
Communicating Process Architectures 2017
K. Chalmers, J.B. Pedersen et al. (Eds.)
IOS Press, 2017
© 2017 The authors and IOS Press. All rights reserved.

79

Asynchronous Readers
and

Asynchronous Writers
Antoon H. Boode a,b,1, and Jan F. Broenink a

a Robotics and Mechatronics,
Faculty of Electrical Engineering, Mathematics and Computer Science,

University of Twente, the Netherlands
b InHolland University of Applied Science, the Netherlands

Abstract. Reading and writing is modelled in CSP using actions containing the
symbols ? and !. These reading actions and writing actions are synchronous, and
there is a one-to-one relationship between occurrences of pairs of these actions.
In the CPA conference 2016, we introduced the half-synchronous alphabetised
parallel operator X ó Y , which disconnects the writing to and reading from
a channel in time. We introduce in this paper an extension of X ó Y , where
the definition of X ó Y is relaxed; the reading processes are divided into
sets which are set-wise asynchronous, but intra-set-wise synchronous, giving
full flexibility to the asynchronous writes and reads. Furthermore, we allow
multiple writers to the same channel and we study the impact on a Vertex
Removing Synchronised Product. The advantages we accomplish are that the
extension of X ó Y gives more flexibility by indexing the reading actions and
allowing multiple write actions to the same channel. Furthermore, the extension
of X ó Y reduces the end-to-end processing time of the processor or coprocessor
in a distributed computing system. We show the effects of these advantages in a
case study describing a Controlled Emergency Stop for a processor-coprocessor
combination.
Keywords. CSP, Half-Synchronous Alphabetised Parallel Operator, Asynchronous
Write Actions, Asynchronous Read Actions, Asynchronous Write-Read Actions,
Vertex Removing Synchronised Product

Introduction

Periodic Hard Real-Time Control Systems (PHRCSs) modelled using process algebras
comprise many short processes, which leads to fine-grained concurrency. To let the
PHRCS perform its task as required by the specification, the processes synchronise over
actions, asserting a certain order of the actions of the processes.

Due to the fine-grained concurrency and the related synchronisation of the involved
processes, a significant part of the execution time (up to 20%) is consumed by context
switches. The performance of such PHRCSs can be improved by reducing the number
of context switches of the threads representing these processes.

The logic controlling the behaviour of these processes can be implemented by Finite
State Machines (FSMs). These FSMs are in essence finite, directed, acyclic, labelled

1Corresponding Author: Ton Boode, Robotics and Mechatronics, CTIT Institute, Faculty EEMCS,
University of Twente, P.O. Box 217 7500 AE Enschede, The Netherlands. Tel.: +31 631 006 734;
E-mail: a.h.boode@utwente.nl.



80 A.H. Boode, J.F. Broenink / Asynchronous Readers and Asynchronous Writers

multi-graphs. To reduce the number of context switches, we introduced in [1] and [2]
a Vertex-Removing Synchronised Product (VRSP) that combines processes by multi-
plication of the graphs representing the behaviour of these processes. The algebraic
characteristics of VRSP are described in [3].

In process algebra, information is communicated in a synchronous manner. In Com-
municating Sequential Processes (CSP) the ! and ? symbols can be used to transfer data
from one process to another. For example, c!x:T in one process and c?x:T in another
process proceed synchronously as if both were written as c.x [4].

As we have shown in [5], disconnecting the writing and reading in time eases the
task of a designer if such disconnections are required from the perspective of perfor-
mance of the application. For this reason, we have introduced in [5] for CSP a half-
synchronous alphabetised parallel operator α óβ

1 with alphabets α, β, together with
half-synchronous actions c¡x:T and c¿x:T, that lie in between synchronous and asyn-
chronous writing to enable asynchronicity between reading and writing. We have given
the syntax and the semantics of the half-synchronous alphabetised parallel operator,
together with a case study which shows the advantage of the half-synchronous alphabe-
tised parallel operator with respect to memory occupation and performance. Further-
more, we have studied the impact of the half-synchronous alphabetised parallel oper-
ator on the VRSP which has led to the Dot Vertex-Removing Synchronised Product
(DVRSP) ([5]).

Although reading actions and writing actions are asynchronous for the half-
synchronous alphabetised parallel operator, the readers are still synchronising their
reading actions. Therefore, we extend in this paper the half-synchronous alphabetised
parallel operator such that the readers are allowed to read asynchronously. To achieve
this asynchronous reading by readers, we add an index to the ¿ symbols such that read
actions with the same index read synchronously and read actions with a different index
read asynchronously. For example, c¡x:TP P1, c¿x:T P P2 and c¿x:T P P3 becomes c¡x:T
P P1, c¿1x:T P P2 and c¿2x:T P P3. Furthermore, we allow more than one process to
write to the same channel. Allowing only one process to write to a channel is a restric-
tion from the early versions of CSP [7], but, for example, lifted to any-to-any channel
in [8].

Whenever confusion can arise in the use of the term processes in the case of process
algebra, and the term processes in the case of a process executing on some operating
system, we use process to indicate a process-algebraic process, and we use thread when
we mean a process or thread that executes on some operating system.

We start with a description of the terminology in Section 1. In Section 2 we in-
troduce the extension of the half-synchronous operator with asynchronous readers, the
extended half-synchronous alphabetised parallel operator (

X
õ

Y
), and describe the se-

mantics of the
Yi
õ

Yj
. Furthermore, we describe the impact of

Yi
õ

Yj
on the VRSP and

the DVRSP, which leads to the definition of the Extended Dot Vertex-Removing Syn-
chronised Product (EVRSP). We finish with a case study of the

Yi
õ

Yj
, the Controlled

Emergency Stop, showing the advantages of the newly introduced
Yi
õ

Yj
in Section 3.

1. Terminology

We use Bondy and Murty [9], Hammack et al. [10], Hell and Nešetřil [11], Milner [12],
Schneider [4], Hoare [7] and Roscoe [13] for terminology and notation on graphs and

1The half-synchronous alphabetised parallel operator X ó Y is based on the optional parallel oper-
ator of Gruner et al. [6]



A.H. Boode, J.F. Broenink / Asynchronous Readers and Asynchronous Writers 81

processes not defined here. We consider finite, deterministic, directed, acyclic, labelled
multi-graphs based on acyclic, deterministic processes written in the formal specification
language CSP [7] only.

For convenience, we give definitions related to the half-synchronous operator given
in [3] and [5], together with new definitions related to the new half-synchronous oper-
ator.

1.1. Process-Algebraic Aspects

We repeat from Boode and Broenink [5] the following notions which were necessary to
describe the semantics of our new operator.

Let a
ù denote a trace which contains a as an action. Let αpùq denote the al-

phabet containing the actions in ù. Furthermore, the CSP semantics of an action
apply.

The alphabets of the processes P1, ¨ ¨ ¨ , Pn, Q1, ¨ ¨ ¨ , Qm, R are denoted asX1, ¨ ¨ ¨ , Xn,
Y1, ¨ ¨ ¨ , Ym, Z respectively. Furthermore, for alphabetsA1, A2, ¨ ¨ ¨ , An we defineA1

Ş

A2
¨ ¨ ¨

Ş

An “ pA1 ¨ A2 ¨ . . . ¨ Anq and A1
Ť

A2 ¨ ¨ ¨
Ť

An “ pA1, A2, ¨ ¨ ¨ , Anq.
Two actions are related if and only if
- one action contains the ¡ precisely once and does not contain the ¿n, and the

other action contains the ¿n precisely once and does not contain the ¡,
- the prefix of the labels of both actions with respect to the ¡ and ¿n is identical

and
- the postfix of the labels of both actions with respect to the ¡ and ¿n is identical.

1.2. Graph-Theoretical Aspects

The graphs we consider consist of a vertex set V , an arc set A, a set of label pairs L,
and two mappings. The first mapping µ : A Ñ V ˆ V is an incidence function that
identifies the tail and head of each arc a P A, so µpaq “ pvi, vjq means that the arc a
is directed from vi P V to vj P V , where tailpaq “ vi and headpaq “ vj. The second
mapping λ : A Ñ L assigns a label pair λpaq “ plpaq, tpaqq to each arc a P A, where
lpaq is a string representing the (name of an) action and tpaq is the weight of the arc a.
This weight tpaq is a real positive number representing the worst case execution time
of the action represented by lpaq.

A sequence of distinct vertices v0v1 . . . vk and arcs a1a2 . . . ak of G is a (directed)
path in G if µpaiq “ pvi´1, viq for i “ 1, 2, . . . , k. We denote such a path by P “

v0a1v1a2 . . . akvk.
An arc a P ApGq is called an in-flowing arc of v P V pGq if headpaq “ v; the in-degree

of v, denoted by d´pvq is the number of distinct in-flowing arcs.
Similarly, a P ApGq is an out-flowing arc of v P V pGq if tailpaq “ v; the out-degree

of v, denoted by d`pvq is the number of distinct out-flowing arcs.
The subset of V consisting of vertices v with d´Gpvq “ 0 is called the source of G,

denoted as S 1G.
The subset of V consisting of vertices v with d`Gpvq “ 0 is called the sink of G,

denoted as S2G.
For each graph G, we define S0pGq to denote the set of vertices with in-degree 0

(the source of G) in G, S1pGq the set of vertices with in-degree 0 in the remaining graph
obtained from G by deleting the vertices of S0pGq and all arcs with tails in S0pGq, and
so on, until the final set StpGq contains the remaining vertices with in-degree 0 and
out-degree 0 in the remaining graph. This ordering implies that arcs of G can only exist
from a vertex in Sj1pGq to a vertex in Sj2pGq if j1 ă j2. If a vertex v P V is in the set
SjpGq in the above ordering, we also say that v is at level j in G.



82 A.H. Boode, J.F. Broenink / Asynchronous Readers and Asynchronous Writers

We require that the following property holds for all the graphs we consider: any
two distinct arcs a P A and b P A with µpaq “ µpbq have lpaq ‰ lpbq.

For each pair pvi, vjq P V ˆV , we denote by Apvi, vjq all ak P A with µpakq “ pvi, vjq.
A graph G is called deterministic2 if all arcs in G have the following property. If

λpaq “ λpbq for two arcs a P A and b P A with headpaq ‰ headpbq, then tailpaq ‰ tailpbq.
Let a P ApGq with µpaq “ pu, vq. By contracting a we mean replacing u and v by

a new vertex uv, deleting all arcs b P ApGq with µpbq “ pu, vq or µpbq “ pv, uq, and
replacing each pair of arcs c P ApGq and d P ApGq with µpcq “ pu, xq, µpdq “ pv, xq
and λpcq “ λpdq by one arc e with µpeq “ puv, xq and λpeq “ λpcq, and, similarly
replacing each pair of arcs c P ApGq and d P ApGq with µpcq “ px, uq, µpdq “ px, vq and
λpcq “ λpdq by one arc e with µpeq “ px, uvq and λpeq “ λpcq.

Let T be the set of asynchronous arcs in G1 n G2 that correspond to arcs in G1.
Then the contraction of G1 n G2 with respect to G1, denoted by ρG1pG1 n G2q, is
defined as the graph obtained from G1 nG2 by successively contracting each arc a P T .
Likewise, the contraction of G1 n G2 with respect to G2, denoted by ρG2pG1 n G2q, is
the graph obtained from G1 n G2 by successively contracting all asynchronous arcs of
G1 nG2 that correspond to arcs in G2.

The Cartesian product GilGj of Gi and Gj is defined as the labelled multi-graph
on vertex set Vi,j “ Vi ˆ Vj, with two types of labelled arcs. For each arc a P Ai with
µpaq “ pvi, wiq, an arc of type i is introduced between tail pvi, vjq P Vi,j and head
pwi, wjq P Vi,j whenever vj “ wj; such an arc receives the label λpaq. This implicitly
defines parts of the mappings µ and λ for GilGj. Similarly, for each arc a P Aj with
µpaq “ pvj, wjq, an arc of type j is introduced between tail pvi, vjq P Vi,j and head
pwi, wjq P Vi,j whenever vi “ wi; such an arc receives the label λpaq. This completes the
definition of the mappings µ and λ for GilGj. So, arcs of type i and j correspond to
arcs of Gi and Gj, respectively, and have the associated labels. For k ě 3, the Cartesian
product G1lG2l ¨ ¨ ¨lGk is defined recursively as ppG1lG2ql ¨ ¨ ¨ qlGk.

Since we are particularly interested in synchronising arcs, we modify the Cartesian
product GilGj according to the existence of synchronising arcs, i.e., pairs of arcs with
the same label pair, with one arc in Gi and one arc in Gj.

The first step in this modification consists of ignoring the synchronising arcs while
forming arcs in the product, but additionally combining pairs of synchronising arcs of
Gi and Gj into one arc, yielding the intermediate product which we denote by GibGj.
To be more precise, Gi b Gj is obtained from GilGj by first ignoring all except for
the so-called asynchronous arcs, i.e., by only maintaining all arcs a P Ai,j for which
µpaq “ ppvi, vjq, pwi, wjqq, whenever vj “ wj and λpaq R Lj, as well as all arcs a P Ai,j
for which µpaq “ ppvi, vjq, pwi, wjqq, whenever vi “ wi and λpaq R Li. This set of arcs
is denoted by Aai,j. Additionally, we add arcs that replace synchronising pairs ai P Ai
and aj P Aj with λpaiq “ λpajq. If µpaiq “ pvi, wiq and µpajq “ pvj, wjq, such a pair is
replaced by an arc ai,j with µpai,jq “ ppvi, vjq, pwi, wjqq and λpai,jq “ λpaiqp“ λpajqq.
The set of these so-called synchronous arcs of Gi bGj is denoted by Asi,j.

The second step in this modification consists of removing (from GibGj) the vertices
pvi, vjq P Vi,j and the arcs a with tailpaq “ pvi, vjq, whenever pvi, vjq has level ą 0 in
GilGj and pvi, vjq has level 0 in Gi bGj. This is then repeated in the newly obtained
graph, and so on, until there are no more vertices at level 0 in the current graph that
are at level ą 0 in GilGj.

The resulting graph is called the Vertex Removing Synchronised Product (VRSP)
of Gi and Gj, denoted as Gi nGj.

2This is equivalent to determinism in the set of processes that is represented by the graph G.



A.H. Boode, J.F. Broenink / Asynchronous Readers and Asynchronous Writers 83

For k ě 3, the VRSP G1 n G2 n ¨ ¨ ¨ n Gk is defined recursively as ppG1 n G2q n

¨ ¨ ¨ qnGk.
Graphs Gi and Gj are consistent, denoted as Gi „ Gj, if and only if the following

two requirements hold:
1. ρGi

pGi nGjq – Gj and ρGj
pGi nGjq – Gi.

2. S 1GinGj
“ S 1Gi

ˆ S 1Gj
and S2GinGj

“ S2Gi
ˆ S2Gj

.

2. Extension of the Half-Synchronous Operator with Asynchronous Readers and
Asynchronous Writers

In this section two extensions of the Half-Synchronous Operator are elaborated:
- Indexing of the ¿-action, allowing set-wise asynchronous reading and intra-set-

wise synchronous reading. The semantics of the
Yi
õ

Yj
is given in Section 2.1.

- Allowing more than one writer to write to the same channel. The DVRSP as
defined in [5] and improved in Appendix A, inhibits two different writers to the
same channel. The extension of the DVRSP, the Extended Dot Vertex-Removing
Synchronised Product (EVRSP), is given in Section 2.2 on page 86.

Two or more writers to the same channel would be synchronous as the labels of
the two actions are identical as, for example, in Listing 1. Because we want the writers
to write asynchronously, the relational semantics of the half-synchronous alphabetised
parallel operator has to be adapted. In the sequel, the extended half-synchronous alpha-
betised parallel operator is called the extended half-synchronous operator and is denoted
as

Yi
õ

Yj
. The EVRSP is denoted as

˛

n.

Remark 1. Of course, we could index the asynchronous writes in a similar fashion as
the asynchronous reads. We choose not to, because the writing at any point in time,
when delivering identical objects to the readers, would lead to the passing of one object
only, delaying all, but the last, threads that participate in the synchronisation. This is
counter-intuitive to the idea that threads can write to a channel asynchronously, with
the guarantee that their instance of an object is written to the channel at that point in
time.

2.1. Semantics of the Extended Half-Synchronous Alphabetised Parallel Operator

Let P “ tP1, ¨ ¨ ¨ , Pnu be the set of processes containing asynchronous writes to the
same channel, therefore c¡x : T P Xi, i “ 1, ¨ ¨ ¨ , n. Let Q “ tQ1, ¨ ¨ ¨ , Qmu be the
set of processes containing an indexed asynchronous ¿i ´ action, i P I “ t1, ¨ ¨ ¨ , ku.
Let

Ť

iPI

Ii “ t1, ¨ ¨ ¨ , nu,
Ş

iPI

Ii “ H, i “ 1, ¨ ¨ ¨ , k, where the j P Ii is an index for the

synchronous ¿i ´ action for the subset of processes tQj|j P Iiu.
Furthermore, in Figure 1 we give
- the semantics of the extended half-synchronous operator,
- if we need more than one process P we use Pi otherwise we use P and
- for ease of reading, we omit the alphabets for the extended half-synchronous

operator, therefore Qi Yi
õ

Yj
Qj is denoted as Qi õ Qj.

Remark 2. The ¿i-action is prone to deadlocks. If one process contains c¿ix : T followed
by c¿jx : T, i ‰ j and another process contains the same actions in reversed order the
two processes may deadlock. Because we consider processes represented by consistent
graphs only, such a process definition is inhibited.



84 A.H. Boode, J.F. Broenink / Asynchronous Readers and Asynchronous Writers

Pi
c ¡x:T
Ñ P 1i , Pj

c ¡x:T
Ñ P 1j

pPiõPjq Ñ ppP 1iõPjq ‘ pPiõP 1jqq

P
c ¡x:T
ùP 1, Qi1

c ¿i x:T
Ñ Q1i1 , ¨ ¨ ¨ , Qij

c ¿i x:T
Ñ Q1ij

PõQi1õ¨ ¨ ¨õQij

c ¡x:T
ùP 1õQi1õ¨ ¨ ¨õ Qij

c ¿i x:T
Ñ P 1õ Q1i1õ¨ ¨ ¨õ Q

1
ij

, Ii “ ti1, ¨ ¨ ¨ , iju

P ù P 1, Qj
c ¿i x:T
Ñ Q1j

P ù P 1
, c ¡x : T R αpùq, pαpùq ¨ pY1, ¨ ¨ ¨ , Yn, Zqq “ H

Qij

c ¿i x:T
Ñ Q1ij , Qik

y
ÑQ1ik

Qij õQik

y
ÑQij õQ

1
ik

, y ‰ c ¿i x : T, ij, ik P Ix, x P t1, ¨ ¨ ¨ , ku

Figure 1. Relational semantics of the extended half-synchronous operator.

2.2. EVRSP of the Extended Half-Synchronous Alphabetised Parallel Operator

As we are taking into account pairs of consistent graphs only, c¿nx : T in one process
without a c¡x : T in any process is inhibited, because the process may end in a deadlock
and the deadlock violates the consistency requirements. But we still have to address
issues like

- a series of identical writes c¡x : T in one process and the related reads c¿nx : T
in another process,

- a series of consecutive identical writes c¡x : T to the same channel by different
processes.

These issues are not inhibited by the semantics of αõβ. As an example, the processes
P1, P2, P3, P123 in Listing 1 are represented by the graph in Figure 3, which contains

consistent graphs G1, G2, G3 leading to G123 “

3
˛

n
i“1
Gi.

P1 = c ¡x : T Ñ SKIP
P2 = c ¡x : T Ñ SKIP
P3 = c ¿1 x : T Ñ c ¿1 x : T Ñ SKIP
P13 = P1 õ P3
P123 = P1 õ P2 õ P3

Listing 1: Two processes writing to the same channel.

A schematic process sketch of the processes given in Listing 1, is given in Figure 2. This
process sketch describes the communication flow of the involved processes and shows
that there is no predefined order in which P1 and P2 communicate with P3. It follows
that the graphs representing these processes must be G1, G2, G

1
13

3 and G123, given in
Figure 3, because G213

˛

nG2 fl G123.

3Because G1 – G2 the choice for G23 leads to the same result.



A.H. Boode, J.F. Broenink / Asynchronous Readers and Asynchronous Writers 85

P1 P2

Channel

P3

Figure 2. Process schema describing the communication flow of the processes P1, P2, P3 (Listing 1).

Therefore it is clear that the graph G123 in Figure 3 represents the behaviour of the
concurrent process P123. But it is not clear what the graph should be that represents
the concurrent process P13 given in Listing 1, because the write action could be related
to the first read action or to the second read action. Therefore there are two choices
for this example given by the graphs G113 and G213 in Figure 3. Following the process
sketch in Figure 2, the graph G113 should be chosen because the first two actions can
be executed directly by the processes that represent these graphs, whereas the process
representing the graph G213 has to wait for the c¡x : T of the process representing the
graph G2.

This problem becomes even worse if we consider the processes given in Listing 2.

P1 = doX1 Ñ c ¡x : T Ñ SKIP
l

doX2 Ñ c ¡x : T Ñ c ¡x : T Ñ SKIP
P2 = doY1 Ñ c ¿1 x : T Ñ SKIP

l

doY2 Ñ c ¿1 x : T Ñ c ¿1 x : T Ñ SKIP
P12 = P1 õ P2

Listing 2: The ambiguity of a writing process and a reading process via the same
channel.

The graph representing the processes of Listing 2 contains a path represented by the
trace doX1 Ñ c ¡x : T Ñ doY2 Ñ c ¿1 x : T Ñ c ¿1 x : T Ñ SKIP (the thick and dotted
arrows in Figure 44), which is obviously wrong. But the dashed and dotted arrows in
Figure 4 represent a trace that has to be possible. The problem lies in the black vertex
in Figure 4, that allows two traces to be possible with a different number of write
actions.

Remark 3. The problem described in Figure 4 also occurs in DVRSP. For this reason,
we redefine DVRSP in a similar fashion as EVRSP in Appendix A.

4For ease of reading the not-relevant labels are removed in Figure 4.



86 A.H. Boode, J.F. Broenink / Asynchronous Readers and Asynchronous Writers

c¡x:T

c¡x:T

c¡x:T

c
¡x

:T

c
¡x

:T

c
¡x

:T

c
¡x

:T

c
¿ 1

x
:T

c
¿ 1

x
:T

c
¿ 1

x
:T

c
¿ 1

x
:T

c
¿ 1

x
:T

c
¿ 1

x
:T

G1

G2

G3

G123

c¡x:T

c
¡x

:T

c
¿ 1

x
:T

c
¿ 1

x
:T

c
¿ 1

x
:T

c
¡x

:T

c
¿ 1

x
:T

G1
13 G2

13

Figure 3. Graphs G1, G2, G3, G123 “

3
˛

n
i“1
Gi, and G113 “ G1

˛

nG3 or G213 “ G1
˛

nG3 representing pro-
cesses P1, P2, P3, P123 and P13 (Listing 1).

Because the graphs G1 and G2 are consistent according to the definition of con-
sistency under VRSP, we have to adjust that definition incorporating the number of
writes and reads in each path from the source to the sink of a graph.

The number of occurrences of a write action c¡x : T in the path Pi, is called the
path write cardinality of a path with respect to c¡x : T , denoted as Pipc¡x : T q .

The number of occurrences of a read action c¿nx : T in the path Pi, is called the
path read cardinality of a path with respect to c¿nx : T , denoted as Pipc¿nx : T q.

Graphs Gi and Gj are consistent, denoted as Gi „ Gj, if and only if the following
three requirements hold:

1. ρGi
pGi nGjq – Gj and ρGj

pGi nGjq – Gi.
2. S 1GinGj

“ S 1Gi
ˆ S 1Gj

and S2GinGj
“ S2Gi

ˆ S2Gj
.

3. Whenever Pm, Pn are paths from the source to the sink of Gi pGj, Gi

˛

nGjq,
Pmpc¡x:T) = Pnpc¡x : T q and Pmpc¿kx:T) = Pnpc¿kx : T q.

Obviously the graphs representing the processes in Listing 2 are not consistent.
But the processes in Listing 1 are consistent and therefore EVRSP has to determine
the order of the read actions with respect to the write actions.

For EVRSP whenever two processes contain identical ¡-actions, these actions are
treated asynchronously. For indexed ¿-actions, the index makes the ¿-actions different
and therefore EVRSP handles these actions identically to DVRSP. Hence, VRSP must
be extended to handle the ¡-actions for the graphs representing different processes only.

The Extended Dot Vertex-Removing Synchronised Product (EVRSP) of Gi and
Gj, Gi

˛

nGj is constructed in two stages, where the definition of the intermediate stage
of DVRSP is identical to the intermediate stage of EVRSP, Gi

‚

bGj “ Gi

˛

bGj, with



A.H. Boode, J.F. Broenink / Asynchronous Readers and Asynchronous Writers 87

doX2 c¡x : T c¡x : T

doX1 c¡x : T

d
o

Y
2

c
¿ 1

x
:

T

c
¿ !

x
:

T

doY 1

c
¿ 1

x
:

T

doX2 c¡x : T c¡x : T

doX1 c¡x : T

d
o

Y
2

c
¿ 1

x
:

T

c
¿ !

x
:

T

doY 1

c
¿ 1

x
:

T
Figure 4. Graphs G1, G2 and G12 “

2
˛

n
i“1
Gi representing processes P1, P2 and P12 of Listing 2.

- vxwx P Ai,j is an arc with operator ¿n P lpvxwxq “ lr,
- Pn is a path from the source of Gi

˛

bGj through wx,

- Pm is the path from the source to the sink of Gi

˛

bGj.

Again, we modify the Cartesian product GilGj according to the existence of synchro-
nising arcs, but now with the extra constraint that labels containing a ¡ character are
asynchronous i.e., pairs of arcs with the same label pair without a ¡ character, with one
arc in Gi and one arc in Gj.

The first step in this modification consists of ignoring the synchronising arcs while
forming arcs in the product, but additionally combining pairs of synchronising arcs of
Gi and Gj into one arc, yielding the intermediate product which we denote by Gi

˛

bGj.
To be more precise, Gi

˛

bGj is obtained from GilGj by first ignoring all except for
the so-called asynchronous arcs, i.e., by only maintaining all arcs a P Ai,j for which
µpaq “ ppvi, vjq, pwi, wjqq, whenever vj “ wj and λpaq R Lj or vj “ wj and λpaq P Lj
and ¡ P lpaq, as well as all arcs a P Ai,j for which µpaq “ ppvi, vjq, pwi, wjqq, whenever
vi “ wi and λpaq R Li or vi “ wi and λpaq P Li and ¡ P lpaq. This set of arcs is denoted
by Aai,j. Additionally, we add arcs that replace synchronising pairs ai P Ai and aj P Aj
with λpaiq “ λpajq and ¡ R lpajq. If µpaiq “ pvi, wiq and µpajq “ pvj, wjq, such a pair is
replaced by an arc ai,j with µpai,jq “ ppvi, vjq, pwi, wjqq and λpai,jq “ λpaiq and ¡ R lpaiq.
The set of these so-called synchronous arcs of Gi

˛

bGj is denoted by Asi,j.
The second step in this modification consists of removing (from Gi

˛

bGj) the vertices
pvi, vjq P Vi,j and the arcs a with tailpaq “ pvi, vjq, whenever pvi, vjq has level ą 0 in
GilGj and pvi, vjq has level 0 in Gi

˛

bGj and all arcs vxwx P Ai,j for which there exists



88 A.H. Boode, J.F. Broenink / Asynchronous Readers and Asynchronous Writers

a related arc vywy P Ai,j, with operator ¿n P lpvxwxq for which there does not exist
at least n related arcs vywy with operator ¡ P lpvywyq with vywy ă vxwx. This is then
repeated in the newly obtained graph, and so on, until there are no more vertices at
level 0 in the current graph that are at level ą 0 in GilGj.

The resulting graph is called the Vertex Removing Synchronised Product (VRSP)
of Gi and Gj, denoted as Gi

˛

bGj.

For k ě 3, the VRSP G1
˛

bG2
˛

b ¨ ¨ ¨
˛

bGk is defined recursively as ppG1
˛

bG2q
˛

b ¨ ¨ ¨ q

˛

bGk.

Remark 4. Because arcs viwi with ¿ P lpviwiq are indexed, the arcs viwi with differ-
ent indexes represent asynchronous actions, because they have different labels due to
different indexes.

Remark 5. The EVRSP allows two or more processes to write a value to the same
channel.

In Figure 5 we give an example that shows the stages of the EVRSP. Figure 5.a

u1 u2

u3 u4

u5 u6

c¡x:T

c¡x:T

c¡x:T

c
¿ 1

x
:T

c
¿ 1

x
:T

c
¿ 1

x
:T

c
¿ 1

x
:T

u1 u2

u3 u4

u5 u6

u1 u2

u3 u4

u5 u6

c¡x:T

c¡x:T

c¡x:T

c
¿ 1

x
:T

c
¿ 1

x
:T

u1 u2

u3 u4

u5 u6

u1 u2

u3 u4

u5 u6

c¡x:T

c¡x:T

c¡x:T

c
¿ 1

x
:T

c
¿ 1

x
:T

u1 u2

u3 u4

u5 u6

u1 u2

u4

u6

c¡x:T

c
¿ 1

x
:T

c
¿ 1

x
:T

u1 u2

u4

u6

paq pbq pcq pdq

Figure 5. EVRSP from G1lG3 paq, two stages of G1
˛

bG3 pb, cq, to G1
˛

nG3 pdq.

shows the Cartesian Product of the graphs G1, G3 given in Figure 3. The dotted arcs in
Figure 5.b are selected for removal. For the arcs u1u3 and u3u5 both with label c¿1x :T ,
there exists a related arc u1u2 with label c¡x :T . Then, because P1 “ u1u2, P2 “ u1 ¨ ¨ ¨u6,
P1pc¿1x : T q “ 1 ą P1pc¡x : T q “ 0 and P1pc¿1x : T q “ 1 ď P2pc¡x : T q “ 2, u1u3
and u3u5 are removed in Figure 5.c. The last stage of EVRSP removes u3, u5 and the
arcs that have u3, u5 as a tail because d´G1lG3pu3q “ d´G1lG3pu5q “ 1 and d´

G1
˛
bG3
pu3q “

d´
G1

˛
bG3
pu5q “ 0, which leads to Figure 5.d.

3. Case Study of the Extended Half-Synchronous Alphabetised Parallel Operator

To show that the extended operators are useful, we consider a system that runs at
1 kHz, so with a period of 1 ms. The hardware of the system consists of one processor,
two controllers, a FPGA, two sensors and two actuators.



A.H. Boode, J.F. Broenink / Asynchronous Readers and Asynchronous Writers 89

A part of the system must be able to perform a controlled emergency stop. This
part, running on the processor, consists of a Controlled Emergency Stop (CES) thread,
two Application threads (A1, A2) and two Controller threads (C1, C2).

Assume that the total amount of data used by these threads does not fit in the L2
cache, therefore every context switch leads to a cache flush. This increases the context-
switch time [14]. According to [14] due to L2 cache flushes the context-switch time can
take up to 1.5 ms for the hardware and software under consideration. In average [14]
measured a context-switch time of 3.8 µs.

Taking into account the measured timing for a context switch, we assume that the
worst-case context-switch time for our example is 20 µs. Because the CES case study
describes a fictive PHRCS, we use estimated guesses for the timing of all actions of the
processes, the controllers, the FPGA and the devices.

Each Application process controls the behaviour of one Controller thread. Each
Controller process communicates, for example, via memory mapped I/O, with a con-
troller responsible for the behaviour of a sensor and an actuator.

To calculate the values that drive the actuators, the Controller threads interact
with an Algorithmic Software process (Alg.Soft.). The Algorithmic Software process
calculates, for example, the Fast Fourier Transform (FFT) of the data by communicat-
ing via memory mapped I/O to an FPGA. The FPGA performs a FFT on the data.
This architecture is shown in Figure 6.

Furthermore, assume that

- the controller threads and the algorithmic software thread have priority over the
application threads,

- the CES and Application threads have equal priority,
- the Controller threads have equal priority,
- the actions of the CES thread, the Application threads and the Controller

threads take 20 µs to execute, this includes context switches, state changes in
the threads and the like,

- the Algorithmic Software takes 130 µs to calculate the FFT on each data item,
which includes the calculation time of the FPGA. It buffers commands from the
Controller threads.

- the Controller takes 80 µs to read the sensor value and 160 µs to write the
actuator value to the actuator.

This leads to a simple CSP specification given in Listing 3 using the extended half-
synchronous operator, the ¡-actions and the indexed ¿i-actions, where the alphabet of
CES is CES, the alphabet of Ai is Ai and the alphabet of Cj is Cj.

Remark 6. The c2¡stop of A1 and A2 are asynchronous writes. Because both A1 and A2
perform this action and the C1 and C2 read this action only once, one of the writes is
not read. This is an example of a writing without reading, which is intended, as the C1
and C2 have to start stopping as soon as possible.

Remark 7. In [5] we showed that writing without reading is pointless, because there could
be only one writer for several readers. For the extended half-synchronous operator and
asynchronous writers with at least one reading action, the Controlled Emergency Stop
example shows a smaller model and therefore less execution time, because no buffers
are necessary.

Remark 8. Because the reads have different indexes, the C1, C2 do not delay one an-
other.



90 A.H. Boode, J.F. Broenink / Asynchronous Readers and Asynchronous Writers

A1

CES

Channel
c1

A2

Channel
c2

C1 C2

C’1 C’2

Alg.
Soft.

FPGA

AC’1S’1 AC’2 S’2

µ-processor

Dedicated Hardware

Memory
Mapped

I/O

Figure 6. Communication Flow of the Controlled Emergency Stop.

Remark 9. The c1-channel is unidirectional because CES only writes to A1, A2. The
c2-channel is bidirectional because A1, A2 write to C1, C2 and vice versa.

The graphs representing the processes in Listing 3 are given in Figure 7. The
behaviour not modelled in Listing 3, the ¨ ¨ ¨ , are left out of Figure 7.

Remark 10. It is up to the process software to handle the state transitions. This includes
the handling of guarded actions, which are labels in the graph.

The processes C1, C2 in Listing 3 are synchronising over the c2¿1boot-action and
waitForNextPeriod-action. Only the waitForNextPeriod-action occurs in all longest
paths. But still the worst-case performance is improved by the execution time of
one waitForNextPeriod-action, together with two context switches. Therefore for the
EVRSP of C1, C2, C1

˛

nC2, there is some gain. The memory occupancy is not quadratic
with respect to the number of vertices of C1 and C2, because of the order that the
¡-actions and ¿-actions impose on the product. For A1, A2, CES the gain is better,
because both the ack-action and waitForNextPeriod-action are on all longest paths.
For example, in Figure 8 the longest path of A1

˛

nA2 contains seven arcs, whereas the
longest path of A1 plus the longest path of A2 is equal to 10.



A.H. Boode, J.F. Broenink / Asynchronous Readers and Asynchronous Writers 91

CES = readStatus.sÑ ps ““ stop; c1¡stopÑ ack Ñ writeStatus.bootÑ CES1
l

s ““ boot; c1¡bootÑ ack Ñ writeStatus.initÑ CES1q

l

¨ ¨ ¨

s ““ ¨ ¨ ¨ Ñ CES1 )
CES1 = waitForNextPeriodÑ SKIP

A1 = c1¿1stopÑ c2¡stopÑ c2¿1stopAck1 Ñ A11
l

c1¿1bootÑ c2¡bootÑ c2¿1bootAck1 Ñ A11
l

¨ ¨ ¨

A11 = ack Ñ waitForNextPeriodÑ SKIP

A2 = c1¿2stopÑ c2¡stopÑ c2¿2stopAck2 Ñ A21
l

c1¿1bootÑ c2¡bootÑ c2¿1bootAck2 Ñ A21
l

¨ ¨ ¨

A21 = ack Ñ waitForNextPeriodÑ SKIP

C1 = c2¿1stopÑ readSensor.s1 Ñ writeAlgSoft.s1 Ñ readAlgSoft.v1 Ñ

writeAC1.v1 Ñ readAckAC1 Ñ c2¡stopAck1 Ñ C11
l

c2¿1bootÑ resetSensorS1 Ñ writeInitAC1 Ñ readAckAC1 Ñ c2¡bootAck1
Ñ C11
l

¨ ¨ ¨

C11 = waitForNextPeriodÑ SKIP

C2 = c2¿2stopÑ readSensor.s2 Ñ writeAlgSoft.s2 Ñ readAlgSoft.v2 Ñ

writeAC2.v2 Ñ readAckAC2 Ñ c2¡stopAck2 Ñ C21
l

c2¿1bootÑ resetSensorS2 Ñ writeInitAC2 Ñ readAckAC2 Ñ c2¡bootAck2
Ñ C21
l

¨ ¨ ¨

C21 = waitForNextPeriodÑ SKIP

System = CES
CES

õ
A1

Ť

A2
Ť

C1
Ť

C2
ppA1 A1

õ
A2
A2qA1

Ť

A2
õ

C1
Ť

C2
pC1 C1

õ
C2
C2qq

Listing 3: The Controlled Emergency Stop Process Specification.

This reduces the overhead of synchronisation considerably. Also the memory occupancy
with respect to the number of vertices and arcs is 26 vertices and 39 arcs for A1

˛

nA2
and 16 vertices and 16 arcs (two times 8 vertices and 8 arcs) for A1 and A2. The poly-
nomial space complexity in this case is arguably reasonable, considering that the space
complexity for the Cartesian product without synchronisation would be exponential.



92 A.H. Boode, J.F. Broenink / Asynchronous Readers and Asynchronous Writers

CES

readStatus.s
s==stop;c1 ¡stop ack write

Status.bo
ot

waitForNextPeriods==boot;c1¡bo
ot ack writeStatus.init

A1

c1¿1stop
c2¡stop c2¿1sto

pAck1

ack waitForNextPeriod
c1¿1boot

c2¡boot c2¿1bootAck1

A2

c1¿2stop
c2¡stop c2¿2sto

pAck2

ack waitForNextPeriod
c1¿1boot

c2¡boot c2¿1bootAck2

C1

c2¿1stop
readSensor.s1writeAlgSoft.s1readAlgSoft.v1 writeAC1.v1 readAckAC1c2¡st

opAck1
waitForNextPeriod

c2¿1boot
resetSensorS1 writeInitAC1 readAckAC1

c2¡bootAck1

C2

c2¿2stop
readSensor.s2writeAlgSoft.s2readAlgSoft.v2 writeAC2.v2 readAckAC2 c2¡st

opAck2
waitForNextPeriod

c2¿1boot
resetSensorS2 writeInitAC2 readAckAC2

c2¡bootAck2

Figure 7. Graphs CES, A1,A2, C1 and C2.

All other products are left out because the number of vertices these graphs contain
makes the figures unreadable.

One trace, due to a stop-action shown in Listing 3, is of particular interest because
it shows the longest path in the combined graph representing the System process for
a stop-action and a boot-action.

readStatus.s, 20 Ñ c1¡stop, 20 Ñ c1¿1stop, 20 Ñ c1¿2stop, 20 Ñ c2¡stop, 20 Ñ c2¿1stop,
20 Ñ readSensor.s1, 80 Ñ c2¿2stop, 20 Ñ readSensor.s2, 80 Ñ c2¡stop, 20 Ñ writeAlg
Soft.s1, 130ÑwriteAlgSoft.s2, 130Ñ readAlgSoft.v1, 20ÑwriteAC1.v1, 160Ñ read
AckAC1, 20 Ñ c2¡stopAck1, 20 Ñ c2¿1stopAck1, 20 Ñ readAlgSoft.v2, 20 Ñ writeAC2
.v2, 160 Ñ readAckAC2, 20 Ñ c2¡stopAck2, 20 Ñ c2¿1stopAck2, 20 Ñ ack, 605

Ñ writeStatus.boot, 20 Ñ waitForNextPeriod, 100 6Ñ SKIP

Listing 4: Trace of the CES.

The worst-case execution time is the summation over the time part of the labels. To
stop both the actuators in our example, this adds up to 1240 µs. Because the controllers

5The processes CES,A1 and A2 synchronise over the ack-action. Therefore the execution time adds
up to 60 µs.

6The processes CES,A1, A2, C1 and C2 synchronise over the waitForNextPeriod-action. Therefore
the execution time adds up to 100 µs.



A.H. Boode, J.F. Broenink / Asynchronous Readers and Asynchronous Writers 93

A1
˛

nA2

c1¿1boot

c 1
¿ 1

st
op

c1¿2stop

c 1
¿ 1

st
op

c2¡stop2

c 1
¿ 1

st
op

c2¿1stopAck2

c 1
¿ 1

st
op

c 2
¡s

to
p 1

c 2
¿ 1

st
op

A
ck

1
ac

k

waitForNextPeriod

c 2
¡s

to
p 1

c2¿1stopAck2

c 2
¿ 1

st
op

A
ck

1

c2¿1stopAck2

c2¿1stopAck2

c 2
¡s

to
p 1

c2¡stop2

c 2
¿ 1

st
op

A
ck

1

c2¡stop2

c2¡stop2

c 2
¡s

to
p 1

c1¿2stop

c 2
¿ 1

st
op

A
ck

1

c1¿2stop

c1¿2stop

c2¡boot1

c 2
¡b

oo
t 2

c2¡boot1c 2
¿ 1

bo
ot

A
ck

2

c2¡boot1

c2¿1bootAck1

c2¿1bootAck1c 2
¿ 1

bo
ot

A
ck

2

c2¿1bootAck2

c2¿1bootAck1

c 2
¡b

oo
t 2

c 2
¡b

oo
t 2

A1
˛

nA2

Figure 8. Graph A1
˛

nA2.

for the sensors and actuators, and the FPGA are running partially in parallel, the
execution time is 940 µs.

The shortest run time of the controllers and the FPGA is 260 µs. This happens
when the controllers and the FPGA are running in parallel at the same time. Therefore
the best case execution time is 880 µs.

Although there is no deadline-miss in this fictive example for the stop part of the
CES, when the model would support the writing to and reading from buffers, the best
case execution time would increase. For example, adding three buffers with each two
actions to perform, there is an extra 120 µs execution time. This leads to an execution
time in the best case of 1000 µs. Then a deadline-miss seems inevitable.

In Figure 9 the time line of a possible trace of the stop part of the CES is given.
Each gray block represents the time that the thread is executing. The label of each
hardware related action contains the overall time. If applicable, this includes the time
the hardware needs to reply. The dashed arrows represent a call to the hardware and
the reply from the hardware.

As Figure 9 shows, the stop part of the CES takes 940 µs to execute. This
can be improved by using the EVRSP of the graphs, SynchronisedSystem “

CES
˛

nA1
˛

nA2
˛

nC1
˛

nC2. The actions that synchronise are waitForNextPeriod and
ack, therefore the processor needs at most 820 µs to execute the thread represented by



94 A.H. Boode, J.F. Broenink / Asynchronous Readers and Asynchronous Writers

the graph SynchronisedSystem.

CES

A1

A2

C1

C2

C 11

C 12

FPGA

0 100 200 300 400 500 600 700 800 900 1000

readStatus.s, 20
c1¡stop, 20

c1¿1stop, 20

c1¿2stop, 20

c2¡stop, 20

c2¿1stop, 20
readSensor.s1, 80

c2¿2stop, 20
readSensor.s2, 80

c2¡stop, 20

writeAlgSoft.s1, 130

writeAlgSoft.s2, 130

readAlgSoft.v1, 20
writeAC1.v1, 160

readAckAC1, 20

c2¿1stopAck1, 20

readAlgSoft.v2, 20
writeAC2.v2, 160

readAckAC2, 20

c2¿1stopAck2, 20

c2¡stopAck1, 20

c2¡stopAck2, 20

ack, 20

ack, 20

ack, 20

writeStatus.boot, 20
waitForNextPeriod, 20

waitForNextPeriod, 20

waitForNextPeriod, 20

waitForNextPeriod, 20

waitForNextPeriod, 20

Figure 9. Time line of the stop-part of the Controlled Emergency Stop.

The improvement with respect to timeliness can be easily seen when we model
the CES using standard CSP as shown in Figure 10, although this example gives an
improvement of only 50µs. This is because we do not have to model buffers as well
due to the simplicity of the example. The c2.stop, 20 actions of A1, A2, C1 and C2 are
executed atomically, therefore it is immaterial which of the processes A1, A2, C1 and
C2 executes the action c2.stop, 20 first. In fact the priority inheritance protocol [15] is
implemented for the processes A1, A2 and C1, C2 for the action c2.stop, 20.

4. Discussion and Conclusions

In this paper we have discussed an extension of the
X
ó

Y
operator, the new

X
õ

Y

operator and the ¡-action together with the new ¿
i
-action, that delay the reading of a

process from a buffer. The
X
õ

Y
operator together with the ¡-action and ¿

i
-action are

an abstraction of a buffer, therefore the designer does not have to model the buffer as
well. In this manner the writing process does not have to wait for the reading process
to synchronise. There are five advantages of the

X
õ

Y
operator in combination with the

EVRSP with respect to standard CSP:
- it eases the design by taking away the burden of separating the writing actions

and reading actions in time, which eliminates the necessity of a buffer,
- it gives maximum flexibility by indexing the reading actions,
- it allows multiple write actions to the same channel,



A.H. Boode, J.F. Broenink / Asynchronous Readers and Asynchronous Writers 95

CES

A1

A2

C1

C2

C 11

C 12

FPGA

0 100 200 300 400 500 600 700 800 900 1000

readStatus.s, 20
c1.stop, 20

c1.stop, 20

c1.stop, 20

c2.stop, 20

c2.stop, 20
readSensor.s1, 80

c2.stop, 20
readSensor.s2, 80

c2.stop, 20

writeAlgSoft.s1, 130

writeAlgSoft.s2, 130

readAlgSoft.v1, 20
writeAC1.v1, 160

readAckAC1, 20

c2.stopAck1, 20

readAlgSoft.v2, 20
writeAC2.v2, 160

readAckAC2, 20

c2.stopAck2, 20

c2.stopAck1, 20

c2.stopAck2, 20

ack, 20

ack, 20

ack, 20

writeStatus.boot, 20
waitForNextPeriod, 20

waitForNextPeriod, 20

waitForNextPeriod, 20

waitForNextPeriod, 20

waitForNextPeriod, 20

Figure 10. Time line of the stop-part of the Controlled Emergency Stop without asynchronous readers
and writers.

- the length of the longest path is reduced, if the writing actions and reading
actions are part of all the longest paths of the participating graphs,

- in a distributed computing system, for example, a processor-coprocessor combi-
nation, the waiting time of the processor or coprocessor can be reduced.

The first advantage makes the design less error prone and therefore the design
phase needs less time. The absence of a buffer leads to less actions that have to be
performed by the involved threads and therefore to a reduction of the utilisation of the
processor,

Furthermore, the overall design cycle gains because the improved description on
design level leads to less effort for the implementation and less effort for testing, achieved
by the second and third advantage.

The fourth advantage is due to EVRSP only and leads to an application that needs
less execution time,

The fifth advantage is due to a reduction of the end-to-end execution time during
one period and therefore leads to an application for which the possibility of a deadline-
miss is reduced.

Of course there is also a drawback, when using EVRSP. The designer has to figure
out whether the disconnection of reads and writes leads to a greater reduction of the
end-to-end execution time in one period than using synchronous writing actions and
reading actions.



96 A.H. Boode, J.F. Broenink / Asynchronous Readers and Asynchronous Writers

5. Future Work

With this contribution, together with our contributions [1,2,3,5], we have dealt with
the graph theoretical aspects of improving the performance of PHRCSs by reduction
of the number of context switches and reducing the end-to-end execution time.

But several issues in our design cycle have not been addressed yet. With respect to
the system architecture we have described in [2] the transformation functions that trans-
form a graph into a algebraic specification, but they are not defined yet. Furthermore,
although partially implemented by [16], there is no fully operational tool-chain that
automatically, based on the process algebraic specification, produces software which
can be compiled and built, thereby producing a set of Periodic Hard Real-Time Control
Processes (PHRCPs). Also tooling that supports the choice for synchronous writing
actions and reading actions versus EVRSP has to be developed.

So far we have used a fixed period of 1 ms. Allowing the PHRCP to have different
periods and taking into account the priority of processes will lead to a not explored
area of EVRSP. All these issues will introduce scheduling problems that have to be
solved by an adapted version of EVRSP.

The end result to go for could be allowing cyclic and non-deterministic process
specifications and study the impact on EVRSP.

Acknowledgement

The authors would like to express their gratitude to the anonymous reviewers for the
very useful suggestions and comments. The research of the first author has been funded
by the InHolland University of Applied Science, Alkmaar, The Netherlands.

References

[1] A. H. Boode, H. J. Broersma, and J. F. Broenink. Improving the performance of periodic real-
time processes: a graph-theoretical approach. In Communicating Process Architectures 2013,
Edinburgh, UK, 35th WoTUG conference on concurrent and parallel programming, pages 57–79,
Bicester, August 2013. Open Channel Publishing Ltd.

[2] A. H. Boode and J. F. Broenink. Performance of periodic real-time processes: a vertex-removing
synchronised graph product. In Communicating Process Architectures 2014, Oxford, UK, 36th
WoTUG conference on concurrent and parallel programming, pages 119–138, Bicester, August
2014. Open Channel Publishing Ltd.

[3] Antoon H. Boode, Hajo Broersma, and Jan F. Broenink. On a directed tree problem motivated
by a newly introduced graph product. GTA Research Group, Univ. Newcastle, Indonesian Com-
binatorics Society and ITB, 3, no 2 (2015): Electronic Journal of Graph Theory and Applications,
2015.

[4] Steve Schneider. Concurrent and Real Time Systems: The CSP Approach, chapter 1, page 1. John
Wiley Sons, Inc., New York, NY, USA, 1st edition, 1999.

[5] A. H. Boode and J. F. Broenink. Asynchronous Readers and Writers. In Communicating Process
Architectures 2016, Copenhagen, Denmark, 38th WoTUG conference on concurrent and parallel
programming, pages 125–137, Bicester, August 2016. Open Channel Publishing Ltd.

[6] Stefan Gruner, Derrick G. Kourie, Markus Roggenbach, Tinus Strauss, and Bruce W. Watson.
A New CSP Operator for Optional Parallelism. In CSSE (2), pages 788–791. IEEE Computer
Society, 2008. 978-0-7695-3336-0.

[7] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21:666–677, aug 1978.
[8] Peter H. Welch and Jeremy M. R. Martin. A CSP model for java multithreading. In International

Symposium on Software Engineering for Parallel and Distributed Systems, PDSE 2000, Limerick,
Ireland, June 10-11, 2000, pages 114–122, 2000.

[9] J.A. Bondy and U.S.R. Murty. Graph Theory. Springer, Berlin, 2008.



A.H. Boode, J.F. Broenink / Asynchronous Readers and Asynchronous Writers 97

[10] Richard Hammack, Wilfried Imrich, and Sandi Klavžar. Handbook of product graphs. Discrete
Mathematics and its Applications (Boca Raton). CRC Press, Boca Raton, FL, second edition,
2011. With a foreword by Peter Winkler.

[11] P. Hell and J. Nešetřil. Graphs and Homomorphisms. Oxford Lecture Series in Mathematics and
Its Applications. OUP Oxford, 2004.

[12] R. Milner. Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1989.

[13] A. W. Roscoe. Understanding Concurrent Systems. Springer, 2010.
[14] Chuanpeng Li, Chen Ding, and Kai Shen. Quantifying the cost of context switch. In Proceedings

of the 2007 workshop on Experimental computer science, ExpCS ’07, New York, NY, USA, 2007.
ACM.

[15] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An approach to real-time
synchronization. IEEE Trans. Comput., 39(9):1175–1185, September 1990.

[16] M.P. de Boer. Implementation of Periodic Hard Real-Time Processes, Bachelor Thesis. University
of Twente, June 2016.

Appendix

A. Redefinition of the Dot Vertex-Removing Synchronised Product (DVRSP)

The Dot Vertex-Removing Synchronised Product (DVRSP) of Gi and Gj, Gi

‚

nGj is a
modification of the Cartesian product GilGj according to the existence of synchronis-
ing arcs, but now with two extra constraints that labels of the type c¡x : T are allowed
in only one process i.e., pairs of arcs with the same label pair c¡x : T , with one arc in
Gi and one arc in Gj are inhibited, and that labels of the type c¡x : T and c¿x : T are
asynchronous i.e., pairs of arcs with one arc with the label c¡x : T in Gi and the other
arc with the label c¿x : T in Gj are asynchronous.

Assume that a P Ai,j, µpaq “ ppvx, vyq, pwx, wyqq is an arc with ¿ P lpaq “ lr,
Pn is a path from the source of Gi

‚

bGj through pwx, wyq,

Pm is the path from the source to the sink of Gi

‚

bGj.

The first step in this modification consists of ignoring the synchronising arcs while
forming arcs in the product, but additionally combining pairs of synchronising arcs of
Gi and Gj into one arc, yielding the intermediate product which we denote by Gi

‚

bGj.
To be more precise, Gi

‚

bGj is obtained from GilGj by first ignoring all except for
the so-called asynchronous arcs, i.e., by only maintaining all arcs a P Ai,j for which
µpaq “ ppvi, vjq, pwi, wjqq, whenever vj “ wj and λpaq R Lj, as well as all arcs a P Ai,j
for which µpaq “ ppvi, vjq, pwi, wjqq, whenever vi “ wi and λpaq R Li.

This set of arcs is denoted by Aai,j. Additionally, we add arcs that replace syn-
chronising pairs ai P Ai and aj P Aj with λpaiq “ λpajq and ¡ R lpaiq plpajqq. If
µpaiq “ pvi, wiq and µpajq “ pvj, wjq, such a pair is replaced by an arc ai,j with
µpai,jq “ ppvi, vjq, pwi, wjqq and λpai,jq “ λpaiq and ¡ R lpaiq. The set of these so-called
synchronous arcs of Gi

‚

bGj is denoted by Asi,j.
The second step in this modification consists of removing (from Gi

‚

bGj) the vertices
pvi, vjq P Vi,j and the arcs a with tailpaq “ pvi, vjq, whenever pvi, vjq has level ą 0
in GilGj and pvi, vjq has level 0 in Gi

‚

bGj, and all arcs ax1,y1 P Ai,j, µpax1,y1q “

ppvx1 , vy1q, pwx1 , wy1qq with lpax1,y1q “ lr for which there exists a related arc ax2,y2 P

Ai,j, µpax2,y2q “ ppvx2 , vy2q, pwx2 , wy2qq with label lw, where Pnplrq ą Pnplwq and Pnplrq ď
Pmplwq. This is then repeated in the newly obtained graph, and so on, until there are
no more vertices at level 0 in the current graph that are at level ą 0 in GilGj.



98 A.H. Boode, J.F. Broenink / Asynchronous Readers and Asynchronous Writers

The resulting graph is called the Dot Vertex Removing Synchronised Product
(DVRSP) of Gi and Gj, denoted as Gi

‚

bGj. For k ě 3, the VRSP G1
‚

bG2
‚

b ¨ ¨ ¨
‚

bGk

is defined recursively as ppG1
‚

bG2q
‚

b ¨ ¨ ¨ q
‚

bGk.

Remark 11. The definition of DVRSP inhibits identical write actions to the same chan-

nel, i.e.
Qi

c ¡x:T
Ñ Q1i, Qj

c ¡x:T
Ñ Q1j

SKIP
, i ‰ j is ensured.


