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Abstract

Recently, we have introduced and modified graph-decomposition theorems based on a graph prod-
uct motivated by applications in the context of synchronising periodic real-time processes. This
vertex-removing synchronised product (VRSP) is based on modifications of the well-known Carte-
sian product and is closely related to the synchronised product due to Wohrle and Thomas. Here,
we introduce a new graph-decomposition theorem based on the VRSP that decomposes an edge-

labelled acyclic n-partite multigraph where all labels are the same.
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1. Introduction

Recently, we have introduced three graph-decomposition theorems in [7], [4] and [2] based on

a graph product motivated by applications in the context of synchronising periodic real-time pro-
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cesses, in particular in the field of robotics. More on the background, definitions and applications
can be found in two conference contributions [6, 8], four journal papers [2, 4, [7, 9], the thesis of
the author [5] and on ArXiv [3]. We repeat some of the definitions in Section [2| for convenience. In
Section 3, we state and prove two lemmas on bipartite and 3-partite graphs which we use to state

and prove the decomposition theorem on n-partite graphs.

2. Terminology and notation

In order to avoid duplication we refer the interested reader to [7] or [3] for background, defini-
tions and more details. Furthermore, we use the textbook of Bondy and Murty [[1] for terminology
and notation we have not specified here, or in [7] or in [3]. For convenience, we repeat a few
definitions that are especially important for the decomposition of an n-partite graph.

Let GG be an edge-labelled acyclic directed multigraph with a vertex set V, an arc set A, a set of
label pairs L and two mappings. The first mapping p : A — V' x V is an incidence function that
identifies the fail and head of each arc a € A. In particular, p(a) = (u,v) means that the arc a is
directed from u € V to v € V, where tail(a) = u and head(a) = v. We also call u and v the ends
of a. The second mapping A : A — L assigns a label pair A(a) = ({(a),t(a)) to each arc a € A,
where /(a) is a string representing the (name of an) action and ¢(a) is the weight of the arc a.

If X € V(G), then the subgraph of G induced by X, is the graph on vertex set X containing
all the arcs of G which have both their ends in X (together with L, 1+ and ) restricted to this subset
of the arcs).

If X < A(G), then the subgraph of G arc-induced by X is the graph on arc set X containing
all the vertices of G which are an end of an arc in X (together with L, ; and ) restricted to this
subset of the arcs).

Let G; and G be two disjoint graphs. An arc a € A(G,;) with label pair \(a) is a synchronising
arc with respect to G, if and only if there exists an arc b € A(G;) with label pair A(b) such that
A(a) = A(b). Furthermore, an arc a with label pair A(a) of G; X] G, or G; N G, is a synchronous
arc, whenever there exist a pair of arcs a; € A(G;) and a; € A(G;) with A(a) = A(a;) = A(a;).
Analogously, an arc a with label pair A\(a) of G;XIG; or G;NG, is an asynchronous arc, whenever

)\(CL) ¢ Lz or )\(CL) ¢ Lj.
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For disjoint nonempty sets X, Y < V(G), [X, Y] denotes the set of arcs of G with one end in
X and one end in Y. If the head of the arc @ € [ X, Y] isin Y, we call a a forward arc (of [X,Y]);
otherwise, we call a a backward arc.

A graph B is called n-partite if there exists a partition of nonempty sets V1, Vs, ..., V,, of V(B)
into n partite sets (i.e., V(B) = Vi u...uV,, VinV, = &, # j,i,5 € {1,...,n}) such that
every arc of B has its head vertex and tail vertex in different partite sets. The n-partite graph is
denoted as B(V4,...,V,). A bipartite graph B(V}, V3) is called complete if, for every pair x € V7,
y € Vs, there is an arc a met p(a) = (z,y) or pu(a) = (y,x) in B(V3, V3).

Informally, the vertex-removing synchronised product (VRSP) starts from the well-known
Cartesian product, and is based on a reduction of the number of arcs and vertices due to the pres-
ence of synchronising arcs, i.e., arcs with the same label. This reduction is done in two steps: in
the first step synchronising pairs of arcs from (G; and GG, are replaced by one (diagonal) arc, all
other synchronising arcs are removed from the Cartesian product, giving the intermediate product;
in the second step, vertices (and the arcs with that vertex as a tail) are removed one by one if they

have level > 0 in the Cartesian product but level = 0 in what is left of the intermediate product.

3. The n-partite graph-decomposition theorem.

We assume that the graphs we want to decompose are connected; if not, we can apply our de-
composition results to the components separately. Although the decomposition theorems using the
VRSP are dealing with edge-labelled graphs where the labels may be different, in this contribution,
we consider only acyclic directed graphs where all labels are the same.

We continue with presenting and proving a decomposition lemma of a bipartite graph, given in
Lemma In this lemma, we are going to decompose a complete bipartite graph B(X,Y), X =

{ug, .. yu, b Y = {v, ... ,UCSA%} where all arcs have the same label. But, different from

c1Co

Lemma 3.1 in [4], we contract both X and Y using disjoint subsets X of X, disjoint subsets X of
c1 c3
X, disjoint subsets Y/ of Y and disjoint subsets Y;" of Y such that B(X,Y) = B(X,Y) / X] / Y]
=1 j=1
() cq C2 C4

c1 c3
NB(X,Y) | X[/ Y], where UX/=UX/'=Xand Y, = Y/ = Y. If the cardi-

J

i=1 j= i=1 i=1 7j=1 7j=1
nality of X is a prime number, hence, c; = 1 or ¢ = 1, then, assuming ¢, = 1 and, there-
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C1 Cc3 Cc2 C4
fore, ¢; = |X]|, the left part of B(X,Y) / X; /Y] NB(X, Y) / / " is contracted such

1= j=1

that each vertex u; of X is replaced by the vertex Z; and in the right part of B(X,Y) / ¢ / Y/

i=1 j_

NB(X,Y) / X/ / Y/, U X/ U X/ = X is contracted giving one vertex . We have simi-
=1 gj=1 i=1 i=1
lar contractions for Y if |Y| is a prime number. Even, if | X| and |Y| are not prime numbers we

can set ¢y and c3 to one. This leads to the decomposition B(X,Y) / X]/Y N B(X, Y)/X / Y/
i=1

which is equivalent to B(X,Y)/Y N B(X,Y)/X. Therefore, Lemma [3.1] is a generahsatlon of
Lemma 3.1 in [4]. Note that for prime numbers for |X | and Y| the contraction of X to Z and

Y to g are on opposite sides of the VRSP of B(X, Y) / "X Y N B(X, Y)/X / Y” This is

]_
c1-c2 c3-Cq

because B(X,Y) = B(X,Y) / X| / Y/ where X = {u;},Y; = {v;}, and we do not have a
i=1 7j=1
decomposition where the decomposed parts are smaller than B(X,Y).

If the cardinality of X is not a prime number then X is partitioned into c¢; subsets X/ with
| X;| = ¢y and X is partitioned into c; subsets X with | X'| = ¢y, Y is partitioned into c3 subsets Y/
with [Y]| = cyand Y is partitioned into ¢, subsets Y;" with |Y}’| = c3. This gives the decomposition
B(X,Y)~B(X,Y) ) X! | Y/SB(X,Y) | X' | v/

21]1 1=1 Jj=1

In Figure [Tl we give an illustrative example, where |X | = 3is a prime number and |Y| = 4 =

221 not. With respect to B(X,Y) = B(X,Y) / X! / Y/RB(X,Y) | X!/ Y in Figure
we have that X! = {1}, X = {ua}, X! = {us]}, V7 = f;,w}, YJ = (o oa). XU = {ur. 109, s,
Y = {v1,v3} and Y] = {vy, v4}. In this example, we illustrate how we can decompose a complete
bipartite graph B(X,Y’) where all the arcs have the same label. Because all arcs have the same

label, the labels are omitted in all figures of this contribution.
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Figure 1. Decomposition of B(X,Y) = B(X,Y)/X|/X5/X5/Y{/Ys N B(X,Y)/X{/Y{/Yy. The set ¢ from
the proof of Lemma [3.1] and the graph isomorphic to B(X,Y) induced by ¢ in B(X,Y)/X|/X}/X5/Y]/Yy
B(X,Y)/X{/Y{ /Yy is indicated within the dotted region (although not all arcs fit into this region).

Note that the proof of Lemma[3.1]is modelled along the same lines as the proofs of the theorems

presented in [4] and in [7].

Lemma 3.1. Let B(X,Y) be a weakly connected complete bipartite graph where the labels of
all arcs are the same. Let [ X, Y| contain only forward arcs, or let [ X, Y| contain only backward

arcs. Let | X| = c1 - ¢, |Y| = ¢3¢y c1,. .., cq €N. Then there exist X, X}, Y/ and Y] such that
B(X,Y)~ B(X,Y) /

g

c3 Cc2 Cq4
IX;[lYZ-’NB(X,Y) /1X;2’ /Yy

h= j=1

5
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Proof. Let|[X, Y] contain only forward arcs. It is sufficient to define a mapping ¢ : V(B(X,Y, 7))

— V(B(X, Y) / X, / Y! NB(X,Y) / X / Y”) and to prove that ¢ is an isomorphism from
z h=1 j=1

B(X,Y) to B(X, Y)) X/ Y/NBX,Y,2) | X] /Y.
g=1 "i=1 h=1  j=1
Because B(X,Y) is complete there are arcs from each vertex of X to all vertices of Y. Then,

without loss of generality, we define X' = {uy1,.. ., U1 ;- Ue 1, Ue, c, }- NOW, We can con-
tract X using the sets X7, ... ,Xél, Xy =A{uga, . uge b, | Xyl = c2,9 = 1,..., c1. The vertices
in the sets X7, ..., X{ are then replaced by the vertices 71, . .., I, , respectively, (note that there
are no arcs that have both their ends in X/), and we can contract X using the sets X7,..., X7,

Xy =Aurp, - ue nts | Xy =c1,h =1,..., cy. The vertices in the sets X7, ... ,X” are then re-

placed by the vertices 7, . .., Z , respectively, (note that there are no arcs that have both their ends

Y C 2
in X7). Likewise, for [Y'| = c3 - ¢y, we define Y = {v11,..., 01, .. s Uy 1y - - - ,Uc3,c4}~ Then,
we can contract Y using the sets Y7, . .. ,YC’B, Yi=A{vi1, . vie, s |V = casi=1,...,c3. The

vertices in the sets Y], ..., Yc’3 are then replaced by the vertices 7, . .. ,g]ég, respectively, (note

that there are no arcs that have both their ends in Y})), and we can contract Y using the sets
Y/, ... ,YC’;,YJ-” = {v1gy 50, i}, [Y]| = c3,5 = 1,..., ca. The vertices in the sets Y, .. ,Yc’;
are then replaced by the vertices 371, . . ., gjg4 , respectively, (note that there are no arcs that have both
their ends in Y}").

Consider the mapping ¢ : V(B(X,Y)) — V(B(X,Y) / X, /Y’EIB(X Y) / X/ / Y/)
g=1 iz i1 it
deﬁnedby¢(ugh) (:c’ zy), qb(vm) (4, ;). Then ¢ is obviously a bijective map if V(B(X,Y")

/ X, /Y’NB(X Y) / X / Y/) = (, where (is defined as ¢ = {(7y, 7}) | ugn € X, ¢(ugn) =

g=1 h=1 j—l

(T}, T )} {(0;,77) | vij € Y,0(vi;) = (Ui, 77)}. We are going to show this later by arguing all the
c1 c3

other vertices (and their labelled arcs) (%, 75 ), (T3, Z/'), (9}, T;) and (g, Z') of B(X,Y’) / 1X g/ Y/
g=

i=1

XIB(X,Y) /2X /Y” will disappear from B(X,Y) / X, /Y/IB(X Y) / Xy /Y}”. But first
h=1 j=1 =1 ]:1
we are going to prove the following claim.

Claim 3.1. The subgraph of B(X,Y) /1 X, /SYZ’ B(X,Y,Z) /2 Xy /4 Y/ induced by ¢ is iso-
1

g=1 i=1 h=1  j=

morphic to B(X,Y).

Proof. Firstly, ¢ is a bijection from V(B(X,Y')) to ¢. Secondly, an arc u; ; vj j, in B(X,Y)
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c1 c3 c2 C4
corresponds to the arc z} ¥; in B(X,Y) / Xj / Y and to the arc 7 g} in B(X,Y) / XZ-” /Y.

i=1  j=1 1= Jj=1
C1 Cc3 c2 cq

Because all arcs of B(X,Y) / X; /Y] and B(X,Y) / X/ /Y] are synchronising arcs, for
i=1 j=1 i=1 7j=1

each pair of arcs & ¥} , @5 y; of B(X,Y) / X / Y/ and B(X,Y) /X” / Y/, respectively,

=1 j=1

i=1 J
there is an arc (%} ,% )(y] yj,) of B(X,Y) / X/ / Y] X B(X,Y) / / and, therefore
i=1 =1 j=1

7, ’l
1 j=1

~ c1 c3
an arc u; ;,vj, j, in B(X,Y) corresponds to an arc (7} , 27 )(y'; ;) in B(X,Y) / Xj / Y/
i=1  j=1
B(X,Y) | X! / Y/,
i=1 =
Hence, the map ¢ is a bijjection from B(X,Y’) to the subgraph of B(X,Y) / X] / Y, X

i=1  j=1

B(X,Y) / X/ / Y/ induced by ( preserving the arcs and their labels and, therefore, B(X,Y’)
=1 j=1
c1 c3 Cc2 C4
is isomorphic to the subgraph of B(X,Y) / X| / Y/X B(X,Y) / X/ / Y] induced by (. This
=1 j=1 =1 j=1

completes the proof of Claim[3.1l - O

We continue with the proof of Lemma[3.1l It remains to show that all vertices of V(B(X,Y)
/ X/ / Y/DB(X Y) / X! / Y/)\¢ (and the arcs of which these vertices are an end) disappear

i=1 i=1 7j=1

from B(X Y) / X! / Y/ X B(X,Y) / X! / Y. This follows directly by the observation that
=1 j=1 =1 Jj=1
only the vertices (], Z7) have level 0 by definition of the Cartesian product. Then, all other

vertices (77, 7;) and (g;,7]) have level>0 in B(X, Y) / X/ / Y/ B(X,Y) / X! / Y/. But

J 1=1 J=1
Cq

these vertices (7}, 7j) and (g, Zj) have level 0 in B(X,Y’) /X’ / Y/ X B(X,Y) / X! /1Y}”
i=1 i=1 j=

and are, therefore, removed from B(X,Y) / X/ / Y/ X B(X,Y) / X! / Y/, together with the
i=1 j=1 i=1 7j=1
arcs of which these vertices are an end. This is because there are no arcs a with head(a) = &}
c1 c3
in B(X,Y) / X] /Y], and, therefore, there are no arcs b with head(b) = (},7]) in B(X,Y)
j=1

i=1

/1 X/ /3 Y/XB(X,Y) /2 X! /4 Y/, and there are no arcs a with head(a) = 7} in B(X, Y) /2 X!

i=1 =1 i=1 =1

Cq4
/ Y/ and, therefore, there are no arcs b with head(b) = (7}, %) in B(X,Y) / X! / Y, X
1

j=1 1= j 1

B(X,Y) / X/ / Y/. Hence, (},9;) and (7}, 7]) must have level 0 in B(X,Y") / X] / Y/ ¥

i=1 7j=1 1= 7j=1
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c2 cq c1 Cc3 €2 C4
B(X,Y) /X! /] Y/ Then B(X,Y) = B(X,Y) / X; /] Y/NB(X,Y) / X/ / Y]'. The proof
=1 j=1 =1 j=1 =1 j=1
for [ X, Y] containing only backward arcs is similar. This completes the proof of Lemma[3.1l [
We continue with the decomposition of a 3-partite graph B(X,Y, Z). In Figure 2l we show an
example of a 3-partite graph B(.X, Y, Z) that is decomposed in graphs B(X,Y, Z) /X1/Y{/Y; Y]/
Zyand B(X,Y,2)/X{/Y]/Z{/ZY. Note that the bipartite subgraph induced by the vertex set

Y U Z is not complete, but the bipartite subgraph arc-induced by the arcs of [Y, Z] is complete.

- X = X! B(X.,Y,2)/X"/Y"/ 2!/ 7}

YERTTETTTTTTRORY Ao oot . ............. . ip — i

B(X,Y,Z)/X")Y{ /Y /Y’/Z’ B(X,Y, Z)/X'/Y{/Y}/Y!/Z ®B(X,Y, 2)/X"/Y"/ 2! Z}

i (v;,xl) (%ﬂi’)ﬁ @2) (3

Figure 2. Decomposition of B(X,Y,7) = B(X,Y,2)/X1/Y{/Y3/Y{/Zi N B(X,Y,2)/X{/Y\"/Z} | Z], =
{urh, Y] = {u2}, Yy = {us}, Y5 = {wa}, 21 = {us,ue}, X7 = {ua}, V)" = {uz,us,ua}, Z7 = {u5}aZ2
{ug}. The set ¢ and the graph isomorphic to B(X,Y,Z) induced by ¢ in V(B(X,Y, Z)/X|/Y{/Y3/Y{/Z}
B(X,Y,Z)/X{/Y{"/Z{/Z}) is indicated within the dotted region.
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Before we continue with Lemma in which we decompose a 3-partite graph, we show in
Figure [3] that if the set of vertices W” < Y of the bipartite subgraph B(W”, Z) of B(X,Y, Z) arc-
induced by the arcs of [V, Z] is not a subset of the set of vertices W’ < Y of the bipartite subgraph
B(X,W') of B(X,Y, Z) arc-induced by the arcs of [X, Y], then this leads to the removal of the
vertices (7, 77) and (g4, 7) from B(X, Y, 2)/X"/Y}/Y}/ ZWB(X.Y. 2)/X" /Y] |Y{ /Y{/Z" (at
the lower right of Figure[3)) giving B(X,Y, Z)/ X /Y{/Y, JZI\NB(X,Y, Z)/X{ /Y /Y] Y] | Z1 (at
the lower left of Figure3)) and, therefore, B(X,Y, Z) # B(X,Y,Z2)/X/Y/)Yy /ZiNB(X,Y, Z)
/X1 /Y )YS YS!/ Z]. The vertices (71, 97 ) and (g2, 97 ) are removed because they have level > 0 in
BX.Y, Z) /X|/Y}/Y3/Z{0 BX.Y, 2)/X! [Y{/Y{/Y{/Z! and level O in B(X,Y, Z)/X|/Y!
/Y521 R B(X, Y, Z2) [ XT /Y)Y Y5/ 2.

B(X,Y,Z)/X{ /Y)Yy /Yy Z]

B(X,Y, 2)/X}/Y]/Y}/Z, N B(X,Y, Z)/ X! [Y! Y1 |Y]/Z! B(X,Y, 2)/X}/Y/Y}/Z, B(X,Y, 2)/X}/Y}/Y}/Z, 5 B(X,Y, Z)/ X! /Y] /Y |Y]Z!

A
L @.8)

1

(1. 75

@ i) N\ (8 EARNEDNACEDE

Figure 3. The set of vertices W” = {us2, us, us, us} of the bipartite subgraph B(W”, Z) of B(X,Y, Z) arc-induced
by the arcs of [Y, Z] is not a subset of the set of vertices W/ = {uy, us, ug, ur} of the bipartite subgraph B(X, W) of
B(X,Y, Z) arc-induced by the arcs of [X,Y]. Although, the graph induced by the set of vertices ( is isomorphic to
B(X,Y,Z), we have that B(X,Y, Z) ¢ B(X,Y,2)/X{/Y{/Ys/Zi N B(X,Y, Z)/X{/Y{ /Yy /Y] /Z] (due to the
removal of the vertices (¢}, 1) and (%4, 77)) by the VRSP.

Furthermore, in Figure 4 we show that when the requirement of Lemma [3.2] that [ X, Y] and

9
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[Y, Z] contain the only arcs of B(X,Y,Z) is violated, we have that the graph induced by the

vertices of ( is not isomorphic to B(X,Y, Z). Hence, B(X,Y, Z) % B(X,Y, Z)/ X /Y)Yy /Z} N

B(X, Y, 2)/X{/Y{/Y{/Z}. Note that (&, ), (7, &), (7%, ), (7, ) and (7, 74), and the arcs
=

of which (Z,95), (71, 2%), (71, 1), (U5, T5) and (g4, Z]) are an end are removed from B(X,Y, Z)
IXUYL Y208 BIX,Y, 2)/X{ [Y{!/Y{/ 74 by the VRSP,

BX,Y, 2)/ X7/ X3 /Y /Y5 2]

N M/ I~

B(X,Y, 2)/X{/Y/Y3/ ZiR B(X, Y, Z)/ XY/ X3 /Y /Yy 2]

B(X.Y. 2)/X{/Y{/V}/2; @ i@a s Gua)  @n)

Figure 4. The requirement that [X,Y] and [Y,Z] contain the only arcs of B(X,Y,Z) is violated, giv-
ing that the graph induced by the vertices of ¢ is not isomorphic to B(X,Y,Z). Hence, B(X,Y,Z) %
B(X,Y, 2)/X'/Y{/Y3/Z" N B(X,Y, Z)/X"/Y{'/Yy'/2".  Furthermore, (I1,93), (41,%53), (41, 1), (U3, 75) and
("‘/ I

74, 27), and the arcs of which (Z},45), (¢1,25), (g1, 2Y), (g5, %4) and (g5,ZY) are an end are removed from

B(X,Y,2)/X')Y])Y}/Z' R B(X,Y, Z)/X" JY{'/Y}/Z" by the VRSP,

The requirement that [ X, Y] and [Y, Z] contain only forward arcs, or [ X, Y] and [Y, Z] con-

tain only backward arcs must not be violated. Otherwise, for example, if [X, Y] contains only

10
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forward arcs and [Y, Z] contains only backward arcs, we have a bipartite graph B(X u Z,Y)
where [ X U Z, Y] contains only forward arcs. Because such a graph is not complete it is also not
decomposable by Lemma 6.1 in [3] as is shown by the example given in Figure 4 in [3]. Now, for

the decomposition of a 3-partite graph B(X,Y, Z), we have the following lemma.

Lemma 3.2. Let B(X,Y, Z) be a weakly connected 3-partite graph where the labels of all arcs are
the same. Let [ X,Y | and |Y, Z] contain the only arcs of B(X,Y, Z). Let | X, Y| and |Y, Z] contain
only forward arcs, orlet | X, Y| and |Y, Z] contain only backward arcs. Let B(X,Y") be a complete
bipartite subgraph of B(X,Y, Z) induced by X Y. Let B(W, Z), W <Y, be a complete bipartite
subgraph of B(X,Y, Z) arc-induced by all arcs of Y, Z]. Let |X| = ¢1 - co, GCD(|Y|,|W]) =
3, |Y|=c3-ca, W[ =c3-¢q,|Z] = c5-¢6,¢1, ..., c1 €N Then there exist X, X}, Y/, Y/, Z;, 7,

C1 Cc3 C5 c2 c4 ce
suchthat B(X,Y,Z) =~ B(X,Y,Z) | X, /Y | Z,NB(X,Y,Z) ] X} | Y] | Z].
= =1 k=1 h=1 =1 =1

g=1

J

Proof. Let [ X,Y] and [Y, Z]| contain only forward arcs. It is sufficient to define a mapping ¢ :
V(B(X.Y,2)) - V(B(X,Y.Z) | X, | Y! | ZLNB(X.Y,2) | X} | Y} ] Z}) and 1o prove
g=1 Ti=1 k=1 h=1 j=1 I=1

c1 c3 cs Cc2
that ¢ is an isomorphism from B(X,Y,Z) to B(X,Y,Z) / X /Y] | Z,N B(X,Y,Z) | X}
=1 Ti=1 k=1 h=1
c4 ce g
/vl 2.
j=1 " 1=1
Because, |X| = ¢; - ¢y, we define X = {u11,...,Utc, - s Uc 15+, Uc c,§- Then, we can

contract X using the sets X7, ... ,Xél, X, = {ugy, ... uge ), | X;| = ca,9 = 1,...,¢c1. The
vertices in the sets X7, ..., X/ are then replaced by the vertices 71, . . ., & , respectively, (note that
there are no arcs that have both their ends in X/), and we can contract X using the sets X7, ..., X[,
X = {ul,h,...,ucl,h}, | X}| = e1,h = 1,...,co. The vertices in the sets X{’,...,Xé; are then

"

replaced by the vertices 7, . . . ,jcz , respectively, (note that there are no arcs that have both their

ends in X})).

Because, |Y| = ¢3¢y, |[W| = ¢3-c; and W < Y we have that ¢; < ¢4. Therefore, we define
Y = {vi1,... s ULeys oy Veg s s 1)63704} and W = {vy4,... s ULeoy ey Uey ly e - s ,003707}, satisfy-
ing W < Y. Then, we can contract Y using the sets Y{,..., Y/, Y/ = {vin, ..., vie, }, [Y]] =
cy,1 = 1,...,c3. The vertices in the sets Y/, ..., Yc’3 are then replaced by the vertices 77, . . . ,ggg,

respectively, (note that there are no arcs that have both their ends in Y;), and we can contract Y’

11
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using the sets Y/, . .. ,YCZ, Y/ ={vij,. . 0e, 34, 1Y) = cs3,5 =1,..., cs. The vertices in the sets
Y/, ..., YC’; are then replaced by the vertices 7, . . ., yj;;, respectively, (note that there are no arcs
that have both their ends in Y}). Using analogue definitions for IV and W} with respect to the def-
initions of Y and Y", we have that the vertices in the sets W7, ..., W, are replaced by the vertices
T/ yC and the vertices in the sets W/, ..., WC”7 are replaced by the vertices ¢/, . . ., ng7.

Because, |Z| = ¢; - ¢, we define Z = {wq 1, ... s Wiegs ey We, 1y - - ,wcw%}. Then, we can
contract Z using the sets 7, .. .,Zé{), Zy, = Awga, s We by |21 = 6,k = 1,...,c5. The
vertices in the sets Z7,..., Z és are then replaced by the vertices 2/, . . ., 225, respectively, (note that
there are no arcs that have both their ends in Z}), and we can contract Z using the sets Z7, ..., Z, é’G ,
Zl = A{wiy, . we by |2 = c5,l = 1,...,c6. The vertices in the sets Z7, ..., Z” are then
replaced by the vertices Z7, ...

ends in Z}").

Consider the mapping ¢ : V(B(X,Y, Z)) — V(B(X,Y ,Z) | X!/ V! | ZLN B(X,Y, Z)
k=1

respectively, (note that there are no arcs that have both their

) C R

g=1 i=1
Cq
/ Xy /Y] / Zi') defined by ¢(ugn) = (g, 1), ¢(vi;) = (75, 75), d(wri) = (%, 7). Then ¢ is

]1 =
Cq

Cc2
obviously a bijective map if V(B(X, Y, Z) / X! /Y’ T ZSBX,Y,Z) | X! Y/ Tz =,
z= k=1 h=1 j=1 =1

where ¢ is defined as ¢ = {(, T3 | ug, € X Gugn) = (Tg, 1)} w {45, 95) | vij € Y, o(vi;) =
(@, 97)} (3, Z) | wip € 2, 0(wip) = (3, 7))

We are going to show this later by arguing all the other vertices (and their labelled arcs)

(35 9), (35 200, 00 30), 0 30), (3, 7) and (3, 3) of BX, Y, 2) / pY / v 7 ZiEB(X.Y,
=1
c2 cq Cc2 Cq

Z) | Xy Y/ / Z7" will disappear from B(X,Y, Z) / X, / Y/ / Z’.B(X Y.Z) | X Y]
h=1 j=1 =1 g=1 z: h=1 j=1
/ Z]'. But first we are going to prove the following claim.
c1 c3 c5 c2 ca c6
Claim 3.2. The subgraph of B(X,Y, Z) /1X‘; /IY;/k/ ZiKB(X,Y, Z)h/ / / // induced
g=1 Ti=1 k=1 =1 j=1"1=1
by ( is isomorphic to B(X,Y, 7).

Proof. ¢ is a bijection from V(B(X,Y, 7)) to ¢. It remains to show that this bijection pre-
serves the arcs and their label pairs. Due to Lemma and because the subgraph B(X,Y) is

a complete bipartite subgraph, we have that an arc u, ,v; ; in [X,Y] is represented by the arc

12
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c3 Cq C6

(Z,, Zp) (@, 97) in A(B(X,Y, Z) /1X/ /1Y/ / 7, X B(X,Y, Z)h/lX /1Y-”l/1Zl”) and, due to
9 i k=1 j

Lemma 3.1l and because the subgraph B(WW, Z) is a complete blpartlte subgraph an arc v; jwy, in

/)]

[W, Z] is represented by the arc (9., )(zk, in A(B(X,Y, 2) / X, / Y! / Z, X B(X,Y,Z)
g=1 i=1 k=1

/2 Xy /4 Y/ /6 Z]"). Together with [Y\W, Z] = J, we have that the subgraph of B(X,Y, Z) /1 X,
j=1 " 1=1 g=1

h=1
cq

/Y] ZLRB(X,Y,Z) | X'/ Y | Z} induced by ¢ is isomorphic to B(X, Y, Z). 0
i=1 k=1 h=1  j=1 " i=1

We continue with the proof of Lemma It remains to show that all other vertices of
c1 c3 cs Cc2 C4 Ce
B(X,Y,Z) / X; /Y;/ / Z,’C B(X,Y,Z) / X,’{ / Y}” / Z7', except for the vertices of ¢, dis-
9= J=1

appear from B(X,Y, Z) / X, /Y’ / Zle(X Y, Z) / Xy / Y/ / Z7'. Due to Lemma [3.1]
= h=1 ,7_
this is clear for the Vertlces (5, yj) and (9;,&7). Likewise, due to Lemma 3.1l and the removal

of all (7, 75) and (g;, %)) , this is also clear for the vertices (7;, Z) and (2, 7). Remains to
c1 c3 cs

show that the vertices (77, %) and (%}, ¥} ) are also removed from B(X,Y, Z) / X, / Y/ | Z;
g=1 i=1 k=1

B(X,Y,Z) /2X,’{ /4 Y}”/SZl”. Because there are no arcs a with head(a) = T, inB(X,Y,Z) /1 X;
h=1 =1

j=1

/Y | 7} there are no arcs b with head(b) = (i, /) in B(X, Y, Z) / x v Zle(X Y,

i=1 k=1 g= z:l k=1
c2 Ccq Cq
Z) | Xy Y/ / Z7', and, because there are no arcs a with head(a) = Z} in B(X,Y, Z) / X7/
h:1 j—l =1 h=1 j=1
Y/ / Z7 there are no arcs b with head(b) = (Z,,7})in B(X,Y, Z) / X, /SY’ / ZkIB(X Y, Z)
=1 g=1 2

[ cq c6
/ Xy /Y]] Z. Hence, the (r7,2]) and (Z}, T} ) must have level 0 in B(X,Y, Z) / X, / Y/
h=1  j=1 " 1=1 g=1 i=1
cs5 c2 cyq ce

/ Z,XB(X,Y,Z) / X;L’ / Yj” / Z|'. But, the level of (1}, %) and (2}, 7},) is greater than zero in

k=1 j=
C4

B(X.Y, Z) / X! /Y’ / ZOB(X.Y,2) 7 xy vy / 7} and the level of (%), Z/) and (3}, )
h=1 7j=1 =1
is zero 1nB(X,Y,Z) / X;/Yi’ /ZIQB(X,Y,Z) / /Y” /Z” Therefore, (7}, Z') and
h=1  j=1

(Z,, ;) are removed from B(X,Y,7) / X, /Y’ / Zle(X Y, Z) / X/ /Y” /Z Be-
1

=1 h=1 =1

I~
cause there are no other vertices in B(X Y, Z) / X, / Y/ / Zk XIB(X,Y, Z) / / /

gl i=1
cq

we have that B(X, Y, Z) = B(X,Y,Z) | X! /Y’ / ZRBX.Y,2) / Xy /Z;' The

g=1 j=1 =

13
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proof for [ X, Y] and [Y, Z] containing only backward arcs is similar. This completes the proof of

Lemma O

Note, if ¢; = ¢3 = ¢; = 1 then we have for B(X,Y, Z) that each vertex u, ) of X corre-
C4

[ ce
sponds to a vertex 7 , of B(X,Y, Z)h/ Xy /1Yj”l/ Z], the vertex v; ; of Y corresponds to the
1 = =1

vertex g ; of B(X,Y, Z) / X / Y/ / Zy', the vertex wy; of Z corresponds to the vertex Z;; of
j=1

Cq
/Y / Z]', each arc ug v; j corresponds to an arc 7, ¢/ ; of B(X,Y, Z) / X/
j=1 =1

Cc2
B(X,Y,Z) | X!
1 h 1

h= J

Cq4

/ Y/ / Z]" and each arc v; jwy, corresponds to an arc §; ;Z; , of B(X,Y,7) / X/ / Y/ / z7.
j=1 " i=1 h=1  j=1 " i=1
cq

This gives B(X,Y, 7)) = B(X,Y,Z) /2X,’{ / Y;-”/ﬁZl”. Furthermore, we have for B(X,Y, Z)

h=1 j=1 " 1=1
c1 c3 cs
that the vertices of X correspond to the vertex 7’ of B(X,Y,Z7) / X! /Y! / Z!, the vertices
=1 i=1 =1
c1 c3 cs
of Y of B(X,Y,Z)/ X! /Y / Z! correspond to the vertex ¢, the vertices of Z correspond
=1 =1 =1

c1
to the vertex z' of B(X,Y,Z) / X]| /Y’ / Z!, each arc ugv; ; corresponds to the arc 7'y’
1=1 i=1  i=1

c1 c3 cs
of B(X,Y,Z) / X} /Y, / Z and each arc v; jwy, corresponds to the arc §'z’ of B(X,Y, Z)
h=1 = j=1 "I=1

c1 c3 cs Cc1 c3 Cs5
/ X5, /) Y]/ Z. Then, B(X,Y,Z) / X! / Y/ / Z! is a path from 7’ to Z’ and we have that

h=1  j=1 "1=1 =1 i=1 =

B(X,Y,Z) = B(X,Y,Z) / X! / Y/ / ZINB(X,Y, Z) / X/ / Y / Z!. Because there is no
i=1 i=1 i=1 i=1 i=1

reduction of the number of vertices (and arcs) in B(X,Y, Z) / X/ / Y/ / Z/" with respect to
B(X,Y, Z), this is a useless decomposition. Likewise, for ¢y h—lc :1 l=: 1, we have as well
such a useless decomposition. Therefore, at least one of the values of GC'D(cy, ¢3), GCD(c3, ¢4)
or GC'D(cs, cg) has to be greater than one, or, in case | X |, |Y| and |Z| are prime numbers, at least
one but not all of the ¢, c3, c5 have to be greater than one (and, therefore, at least one but not all of
the co, ¢4, cg 1S greater than one).

We continue with the decomposition of an n-partite graph B(X1, ..., X,,) where all arcs have
the same label, the arcs in [ X7, Xs], ..., [X,_1, X,] are the only arcs of B(X7, ..., X)), the sub-
graph B(X1, X5) of B(X7, ..., X, ) induced by X; u X3 is a complete bipartite graph, each sub-
graph B(X;, xi41),1 = 2,...,n — 1, of B(Xj,...,X,) arc induced by the arcs of [X;, X; 1] is

14
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a complete bipartite graph with y;.1 S X, (note that y,, = X,,). The partition of X; in sub-
sets of X is similar to the partition of X in subsets of X in Lemma[3.2] the partition of each of
the X, ..., X,,_1 in subsets of X, ..., X,,_; is similar to the partition of Y in subsets of Y in
Lemma 3.2} the partition of each of the xs, ..., X,_ in subsets of Ya, ..., X,_1 is similar to the
partition of T in subsets of ¥ in Lemma[3.2]and the partition of X, in subsets of X, is similar to
the partition of Z in subsets of Z in Lemma[3.2] Following these requirements, we state and prove

the following decomposition theorem.

Theorem 3.1. Let B(X,, ..., X,) be a weakly connected n-partite graph where the labels of all
arcs are the same. Let [ X1, Xs],...,[Xn_1, Xy] contain the only arcs of B(X,...,X,). Let
[ X, Xi11] contain only forward arcs forall i € {1,... ,n—1} orlet | X;, X;,1] contain only back-
ward arcsforalli e {1,... ,n—1}. Letc11,C12,C23, -, Cn13,C24; - - Cn—1.4; Cn.5, Cn6y C2.75 - - - »
Cn-17 €N. Let | X1| = ¢11 - ¢12. Let B(X1, X3) be the complete bipartite subgraph of B(X1, ...,
X,,) induced by X1 U Xs. Let B(x;, Xit1), Xi € Xi,i € {2,...,n — 1} be the complete bipartite
subgraph of B(Xy,...,X,) arc-induced by the arcs in | X;, X;+1]. Let GCD(|Xi], |xi]) = cis,

| X;| = “Ciay|Xi| = iz cin i€ {2,...,n—1}. Let |X,| = cu5 - cng Then there exist
c1,1 n—1 ¢i,3
X{Q,X;m, ks X1y X s X such that B(Xy, ..., X,,) = B(Xq, ..., X,) KIX /_ Z
Cn,5 C1,2 n—1 Cj,4 Cn,6 I
[ XopNB(Xy,. . X)) [ XY ) XD / X
k=1 h=1  m=2j=1 I=
Proof. Proof by induction. For n = 2, we apply Lemma[3.1l For n = 3, we apply Lemma[3.2] Let
C1,1 n—2 Ci,3
B(Xj,...,X,_1) be decomposed into two (n — 1)-partite graphs B(X7,..., X, _ 1) / Xlg / /
m=2i=1
Cn—1,5 C1,2 n—2 ¢j4
/ X, yrand B(Xy, ..., X, 1)/X Lh /2 /1ng-l/ X, »suchthat B(Xy, ..., X, 1)
=1 m j=
C1,1 n—2 023 Cn— 10 ’ C1,2 n—2 Ci 4
%B(Xl,XQ,...,Xn_l) / Xig / /X / 1kE|B(X1,...,Xn_1) / X{Ch / /Xrl;m,j
g=1 m=21i=1 h=1 m=2j=1
Cn—1,6

/ X, _i;- Then, for B(Xy,...,X,), we have the partition of X, in the sets X, ,
=1
1,...cn-1,3 and the partition of X, in the sets X, ;,j = 1,...c,_1 4, the partition of x,,—1 <

Z?

X,,_1 in the sets X;L—l,hi = 1,...¢n—13 and the partition of x,,_; in the sets x/ _ v d =1 e,

and the partition of X, in the sets X| ;,k = 1,...¢, 5 and the partition of X, in the sets l=

nl’

1,...cn6. Now, with similar arguments as for Y and Z of Lemma[3.2] we have that B(X1, ..., X,,)

15
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C1,1 n—1 ¢i,3 Cn,6 C1,2 n—1 Cj,4 Cn,7

=~ B(Xy,...,Xn) / X1,/ /) X/ X0 NB(X,... X)) ) XY, /) X)) X;,. This
g=1 “m=2i=1 k=1 h=1  m=2j=1  “i=1
completes the proof of Theorem 3.1l O
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