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Abstract. Reading and writing is modelled in CSP using actions containing the
symbols ? and !. These reading actions and writing actions are synchronous, and
there is a one-to-one relationship between occurrences of pairs of these actions.
In the CPA conference 2017, we introduced the extended half-synchronous al-
phabetised parallel operator X õ Y , which disconnects the writing to and read-
ing from a channel in time; the reading processes are divided into sets which
are set-wise asynchronous, but intra-set-wise synchronous, giving full flexibility
to the reads.

In this paper, we allow multiple writers to write to the same channel set-wise
asynchronously, but intra-set-wise synchronously and we study the impact on
our (Extended) Vertex Removing Synchronised Product. The advantages we
accomplish are that the extension of X õ Y gives more flexibility by indexing
the writing actions and the reading actions, leading to a straightforward major-
ity vote design. Furthermore, the extension of X õ Y preserves the advantages
of the X õ Y operator.
Keywords. CSP, Half-Synchronous Alphabetised Parallel Operator, Asynchronous
and Synchronous Write Actions, Asynchronous and Synchronous Read Actions,
(Extended) Vertex Removing Synchronised Product

Introduction

Periodic Hard Real-Time Control Systems (PHRCSs) modelled using process algebras
comprise many short processes, which leads to fine-grained concurrency. Because of this
fine-grained concurrency and the many short processes we introduced in [1] a software
architecture which controls the behaviour of the PHRCSs by directed graphs2.

To let the PHRCS perform its task as required by the specification, the processes
synchronise over actions, asserting a certain order of the actions of the processes. A
special case of this synchronisation over actions is the notion of writing to and reading
from a channel, which was introduced in [4]. This writing to and reading from a channel
is synchronous.

1Corresponding Author: Ton Boode, Robotics and Mechatronics, CTIT Institute, Faculty EEMCS,
University of Twente, P.O. Box 217 7500 AE Enschede, The Netherlands. Tel.: +31 631 006 734;
E-mail: a.h.boode@utwente.nl.

2Due to this architecture described in [2], we do not need models like failures models and traces
models such as given by [3].
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In [5] and [6] we have introduced the (extended) half-synchronous alphabetised
parallel operator, which disconnects the writing to and reading from a channel. The
writing to a channel by more than one process was inhibited in [5], but relaxed to syn-
chronous writing in [6]. In this paper, we relax these restrictions further; the writing
processes are divided into sets which are set-wise asynchronous, but intra-set-wise syn-
chronous, giving full flexibility to the asynchronous writing and reading actions. In this
manner we are able to model a majority vote using this enhanced operator, together
with the indexed writing and reading actions. Note that we still require our graphs to
be pairwise consistent (defined in Definition 1) to ensure that pathological cases like a
deadlock are avoided.

The idea is quite simple. Let the processes P1, P2 and P3 contain a writing action
c¡x : T . Then by indexing this writing action for process P1 with the indices 1, 2, for
process P2 with the indices 2, 3 and for process P3 with the indices 1, 3, we have the
following writing actions, e.g., for process P1 the writing action c¡

{1,2}
x : T , for process

P2 the writing action c¡
{2,3}

x : T and for process P3 the writing action c¡
{1,3}

x : T .
In fact, c¡

{1,2}
x : T is a kind of short hand shown in Listing 1, where P1 is strongly

bisimilar to P2.

P1 = c¡1x : T Ñ ¨ ¨ ¨ Ñ SKIP
l

c¡2x : T Ñ ¨ ¨ ¨ Ñ SKIP
P2 = c¡

{1,2}
x : T Ñ ¨ ¨ ¨ Ñ SKIP

Listing 1: Strongly bisimilar processes P1 and P2 with respect to indexed writing actions.

Let Xi be the alphabet of process Pi, i “ 1, . . . , 4. Listing 2 shows the definition
of this example, where the enhanced extended half-synchronous parallel operator is
denoted as õ|. The wfnp action stands for the waitForNextPeriod action [7], which is
necessary to make sure that the processes in Listing 2 are pairwise consistent.

P1 = ¨ ¨ ¨ Ñ pc¡
{1,2}

x : T Ñ wfnpÑ SKIP
l

wfnpÑ SKIP)
P2 = ¨ ¨ ¨ Ñ pc¡

{2,3}
x : T Ñ wfnpÑ SKIP

l

wfnpÑSKIP)
P3 = ¨ ¨ ¨ Ñ pc¡

{1,3}
x : T Ñ wfnpÑ SKIP

l

wfnpÑSKIP)
P4 = c¿x : T Ñ ¨ ¨ ¨ Ñ wfnpÑ SKIP
P1,2,3,4 = ppP1X1

õ|
X2
P2qX1YX2

õ|
X3
P3qX1YX2YX3

õ|
X4
P4

Listing 2: The majority vote over a channel c.

Assume that the processes P1 through P3 read the following values into x over channel
c1 through c3: for c1 x is v1, for c2 x is v2, and for c3 x is v2, respectively. Then, only
the processes P2 and P3 can engage in the synchronisation over channel c, because they
both belong to the group of processes with index 2.

In [1,8,9] we have developed a Vertex-Removing Synchronised Product (VRSP)
that improves the performance of PHRCSs, where the PHRCS is designed using a
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process algebra. With respect to aynchronous writing and reading we have adapted this
VRSP into the Dot Vertex-Removing Synchronised Product (DVRSP) in [5] and the
Extended Dot Vertex-Removing Synchronised Product (EVRSP) [5]. In this paper we
extend the EVRSP into the Enhanced Extended Dot Vertex-Removing Synchronised
Product (EEVRSP), while maintaining full flexibility for the asynchronous writing and
asynchronous reading.

We start in Section 1 with the terminology used on graphs. In Section 2 we describe
the relational semantics of the enhanced extended half-synchronous parallel operator.
In Section 3 we give the adaptation of the Extended Vertex Removing Synchronised
Product (EVRSP). We finish with the conclusions in Section 4.

1. Terminology

The terminology in this section is a copy of the terminology given in [2] relevant for this
paper. We use [10], [11] and [12] for terminology and notations on graphs not defined
here.

1.1. Graph Basics

Throughout this paper all graphs we consider are finite, deterministic, directed, acyclic,
labelled multi-graphs, i.e., they may have multiple arcs. Such graphs consist of a vertex
set V (representing the states of a process), an arc set A (representing the actions, i.e.,
transitions from one state to another), a set of labels L (in our applications in fact a
set of label pairs, each representing a type of action and the worst-case duration of its
execution), and two mappings. The first mapping µ : AÑ V ˆV is an incidence function
that identifies the tail and head of each arc a P A. In particular, µpaq “ pu, vq means
that the arc a is directed from u P V to v P V , where tailpaq “ u and headpaq “ v.
We also call u and v the ends of a. The second mapping λ : AÑ L assigns a label pair
λpaq “ p`paq, tpaqq to each arc a P A, where `paq is a string representing the (name of
an) action and tpaq is the weight of the arc a. This weight tpaq is a real positive number
representing the worst-case execution time of the action represented by `paq.

Let G denote a graph according to the above definition. An arc a P ApGq is called
an in-arc of v P V pGq if headpaq “ v, and an out-arc of v if tailpaq “ v. The in-degree
of v, denoted by d´pvq, is the number of in-arcs of v in G; the out-degree of v, denoted
by d`pvq, is the number of out-arcs of v in G. The subset of V pGq consisting of vertices
v with d´pvq “ 0 is called the source of G, and is denoted by S 1pGq. The subset of
V pGq consisting of vertices v with d`pvq “ 0 is called the sink of G, and is denoted by
S2pGq.

A graph G is called weakly connected if all pairs of distinct vertices u and v of
G are connected through a sequence of distinct vertices u “ v0v1 . . . vk “ v and arcs
a1a2 . . . ak of G with µpaiq “ pvi´1, viq or pvi, vi´1q for i “ 1, 2, . . . , k. We are mainly
interested in weakly connected graphs, or in the weakly connected components of a
graph G. If X Ď V pGq, then the subgraph of G induced by X, denoted as GrXs, is the
graph on vertex set X containing all the arcs of G which have both their ends in X
(together with L, µ and λ restricted to this subset of the arcs). If X Ď V pGq induces
a weakly connected subgraph of G, but there is no set Y Ď V pGq such that GrY s is
weakly connected and X is a proper subset of Y , then GrXs is called a weakly connected
component of G. In the sequel, throughout we omit the words weakly connected, so a
component should always be understood as a weakly connected component. In contrast
to the notation in the textbook of [10], we use ωpGq to denote the number of components
of a graph G.
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We denote the components of G by Gi, where i ranges from 1 to ωpGq. In that case,
we use Vi, Ai and Li as shorthand notation for V pGiq, ApGiq and LpGiq, respectively.
The mappings µ and λ have natural counterparts restricted to the subsets Ai Ă ApGq

that we do not specify explicitly. We use G “
ωpGq
ř

i“1
Gi to indicate that G is the disjoint

union of its components, implicitly defining its components as G1 up to GωpGq. In
particular, G “ G1 if and only if G is weakly connected itself.

A graph G is called deterministic3 if its arcs have the following property. If λpaq “
λpbq for two arcs a P A and b P A with headpaq ‰ headpbq, then tailpaq ‰ tailpbq.

An arc a with label pair λpaq in a graph G is a synchronising arc with respect to
another graph H, if and only if there exists an arc b P ApHq with label pair λpbq such
that λpaq “ λpbq.

We assume that two different arcs with the same head and tail have different labels;
otherwise, we replace such multiple arcs by one arc with that label, because these arcs
represent exactly the same action at the same stage of a process. Hence, we require
that the following property holds for all the graphs we consider: any two distinct arcs
a P A and b P A with µpaq “ µpbq have λpaq ‰ λpbq.

For each pair pvi, vjq P V pGqˆV pGq, we let Apvi, vjq “ ta P ApGq | µpaq “ pvi, vjqu,
and we let tmpvi, vjq “ max

aPApvivjq
tpaq.

A sequence of distinct vertices v0v1 . . . vk and arcs a1a2 . . . ak of G is a (directed)
path4 in G if µpaiq “ pvi´1, viq for i “ 1, 2, . . . , k. We denote such a path by P “

v0a1v1a2 . . . akvk, and we define its weight as wpP q “
ř

aiPApP q

tpaiq.

A path from a vertex of the source of G to a vertex of the sink of G is called a full
path (of G).

The path length of Gi, denoted by `pGiq, is the maximum of wpP q taken over all
full paths P of Gi.

The path length of a graph G “
ωpGq
ř

i“1
Gi, denoted by `pGq, is defined as `pGq “

ωpGq
ř

i“1
`pGiq.
In the next subsection, we introduce a (directed labelled multigraph) analogue of

the Cartesian product of two graphs and several other products we derive from it,
resulting in the VRSP.

1.2. Graph Products

We start by introducing the next analogue of the Cartesian product.
The Cartesian product GilGj of Gi and Gj is defined as the graph on vertex set

Vi,j “ ViˆVj, and arc set Ai,j consisting of two types of labelled arcs. For each arc a P Ai
with µpaq “ pvi, wiq, an arc of type i is introduced between tail pvi, vjq P Vi,j and head
pwi, wjq P Vi,j whenever vj “ wj; such an arc receives the label λpaq. This implicitly
defines parts of the mappings µ and λ for GilGj. Similarly, for each arc a P Aj with
µpaq “ pvj, wjq, an arc of type j is introduced between tail pvi, vjq P Vi,j and head
pwi, wjq P Vi,j whenever vi “ wi; such an arc receives the label λpaq. This completes

3This is equivalent to determinism in the set of processes which is represented by the graph G.
4There is a close relationship between a trace and a directed path; ‘a trace is a sequence of visible

actions in the order they are observed.’ [3, page 29], a trace b1b2 . . . bn of a process Q is represented by
a path P “ v0a1v1 . . . vn´1anvn in G, `paiq “ bi, i “ 1, 2, . . . , n where the process Q is represented by
the graph G.
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the definition of Ai,j and the mappings µ and λ for GilGj. So, arcs of type i and j
correspond to arcs of Gi and Gj, respectively, and have the associated labels. For k ě 3,
the Cartesian product G1lG2l ¨ ¨ ¨lGk is defined recursively as ppG1lG2ql ¨ ¨ ¨ qlGk.
This Cartesian product is commutative and associative, as can be verified easily and is
a well-known fact for the undirected analogue.

Since we are particularly interested in synchronising arcs, we modify the Cartesian
product Gi lGj according to the existence of synchronising arcs, i.e., pairs of arcs with
the same label pair, with one arc in Gi and one arc in Gj.

The first step in this modification consists of ignoring (in fact deleting) the syn-
chronising arcs while forming arcs in the product, but additionally combining pairs of
synchronising arcs of Gi and Gj into one arc, yielding the intermediate product which
we denote by Gi b Gj.

To be more precise, Gi b Gj is obtained from GilGj by first ignoring all except
for the so-called asynchronous arcs, i.e., by only maintaining all arcs a P Ai,j for which
µpaq “ ppvi, vjq, pwi, wjqq, whenever vj “ wj and λpaq R Lj, as well as all arcs a P Ai,j
for which µpaq “ ppvi, vjq, pwi, wjqq, whenever vi “ wi and λpaq R Li. Additionally, we
add arcs that replace synchronising pairs ai P Ai and aj P Aj with λpaiq “ λpajq.
If µpaiq “ pvi, wiq and µpajq “ pvj, wjq, such a pair is replaced by an arc ai,j with
µpai,jq “ ppvi, vjq, pwi, wjqq and λpai,jq “ λpaiq. We call such arcs of GibGj synchronous
arcs.

The second step in this modification consists of removing (from GibGj) the vertices
pvi, vjq P Vi,j and the arcs a with tailpaq “ pvi, vjq, in the case that pvi, vjq has level ą 0
in GilGj but level 0 in Gi b Gj. This is then repeated in the newly obtained graph,
and so on, until there are no more vertices at level 0 in the current graph that are at
level ą 0 in GilGj. This finds its motivation in the fact that in our applications, the
states that are represented by such vertices can never be reached, so are irrelevant.

The resulting graph is called the Vertex-Removing Synchronised Product (VRSP
for short) of Gi and Gj, and denoted as GinGj. For k ě 3, the VRSP G1 nG2 n¨ ¨ ¨nGk

is defined recursively as ppG1 n G2q n ¨ ¨ ¨ q n Gk. The VRSP is commutative, but not
associative in general, in contrast to the Cartesian product. However, associativity of
the VRSP is guaranteed if we require the graphs on which we apply the VRSP to be
pairwise consistent.

Recall that our processes are acyclic, but are started again at every period of the
PHRCS. Therefore, whenever two processes P1 and P2 are consistent, this means that
in their parallel execution both processes will reach their set of final states. For the two
components G1 and G2 representing these two processes, this means that the sinks of
G1 and G2 must represent the final states of P1 and P2. But for G1 nG2 this only makes
sense if the sink of V pG1 nG2q represents the final states of the process P1,2 (where P1,2
is strongly bisimilar to P1||P2). We will introduce several contraction concepts in graphs
to describe and analyse consistency of the associated processes. This is explained and
formalised by the concepts of a weak contraction, a strong contraction and a pseudopath
in Section 1.3.

1.3. Graph Isomorphism and Graph Contraction

The isomorphism we introduce in this section is an analogue of a known concept for
unlabelled graphs, but involves statements on the labels.

Formally, an isomorphism from G to H consists of two bijections φ : V pGq Ñ V pHq
and ψ : ApGq Ñ ApHq such that for all a P ApGq µpaq “ pu, vq if and only if µpψpaqq “
pφpuq, φpvqq and λpaq “ λpψpaqq. Since we assume that two different arcs with the same
head and tail have different labels, however, the bijection ψ is superfluous. The reason is
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that, if pφ, ψq is an isomorphism, then ψ is completely determined by φ and the labels.
In fact, if pφ, ψq is an isomorphism and µpaq “ pu, vq for an arc a P ApGq, then ψpaq is
the unique arc b P ApHq with µpbq “ pφpuq, φpvqq and label λpbq “ λpaq. Thus, we may
define an isomorphism from G to H as a bijection φ : V pGq Ñ V pHq such that there
exists an arc a P ApGq with µpaq “ pu, vq if and only if there exists an arc b P ApHq
with µpbq “ pφpuq, φpvqq and λpbq “ λpaq.

We distinguish two types of contractions. The first type contracts vertices inG1nG2
related to asynchronous arcs of graphs G1 and G2 and is called a weak contraction.
The second type contracts a set of vertices without taking into account whether the
arcs belonging to these vertices are synchronous or asynchronous and is called a strong
contraction.

Let a P ApGq with µpaq “ pu, vq. By contracting a we mean replacing u and v by
a new vertex uv, deleting all arcs b P ApGq with µpbq “ pu, vq or µpbq “ pv, uq, and for
any x ‰ u, v replacing each pair of arcs c P ApGq and d P ApGq with µpcq “ pu, xq,
µpdq “ pv, xq and λpcq “ λpdq by one arc e with µpeq “ puv, xq and λpeq “ λpcq,
and, similarly replacing each pair of arcs c P ApGq and d P ApGq with µpcq “ px, uq,
µpdq “ px, vq and λpcq “ λpdq by one arc e with µpeq “ px, uvq and λpeq “ λpcq.

To define the notion of weak contraction, let T be the set of asynchronous arcs in
G1 n G2 that correspond to arcs in G1. Then the weak contraction of G1 n G2 with
respect to G1, denoted by ρG1pG1 nG2q, is defined as the graph obtained from G1 nG2
by successively contracting each arc a P T . Likewise, let T be the set of asynchronous
arcs in G1 n G2 that correspond to arcs in G2. Then the weak contraction of G1 n G2
with respect to G2, denoted by ρG2pG1 n G2q, is defined as the graph obtained from
G1 n G2 by successively contracting each arc a P T . We also use Gρ

1 as shorthand for
ρG2pG1 n G2q and Gρ

2 as shorthand for ρG1pG1 n G2q.
Let H be a subgraph of G1 n G2. Then in ρG2pG1 n G2q, H corresponds to a

subgraph H 1 of G1. We denote this H 1 by ρG2pHq, and say that H is mapped to ρG2pHq
by ρG2 . We use similar terminology and notation with respect to for ρG1pHq.

We now turn to the definition of strong contraction. Let X be a nonempty proper
subset of V pGq, and let Y “ V pGqzX. Then to obtain the strong contraction of G with
respect to X, we first replace X by a new vertex x̃, deleting all arcs with both ends in
X, delete all arcs a P ApGq with µpaq “ pu, vq for u P X and v P Y by an arc c with
µpcq “ px̃, vq and λpcq “ λpaq, and replace each arc b P ApGq with µpbq “ pu, vq for
u P Y , and replace v P X by an arc d with µpdq “ pu, x̃q and λpdq “ λpbq. If after this
contraction there are arcs with the same ends and labels, then these arcs are replaced
by one arc with the same ends and label. We denote the resulting graph as G{X, and
say that G{X is the strong contraction of G with respect to X.

We use the strong contraction in particular to remove non-determinism, in the
following way. Recall that non-determinism occurs in a graph G if there is a set of arcs
B P ApGq with the same tail and label, but different heads. In this case, let us denote
such a set of different heads by Z. In G{Z, all the arcs of B (with heads in Z) are
replaced by one arc with the same tail and label and a new head. So, this removes the
non-determinism from G caused by the arc set B. If there occurs non-determinism in
the graph G{Z, we iteratively repeat the above contraction procedure until the resulting
graph is deterministic. We denote the resulting graph by Gδ.

Let H be a subgraph of G. Then in Gδ, the graph that corresponds to H is denoted
by Hδ. We say that H is mapped to Hδ by δ.

The above two types of contractions play a key role in our notion of consistency
of graphs. Before we define this notion, we first introduce one additional concept. This
concept relates paths in G1 n G2 to paths in pGρ

1q
δ and pGρ

2q
δ, in the following way.

A full path P of G1 nG2 is called a pseudopath if ρG2pP q is isomorphic to a full path
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in G1, and ρG1pP q is isomorphic to a full path in G2. Note that in this case pρG2pP qq
δ

is a unique full path in pGρ
1q
δ, and pρG1pP qq

δ is a unique full path in pGρ
2q
δ, that satisfy

this condition. In particular, P is a full path in pρG2pP qq
δ n pρG1pP qq

δ. We often say
there exists a full path in G1 (G2) for a pseudopath in G1 n G2 if we mean that these
paths exist in the above sense when pGρ

1q
δ – G1 (and pGρ

2q
δ – G2). Similarly, we often

say there exists a pseudopath in G1 nG2 for every full path in G1 (G2) if we mean that
there exists a pseudopath P in Q n R for full paths Q in G1 and R in G2.

2. The Relational Semantics of the Enhanced Extended Half-Synchronous Parallel
Operator

If processes write synchronously to a channel this synchronous writing is inhibited by
the early versions of CSP5. Later on this was relaxed to multiple writers to the same
channel [13]. In [5] we described asynchronous writing and reading in such a manner
that the writers will deadlock if they are trying to invoke the same writing action.
We lift these restrictions such that the writers are allowed to write synchronously as
well as asynchronously, and the readers are allowed to read synchronously as well as
asynchronously. Apart from the synchronous and asynchronous writing, this has been
described in [6]. In this section, we complete the description of asynchronous writing
and asynchronous reading by two extensions of the Half-Synchronous Operator:

- Indexing of the ¿-action, allowing set-wise asynchronous reading and intra-set-
wise synchronous reading.

- Indexing of the ¡-action, allowing set-wise asynchronous writing and intra-set-wise
synchronous writing.

The relational semantics of the enhanced extended half-synchronous alphabetised parallel
operator (

X
õ|

Y
) is given in Figure 1. But first, we give an example of asynchronous

writing and asynchronous reading describing a majority vote. Assume we are considering
a safety-critical system controlling one actuator via three sensors. Each sensor is read
from by a different process and the actuator is written to by a different process. The
value read from the sensor is mapped into three ranges, say high, middle and low. The
values are only invalid if one process maps its value into the high range, one process
maps it value into the middle range, and the remaining process maps it value into
the low range. In this case an error has to be raised, which is beyond the scope of
this example. All other combinations lead to a valid value and the value which has a
majority is sent to the actuator. To achieve consistent processes and thereby avoid a
deadlock, we use a waitForNextPeriod-action (the wfnp in the model) to align with
the period of the PHRCS. This requirement is easily modelled by synchronising actions
representing the high, middle and low ranges.

As an example, if in Listing 3 sensor S0 has read the value 74, sensor S1 has read
the value 75, and sensor S2 has read the value 76, the value middle will be chosen and
sent to the actuator. To avoid that all processes engage at the start in a wfnp action,
a clock process C with alphabet Z has been added that enables the wfnp action after
the timer has expired. The wfnp action is enabled just before the end of the period.
The time-out value must be chosen in such a manner that after expiration there is only
just enough time (in the order of a few µs) for a read and write communication to finish
execution, e.g., if the communication and actions of the sensors and the actuator takes

5Because we consider acyclic processes and therefore acyclic graphs only, our extension of CSP is in
fact more a domain-specific CSP dialect.
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Si = read.xi Ñ txi ă 75&c¡ti,pi`1q%3ulow Ñ wfnpÑ SKIP
l

75 ď xi ă 125&c¡ti,pi`1q%3umiddleÑ wfnpÑ SKIP
l

125 ď x&c¡ti,pi`1q%3uhighÑ wfnpÑ SKIP
l

wfnpÑ SKIP}
l

wfnpÑ SKIP

A = c¿low Ñ writeActuatorplowq Ñ wfnpÑ SKIP
l

c¿middleÑ writeActuatorpmiddleq Ñ wfnpÑ SKIP
l

c¿highÑ writeActuatorphighq Ñ wfnpÑ SKIP
l

wfnpÑ SKIP

C = timeoutÑ wfnpÑ SKIP

SafetyCriticalSystem = pA
X
õ|

Y0YY1YY2
ppS0

Y1
õ|

Y2
S1qY0YY1

õ|
Y2
S2qqXYY0YY1YY2

õ|
Z
C

Listing 3: Indexed reading from and writing to a buffer.

in total 100 µs and the period is 1 ms then the time-out should expire at less than
900 µs.

We continue with the definition of the relational semantics of the enhanced ex-
tended half-synchronous operator õ|. Let Ii be a non-empty subset of the set I “
t1, 2, . . . ,mu. Let Jj be a non-empty subset of the set J “ t1, 2, . . . , nu. Let P “

tP1, . . . , Pmu be the set of processes containing an indexed asynchronous ¡
Ii
´ action.

Let Q “ tQ1, . . . , Qmu be the set of processes containing an indexed asynchronous
¿

Jj
´ action. Then, in Figure 1 we give

- the semantics of the enhanced extended half-synchronous operator,
- if we need more than one process P we use Pi otherwise we use P ,
- the alphabets of P, P1, ¨ ¨ ¨ , Pm, Q1, ¨ ¨ ¨ , Qn are denoted asX,X1 ¨ ¨ ¨ , Xm, Y1 ¨ ¨ ¨ , Yn,

respectively, and
- for ease of reading, we omit the alphabets for the extended half-synchronous

operator, therefore Pi Xi
õ|

Xj
Pj is denoted as Pi õ| Pj (likewise for Qi and Qj).

The rules R1 through R7 are given in Figure 1, where

R1 specifies that two indexed writing actions with different index sets are asyn-
chronous.

R2 specifies that for two or more writing actions to the same channel by two or
more processes are synchronous6 if the labels of the writing actions have an
index in common and are identical as far as the labels without the index sets
are concerned, as, for example, in Listing 2.

6This is similar to a voting design pattern, where a majority of voters is necessary to reach a decision.
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R1 : P1
c ¡

I1
x:T
Ñ P 11, P2

c ¡
I2
x:T
Ñ P 12

pP1õ|P2q Ñ pP 11õ|P2q ‘ pP1õ|P 12q
, I1 X I2 “ H,

R2 : P1
c ¡

I1
x:T
Ñ P 11, P2

c ¡
I2
x:T
Ñ P 12, . . . , Pk

c ¡
Ik
x:T
Ñ P 1k

pP1õ|P2õ| ¨ ¨ ¨ õ|Pkq Ñ pP 11õ|P
1
2õ| ¨ ¨ ¨ õ|P

1
kq

, I “ I1 X I2 X . . .X Ik ‰ H,

c ¡
In
x : T P Xn, n R t1, . . . , ku ñ I X In “ H

R3 : Pi
c ¡

Ii
x:T
Ñ P 1i , P1

y
ÑP 11, P2

y
ÑP 12, . . . , Pk

y
ÑP 1k

Piõ|P1õ|P2 õ| ¨ ¨ ¨ õ|Pk
y
ÑPiõ|P 11 õ| P

1
2 õ| ¨ ¨ ¨ õ| p

1
k

, i R t1, . . . , ku, y R Xi,

c ¡
Ij
x : T P Xj, j P t1, . . . , ku, Ii Ď I1 Y . . .Y Ik, ¡ not in y

R4 :
Pk

c ¡
Ik
x:T

ù P 1k, Qi
c ¿i x:T
Ñ Q1i, Qj

c ¿j x:T
Ñ Q1j

pPkõ| Qiõ| Qjq
c ¡

Ik
x:T

ù pP 1kõ| Qiõ| QjqÑppP 1kõ| Q
1
iõ| Qjq‘pP 1kõ| Qiõ| Q1jqqÑpP

1
kõ| Q

1
iõ| Q

1
jq

,

i ‰ j

R5 : P
c ¡

Ij
x:T

ù P 1, Q1
c ¿i x:T
Ñ Q11, ¨ ¨ ¨ , Qk

c ¿i x:T
Ñ Q1k

Põ| Q1õ| ¨ ¨ ¨õ| Qk

c ¡
Ij
x:T

ù P 1õ| Q1õ| ¨ ¨ ¨õ| QkÑP 1õ| Q11õ| ¨ ¨ ¨õ| Q
1
k

,

c ¿i x : T R Xn, n R t1, . . . , ku

R6 :
P ù P 1, Qj

c ¿i x:T
Ñ Q1j

Põ| Qj ù P 1õ| Qj

, c ¡
Ii
x : T R αpùq, pαpùq ¨ pY1, ¨ ¨ ¨ , Yn, Zqq “ H,

R7 :
Qi

c ¿i x:T
Ñ Q1i, Qj

y
ÑQ1j

Qiõ| Qj Ñ Qiõ| Q1j
, y ‰ c ¿i x : T, c ¿i x : T P Yju

Figure 1. Relational semantics of the enhanced extended half-synchronous operator for a specification
comprising the processes P1, . . . , Pm, Q1, . . . , Qn.

R3 specifies that a writing action with index i in its index set cannot be performed
if one or more processes that contain this writing action with index i in their
index set are not in a state where this writing action can be performed.

R4 specifies that an indexed reading action must always be preceded by a related7

writing action and the reading actions with different indexes are asynchronous.
R5 specifies that a set of indexed reading actions with the same index must be pre-

ceded by a related writing action and that these reading actions are synchronous.
R6 specifies that indexed reading actions must be preceded by a related writing

action.
R7 specifies that indexed reading actions with the same index are synchronous.

7Based on [6], two actions are related if and only if

- one action contains the ¡Ii
precisely once and does not contain the ¿n, and the other action

contains the ¿n precisely once and does not contain the ¡Ii
,

- the prefix of the labels of both actions with respect to the ¡Ii
and ¿n is identical and

- the postfix of the labels of both actions with respect to the ¡Ii
and ¿n is identical.
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Remark 1. Clearly, both the ¡Ii-action and the ¿Ii-action are prone to deadlocks. As an
example, if one process contains c¡t1,2ux : T followed by c¡t3,4ux : T and another process
contains the same actions in reversed order the two processes may deadlock. Because
we consider processes represented by consistent graphs only, such a process definition is
inhibited.

In the next section we discuss the impact of these relational semantics on the
VRSP.

3. The VRSP of the Enhanced Extended Half-Synchronous Alphabetised Parallel
Operator

As we are taking into account pairs of consistent graphs only, c¿nx : T in one process
without a related c¡Inx : T in any other process is inhibited, because the process
may end in a deadlock and the deadlock violates the consistency requirements. Also,
the processes containing indexed writing actions must be pairwise consistent and the
processes containing indexed reading actions must be pairwise consistent. The definition
of consistency for the EEVRSP is given in Definition 1. The EEVRSP is defined on
page 12 just below Definition 1.

We start with a simple example showing a majority vote specified in Listing 2. This
example is smaller than the example given in Listing 3, because otherwise the figure
would become unreadable. In Figure 2, we give the graphs G1 and G2 representing
the specification of the writing processes P1 and P2, and the EEVRSP of G1 and G2,
G1,2 “ G1

˝

nG2, leaving out the not relevant actions (the dots, ¨ ¨ ¨ ) of these processes.

c¡{1,2} x : T wfnp

wfnp

c
¡ {

2,
3}

x
:T

w
f

n
p

w
f

n
p

c
¡ {

1}
x

:T

c
¡ {

1}
x

:T

c¡{3} x : T

c¡{3} x : T

c¡ {2}
x

:T

w
f

n
p

wfnp

c
¡ {

1}
x

:T

G1

G2

G1,2

Figure 2. Graphs G1, G2, and G1,2 “

2
˝

n
i“1

Gi representing processes P1 and P2, and their parallel
composition pP1X1

õ|
X2

P2q of Listing 2.

In Figure 3, we give the graphs G1, G2 and G3, and the EEVRSP of G1, G2 and G3,

G1,2,3 “

3
˝

n
i“1
Gi representing the specification of the writing processes P1, P2 and P3. The

EEVRSP of these graphs shows clearly that whenever an indexed writing action has
a majority, it will be selected for execution, leading to a transition to the next state.
The wfnp-action makes sure that all processes involved in this subsytem are pairwise
consistent.
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c¡{1,2}x : T wfnp

wfnp

c
¡ {

2,
3}

x
:T

w
f

n
p

w
f

n
p

c
¡ {1

,3
}

x
:T

w
f

n
p

w
f

n
p

c¡ {2}
x

:T

c¡{1} x
:T

c¡{3} x : T

wfnp

w
f

n
p

wfnp

wfnp

G1

G2

G3

G1,2,3

Figure 3. Graphs G1, G2, G3, and G1,2,3 “

3
˝

n
i“1

Gi representing processes P1, P2, P3, and their parallel
composition pP1X1

õ|
X2

P2qX1YX2
õ|

X3
P3 of Listing 2.

In Figure 4, we give the graphs representing the interaction of the graph G1,2,3 rep-
resenting the parallel execution of the three writing processes P1, P2 and P3, and the
reading process P4 of Listing 2.

c¡ {2}
x

: T

c¡{1} x
:
T

c¡{3} x : T

wfnp

w
f

n
p

wfnp

wfnp

G1,2,3 G1,2,3,4

G4

c¿x : T wfnp

wfnp

c¡ {2}
x

: T

c¡{1} x
:
T

c¡{3} x : T

wfnp

c¿x : T

c¿x
: T

c¿x : T wfnp

Figure 4. Graphs G1,2,3, G4, and G1,2,3,4 “

4
˝

n
i“1

Gi representing processes pP1X1
õ|

X2
P2qX1YX2

õ|
X3

P3, P4,
and their parallel composition ppP1X1

õ|
X2

P2qX1YX2
õ|

X3
P3qX1YX2YX3

õ|
X4

P4 of Listing 2.
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Remark 2. The EEVRSP of the graphs G1, . . . , G4, G1,2,3,4 “

4
˝

n
i“1
Gi gives a performance

gain because the length of the graph
4

ř

i“1
Gi equals eight, whereas the length of the graph

G1,2,3,4 equals three.

We have defined the notion of consistency of graphs under EVRSP in [6] and adjust
it here to consistency of graphs under the EEVRSP. Because we introduce the notion
of an indexed writing action in this paper, we give the following definition for this
indexed writing action. An indexed writing action c¡

Ii
x : T is represented by the set of

arcs a with µpaq “ pu, vq and λpaq “ tc¡
tiu
x : T | i P Iiu. Furthermore, we adapt the

definition of the path read and path write cardinality defined in [6] such that it meets
the requirements for the EEVRSP.

The number of occurrences of an indexed write action c¡
Ii
x : T in the path P with

respect to an index k P Ii, is called the path write cardinality of a path with respect to
c¡

Ii
x : T for the index k, denoted as P pc¡

kPIi
x : T q .

The number of occurrences of an indexed read action c¿nx : T in the path P ,
is called the path read cardinality of a path with respect to c¿nx : T , denoted as
P pc¿nx : T q.

Definition 1. Components Gi and Gj are consistent if and only if the following three
requirements apply:

1. ρGi
pGi

˝

nGjq
δ – Gj and ρGj

pGi

˝

nGjq
δ – Gi.

2. S 1pGi

˝

nGjq “ S 1pGiq ˆ S
1pGjq and S2pGi

˝

nGjq “ S2pGiq ˆ S
2pGjq.

3. Whenever Q an R are paths from the source to the sink of Gi pGj, Gi

˝

nGjq,
Qpc¡

kPIi
x:T) = Rpc¡kPIj

x : T q for all k P Ii Y Ij and Qpc¿kx:T) = Rpc¿kx : T q.

The EEVRSP of Gi and Gj, Gi

˝

nGj is closely related to the VRSP and EVRSP of
Gi and Gj, and is constructed in two stages, where the definition of the intermediate
stage of DVRSP is identical to the intermediate stage of EEVRSP, Gi

‚

bGj “ Gi

˝

bGj,
with

- vxwx P Ai,j is an arc with operator ¿n in lpvxwxq “ lr,
- Pn is a path from the source of Gi

˛

bGj through wx,

- Pm is the path from the source to the sink of Gi

˛

bGj.

As in [6], we modify the Cartesian product GilGj according to the existence of
synchronising arcs, but now with the extra constraint that indexed writing actions
containing an index k P Ii, Ij are synchronous and indexed writing actions containing
an index k P Ii and k R Ij (k R Ii and k P Ij) are asynchronous.

The first step in this modification consists of ignoring the synchronising arcs while
forming arcs in the product, but additionally combining pairs of synchronising arcs of
Gi and Gj into one arc, yielding the intermediate product which we denote by Gi

˝

bGj.
To be more precise, Gi

˝

bGj is obtained from GilGj by first ignoring all except for
the so-called asynchronous arcs, i.e., by only maintaining all arcs a P Ai,j for which
µpaq “ ppvi, vjq, pwi, wjqq, whenever vj “ wj and λpaq R Lj, as well as all arcs a P Ai,j
for which µpaq “ ppvi, vjq, pwi, wjqq, whenever vi “ wi and λpaq R Li. This set of arcs
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is denoted by Aai,j. Additionally, we add arcs that replace synchronising pairs ai P Ai
and aj P Aj with λpaiq “ λpajq. If µpaiq “ pvi, wiq and µpajq “ pvj, wjq, such a pair is
replaced by an arc ai,j with µpai,jq “ ppvi, vjq, pwi, wjqq and λpai,jq “ λpaiq. The set of
these so-called synchronous arcs of Gi

˝

bGj is denoted by Asi,j.
The second step in this modification consists of removing (from Gi

˝

bGj) the vertices
pvi, vjq P Vi,j and the arcs a with tailpaq “ pvi, vjq, whenever pvi, vjq has level ą 0 in
GilGj and pvi, vjq has level 0 in Gi

˝

bGj and all arcs vxwx P Ai,j for which there exists
a related arc vywy P Ai,j, with operator ¿n in lpvxwxq for which there does not exist at
least n related arcs vywy with operator ¡

Ii
in lpvywyq with vywy ă vxwx. This is then

repeated in the newly obtained graph, and so on, until there are no more vertices at
level 0 in the current graph that are at level ą 0 in GilGj.

The resulting graph is called the EEVRSP of Gi and Gj, denoted as Gi

˝

nGj.

For k ě 3, the EEVRSP G1
˝

nG2
˝

n ¨ ¨ ¨
˝

nGk is defined recursively as ppG1
˝

nG2q
˝

n

¨ ¨ ¨ q
˝

nGk.

Remark 3. Because arcs viwi with ¿ P lpviwiq are indexed, the arcs viwi with differ-
ent indexes represent asynchronous actions, because they have different labels due to
different indexes.

In Figure 5 we show an example based on an example from [6] that shows the
stages of the EEVRSP with respect to the delayed reading actions. Figure 5.a shows

u1 u2

u3 u4

u5 u6
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c
¿ 1

x
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c
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x
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c
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:T

c
¿ 1

x
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u5 u6
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u3 u4

u5 u6

c
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c
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c
¿ 1
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c
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x
:T

u1 u2

u3 u4

u5 u6
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u3 u4

u5 u6
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c
¿ 1
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x
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u3 u4

u5 u6

u1 u2
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¿ 1

x
:T

c
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x
:T

u1 u2

u4

u6

paq pbq pcq pdq

Figure 5. EVRSP from G1lG3 paq, two stages of G1
˝

bG3 pb, cq, to G1
˝

nG3 pdq.

the Cartesian Product of graphs G1 and G2, where G1 represents only one indexed
writing action and G2 represents a series of two indexed reading actions. Obviously, the
index set of the writing action may contain more than one element. The dotted arcs in
Figure 5.b are selected for removal. After removing the dotted arcs we have Figure 5.c.
In Figure 5.c the vertices u3 and u5 and their arcs are removed because in the Cartesian
Product (Figure 5.a) they have an in-degree greater than zero, whereas in Figure 5.c
the vertices u3 and u5 have an in-degree of zero. After removal of the vertices u3 and
u5 and their arcs in Figure 5.c we get Figure 5.d.
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4. Discussion and Conclusions

In this paper we have discussed the new
X
õ|

Y
operator, the new ¡

Ii
-action and the ¿n-

action, which enables the possibility to model a majority vote in an easy and straight-
forward manner. The

X
õ|

Y
operator together with the ¡

Ii
-action replaces a series of

choices, reducing the size of the specification and making the design less error prone.
As for the EEVRSP, the writing processes do not have to wait for the reading processes
to synchronise and the designer has the choice to have synchronous as well as asyn-
chronous writes to a channel. Furthermore, the overall design cycle will gain because
the improved description on design level will lead to less effort for the implementation
and less effort for testing. To summarise these advantages we have:

1. it eases the design in case the application needs both synchronous as well as
asynchronous writes to a channel,

2. it gives maximum flexibility by indexing the writing and reading actions,
3. it allows multiple write actions, both synchronous as well as asynchronous to the

same channel,
4. the advantages of the VRSP and EVRSP are preserved.

The first, second and third advantage makes the design less error-prone and there-
fore the design phase needs less time. The fourth advantage leads to an application
for which the end-to-end execution time of the application is reduced and due to the
reduction of the number of context switches, the overall utilisation of the processor is
reduced.
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