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Abstract

Recently, we have introduced two graph-decomposition theorems based on a new graph product

(the vertex-removing synchronised product (VRSP)), motivated by applications in the context of

synchronising periodic real-time processes. In these applications, periodic real-time processes syn-

chronise over actions that have the same label and therefore the same behaviour. From a process-

algebraic point of view, such a synchronising action is executed atomically and at the same time

by all processes that have this action in their alphabet. When these processes are executed on

some computer platform, synchronisation leads to context switches of the processes and there-

fore an increased overhead, which may lead to deadline misses. But, by combining processes we

reduce the number of context switches and therefore reduce the overhead. We combine these pro-

cesses by representing the processes by edge-labelled acyclic directed multigraphs, and multiply

the graphs by the VRSP. Next, we transpose the resulting graphs into processes for which there

are fewer context switches. An important aspect of these real-time applications is that they must

execute in time. Still, it may happen that the set of processes of the application cannot execute

timely and may miss a deadline. Now, by decomposing the graphs and multiplying the graphs by

the VRSP in another combination, the processes that are represented by these recombined graphs

may execute in time. The requirements of the recently introduced graph-decomposition theorems

are too strict and can be relaxed, whereby more graphs can be decomposed giving more possi-

ble combinations for the real-time application. Therefore, we recall the definition of the VRSP

and the two graph-decomposition theorems, we relax the requirements by stating and proving a

lemma that decomposes bipartite graphs and use this lemma to state and prove the two (relaxed)

graph-decomposition theorems.

Keywords: Vertex Removing Synchronised Graph Product, Product Graph, Graph Decomposition, Synchronising Processes

Mathematics Subject Classification : 05C76, 05C51, 05C20, 94C15

1. Introduction

Recently, we have introduced two graph-decomposition theorems based on a new graph prod-

uct [5], motivated by applications in the context of synchronising periodic real-time processes, in
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particular in the field of robotics. More on the background, definitions, and applications can be

found in two conference contributions [4, 6], two journal papers [5, 7] and the thesis of the au-

thor [3]. In this contribution, we relax some of the requirements of the two graph-decomposition

theorems presented in [5] for which we present a new lemma (Lemma 6.1) that takes bipartite

graphs into account. The lemma is used to relax the requirements of the theorems in [5] so we

can state and prove the two relaxed decomposition theorems. Also, we repeat most of the back-

ground, definitions, and theorems presented in [5] here for convenience. Furthermore, the proofs

of Lemma 6.1, Theorem 6.1 and Theorem 6.2 are modelled along the same lines as the proofs of

the theorems presented in [5].

In [6], we have modelled periodic real-time processes as directed acyclic labelled multigraphs.

These graphs are closely related to state transition systems [1]. The vertices of such a graph

represent the states of a periodic real-time process, while the labelled arcs represent actions, i.e.,

transitions from one state to another. The label (in fact, a label pair) on an arc represents the name

or type of the action together with the worst-case duration of its execution. We give the formal

definitions of these graphs in Section 2.

Embedded control systems play a crucial role in many application areas. In particular, in the

field of robotics, it is obvious that these systems (embedded in robots) are key to the functionality

and operational behaviour of robots. The software of such control systems is usually designed

using a general-purpose computing system (not in the robot). These general-purpose computers

generally have more processing power and memory available than the embedded control system.

The embedded control system is the target system on which the software will run eventually after it

has been designed and validated. The hardware of the target system is usually much more limited

with respect to available memory and processing power. If the processes that have to run on the

target system are periodic and real-time, they have deadlines to fulfil the timing requirements, and

they require memory for storing the data and software.

Periodic real-time (robotic) applications can be designed using process algebras like, for ex-

ample, a calculus of communicating systems [11], communicating sequential processes [9], mi-

cro Common Representation Language 2 [8] and finite-state processes [10]. During the design

phase, the designer distributes the required behaviour over sometimes more than a hundred pro-

cesses. These processes very often synchronise over actions, e.g., to assert whether a subset of

the processes will be ready to start executing at the same time. Due to this synchronisation, such

applications usually suffer from a considerable overhead related to so-called context switches.

In [6], the vertex-removing synchronised product (VRSP) has been introduced as a means to

reduce the number of context switches. This VRSP is a modification of the well-known Cartesian

product of graphs. It is based on the synchronised product due to Wöhrle and Thomas [12], which

is used in model-checking synchronised products of transition systems.

The VRSP reduces the number of context switches and in many cases realises a performance

gain for periodic real-time applications. This is achieved by (repetitively) combining two graphs

representing two processes that synchronise over some action. The combined graph of two graphs

then represents a process that will have only one context switch per synchronising action, whereas

the two processes separately would each have one context switch per synchronising action [6].

Using the VRSP, the set of graphs representing a set of different processes can, under certain

conditions, be transformed into a new set of graphs. This can be particularly useful if the original
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set of graphs represents a set of processes that cannot meet their deadline or do not fit into the

available memory. The aim is that for such a new set of graphs, the processes that they represent

meet their deadline and fit into the available memory. In the worst case, there may be no set of

processes with respect to the original set of processes that will do so. In that case, the VRSP cannot

result in a suitable solution when applied in any way to the graphs representing the original set of

processes.

One way out, for which we introduce and develop the tools here, is to use the VRSP to enable

new combinations of subprocesses of the original set of processes, without changing the function-

ality and behaviour of the total set of new (sub)processes. We accomplish this by decomposing

a graph G (representing one of the processes) into two smaller graphs G1 and G2 such that the

VRSP of G1 and G2 is isomorphic to G. It should be noted here, that the graphs G1 and G2 are

not subgraphs of G, but that they are obtained from G by applying a contraction operation, to be

specified later.

The decomposition of graphs is well known in the literature. For example, decomposition

can be based on the partition of a graph into edge-disjoint subgraphs. In our case, in the two

graph-decomposition theorems we contract disjoint nonempty subsets of the vertex set V of the

edge-labelled acyclic directed multigraph G. The contraction of a nonempty set X Ă V leads to a

graph G{X where all the vertices of X are replaced by one vertex x̃, each arc uv, u P V zX, v P X

is replaced by an arc ux̃ with λpux̃q “ λpuvq, each arc uv, u P X, v P V zX is replaced by an arc

x̃v with λpx̃vq “ λpuvq, and the arcs with both ends in X are removed.

In the first theorem, we have disjoint nonempty sets X Ă V and Y “ V zX , giving G{X and

G{Y . In the second theorem, we have mutually disjoint nonempty sets X1 Ă V,X2 Ă V and

Y “ V zpX1 Y X2q giving G{X1{X2 and G{Y , where G{X1{X2 is shorthand for pG{X1q{X2.

Then, together with additional constraints given in the theorems, we have that G is isomorphic to

the VRSP of G{X and G{Y in the first theorem and that G is isomorphic to the VRSP of G{X1{X2

and G{Y in the second theorem.

In this paper, we recall the definition of the VRSP and the two graph-decomposition theorems

given in [5] and we relax the requirements of these two graph-decomposition theorems. For the

first theorem, the requirement was that for the arcs that have one end in X and the other end in Y

(the set of arcs rX, Y s) the label of each arc is distinct. We relax this requirement in the following

manner. The set of all arcs in rX, Y s with the same label must arc-induce (defined in Section 2) a

complete bipartite graph. For the second theorem, the requirement was that for the arcs that have

one end in X1 and the other end in Y (the set of arcs rX1, Y s), the arcs that have one end in Y

and the other end in X2 (the set of arcs rY,X2s) and the arcs that have one end in X1 and the other

end in X2 (the set of arcs rX1, X2s) the label of each arc is distinct. We relax this requirement in

the following manner. The set of all arcs in rX1, Y s with the same label must arc-induce a clean

bipartite graph (defined in Section 2) and the set of all arcs in rY,X2s with the same label must

arc-induce a clean bipartite graph. Furthermore, the only restriction on the labels of the arcs in

rX1, X2s is that the arcs of rX1, X2s must not have a label identical to a label of any of the arcs of

ApGqzrX1, X2s.
The rest of the paper is organised as follows. In the next sections, we introduce new defini-

tions that are necessary due to the relaxation of the two decomposition theorems. Furthermore, we

recall the formal graph definitions (in Section 2), the definition of the VRSP as well as the graph-
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decomposition theorems, together with other relevant terminology and notation (in Section 3), the

notions of graph isomorphism and contraction of labelled acyclic directed multigraphs (in Sec-

tion 4), and the two graph theorems given in [5] (in Section 5). We relax the two decomposition

theorems from [5] and state and proof a lemma decomposing bipartite graphs. We use the VRSP,

the new lemma and the two decomposition theorems to state and prove the two (relaxed) decom-

position theorems (in Section 6).

2. Terminology and notation

We use the textbook of Bondy and Murty [2] for terminology and notation we do not specify

here. Throughout, unless we specify explicitly that we consider other types of graphs, all graphs

we consider are edge-labelled acyclic directed multigraphs, i.e., they may have multiple labelled

arcs. Such graphs consist of a vertex set V (representing the states of a process), an arc set A

(representing the actions, i.e., transitions from one state to another), a set of labels L (in our

applications, a set of label pairs, each representing a type of action and the worst-case duration of

its execution), and two mappings. The first mapping µ : A Ñ V ˆ V is an incidence function that

identifies the tail and head of each arc a P A. In particular, µpaq “ pu, vq means that the arc a

is directed from u P V to v P V , where tailpaq “ u and headpaq “ v. We also call u and v the

ends of a. The second mapping λ : A Ñ L assigns a label pair λpaq “ pℓpaq, tpaqq to each arc

a P A, where ℓpaq is a string representing the (name of an) action and tpaq is the weight of the

arc a. This weight tpaq is a real positive number representing the worst-case execution time of the

action represented by ℓpaq.

Let G denote a graph according to the above definition. An arc a P ApGq is called an in-arc

of v P V pGq if headpaq “ v, and an out-arc of v if tailpaq “ v. The in-degree of v, denoted by

d´pvq, is the number of in-arcs of v in G; the out-degree of v, denoted by d`pvq, is the number of

out-arcs of v in G. The subset of V pGq consisting of vertices v with d´pvq “ 0 is called the source

of G, and is denoted by S 1pGq. The subset of V pGq consisting of vertices v with d`pvq “ 0 is

called the sink of G, and is denoted by S2pGq.

For disjoint nonempty sets X, Y Ď V pGq, rX, Y s denotes the set of arcs of G with one end in

X and one end in Y . If the head of the arc a P rX, Y s is in Y , we call a a forward arc (of rX, Y s);
otherwise, we call it a backward arc.

The acyclicity of G implies a natural ordering of the vertices into disjoint sets, as follows. We

define S0pGq to denote the set of vertices with in-degree 0 in G (so S0pGq “ S 1pGq), S1pGq the set

of vertices with in-degree 0 in the graph obtained from G by deleting the vertices of S0pGq and all

arcs with tails in S0pGq, and so on, until the final set StpGq contains the remaining vertices with

in-degree 0 and out-degree 0 in the remaining graph. Note that these sets are well-defined since G

is acyclic, and also note that StpGq ‰ S2pGq, in general. If a vertex v P V pGq is in the set SjpGq
in the above ordering, we say that v is at level j in G.

A graph G is called weakly connected if all pairs of distinct vertices u and v of G are connected

through a sequence of distinct vertices u “ v0v1 . . . vk “ v and arcs a1a2 . . . ak of G with µpaiq “
pvi´1, viq or pvi, vi´1q for i “ 1, 2, . . . , k. We are mainly interested in weakly connected graphs, or

in the weakly connected components of a graph G. If X Ď V pGq, then the subgraph of G induced

by X , denoted as GrXs, is the graph on the vertex set X containing all the arcs of G which have
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both their ends in X (together with L, µ and λ restricted to this subset of the arcs). If X Ď V

induces a weakly connected subgraph of G, but there is no set Y Ď V such that GrY s is weakly

connected and X is a proper subset of Y , then GrXs is called a weakly connected component of

G. If X Ď ApGq, then the subgraph of G arc-induced by X , denoted as GtXu, is the graph on arc

set X containing all the vertices of G which are an end of an arc in X (together with L, µ and λ

restricted to this subset of the arcs).

A subset A1 of arcs a P A with λpaq “ λ1 is called the largest subset of arcs with the same

label pair λ1 if there does not exist an arc b P AzA1 with λpbq “ λ2 and λ1 “ λ2.

In the sequel, throughout we omit the words weakly connected, so a component should always

be understood as a weakly connected component. In contrast to the notation in the textbook of

Bondy and Murty [2], we use ωpGq to denote the number of components of a graph G.

We denote the components of G by Gi, where i ranges from 1 to ωpGq. In that case, we use Vi,

Ai and Li as a shorthand notation for V pGiq, ApGiq and LpGiq, respectively. The mappings µ and

λ have natural counterparts restricted to the subsets Ai Ă ApGq that we do not specify explicitly.

We use G “
ωpGq
ř

i“1

Gi to indicate that G is the disjoint union of its components, implicitly defining

its components as G1 up to GωpGq. In particular, G “ G1 if and only if G is weakly connected

itself. Furthermore, we use
ωpGq
Y
i“1

Gi to denote the graph with vertex set
ωpGq
Y
i“1

Vi, arc set
ωpGq
Y
i“1

Ai with

the mappings µipaiq “ pui, viq and λpaiq “ pℓpaiq, tpaiqq for each arc ai P Ai.

A graph G according to the above definition is called bipartite if there exists a partition of

nonempty sets V1 and V2 of V pGq into two partite sets (i.e., V pGq “ V1 Y V2, V1 X V2 “ H)

such that every arc of G has its head vertex and tail vertex in different partite sets. Such a graph is

called a bipartite graph, and we denote such a bipartite graph G by BpV1, V2q. A bipartite graph

BpV1, V2q is called complete if, for every pair x P V1, y P V2, there is an arc a with µpaq “ px, yq
or µpaq “ py, xq in BpV1, V2q. We call BpV1, V2q a trivial bipartite graph if |V1| “ |V2| “ 1

and |ApBpV1, V2qq| ě 1. Finally, we call a bipartite graph BpV1, V2q a clean bipartite graph if all

subgraphs BpV 1
1
, V 1

2
q of BpV1, V2q are complete, where each subgraph BpV 1

1
, V 1

2
q is arc-induced by

all arcs in rV1, V2s with the same label pair,and, rV1, V2s has no backward arcs or rV1, V2s has no

forward arcs.

3. Graph products

In this section, we define the three graph products we are using for our decomposition theorems.

Instead of defining products for general pairs of graphs, for notational reasons we find it convenient

to define those products for two components Gi and Gj of a disconnected graph G. But, before we

define the Cartesian product Gi lGj , the intermediate product Gi b Gj and the VRSP Gi n Gj

of Gi and Gj , we have to define the notion of an (a)synchronous arc. Therefore, an arc a P Ai

with label pair λpaq is a synchronising arc with respect to Gj , if and only if there exists an arc

b P Aj with label pair λpbq such that λpaq “ λpbq. Furthermore, an arc a with label pair λpaq of

Gi b Gj or Gi n Gj (the graph products b and n are defined in the sequel) is a synchronous arc,

whenever there exist a pair of arcs ai P Ai and aj P Aj with λpaq “ λpaiq “ λpajq. Analogously,

an arc a with label pair λpaq of Gi b Gj or Gi n Gj is an asynchronous arc, whenever λpaq R Li
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or λpaq R Lj .

But first, in Figure 1, we give an example of the three products. At the top and the left of

Figure 1, we have the two graphs Gi and Gj . Then, in the middle, we have the Cartesian product

of Gi and Gj , Gi lGj . On the right, we have the intermediate product of Gi and Gj , Gi b Gj .

Here we see that the asynchronous arcs with label pairs not equal to s of Gi lGj are maintained,

whereas the synchronous arcs with label pair s are replaced by one arc with label pair s. At the

bottom, we have the VRSP of Gi and Gj , Gi n Gj and here we see that the vertices with level 0

in Gi bGj and level ą 0 in Gi lGj are removed. Note, in the iterations, first, the vertices pu3, v1q
and pu1, v3q, and their arcs, are removed from GibGj . In a second iteration, this is followed by the

removal of the vertices pu4, v1q, pu3, v2q, pu2, v3q and pu1, v4q, and their arcs, because these vertices

have level 0 due to the removal of pu3, v1q and pu1, v3q. In the third and last iteration, the vertices

pu4, v2q and pu2, v4q are removed, leading to the graph Gi n Gj .

Gi

Gj

u1

u2

u3

u4

c

s

d

v1 v2 v3 v4
a s b

Gi lGj

pu1, v1q

pu2, v1q

pu3, v1q

pu4, v1q

pu1, v2q

pu2, v2q

pu3, v2q

pu4, v2q

pu1, v3q

pu2, v3q

pu3, v3q

pu4, v3q

pu1, v4q

pu2, v4q

pu3, v4q

pu4, v4q

a

a

a

a

s

s

s

s

b

b

b

b

c

s

d

c

s

d

c

s

d

c

s

d

Gi b Gj

pu1, v1q

pu2, v1q

pu3, v1q

pu4, v1q

pu1, v2q

pu2, v2q

pu3, v2q

pu4, v2q

pu1, v3q

pu2, v3q

pu3, v3q

pu4, v3q

pu1, v4q

pu2, v4q

pu3, v4q

pu4, v4q

a

a

a

a

s

b

b

b

b

c

d

c

d

c

d

c

d

Gi n Gj

pu1, v1q

pu2, v1q

pu1, v2q

pu2, v2q

pu3, v3q

pu4, v3q

pu3, v4q

pu4, v4q

a

a

s

b

b

c c

d d

Figure 1. The three products for the graphs Gi and Gj , the Cartesian product Gi lGj , the intermediate product,

Gi b Gj and the VRSP Gi n Gj .
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We start by introducing the next analogue of the Cartesian product.

The Cartesian product Gi lGj of Gi and Gj is defined as the graph on the vertex set Vi,j “
Vi ˆ Vj , and arc set Ai,j consisting of two types of labelled arcs. For each arc a P Ai with

µpaq “ pvi, wiq, an arc of type i is introduced between tail pvi, vjq P Vi,j and head pwi, wjq P Vi,j

whenever vj “ wj; such an arc receives the label pair λpaq. This implicitly defines parts of the

mappings µ and λ for Gi lGj . Similarly, for each arc a P Aj with µpaq “ pvj , wjq, an arc

of type j is introduced between tail pvi, vjq P Vi,j and head pwi, wjq P Vi,j whenever vi “ wi;

such an arc receives the label pair λpaq. This completes the definition of Ai,j and the mappings

µ and λ for Gi lGj . So, arcs of type i and j correspond to arcs of Gi and Gj , respectively, and

have the associated label pairs. For k ě 3, the Cartesian product G1 lG2 l ¨ ¨ ¨ lGk is defined

recursively as ppG1 lG2q l ¨ ¨ ¨ qlGk. This Cartesian product is commutative and associative,

as can be verified easily and is a well-known fact for the undirected analogue. Since we are

particularly interested in synchronising arcs, we modify the Cartesian product Gi lGj according

to the existence of synchronising arcs, i.e., pairs of arcs with the same label pair, with one arc in

Gi and one arc in Gj .

The first step in this modification consists of ignoring (in fact deleting) the synchronising arcs

while forming arcs in the product, but additionally combining pairs of synchronising arcs of Gi

and Gj into one arc, yielding the intermediate product which we denote by Gi b Gj .

To be more precise, Gi b Gj is obtained from Gi lGj by first ignoring all except for the so-

called asynchronous arcs, i.e., by only maintaining all arcs a P Ai,j for which µpaq “ ppvi, vjq, pwi,

wjqq, whenever vj “ wj and λpaq R Lj , as well as all arcs a P Ai,j for which µpaq “ ppvi, vjq, pwi,

wjqq, whenever vi “ wi and λpaq R Li. Additionally, we add arcs that replace synchronising pairs

ai P Ai and aj P Aj with λpaiq “ λpajq. If µpaiq “ pvi, wiq and µpajq “ pvj, wjq, such a pair is

replaced by an arc ai,j with µpai,jq “ ppvi, vjq, pwi, wjqq and λpai,jq “ λpaiq. We call such arcs of

Gi b Gj synchronous arcs.

The second step in this modification consists of removing (from Gi bGj) the vertices pvi, vjq P
Vi,j and the arcs a with tailpaq “ pvi, vjq, in the case that pvi, vjq has level ą 0 in Gi lGj but

level 0 in Gi b Gj . This is then repeated in the newly obtained graph, and so on, until there are

no more vertices at level 0 in the current graph that are at level ą 0 in Gi lGj . This finds its

motivation in the fact that in our applications, the states that are represented by such vertices can

never be reached, so are irrelevant.

The resulting graph is called the vertex-removing synchronised product (VRSP for short) of Gi

and Gj , and denoted as Gi nGj . For k ě 3, the VRSP G1 nG2 n ¨ ¨ ¨nGk is defined recursively as

ppG1 n G2q n ¨ ¨ ¨ q n Gk. The VRSP is commutative, but not associative in general, in contrast to

the Cartesian product. These properties are not relevant for the decomposition results that follow.

However, for these results, it is relevant to introduce counterparts of graph isomorphism and graph

contraction that apply to our types of graphs. We define these counterparts in the next section.

4. Graph isomorphism and graph contraction

The isomorphism we introduce in this section is an analogue of a known concept for unlabelled

graphs, but involves statements on the labels.
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We assume that two different arcs with the same head and tail have different label pairs; oth-

erwise, we replace such multiple arcs by one arc with that label pair, because these arcs represent

exactly the same action at the same stage of a process.

Formally, an isomorphism from a graph G to a graph H consists of two bijections φ : V pGq Ñ
V pHq and ρ : ApGq Ñ ApHq such that for all a P ApGq, one has µpaq “ pu, vq if and only if

µpρpaqq “ pφpuq, φpvqq and λpaq “ λpρpaqq. Since we assume that two different arcs with the

same head and tail have different label pairs, however, the bijection ρ is superfluous. The reason

is that, if pφ, ρq is an isomorphism, then ρ is completely determined by φ and the label pairs. In

fact, if pφ, ρq is an isomorphism and µpaq “ pu, vq for an arc a P ApGq, then ρpaq is the unique

arc b P ApHq with µpbq “ pφpuq, φpvqq and label pair λpbq “ λpaq. Thus, we may define an

isomorphism from G to H as a bijection φ : V pGq Ñ V pHq such that there exists an arc a P ApGq
with µpaq “ pu, vq if and only if there exists an arc b P ApHq with µpbq “ pφpuq, φpvqq and

λpbq “ λpaq. An isomorphism from G to H is denoted as G – H .

Next, we define what we mean by contraction. Let X be a nonempty proper subset of V pGq,

and let Y “ V pGqzX . By contracting X we mean replacing X by a new vertex x̃, deleting all arcs

with both ends in X , replacing each arc a P ApGq with µpaq “ pu, vq for u P X and v P Y by an

arc c with µpcq “ px̃, vq and λpcq “ λpaq, and replacing each arc b P ApGq with µpbq “ pu, vq for

u P Y and v P X by an arc d with µpdq “ pu, x̃q and λpdq “ λpbq. We denote the resulting graph

as G{X , and say that G{X is the contraction of G with respect to X . If we contract more than one

subset Xi of V we denote ppG{X1q{X2 . . .q{Xn by G{X1{X2 . . . {Xn.

5. Graph theorems from [5]

Finally, we recall the two decomposition theorems that were stated and proved in [5].

Theorem 5.1 ([5]). Let G be a graph, let X be a nonempty proper subset of V pGq, and let Y “
V pGqzX . Suppose that all the arcs of rX, Y s have distinct label pairs and that the arcs of G{X
and G{Y corresponding to the arcs of rX, Y s are the only synchronising arcs of G{X and G{Y .

If S 1pGq Ď X and rX, Y s has no backward arcs, then G – G{Y n G{X .

Theorem 5.2 ([5]). Let G be a graph, and let X1, X2 and Y “ V pGqzpX1 Y X2q be three disjoint

nonempty subsets of V pGq. Suppose that all the arcs of rX1, Y s have distinct label pairs, all the

arcs of rY,X2s have distinct label pairs, all the arcs of rX1, X2s have distinct label pairs, the arcs

of rX1, X2s have no label pairs in common with any arcs in rX1, Y s Y rY,X2s, and that the arcs

of G{X1{X2 and G{Y corresponding to the arcs of rX1, Y s Y rY,X2s Y rX1, X2s are the only

synchronising arcs of G{X1{X2 and G{Y . If S 1pGq Ď X1, and rX1, Y s, rY,X2s and rX1, X2s
have no backward arcs, then G – G{Y n G{X1{X2.

6. New results

We start with relaxing the requirement in Theorem 5.1 that states that all arcs of rX, Y s have

distinct label pairs in the following manner: each largest set of arcs of rX, Y s with the same label

pair arc-induces a complete bipartite subgraph of G. Hence, GtrX, Y su is a clean bipartite sub-

graph of G. Furthermore, we relax the requirement in Theorem 5.2 that all arcs of rX1, Y s, rY,X2s

8
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and rX1, X2s have distinct label pairs in the following manner: firstly, each largest set of arcs of

rX1, Y s with the same label pair arc-induces a complete bipartite subgraph of G, secondly, each

largest set of arcs of rY,X2s with the same label pair arc-induces a complete bipartite subgraph of

G and, thirdly, the label pairs of the arcs in rX1, X2s do not have to be distinct. Hence, GtrX1, Y su
is a clean bipartite subgraph of G and GtrY,X2su is a clean bipartite subgraph of G.

The relaxed requirement of Theorem 5.1 and the first and second relaxed requirement of The-

orem 5.2 are based on the decomposition of a complete bipartite graph where all arcs have the

same label pair. The third relaxed requirement of Theorem 5.2 is based on the observation that the

contraction of X1 and X2, G{X1{X2, replaces the set of arcs rX1, X2s by a set of arcs rtx̃1u, tx̃2us.
Hence, let G1 be the subgraph of G{Y arc-induced by the set of arcs rX1, X2s of G{Y and let G2

be the subgraph of G{X1{X2 arc-induced by the set of arcs rtx̃1u, tx̃2us of G{X1{X2. Then the

VRSP of G1 and G2 is isomorphic to G1, i.e. G1 – G1 n G2.

We have depicted a simple example in Figure 2 which illustrates these three relaxed require-

ments. At the upper left of Figure 2, we show the graph G. The subgraph arc-induced by the arcs

with label pair c contains two complete bipartite subgraphs. The arcs with label pair c are the only

arcs in rX1, Y s Y rY,X2s. For all other sets of arcs in G with the same label pair we do not require

that these sets arc-induce a complete bipartite graph as they are not in rX1, Y s Y rY,X2s. At the

lower left and the upper right of Figure 2, we show the contracted graphs G{Y and G{X1{X2,

respectively. At the lower right of Figure 2, we show the intermediate product of the graphs G{Y
and G{X1{X2, G{Y b G{X1{X2. The vertices in the set Z at the lower right of Figure 2 induce

the graph G{Y n G{X1{X2 which is isomorphic to G.

9
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G

X1 X2Y

G{X1{X2

G{Y

G{Y b G{X1{X2

Z

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

a

a

b

b

c

c

c

c

d

d

c

c

c

c

f

f

u1

u2

u3

ỹ

u8

u9

u10

a

a

b

b

c

c

c

c

f

f

x̃1 x̃2
u4 u5 u6 u7

b

c

c d

d

c

c

pu1, x̃1q

pu2, x̃1q

pu3, x̃1q

pỹ, x̃1q

pu8, x̃1q

pu9, x̃1q

pu10, x̃1q

pu1, u4q

pu2, u4q

pu3, u4q

pỹ, u4q

pu8, u4q

pu9, u4q

pu10, u4q

pu1, u5q

pu2, u5q

pu3, u5q

pỹ, u5q

pu8, u5q

pu9, u5q

pu10, u5q

pu1, u6q

pu2, u6q

pu3, u6q

pỹ, u6q

pu8, u6q

pu9, u6q

pu10, u6q

pu1, u7q

pu2, u7q

pu3, u7q

pỹ, u7q

pu8, u7q

pu9, u7q

pu10, u7q

pu1, x̃2q

pu2, x̃2q

pu3, x̃2q

pỹ, x̃2q

pu8, x̃2q

pu9, x̃2q

pu10, x̃2q

a

a

a

a

a

a

a

a

a

a

a

a

f

f

f

f

f

f

f

f

f

f

f

f

d

dd

dd

dd

dd

dd

dd

d

c c

c
c

c

c
c

c

c
c

c c

c
c

c

c

b

b

Figure 2. Decomposition of G – G{Y n G{X1{X2. The set Z from the proof of Theorem 6.2 and the graph

isomorphic to G induced by Z in G{Y b G{X1{X2 is indicated within the dotted region (apart from the arcs with

label pair b which are partially outside this region).
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Before we can prove Theorem 6.1 and Theorem 6.2, we state and prove in Lemma 6.1 that

a (not necessarily complete) bipartite graph BpX, Y q consisting solely of complete bipartite sub-

graphs BpXi, Yiq, i “ 1, . . . n, can be decomposed in such a manner thatBpX, Y q – BpX, Y q{Y n

BpX, Y q{X , where Xi Ď X, Yi Ď Y , all arcs of BpXi, Yiq have the same label pair, all rXi, Yis
have no backward arcs or all rXi, Yis have no forward arcs, and any pair of subgraphs BpXi, Yiq
and BpXj , Yjq, i ‰ j, have different label pairs. In Figure 3, we give a simple example of the

decomposition of a bipartite graph where all arcs have the same label pair. Because all label pairs

are identical, we have omitted these label pairs.

BpX, Y q

X

Y

BpX, Y q{X

BpX, Y q{Y

BpX, Y q{Y b BpX, Y q{X

Z

u1 u2

v1 v2 v3

v1 x̃ v2 v3

u1

u2

ỹ

pu1, v1q pu1, x̃q pu1, v2q pu1, v3q

pu2, v1q pu2, x̃q pu2, v2q pu2, v3q

pỹ, v1q pỹ, x̃q pỹ, v2q pỹ, v3q

Figure 3. Decomposition of BpX,Y q – BpX,Y q{Y n BpX,Y q{X . The set Z from the proof of Lemma 6.1 and

the graph isomorphic to BpX,Y q induced by Z in BpX,Y q{X b BpX,Y q{Y is indicated within the dotted region.

Because all label pairs are identical, we have omitted these label pairs.

The decomposition given in Lemma 6.1 is restricted to a clean bipartite graph. Note that we

allow parallel arcs with different label pairs in BpX, Y q. Furthermore, note that BpX, Y q is not

necessarily weakly connected.

Lemma 6.1. Let BpX, Y q be a clean bipartite graph. Then BpX, Y q – BpX, Y q{Y nBpX, Y q{X .

Proof. It suffices to define a mapping φ : V pBpX, Y qq Ñ V pBpX, Y q{Y n BpX, Y q{Xq and to

prove that φ is an isomorphism from BpX, Y q to BpX, Y q{Y n BpX, Y q{X . Let x̃ and ỹ be the

new vertices replacing the sets X and Y when defining BpX, Y q{X and BpX, Y q{Y , respectively.

Consider the mapping φ : V pBpX, Y qq Ñ V pBpX, Y q{Y nBpX, Y q{Xq defined by φpuq “ pu, x̃q
for all u P X , and φpvq “ pỹ, vq for all v P Y . Then φ is obviously a bijection if V pBpX, Y q{Y n

BpX, Y q{Xq “ Z, where Z is defined as Z “ tpu, x̃q | u P Xu Y tpỹ, vq | v P Y u. We are going

11
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to show this later by arguing that all the other vertices of BpX, Y q{Y lBpX, Y q{X will disappear

from BpX, Y q{Y b BpX, Y q{X . But first we are going to prove the following claim.

Claim 1. The subgraph of BpX, Y q{Y b BpX, Y q{X induced by Z is isomorphic to BpX, Y q.

Proof. Obviously, φ is a bijection from V pBpX, Y qq to Z. It remains to show that this bijection

preserves the arcs and their label pairs. Let X “ tu1, . . . , umu, Y “ tv1, . . . , vnu be the disjoint

vertex sets of a clean bipartite graph BpX, Y q. Let L “ tλ1, . . . , λxu be the set of label pairs

belonging to BpX, Y q. Let all arcs of ApBpX, Y qq with label pair λi arc-induce the clean bipartite

subgraph BpXi, Yiq. Then, X “
x
Y
i“1

Xi and Y “
x
Y
i“1

Yi. Note that Xi X Xj and Yi X Yj, i ‰ j,

are not necessarily empty sets and note that BpXi, Yiq is complete. Let rX, Y s have no backward

arcs. Hence, rXi, Yis, i “ 1 . . . x, have no backward arcs. Because, Xi Ď X and Yi Ď Y , and x̃

and ỹ are the new vertices replacing the sets X and Y when defining BpX, Y q{X and BpX, Y q{Y ,

respectively, we have that Xi and Yi (when defining BpXi, Yiq{Xi and BpXi, Yiq{Yi) are replaced

by x̃ and ỹ, respectively.

Now, we will prove that the subgraph of BpXi, Yiq{YibBpXi, Yiq{Xi induced by Zi “ tpu, x̃q |
u P Xi Y tỹ, vq | v P Yiu Ď Z is isomorphic to BpXi, Yiq. Obviously, the mapping φ restricted

to V pBpXi, Yiqq is a bijection from V pBpXi, Yiqq to Zi. It remains to show that this bijection

preserves the arcs and their label pairs. Let Xi “ tui1 , . . . , uiku Ď X, Y “ tvi1 , . . . , vilu Ď Y be

the disjoint vertex sets of BpXi, Yiq.

BpXi, Yiq is a clean bipartite graph, BpXi, Yiq has the arc set Ai “ ta | µpaq “ puis, vjtq, a P
rXi, Yisu for 1 ď s ď k and 1 ď t ď l, and |Ai| “ k ¨ l. Any two arcs b with µpbq “ puis, ỹq
in BpXi, Yiq{Yi and c with µpcq “ px̃, vjtq in BpXi, Yiq{Xi are synchronising arcs, because

λpbq “ λpcq. Due to the VRSP, the arcs b in BpXi, Yiq{Yi and c in BpXi, Yiq{Xi correspond

to an arc d with µpdq “ ppuis, x̃q, pỹ, vjtqq “ pφpuisq, φpvjtqq in BpXi, Yiq{Yi b BpXi, Yiq{Xi

with λpbq “ λpdq. Because the arc set Ai “ ApBpXi, Yiq{Yiq “ tb | µpbq “ puis, ỹqu has car-

dinality k, the arc set ApBpXi, Yiq{Xiq “ tc | µpcq “ px̃, vjtqu has cardinality l and all arcs of

ApBpXi, Yiq{Yiq and ApBpXi, Yiq{Xiq have identical label pairs, it follows that the arc set A1
i “

td | µpdq “ ppuis, x̃q, pỹ, vjtqq “ pφpuisq, φpvjtqq, 1 ď s ď k, 1 ď t ď lu Ď ApBpXi, Yiq{Yi b

BpXi, Yiq{Xiq has cardinality k ¨ l. Furthermore, φ restricted to V pBpXi, Yiqq maps vertices

uis and vjt onto vertices puis, x̃q and pỹ, vjtq, respectively, and therefore we have an arc a with

µpaq “ puis, vjtq in BpXi, Yiq which corresponds to the arc d with µpdq “ ppuis, x̃q, pỹ, vjtqq in

BpXi, Yiq{Yi b BpXi, Yiq{Xi, with λpaq “ λpdq. Together with |Ai| “ |A1
i|, we have the one-

to-one relationship between the arc d in BpXi, Yiq{Yi b BpXi, Yiq{Xi and the arc a in BpXi, Yiq.

Therefore, because there are no other vertices in Zi than puis, x̃q and pỹ, vjtq and there are no other

vertices in BpXi, Yiq then puis, vjtq, the subgraph of BpXi, Yiq{Yi b BpXi, Yiq{Xi arc-induced by

the arcs of BpXi, Yiq{Yi b BpXi, Yiq{Xi with label pair λi is isomorphic to BpXi, Yiq. This is

valid for all BpXi, Yiq because λi ‰ λj, i ‰ j,
x
Y
i“1

Xi “ X ,
x
Y
i“1

Yi “ Y and
x
Y
i“1

Zi “ Z. Therefore,

we have that the subgraph of BpX, Y q{Y b BpX, Y q{X induced by Z is isomorphic to BpX, Y q.

This completes the proof of Claim 1.

It remains to show that φ is a bijection from V pBpX, Y qq to Z 1 “ V pBpX, Y q{Y n BpX, Y q
{Xq. Now, we have Z 1 Ď V pBpX, Y q{Y b BpX, Y q{Xq “ tpui, vjqu Y tpui, x̃qu Y tpỹ, vjqu Y
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tpỹ, x̃qu. The arcs b with µpbq “ pui, x̃q in BpX, Y q{Y and c with µpcq “ pỹ, vjq in BpX, Y q{X
are synchronising arcs. Therefore, the only vertices that are the tail of an arc in BpX, Y q{Y b

BpX, Y q{X are pui, x̃q and the only vertices that are the head of an arc in BpX, Y q{Y bBpX, Y q{X
are pỹ, vjq. Next, the vertices ui in BpX, Y q{Y and the vertex x̃ in BpX, Y q{X have level 0.

All other vertices in BpX, Y q{Y and BpX, Y q{X have level 1. Therefore, the only vertices

in BpX, Y q{Y lBpX, Y q {X with level 0 are the vertices pui, x̃q. It follows that the vertices

pui, vjq and pỹ, x̃q are removed from V pBpX, Y q{Y bBpX, Y q{Xq because levelppui, vjqq ą 0 in

BpX, Y q{Y lBpX, Y q{X but levelppui, vjqq “ 0 in BpX, Y q{Y bBpX, Y q{X and levelppỹ, x̃qq
ą 0 in BpX, Y q{Y lBpX, Y q{ X but levelppỹ, x̃qq “ 0 in BpX, Y q{Y b BpX, Y q{X . There-

fore, it follows that Z 1 “ tpui, x̃qu Y tpỹ, vjqu “ Z, for 1 ď i ď m and 1 ď j ď n. Hence,

φ is a bijection from V pBpX, Y qq to Z preserving the arcs and their label pairs and therefore

BpX, Y q – BpX, Y q{Y n BpX, Y q{X . With similar arguments, it follows that BpX, Y q –
BpX, Y q{Y n BpX, Y q{X if rX, Y s contains no forward arcs. This completes the proof of

Lemma 6.1.

In Figure 4, we give a bipartite graph where all arcs have identical label pairs which is not

clean. For the arc a with µpaq “ ppu1, x̃q, pỹ, v1qq in BpX, Y q{Y b BpX, Y q{X there is no arc

b with µpbq “ pu1, v1q in BpX, Y q. Hence, BpX, Y q fl BpX, Y q{Y n BpX, Y q{X . Therefore,

we cannot relax the condition on the completeness of the bipartite graph without violating the

conclusion of Lemma 6.1.

BpX, Y q

X

Y

BpX, Y q{X

BpX, Y q{Y

BpX, Y q{Y b BpX, Y q{X

Z

u1 u2

v1 v2 v3

v1 x̃ v2 v3

u1

u2

ỹ

pu1, v1q pu1, x̃q pu1, v2q pu1, v3q

pu2, v1q pu2, x̃q pu2, v2q pu2, v3q

pỹ, v1q pỹ, x̃q pỹ, v2q pỹ, v3q

Figure 4. Decomposition of BpX,Y q for which BpX,Y q fl BpX,Y q{Y n BpX,Y q{X . Because all label pairs are

identical, we have omitted these label pairs.
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Using Lemma 6.1, we relax Theorem 5.1 and Theorem 5.2 leading to Theorem 6.1 and The-

orem 6.2, respectively. We assume that the graphs we want to decompose are connected; if not,

we can apply our decomposition results to the components separately. In Figure 5, we show the

decomposition of a graph G that contains a complete bipartite subgraph BpZ1, Z2q where all arcs

of BpZ1, Z2q have the label pair s.

G

X Y

Z1 Z2

G{X

G{Y
G{Y n G{X

BpZ1, Z2q{Z2 n BpZ1, Z2q{Z1

u1

u2 u3

u4

u5 u6

a

s

c

b

s

ss

d x̃

u3

u4

u6

s c

s d

u1

u2

u5

ỹ

a s

b s
pu1, x̃q

pu2, x̃q

pu5, x̃q

a

b

pỹ, u6q

pỹ, u3q

pỹ, u4q
s

s

s

s

d

c

Figure 5. Decomposition of G into G{Y and G{X , where the arcs of rX,Y s arc-induce a complete bipartite subgraph

BpZ1, Z2q of G with arcs with the same label pair. The dashed regions indicate the vertex sets X , Y and V pG{Y n

G{Xq. The dotted regions indicate the vertex sets Z1, Z2 and V pBpZ1, Z2q{Z2 n BpZ1, Z2q{Z1.

The only difference between Theorem 5.1 and Theorem 6.1 is that the arcs of rX, Y s must

have unique label pairs in Theorem 5.1, whereas this is not required in Theorem 6.1. To relax

this requirement of Theorem 5.1, we require that any set of all arcs of rX, Y s with identical label

pairs must arc-induce a complete bipartite graph. By Lemma 6.1, these complete bipartite graphs

are decomposable. Then we have that all arcs of a complete bipartite subgraph BpX1, Y1q, X1 Ď
X, Y1 Ď Y, of G with the same label pair are synchronising arcs. Furthermore, all other arcs of G

have label pairs different from the label pairs of BpX1, Y1q. Therefore, Lemma 6.1 together with

Theorem 5.1 gives G – G{Y n G{X , which we prove in Theorem 6.1.

Theorem 6.1. Let G be a graph, let X be a nonempty proper subset of V pGq, and let Y “
V pGqzX . Suppose that the graph GtrX, Y su is a clean bipartite subgraph of G and that the arcs

of G{X and G{Y corresponding to the arcs of rX, Y s are the only synchronising arcs of G{X and

G{Y . If S 1pGq Ď X and rX, Y s has no backward arcs, then G – G{Y n G{X .
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Proof. It clearly suffices to define a mapping φ : V pGq Ñ V pG{Y n G{Xq and to prove that φ is

an isomorphism from G to G{Y n G{X .

Let x̃ and ỹ be the new vertices replacing the sets X and Y when defining G{X and G{Y ,

respectively. Consider the mapping φ : V pGq Ñ V pG{Y n G{Xq defined by φpuq “ pu, x̃q for all

u P X and φpvq “ pỹ, vq for all v P Y . Then φ is obviously a bijection if V pG{Y n G{Xq “ Z,

where Z is defined as Z “ tpu, x̃q | u P Xu Y tpỹ, vq | v P Y u. We are going to show this later by

arguing that all the other vertices of G{Y lG{X will disappear from G{Y b G{X . But first we

are going to prove the following claim.

Claim 2. The subgraph of G{Y b G{X induced by Z is isomorphic to G.

Proof. Obviously, φ is a bijection from V pGq to Z. It remains to show that this bijection preserves

the arcs and their label pairs. By the definition of the Cartesian product, for each arc a P ApGq
with µpaq “ pu, vq for u P X and v P X , there exists an arc b in G{Y b G{X with µpbq “
ppu, x̃q, pv, x̃qq “ pφpuq, φpvqq and λpbq “ λpaq. This is because the arc a R rX, Y s, and hence

a is not a synchronising arc of G{Y with respect to G{X (by hypothesis). Likewise, for each arc

a P ApGq with µpaq “ pu, vq for u P Y and v P Y , there exists an arc b in G{Y b G{X with

µpbq “ ppỹ, uq, pỹ, vqq “ pφpuq, φpvqq and λpbq “ λpaq.

Next, each arc a P ApGq with µpaq “ pu, vq, u P X and v P Y , is an arc of rX, Y s. Fur-

thermore, all arcs in rX, Y s with the same label pair arc-induce a clean bipartite subgraph of G

(by hypothesis). Then, by Lemma 6.1, for each arc a P rX, Y s with µpaq “ pu, vq there ex-

ists an arc b with µpbq “ ppu, x̃q, pỹ, vqq “ pφpuq, φpvqq and λpbq “ λpaq. Because the arcs

of rX, Y s are the only synchronising arcs we have the arc set tpu, x̃qpỹ, vq | u P X, v P Y u in

G{X b G{Y . Concluding, for each arc a P ApGq with µpaq “ pu, vq, u, v P V pGq, there is an arc

b with µpbq “ ppu, x̃q, pỹ, vqq “ pφpuq, φpvqq, pu, x̃q, pỹ, vq P V pG{Y b G{Xq and λpbq “ λpaq.

Hence, the subgraph of G{Y b G{X induced by Z is isomorphic to G. This completes the proof

of Claim 2.

We continue with the proof of Theorem 6.1. It remains to show that all other vertices of

G{Y lG{X , except for the vertices of Z, disappear from G{Y bG{X . This is clear for the vertex

pỹ, x̃q: all the arcs of G{Y lG{X corresponding to the arcs of rX, Y s are synchronising arcs of

G{Y and G{X , so they disappear from G{Y bG{X . Hence, pỹ, x̃q has in-degree 0 (and out-degree

0) in G{Y b G{X , while it has level ą 0 in G{Y lG{X . For the other vertices, the argument is

as follows.

The vertex set of G{Y lG{X consists of Z Ytpỹ, x̃qu and the vertex set X ˆY . We will argue

that all vertices of X ˆ Y will eventually disappear from G{Y b G{X .

Therefore, we claim that all pu, vq P X ˆ Y have level ą 0 in G{Y lG{X . This is obvious

if u has level ą 0 in GrXs or v has level ą 0 in GrY s. Now, let pu, vq P X ˆ Y such that u

has level 0 in GrXs and v has level 0 in GrY s. Then the claim follows from the fact that v has at

least one in-arc from a vertex in X , since S 1pGq Ď X . Furthermore, since v has only in-arcs from

vertices in X and u has no in-arcs at all, pu, vq has level 0 in G{Y b G{X . This is because all arcs

pu, vq P ApGq are in rX, Y s, hence they correspond to synchronising arcs in G{Y with respect to

G{X . Concluding, all vertices pu, vq P X ˆ Y such that u has level 0 in GrXs and v has level 0 in

GrY s disappear from G{Y b G{X , together with all the arcs with tail pu, vq for all such vertices
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pu, vq P X ˆ Y . If after this first step there are still vertices of X ˆ Y left in G{Y b G{X , we

can repeat the above arguments step by step for such remaining vertices pu, vq P X ˆ Y for which

pu, vq has the lowest level in what has remained from G{Y b G{X . Since G{Y b G{X is acyclic,

it is clear that all vertices of X ˆ Y disappear one by one from G{Y b G{X . This completes the

proof of Theorem 6.1.

We continue with the proof of Theorem 6.2 which relaxes the requirement of Theorem 5.2 that

all the arcs of rX1, Y s have distinct label pairs, all the arcs of rY,X2s have distinct label pairs and

all the arcs of rX1, X2s have distinct label pairs. In Figure 2, where the graph G contains a non-

trivial complete bipartite subgraph for which all arcs have identical label pairs, we have shown in a

simple example how the graph G can be decomposed into the graphs G{Y and G{X1{X2 such that

G – G{Y n G{X1{X2. In Theorem 6.2, we use the proof of Theorem 5.2 given in [5] and modify

this proof to support complete bipartite subgraphs of G with arcs in rX1, Y s with the same label

pair and arcs in rY,X2s with the same label pair and (not necessarily complete) bipartite subgraphs

of G with arcs in rX1, X2s with the same label pair.

Theorem 6.2. Let G be a graph, and let X1, X2 and Y “ V pGqzpX1 Y X2q be three disjoint

nonempty subsets of V pGq. Suppose that the graph GtrX1, Y su is a clean bipartite subgraph

of G, the graph GtrY,X2su is a clean bipartite subgraph of G, the arcs of rX1, X2s have no

label pairs in common with any arc in rX1, Y s Y rY,X2s, and the arcs of G{X1{X2 and G{Y
corresponding to the arcs of rX1, Y s Y rY,X2s Y rX1, X2s are the only synchronising arcs of

G{X1{X2 and G{Y . If S 1pGq Ď X1, and rX1, Y s, rY,X2s and rX1, X2s have no backward arcs,

then G – G{Y n G{X1{X2.

Proof. It suffices to define a mapping φ : V pGq Ñ V pG{Y n G{X1{X2q and to prove that φ is an

isomorphism from G to G{Y n G{X1{X2.

Let x̃1, x̃2 and ỹ be the new vertices replacing the sets X1, X2 and Y when defining G{X1{X2

and G{Y , respectively. Consider the mapping φ : V pGq Ñ V pG{Y n G{X1{X2q defined by

φpuq “ pu, x̃1q for all u P X1, φpvq “ pv, x̃2q for all v P X2 and φpwq “ pỹ, wq for all w P Y .

Then φ is clearly a bijection if V pG{Y n G{X1{X2q “ Z, where Z is defined as Z “ tpu, x̃1q |
u P X1u Y tpv, x̃2q | v P X2u Y tpỹ, wq | w P Y u. We are going to show this later by arguing that

all the other vertices of G{Y lG{X1{X2 will disappear from G{Y b G{X1{X2. But first we are

going to prove the following claim.

Claim 3. The subgraph of G{Y b G{X1{X2 induced by Z is isomorphic to G.

Proof. Obviously, φ is a bijection from V pGq to Z. It remains to show that this bijection preserves

the arcs and their label pairs. By the definition of the Cartesian product, for each arc a P ApGq
with µpaq “ pu, vq for u P X1 and v P X1, there exists an arc b in G{Y b G{X1{X2 with

µpbq “ ppu, x̃1q, pv, x̃1qq “ pφpuq, φpvqq and λpbq “ λpaq. Likewise, for each arc a P ApGq
with µpaq “ pu, vq for u P Y and v P Y , there exists an arc b in G{Y b G{X1{X2 with µpbq “
ppỹ, uq, pỹ, vqq “ pφpuq, φpvqq and λpbq “ λpaq, and for each arc a P ApGq with µpaq “ pu, vq
for u P X2 and v P X2, there exists an arc b in G{Y b G{X1{X2 with µpbq “ ppu, x̃2q, pv, x̃2qq “
pφpuq, φpvqq and λpbq “ λpaq. Next, we distinguish two cases, the arcs of rX1, Y s and rY,X2s,
and the arcs of rX1, X2s.
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Firstly, consider the arcs of rX1, Y s and rY,X2s. By hypothesis, the arcs with identical la-

bel pairs of rX1, Y s arc-induce a complete bipartite subgraph BpZ1, Z2q of G and the arcs with

identical label pairs of rY,X2s arc-induce a complete bipartite subgraph BpZ3, Z4q of G. Let

Z1 “ tu1, . . . , umu Ď X1 and Z2 “ tv1, . . . , vnu Ď Y and let Z3 “ tu1
1
, . . . , u1

m1u Ď Y and

Z4 “ tv1
1
, . . . , v1

n1u Ď X2. Let all arcs of BpZ1, Z2q and BpZ3, Z4q have the same label pair α.

According to Lemma 6.1, BpZ1, Z2q can be decomposed in BpZ1, Z2q{Y and BpZ1, Z2q{X1

with BpZ1, Z2q – BpZ1, Z2q{Y n BpZ1, Z2q{X1 and BpZ3, Z4q can be decomposed in BpZ3, Z4q
{Y and BpZ3, Z4q{X2 with BpZ3, Z4q – BpZ3, Z4q{Y n BpZ3, Z4q{X2. Note that BpZ1, Z2q{X1

“ BpZ1, Z2q{X1{ X2 because V pBpZ1, Z2q{X1qXX2 “ H and BpZ3, Z4q{X2 “ BpZ3, Z4q{X1{
X2 because V pBpZ3, Z4q{X2qXX1 “ H. Furthermore, note that BpZ1, Z2q and BpZ3, Z4q do not

have backward arcs. For BpZ1, Z2q{Y and BpZ1, Z2q{X1, we have the arc sets ApBpZ1, Z2q{Y q “
tai | µpaiq “ pui, ỹq, i “ 1, . . . , mu and ApBpZ1, Z2q{X1q “ tbj | µpbjq “ px̃1, vjq, j “ 1,

. . . , nu, respectively and for BpZ3, Z4q{Y and BpZ3, Z4q {X2, we have the arc sets ApBpZ3, Z4q
{Y q “ tci | µpciq “ pỹ, v1

iq, i “ 1, . . . , n1u and ApBpZ3, Z4q {X2q “ tdj | µpdjq “ pu1
j, x̃2q, j “

1, . . . , m1u, respectively. Because these arcs are the only arcs synchronising over label pair α, we

have the arc set tei,j | µpei,jq “ ppui, x̃1q, pỹ, vjqq, i “ 1, . . . , m, j “ 1, . . . , nu Y tfj1,j | µpfj1,jq “
ppỹ, x̃1q, pv1

j1, vjqq, j “ 1, . . . , n, j1 “ 1, . . . , n1u Y tgi,i1 | µpgi,i1q “ ppui, u
1
i1q, pỹ, x̃2qq, i “

1, . . . , m, i1 “ 1, . . . , m1uYthi1,j1 | µphi1,j1q “ ppỹ, u1
i1q, pv1

j1, x̃2qq, i1 “ 1, . . . , m1, j1 “ 1, . . . , n1u in

G{Y bG{X . Therefore, for each arc a P ApGq with µpaq “ pui, vjq for ui P Z1 and vj P Z2, there

exists an arc b P G{Y bG{X1{X2 with µpbq “ ppui, x̃1qpỹ, vjqq “ pφpuiq, φpvjqq and λpbq “ λpaq,

and for each arc c P ApGq with µpcq “ pu1
i1, v1

j1q for u1
i1 P Z3 and v1

j1 P Z4, there exists an arc

d P G{Y b G{X1{X2 with µpdq “ ppỹ, u1
i1qpv1

j1, x̃2qq “ pφpu1
i1q, φpv1

j1qq and λpcq “ λpaq.

It is sufficient to prove the preservation of the arcs with the same label pair for BpZ1, Z2q and

BpZ3, Z4q. If BpZ3, Z4q does not exist, we do not have the subgraphs BpZ1, Z2q{Y n BpZ3, Z4q
{X2, BpZ3, Z4q{Y nBpZ1, Z2q{X1 and BpZ3, Z4q{Y nBpZ3, Z4q{X2 of G{Y nG{X1{X2 and if

BpZ1, Z2q does not exist, we do not have the subgraphs BpZ1, Z2q{Y n BpZ3, Z4q{X2, BpZ3, Z4q
{Y n BpZ1, Z2q{X1 and BpZ1, Z2q{Y n BpZ1, Z2q{X1 of G{Y n G{X1{X2. Therefore, this

observation reduces the proof for BpZ1, Z2q and BpZ3, Z4q with arcs with identical label pairs to

the proof for BpZ1, Z2q with arcs with identical label pairs and the proof for BpZ3, Z4q with arcs

with identical label pairs.

Secondly, let Z1 Ď X1 and Z2 Ď X2. Let BpZ1, Z2q be a bipartite subgraph of G with vertex

sets Z1 “ tu1, . . . , umu Ď X1 and Z2 “ tv1, . . . , vnu Ď X2 where each arc a P ApBpZ1, Z2qq has

the same label pair α. Then the contraction G{Y will leave all arcs a of BpZ1, Z2q with µpaq “
pui, vjq and λpaq “ α unchanged, therefore these arcs a correspond to arcs b of BpZ1, Z2q{Y
with µpbq “ pui, vjq and λpbq “ λpaq. The contraction G{X1{X2 will replace all vertices ui of

X1 by one vertex x̃1 and all vertices vj of X2 by one vertex x̃2, and therefore, all the arcs a of

BpZ1, Z2q with µpaq “ pui, vjq and λpaq “ α are replaced by one arc c with µpcq “ px̃1, x̃2q and

λpcq “ λpaq of G{X1{X2. Because all arcs b of BpZ1, Z2q Ď G{Y are synchronous arcs with

respect to the arc c of G{X1{X2, we have that each pair of arcs b and c correspond with an arc

d of BpZ1, Z2q{Y n BpZ1, Z2q{X1{X2 with µpdq “ ppui, x̃1q, pvj, x̃2qq and λpdq “ λpaq. Since

there are no backward arcs in rX1, Y s, rY,X2s and rX1, X2s, the above arcs are the only arcs in

G{Y b G{X1{X2 induced by the vertices of Z. The proof in case of BpZ3, Z4q is similar. This

completes the proof of Claim 3.
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We continue with the proof of Theorem 6.2. It remains to show that all other vertices of

G{Y b G{X1{X2, except for the vertices of Z, disappear from G{Y b G{X1{X2. This is clear

for the vertex pỹ, x̃1q: all the arcs of G{Y lG{X1{X2 corresponding to the arcs of rX1, Y s are

synchronising arcs of G{Y and G{X1{X2, so they disappear from G{Y b G{X1{X2. Hence,

pỹ, x̃1q has in-degree 0 in G{Y b G{X1{X2, while it has level ą 0 in G{Y lG{X1{X2. For the

other vertices, the argument is as follows.

The vertex set of G{Y lG{X1{X2 consists of the union of ZYtpỹ, x̃1q, pỹ, x̃2qu and the vertex

sets pX1 Y X2q ˆ Y , X1 ˆ tx̃2u and X2 ˆ tx̃1u. We will argue that all vertices of pX1 Y X2q ˆ Y ,

X1 ˆ tx̃2u and X2 ˆ tx̃1u, as well as the vertex pỹ, x̃2q will eventually disappear from G{Y b

G{X1{X2.

Firstly, we claim that all pu, vq P X1 ˆ Y have level ą 0 in G{Y lG{X1{X2. This is obvious

if u has level ą 0 in GrX1s or v has level ą 0 in GrY s. Now let pu, vq P X1 ˆ Y such that u

has level 0 in GrX1s and v has level 0 in GrY s. Then the claim follows from the fact that v has

at least one in-arc from a vertex in X1, since S 1pGq Ď X1. Furthermore, since v has only in-arcs

from vertices in X1 and u has no in-arcs at all, pu, vq has level 0 in G{Y b G{X1{X2. Hence, all

vertices pu, vq P X1 ˆY such that u has level 0 in GrX1s and v has level 0 in GrY s disappear from

G{Y b G{X1{X2, together with all the arcs with tail pu, vq for all such vertices pu, vq P X1 ˆ Y .

If after this first step there are still vertices of X1 ˆ Y left in G{Y b G{X1{X2, we can repeat the

above arguments step by step for such remaining vertices pu, vq P X1 ˆ Y for which pu, vq has the

lowest level in what has remained from G{Y b G{X1{X2. Since G{Y b G{X1{X2 is acyclic, it is

clear that all vertices of X1 ˆ Y disappear one by one from G{Y b G{X1{X2. Now, since pỹ, x̃2q
has possibly only in-arcs from vertices pu, vq P X1 ˆ Y , pỹ, x̃2q will disappear as well.

Next, we claim that all pu, vq P X2 ˆ Y have level ą 0 in G{Y lG{X1{X2. This is obvious

if u has level ą 0 in GrX2s or v has level ą 0 in GrY s. Now let pu, vq P X2 ˆ Y such that u

has level 0 in GrX2s and v has level 0 in GrY s. Then the claim follows from the fact that u has at

least one in-arc from a vertex in Y , since rY,X2s has only forward arcs. Furthermore, since u has

only in-arcs from vertices in Y and v has no in-arcs at all, pu, vq has level 0 in G{Y b G{X1{X2.

Hence, all vertices pu, vq P X2 ˆ Y such that u has level 0 in GrX2s and v has level 0 in GrY s
disappear from G{Y b G{X1{X2, together with all the arcs with tail pu, vq for all such vertices

pu, vq P X2ˆY . If after this first step there are still vertices of X2ˆY left in G{Y bG{X1{X2, we

can repeat the above arguments step by step for such remaining vertices pu, vq P X2 ˆY for which

pu, vq has the lowest level in what has remained from G{Y b G{X1{X2. Since G{Y b G{X1{X2

is acyclic, it is clear that all vertices of X2 ˆ Y disappear one by one from G{Y b G{X1{X2.

We continue with the claim that all pu, x̃1q P X2 ˆ tx̃1u have level ą 0 in G{Y lG{X1{X2.

This is obvious if u has level ą 0 in GrX2s. Now let pu, x̃1q P X2 ˆ tx̃1u such that u has level 0 in

GrX2s. Then the claim follows from the fact that u has at least one in-arc from a vertex in Y , since

rY,X2s has only forward arcs. Furthermore, since u has only in-arcs from vertices in Y and x̃1 has

no in-arcs at all, pu, x̃1q has level 0 in G{Y b G{X1{X2. Hence, all vertices pu, x̃1q P X2 ˆ tx̃1u
such that u has level 0 in GrX2s disappear from G{Y b G{X1{X2, together with all the arcs with

tail pu, x̃1q for all such vertices pu, x̃1q P X2 ˆ tx̃1u. If after this first step there are still vertices

of X2 ˆ tx̃1u left in G{Y b G{X1{X2, we can repeat the above arguments step by step for such

remaining vertices pu, x̃1q P X2 ˆ tx̃1u for which pu, x̃1q has the lowest level in what has remained

from G{Y bG{X1{X2. Since G{Y bG{X1{X2 is acyclic, it is clear that all vertices of X2 ˆ tx̃1u
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disappear one by one from G{Y b G{X1{X2.

Finally, we claim that all pu, x̃2q P X1 ˆ tx̃2u have level ą 0 in G{Y lG{X1{X2. This is

obvious if u has level ą 0 in GrX1s. Now let pu, x̃2q P X1 ˆ tx̃2u such that u has level 0 in

GrX1s. Then the claim follows from the fact that x̃2 has at least one in-arc from a vertex in Y ,

since rY,X2s has only forward arcs and S 1pGq Ď X1 by hypothesis. Noting that x̃2 has only in-arcs

from vertices in Y , and all u P S 1pGq Ď X1 have no in-arcs at all, clearly for all u P S 1pGq Ď X1,

pu, x̃2q has level 0 in G{Y b G{X1{X2. Hence, all vertices pu, x̃2q P X1 ˆ tx̃2u such that u has

level 0 in GrX1s disappear from G{Y b G{X1{X2, together with all the arcs with tail pu, x̃2q for

all such vertices pu, x̃2q P X1 ˆ tx̃2u. If after this first step there are still vertices of X1 ˆ tx̃2u
left in G{Y b G{X1{X2, we can repeat the above arguments step by step for such remaining

vertices pu, x̃2q P X1 ˆ tx̃2u for which pu, x̃2q has the lowest level in what has remained from

G{Y b G{X1{X2. Since G{Y b G{X1{X2 is acyclic, it is clear that all vertices of X1 ˆ tx̃2u
disappear one by one from G{Y b G{X1{X2. This completes the proof of Theorem 6.2.

7. Future work

The ultimate purpose is to create a set of decomposition theorems that, when applied to an

edge-labelled acyclic directed multigraphs, will result in a set of graphs that can not be decomposed

anymore using the VRSP. As an example, a graph G that has the property that G – G1 lG2 –
G1nG2 for two subgraphs G1, G2 of G can not be decomposed by the theorems we have presented

so far. Therefore, in future contributions, we will present theorems by which we can decompose

graphs that contain subgraphs that have this “Cartesian” characteristic.
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