangulations simultaneously. It turned out that if the flux quantisation
conditions are satisfied for a given specific choice of triangulation, they are, in fact, fulfilled for any
configuration of triangulations: the flux quantisation conditions turned out to be triangulation inde-
pendent. The superimposed integrated Bianchi identities reduced to much simpler requirements than
those within any particular choice of triangulation. Moreover, they are quite reminiscent of some of
the properties of shifted momenta of the blowup modes that induce the resolution from the orbifold
perspective.

These ideas and results were illustrated by a number of examples in the remainder of the paper.
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Toroidal Number of Triangulations Naive number

orbifold fixed points per fixed point of resolutions

T 6/Z6–II 12 5 512 ∼ 108

T 6/Z2 × Z2 64 4 464 ∼ 1038

T 6/Z2 × Z4 24 16 1624 ∼ 1028

T 6/Z3 × Z3 27 79 7927 ∼ 1051

Table 11: Triangulation dependence and the naive number of resulting resolutions of toroidal orbifolds
as can be inferred from the data in ref. [35].

For simplicity, first line bundle models were considered, where the 48 line bundle vectors were chosen
to be determined by three defining vectors. By computing spectra in all triangulations explicitly,
it was confirmed that the full chiral spectra are always integral. We take this as a very strong
crosscheck of the procedure outlined in this paper to parameterise all possible triangulations of the
resolved singularities of the T 6/Z2 × Z2 orbifold. This was also checked explicitly in a variant of the
Blasczczyk’s GUT model with four Wilson lines of which three were set equal. The full spectrum
computed in the S–triangulation everywhere is integral and free of non–Abelian anomalies. But also
all the local difference multiplicities measuring the jumps in the local spectra at specific resolved
singularities are always integral and free of non–Abelian anomalies (as the jumping spectra were all
vector–like in this particular example).

Outlook

This paper focussed on one particular T 6/Z2 × Z2 orbifold, it is to be expected that this procedure
can also be applied to the other T 6/Z2 × Z2 orbifolds. In fact, applications do not stop there,
for any orbifold for which the resolution of some of the local singularities is not unique, it may be
applied. Table 11 gives an overview of some toroidal orbifolds for which the triangulations of their
local singularities are not unique and a naive estimate of the number of resolved geometries which
therefore can be associated to that orbifold. (The numbers quoted in this table are upper limits:
these orbifolds can be defined on different lattices on which the number of fixed points may be lower
than the numbers indicated here.) Moreover, triangulation ambiguities do not only show up in toroidal
orbifolds resolutions, also in other Calabi–Yau constructions they might be present. For example, some
Calabi–Yaus in the Kreuzer–Skarke list obtained as hypersurfaces in toric varieties are not unique due
to different triangulation choices [44,45]. One may therefore speculate whether similar methods may
also be applied there.

Another direction of research where we could imagine that the results of this paper might be benefi-
cial are investigations of the spinor–vector duality on smooth geometries. The spinor–vector duality is
a symmetry akin to mirror symmetry in the space of (2, 0) heterotic–string compactifications [46–52].
It arises due to the exchange of Wilson line moduli rather than moduli of the internal compactified
space and operates separately on each of the twisted sectors in Z2×Z2 orbifolds [47,50] and hence can
be studied in vacua with a single Z2 twist of the internal space and an additional freely acting Z2 that
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operates as a Wilson line. Similar to mirror symmetry [53,54], which can be realised as an exchange of
discrete torsion in a Z2 × Z2 toroidal orbifold [55], the spinor–vector duality can be realised in terms
of certain generalised discrete torsions [46, 49, 50]. Moreover, like the imprint of mirror symmetry on
Calabi–Yau manifolds, the spinor–vector duality imprints can be explored in the effective field theory
limit of smooth compactifications as was investigated in refs. [52] and [51] in six and five dimensions,
respectively. To take these studies further to the resolutions of Z2 × Z2 orbifolds the present work is
likely to be instrumental as it allows to study the required resolutions in general and not be hampered
by focusing on a particular triangulation from the very beginning.

A Some Chern Class Identities

The total Chern class c of a matrix A is given by

c = det(11 +A) . (A.1)

If xi denote the eigenvalues of A, then the total Chern class can be written as

c =
∏

(1 + xi) . (A.2)

Expanding the total Chern class c in different powers of xi can be used to define the first, second and
third Chern classes, c1, c2 and c3, respectively. These Chern classes may be expressed as

c1 =
∑

i

xi , c2 =
∑

i<j

xixj , c3 =
∑

i<j<k

xixjxk . (A.3)

The second Chern class can be rewritten as:

c2 =
1

2

∑

i 6=j

xixj =
1

2

∑

i,j

xixj −
1

2

∑

i

x2i =
1

2
c21 −

1

2

∑

i

x2i . (A.4)

In a similar spirit the third Chern class can also be rewritten. When inserting

∑

i 6=j

xix
2
j =

∑

i,j

xix
2
j −

∑

i

x3i (A.5)

in
(

∑

i

x3i

)3
=

∑

i

x3i + 3
∑

i 6=j

xix
2
j +

∑

i 6=j 6=k

xixjxk , (A.6)

one finds the identity

c31 = −2
∑

i

x3i + c1
∑

j

x2j + 3! c3 . (A.7)

If the first Chern class vanishes, i.e. c1 = 0, the relations (A.4) and (A.7) imply that

c2 = −
1

2

∑

i

x2i , c3 =
1

3

∑

i

x3i . (A.8)
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