
HANW@TTS Interface

Project report

Internship company, Department:

Sustainable Electrical Energy Centre of Expertise (SEECE),
Measurement and Control Engineering Department

Faculty, year:
HAN University of Applied Sciences,
Electronics Engineering Department,
Semester 5

Student names Student number

Cristian Batog 612780

Clients and people involved Contact information

Trung Nguyen (instructor, contact person) +31 655240818, NguyenXuan.Trung@han.nl

Ballard Asare Bediako (project client) +31 655240904, Ballard.AsareBediako@han.nl
Johan Korten (supervising teacher) +31 6 14239260, johan.korten@han.nl

mailto:NguyenXuan.Trung@han.nl
mailto:Ballard.AsareBediako@han.nl
mailto:johan.korten@han.nl

2

Place and Date Published:
Arnhem, January 21st, 2021

Version History

Version: 1.1

Number Date Main reason of change of (sub-)Version number

1.1 January 25th, 2021 Updated after GUI timezone fix

1.0 January 21st, 2021 Draft

3

Summary

The 2021 “HANW@TTS interface” internship project was executed by a third-year student from the
Electronics Engineering Department of HAN University of Applied Sciences. One company supervisor and
one supervising teacher guide the student during the internship.

The objective of this project can be specified in one sentence - “Improve the functionality and reliability
of the SOPRA microgrid prototype and establish a connection and interface to the simulation table”.
These were the goals set for the project. The main focus was to improve the connection between the
subsystems of the SOPRA microgrid and the user interface for interacting with it, leaving out the
establishment of the new common interface between the microgrid and the “Smart Grid” simulation
table for the end. This last task was not accomplished because of difficulties reportedly encountered by
the other team involved while overhauling the simulation table and quarantine measures that impeded
physical testing. Still, microgrid-related software was heavily renovated, and many changes were made
to make it more reliable and self-sustaining, and to give users access to more data and interactive
features through 2 new websites.

During the development process, a lot of time was spent on deconstructing the old software that lacked
documentation, updating, simplifying and improving it. An iterative approach based on Rapid
prototyping and Rapid Application Development were used to incrementally change the structure,
content of the messages and the parsing process used by the 2 controllers to communicate wirelessly.
Preliminary versions and testing were done on test boards on a local network before rolling out changes
to the real network.

Even though it was challenging to learn to program GUIs in JavaScript and to understand all the details
of how the subsystems work in the beginning, the result is quite robust in terms of error handling and
added features in comparison with the start prototype. Much more functionality was implemented to
the SOPRA microgrid network in contrast to the first anticipated design in the plan of action, partly
because of the delayed development of the simulation table.

Of course, as always, there is room for improvement, which has been summarized in the Issues and
Unfinished Tasks part of this report. The team has provided a more reliable and user-friendly product
that can only be improved from here on out. In short, besides the connection to the simulation table,
the suggested improvements are to: block EV chargers from starting a charge without a valid RFID (- the
Olimex controllers do not listen to these signals from the Photons), add a car registering page for users
on the website, and move the MQTT clients to the prepared local secured broker.

4

Table of Contents

Summary .. 3

Table of Contents ... 4

Introduction ... 5

Background .. 5

Analysis .. 7

Problem statement .. 7

Assignment .. 7

Preconditions ... 8

Functional requirements ... 8

Technical Requirements .. 8

Comments regarding the requirements .. 9

Working method: ... 9

Design .. 11

Functional design ... 11

Technical design ... 15

Realisation.. 25

Conclusion and recommendations .. 31

Appendix 1 ... 32

5

Introduction
This report describes the system description, subsystems’ architecture, realisation stage, tests and

conclusions for the internship on the project “HANw@TTS interface” and gives details for why the

results turned out as can be seen. The appendices include tutorials to help new users and developers

become familiar with the system faster.

The Measurement and Control Engineering Department contributes to a good balance between energy

demand and energy supply. The research group focuses on Smart Grids and Energy Systems in the Built

Environment.

The research group responds to current developments and international agreements, such as the Paris

Agreement. In 2016, government leaders agreed that global warming should be limited to keep the

increase in global average temperature to well below 2 °C above pre-industrial levels; and to limit the

increase to 1.5 °C. It is no longer self-evident that energy will always be available and at all desired

locations. That is why the research group formulated the following goal: "Maintaining the balance

between energy supply and demand, both in place and in time."

Background
The project is being carried out for the Technology and Society Knowledge Centre of HAN.

The organization comprises 10 research groups and 2 associate research groups which conduct applied

research and thereby develop knowledge and instruments that contribute to technological

developments in professional practice and education. It develops and shares knowledge about

renewable energy, in particular electrical energy. The common thread in the research is decentralized

generation, storage and electrical energy networks.

HANW@TTS, established in 2019, is run as part of the works of the Measurement and Control

Technology Department of the Centre. The contact person for this project is Xuan Trung Nguyen, a

researcher at this department.

The aim of the whole project is to create a unified testing and research environment with a user-friendly

interface for the use of students and researchers to develop and validate their own power grid

simulations on a real setup. Hence, to link the existing system for real-time low voltage interactive

simulations, called the “Smart Grid table”, to the practical SOPRA microgrid composed of solar panels

connected to a battery system, the distribution grid, and to electric car chargers. The data collected

from all the elements of the microgrid will be gathered and stored for analysis and used in the Smart

Grid table for further investigations.

In 2019, a student group started to implement the communication in the Modbus and the MQTT

networks. Data from energy meters in the Modbus network could be read and sent to other nodes in a

MQTT network. The SOPRA microgrid software was written in Python on a Raspberry Pi on the solar

panels’ side and in C++ on Particle Photon microcontrollers on the EV chargers’ side. The Pi contains 2

databases that store the energy-related measurements and statistics on the usage of the chargers.

6

The project was carried out by Cristian Batog and Thijs Meidam separately. Cristian Batog worked on the

microgrid side of the project. They spent 115 days = 920 hours each on the assignment during the

internship period.

The document is divided into four chapters. The use of the iterative model for the working method

ended up with 3 phases for each subsystem in the project – Design, Realisation, Conclusion. The phases

for each subsystem are grouped in chapters for readability after Chapter 1: Analysis, where the results

of the initial carried-out research are recorded. Chapter 2: Design covers the functional and technical

specifications of the chosen systems and the reasoning behind them. Chapter 3: Realisation describes

the features of the finished product and test results. The last is Chapter 4 - the conclusion describing the

final result; it gives the reader possible suggestions and recommendations for improving the product

and states unfinished tasks or known errors. The appendices contain tutorials for future teams working

on this project.

7

Analysis

Problem statement.

Initially, there was an EV charger control and user management system working with databases updated

with user information, energy consumption measurements from the chargers and energy production

data from the PV system assembled by the previous group, but there were errors in the software that

need to be addressed, the user authentication system was not functioning, the calculation method used

for the renewable energy charging mode was rudimentary and faulty, and the databases were not used

to their full potential. Additionally, new software would need to be written at least for the Raspberry Pi

if the microgrid would be connected to a bigger wireless network in the future.

Visual representation of the product:

Figure 1 Conceptual model

The working goal was to solve all the issues and errors in the microgrid to prepare it for a connection to

a future shared interface and network with the Smart Grid table. The settings of the user interface of the

SOPRA system had be adjusted, the SQLite databases, especially the user list - remade, the message

structure and MQTT library used by the EV charger controllers - changed to allow for larger messages

and easier parsing, the memory storage solution for scripts and databases of the Raspberry Pi connected

to the PV system was investigated, the resistance of the Raspberry Pi to power outages or internet

disconnections was to be tested and guaranteed for future use.

Assignment
The mission of this new assignment was to the polish off the SOPRA microgrid’s features, fix several

issues present in the beginning both with the communication between the controllers and the

databases themselves, test and ensure the system’s robustness, and to route the collected information

from the database into a new network to be shared with the Smart Grid Table.

8

Preconditions
The following preconditions were considered when carrying out this project:

• Solve the existing issues with the local network between the Raspberry Pi of the PV system and
the Particle Photon microcontrollers of the EV chargers

• Work with the current controllers and software.

• Ensure the robustness of the microgrid in relation to power or internet outages.

• Improve the communication structure and software of the EV charger controllers and implement
a new calculation interface for the sustainable charging mode.

• Design an input and output interface between the different systems within HANW@TTS network.

• Setup a local and global network for HANW@TTS (between the Smart Grid table and SOPRA).

• Evaluate and test the interface by establishing a connection between the Smart Grid table
simulation and the microgrid.

Nr. Functional requirements
F1 The PV system will reliably communicate with the EV charger system.

F1.1

The Raspberry Pi’s storage containing the databases will be backed up without the
removal of its memory card.

F1.2

The Pi will automatically run the scripts and connect to the broker and the EV charger
system upon start-up or restart.

F1.3

The Pi’s SQLite scripts will automatically reconnect to the broker if internet is
disconnected.

 F1.4
*

The EV charger measurements and user list databases will be linked, and functions that
make use of this will be written.

F2
The EV charger system will be able to send and receive full user and consumption statistics to
the database, preferably an entire user list/database, so that usage of the chargers is regulated.

F3
Other types of measurement variables will be taken from the PV meters and logged in the
database.

F4
A new calculation method and control system for the sustainable charging mode of the EV
chargers will be implemented.

F5 The website will have a page that shows measurements and messages from EV chargers.

The website will have a new page where users can register into the user list (but must be
verified before being allowed to charge).

 Create a protected website for the administrator

 F5.1 It will contain a switch for renewable mode for each charger.

 F5.2 It will have functions to set manual setpoints for every socket.

 F5.3 It will have functions to reset Photons and Olimex controllers.

 F5.4
It will have access to and will be able to edit the user list saved on the Pi (to validate new
users and check their data).

F6 The SOPRA microgrid will be connected to a bigger interface together with the Smart Grid table.

Nr. Technical Requirements
T1 MQTT libraries will be used to communicate between the subsystems.

T2 Python 3.7 and C++ will be used as the programming languages.

T3 The used libraries will be updated if needed.

9

T4
The EV charger system’s Particle Photon controllers will send messages bigger than the 512b
limit imposed by the current MQTT library.

T5 The Photon will send messages in JSON format, as opposed to the current custom format.

T6
*

The occasional negative power value shown by the PV system on the GUI will be investigated
and solved.

T7 The port used for the site of the GUI will be changed for easier user access.

Comments regarding the requirements
‘*’ – signals optional requirements.

F1.1 – At the moment, the SD card of the Pi maxes its memory usage and another USB drive or card

cannot be inserted to back its data up in case of a power outage or crash of the card, so the Pi needs to

be turned off and its SD must be taken out to be backed up.

F3 – Other types of measurements like active and reactive power, power factor, etc. will also be

requested and logged through new functions.

T2 – The old Python software is written in Python 2, so it will have to be changed to work with Python 3.

T4 – The current MQTT library limits the sent message size to 512b, so only the user’s ID card number is

sent to the Pi. It is desired to have it send information regarding the user, the charged car, voltage,

current, power usage, and whether the card is already in use at another charger to block multiple

connection attempts.

T6 – The GUI shows that the power value of a certain PV energy meter flips to negative (with the correct

absolute value calculated from voltage and current) for some minutes at times. The reason is unclear.

Working method:
The project was executed using the iterative model based on Rapid prototyping and Rapid Application

Development to develop the parts of the system incrementally with breaks in-between them to test and

evaluate them with the supervisor and customer before moving on to the following part. The modularity

of the system and the lack of connection between the main tasks points to the iterative and incremental

development model. There were uncertainties in some areas, so the schedule was subjected to change

if one of the tasks ended up as unfulfillable.

The V-model is suitable for the development and integration of these smaller blocks into the complete

product. So, the V-model was followed in each individual block because it provides a direct guideline to

ensure that no step is missed before an attempt to add it to the prototype is made. It is also important

that new errors do not pop up later and that the project does not leave problems or modules that would

need to be rebuilt in the future, which is a key moment addressed through unit testing and integration

testing as dictated by the V-model.

The issues related to the communication scheme, reliability, and robustness of the Raspberry Pi as an
autonomous controller were addressed first.
The Particle Photon microcontroller’s communication issues were worked on afterwards, so that it can
properly monitor users and act as a working product.

10

Then, the new calculation method for the sustainable charging mode of the EV chargers was
implemented.
Minor issues and the GUI features had to be looked at later.
The last task was to connect the subparts of the microgrid and test that they work reliably, after which
another script for the Pi would be written to send the measurements to the Smart Grid table as part of
the HANw@TTS interface. This remains an open task.
The programming languages that were used are Python, SQL, C++, and JavaScript. The wireless
communication uses the MQTT protocol, JSON messages and dedicated libraries for them.
Besides that, the student used the SOPRA microgrid’s subsystems physically for testing and validation
purposes.

Details regarding the basic working principles of the used communication protocols (Modbus, MQTT,

SPI, webhooks), software used, and the electrical connections between the controllers inside the system

are not included in the report because they are already given and explained in the last groups’ project

reports. They should be consulted first if any questions regarding the points arise.

11

Design

Functional design
This chapter discusses the functional design and its related diagrams. The subsystems block diagram is

updated but the input-process-output diagrams of the subsystems have not changed since the past year.

Figure 2 Subsystems block diagram

This project assignment is not concerned with the established wired connections between the Photons

and the controllers of the EV chargers, or between the DEIF MIC mk1 energy meters and the Raspberry

Pi, as these were tested in past revisions of the system. Thus, the system to be worked on is divided into

3 main subsystems: the MQTT network, the Modbus network of the Raspberry Pi, and the GUI that

connects to both networks.

Smart EV
charging pole

EV Charger

Particle
Photons

EV Control
System

Cloud/Local
Network

MQTT broker

GUI

Modbus
Network

Energy
meters

Raspberry pi
scripts

Databases

12

Figure 3 Conceptual design

The Modbus network contains the Raspberry Pi communicating through a MAX 485 to 5 DEIF MIC mk1

energy meters that continuously take electrical measurements from the: electrical energy grid, energy

Pi

13

reserve, Battery system at the HAN, solar panels, and a Demonstration setup. The SPI messages from

the Pi are converted to Modbus and vice versa.

Figure 4 Modbus network electrical schematic

*The electrical schematic is taken from the previous team’s report and is used for reference only.

The MQTT network is set around the MQTT broker, used to establish the connection between the

scripts on the Raspberry Pi, the databases, the Photons and the GUI, so the MQTT network is used to

send messages:

• from Raspberry Pi to Particle Photon: renewable mode setpoint for Current output, answer to

deny access to a user or start charging a car

• from Particle Photon to Pi: measurements from the EV chargers, RFID card swipes from users

• from Particle Photon to GUI: RFID card swipes, answers/feedback to users after a card swipe

• from GUI to Photon: admin functions (setpoints, reset, switch charging mode)

• from GUI to Pi: new user register data to userlist, admin edits to userlist in user database

14

Figure 5 Basic MQTT flows

The Graphical User Interface consists of 2 separate websites - one for all users, where energy meter

readings and EV charger measurements are shown, feedback from the Photon is displayed, and new

users can register into the database. The other website is secured by password because it is intended for

administrator use. The Photons can be reset or the charging mode can be changed. Access and editing

rights for the user database are available on this page.

The GUI is ran on the Raspberry Pi because it needs direct access to the databases. It also receives MQTT

messages published by the Photons and can send commands to them from the administrator page.

15

Technical design
This chapter discusses the technical design of each subsystem and its related diagrams.

The Raspberry Pi is part of both the MQTT network and the Modbus network. Thus, the process box on

the left of the diagram contains the script that manages the all the necessary software functions of the

Modbus network and writes measurement data to the Modbus database. It also needs the number of

active chargers, information which is logged in the users & photon database. The publish message uses

the JSON structure, as opposed to the old custom ‘%’-separated values.

The process box on the right side explains the Pi’s functions in the MQTT network. This script interacts

with the Particle Photons and the users & photon database. A MQTT loop is forked at the start of the

program, then the main loop checks if the MQTT client is disconnected and restarts it. The send_email()

function is also executed by the main loop every 5 minutes.

Figure 6 Raspberry Pi pseudocode process diagram

16

The databases used have multiple tables each. The system used for them is SQLite because it is light,

local, does not need Internet or server access, which simplifies the task and is more efficient considering

the small processing power of the Raspberry Pi. The old databases have been changed and rebuilt at this

stage of the project. They are also saved both on the SD card of the Pi and in HAN’s WebDAV server.

The Modbus database has 5 tables – 1 for each energy meter. Each table

has the same columns for energy-related measurements. The primary key

for each of them is the measurement ‘No’. There are no foreign keys here.

The database is backed up and cleaned up monthly because a lot of

measurements are stored in it.

Figure 7 Modbus database entity relationship diagram

The users & photon database has 8 tables. Each table has the same columns for energy-related

measurements. The primary keys differ here; the car_of_user and error_codes tables have composite

primary keys. The other tables’ primary keys are ‘id’, the default PK in SQLite. The structure of this

database is taken from an old MySQL database used before the HANW@TTS project was started.

17

The data and error_codes tables are not used actively in the current state of the project. They were

added for future versions of the product. The charging_stations table contains the unique ‘DeviceId’ of

the Particle Photons available and the charging_station_sockets table contains the unique charging

sockets derived from the number of Photons in charging_stations. Their chargingStationId is a foreign

key for the users and measurements tables to include the correct real Id of each socket in the tables. The

unique ‘uidTag’ column from users is a foreign key for ‘userId’ in measurements. ‘carId’ is a foreign key

from the cars table. Each user – car combination is saved in the car_of_user table, where each ‘carId’

and ‘userId’ are a (unique) composite key, made to link existing ‘id’s from users and cars.

Figure 8 Users database

18

The Graphical User Interface is built in Node-RED on the Pi and divided into 2 separate parts: one for

normal users, and one for the administrator. The last team already made a GUI that showed data from

the Modbus database consisting of 5 pages with energy graphs for the meters and one to show the

latest important measurements. The idea here was to build on what was already done and add

functionality. The meter graphs also started in the wrong time zone and that had to be fixed.

Figure 9 Meter

data flow

Figure 10 Meter GUI page

Thus, a new page to show the data received from the EV chargers and a page for registering new users

had to be made to make the GUI more useful for the customers. It is inspired by the original meter

pages, but does not show the power values and shows all 3 voltage phases in one graph (, same for

current,) to make the page more compact and easy-to-read. Every charger socket has the same data

flow that is triggered by a timestamp every 10s. The latest Frequency value is shared between the two

sockets of each charger. The RFID swipe responses from the Photons are picked by the MQTT input node

and shown for each socket (‘C3:’ here).

19

The socket watchdog resets its textbox if no new messages were received in the last 5 minutes. The

‘Change_Check’ node only passes data if it has changed and the ‘Watchdog chart’ node sends a NULL

value to cut the charging line in the graph if no new measurements were received in the last 4 minutes.

These watchdogs make it easy to see that a socket is not used at the moment because its boxes are

empty and its graph lines are severed (= not connected between 2 car charges that are hours apart).

Figure 11 Charger data flow

Figure 12 Chargers GUI page

The user registering page is quite simple from a technical and functionality aspect. A user writes his

name, RFID, email, optionally HAN ID and a password, then submits these in the ‘user_form’. The ‘rbe’

node only passes a different new message (in case the user pressed submit multiple times), then the

data is parsed and sent to the users database. No answer from the SQL node triggers a successful

register text to appear in the feedback textbox. Otherwise, the ‘error_catcher’ shows what went wrong.

20

Figure 13 Register page data flow

Another small feature is a textbox that shows the last swiped RFID and received by MQTT. This should

help users find out the RFID tag of their card if they want to register it. The ‘Watchdog register clear’ and

node clears the ‘user_form’ after a successful sign up and the ‘Watchdog rfid clear’ – the RFID textbox if

it was not updated in the last minute. This is needed because Node-RED is a one-user interface, so

multiple computers see exactly the same page and a user’s data should not remain visible on the page

after he signs up.

Figure 14 GUI registering page

A new administrator GUI for interacting with the Photons and with the users database needed to be

created as well. It is built from another Node-RED repository and has another web address and port

number because it has to be user-password protected and not accessible to normal users.

21

The Photon functions are triggered by button presses or input in textboxes that send messages through

MQTT to their own topics.

The access and editing to the users table of the users database needed a special node type not available

in the default Node-RED palette. The “node-red-node-ui-table” v0.3.10 was chosen because it lets the

programmer choose what to display from the given input and what columns to make editable while also

auto-formatting the table to fit on the screen of the used device. This is convenient for our use case

scenario. The final table is somewhat similar to an Excel sheet.

Figure 15 Photon functions data flow Figure 16 Photon functions GUI

Figure 17 Usertable data flow

22

The needed data is imported from the SQLite database after a button to refresh it is clicked. Then, the

data is parsed to show only the important columns and set which should be editable. Any changes are

parsed back into commands and written to the database automatically, so a field should be edited

carefully.

The MQTT network contains not just the Pi and the Photons, but two separate GUIs as well. The user

GUI receives and shows the swipe responses from the Photons at ‘photonConverted/1’ through

‘photonConverted/4’ and the swiped RFIDs because the EV chargers do not have physical displays so

there is no other way of letting users know if they are allowed to charge or not (and the reason why).

The shown RFID, taken from ‘updateUser’, is used to help them register in the database if needed.

Figure 18 Usertable GUI

23

Figure 19 MQTT network diagram

The admin GUI only sends commands for the Photon, similarly to proprietary Particle functions. The

‘switchTest’ function switches between renewable and regular charging mode for each Photon

separately (- ‘switchTest1’ and ‘switchTest2’, respectively). ‘maxC1’ through ‘maxC4’ are used to set the

regular maximum charging current setpoints for every socket.

The Raspberry Pi sends ‘energyMeter’ setpoints for the renewable mode of the Photons and ‘allowUser’

responses to allow or deny charging with an explanation code after receiving new RFID swipes from

Photons on topic ‘updateUser’. ‘photonMeasure’ messages are the energy measurements from the EV

chargers. These are saved in the users & photon database in the Pi.

The Particle Photon can only run one program at a time. Thus, there is a setup() function that runs first

at start-up or reset and a loop() functions continues to run indefinitely afterwards. Data received from

the EV charger controllers (Olimex) is saved and parsed and MQTT messages are handled in the in the

loop(). Incoming messages trigger callback functions.

24

switchTest(String payload) (takes ‘true’ or ‘false’)

//Switch between auto setpoint from Pi and manual admin
setpoint
(resets setpoint to 32A when → manual mode)

maxCurrentC1(String payload)

//Send a current maximum >=6 to Olimex in the message:

// 0xFE,1 (for charger1),setPoint,0xFF

maxCurrentC2(String payload)

//Send a current maximum >=6 to Olimex in the message:

// 0xFE,2 (for charger2),setPoint,0xFF

resetOlimex()

//Toggle reset pin of Olimex

progModeOlmx()

//Toggle WakeUp and reset pin of Olimex to put it in
program mode

Callbacks

loop() (runs continuously)

• if (not connected to Particle cloud)→ connect

• if (connected to MQTT broker)→ process MQTT

msgs in callback(), else → reconnect()

• readSerialOlimex();

• If (either socket is used and 30 seconds passed)

→ Upload latest measurement to server with

add_Measurement()

• readRFIDCard(1), readRFIDCard(2);

• If (charger has not had current flow for 1 min at

charger 1)→ stop charging, reset LatestStartTime,

send MQTT at “HANevse/updateUser” for userlist

• Same for charger 2

setup() (runs only once)

• Initialize Serial ports, SPI, initRFID()

• Set digital pins to output + HIGH or LOW state

• resetOlimex()

• register all admin Particle cloud functions:
switchTest(), maxCurrentC1(), maxCurrentC2(),
resetOlimex(), progModeOlmx(), resetParticle()

readSerialOlimex()

Everything is in a loop to make sure all serial characters are read.

• If (Serial1.available())→ Serial1.read(); and put in

buffer ‘buff’.

• stringParse(buff, bufpos);

stringParse(string)

• Parse the string received from Olimex:

• startbyte, function, M1, M2, M3, M4, M5…12,

stopbyte

• startbyte = 0x0F for socket1, 0x0E for socket2

• function: 1=voltage, 2=current, 3=frequency,

4=power, 5=energy

• M1-M12 are RAW Modbus registers, where M5-

12 are optional (used for 3 phase measurements).

They are converted from RAW to float using

bytesToFloat() and bytesArrToFloatArr()

• Stopbyte is not checked

bytesToFloat() bytesArrToFloatArr()

add_Measurement()

///commented - filter bad data and limit it to .3 decimals

• Insert all measured values into a JSON object

with respective keys

• Publish MQTT at “HANevse/photonMeasure”

readRFIDCard(N)

• Read unique ID of RFID card @ RFID reader N

• Insert RFID, socket No, time into a JSON object

• Send JSON over MQTT at “HANevse/updateUser”

getMeasure_callback(payload)

• Copy payload to JSON object

• Parse setpoint

• Set setpoints with maxCurrentC1_test() and …C2

maxCurrentC1_test(unsigned int) & maxCurrentC2_test()

• Same maxCurrentC1() with uint instead of string

• MQTT setpoint back to “HANevse/photonMaxC1”

or “…C3” depending on CHARGEROFFSET

reconnect()
//while not connected {
if (CHARGEROFFSET = 0) → connect as "EV-Photon1" and
subscribe to all necessary topics;
else if (CHARGEROFFSET = 2) → connect as "EV-Photon2"
and subscribe to necessary topics } (different topics!)

allowUser_callback(payload)

• Convert to string, then parse socket; if(socket in

this charger (from CHARGEROFFSET)) → PORT

= physical pin to start charge at one socket

• Then, parse answer from Pi – 1=start, 4=stop,
2,3,5,6,7,8=deny

• Send MQTT explanation to “HANevse/
photonConverted/1” where 1 is socketNr,
@start pull PORT high & update LatestStartTime,
@stop pull low and delete saved RFID for socket

resetParticle()

//Restart Photon

Figure 20 Process flow diagram for Photon in pseudocode

25

Realisation
This chapter includes more details about the features of the finished subsystems and links to the

software documentation for them. Tutorials on how access the Pi, Photon and the GUIs are given in the

appendices section.

Every subsystem was developed separately first, then the networks were connected and the whole

system was tested with an actual EV.

The Raspberry Pi runs its two main programs at boot and routes their outputs to the “userlog.txt” and

“readinglog.txt” files for debugging. This command is written in “rc.local” in the /etc folder of the Pi. The

main programs are “/home/pi/Documents/SQLfunction.py” and “home/pi/Documents/Modbus/main3.

py”. They use many try-except blocks to catch connection errors to the DBs and avoid crashing. This

allows them to run reliably for weeks, as tested.

The Pi is also configured to run a local Mosquitto MQTT broker (secured with named users and

passwords for the MQTT clients of the project) with the “runmosquitto.sh” script, “mosquito.conf” and

“passwords” files in its default user Home folder. This feature is not activated in “rc.local” at the

moment because of time constraints and to ease access for debugging communication issues from

outside the network. The public internet MQTT broker “broker.hivemq.com” is used at the moment.

The Pi is set up to log all SQL communication to the SQLite databases “usertable.sqlite3” and

“modbusData.db” on a (16GB) SD card and to the HAN WebDAV server at the same time. This is

implemented because there have been incidents with SD card corruption in the past. Still, the server

itself is not always available or responding, so the SD card databases were kept in case of an internet

disconnection. These two storage devices are mounted at boot as well in “rc.local”. the

“/mnt/dav/Data” folder contains the server databases.

They receive data constantly from the chargers and energy meters, so the size of the databases

increases rapidly. To help keep them light and accessible for the admin a script called “runDBreset.sh”

was written to copy and save all 4 databases with the date of copy, then empty all the tables to clean

them up. This script is run by the root user’s cron service every first day of the month. The file that holds

this command can be opened and edited with “sudo crontab -e” in the terminal. Its copy in the report

folder is named “root_crontab”.

The user GUI has a systemd service that starts it at boot. All of its files are stored in the “.node-red”

folder in the default user Home folder. The admin GUI has its own separate folder called “node-red-

1881”. These two are separated because the admin GUI has to be password-protected and hidden from

the normal users and Node-RED is a single-user tool that only accepts password entry for a whole GUI,

not just one of its pages. The admin GUI is started separately at boot with the “runNodeRed.sh” script in

“rc.local”, placed last, as it needs access to the internet and the databases to run correctly.

To ensure maximum robustness for the Pi, its entire used storage is automatically cloned to another

spare SD card once a week with the “sudo rpi-clone sdb” command in the root crontab. This uses the

rpi-clone repository from github.com to copy everything without unmounting the working storage

device.

26

The documentation for the software of the Raspberry Pi is available either in .html form or in LaTex

format in the “HANwatts_Pi-main/documentation” folder. The more user-friendly and the easier to

access on any platform is the html documentation that can be opened by any web-browser. To open the

main page for the html documentation open “/html/index.html” from the documentation folder. (it was

not possible to make a hyperlink or a shortcut work here because this report and documentation are

stored in Onedrive and Windows uses absolute paths).

The Particle Photons run the same software project that was built in C++ with Wiring libraries in MS

Visual Studio Code with the Particle Workbench package and dependencies. They are flashed wirelessly

with access to the administrator account. The project can also be accessed at “build.particle.io/” with

access to the account. The project is called “HAN-evse-json1” on the Particle internet service. One

paramount detail regarding programming them is that the constant “CHARGEROFFSET” in the main *.ino

file needs to be set to 0 for the Photon EV1 and to 2 for EV2 to avoid crashing the two Photons because

of identical MQTT client IDs.

The new Photon software also uses the JsonParserGeneratorRK library from the Particle services to

create and parse JSON MQTT messages. This simplifies the callback functions and makes it easier to

debug and add more variables in them in the future.

The documentation for the software of the Particle Photons is available either in .html form or in LaTex

format in the “HANwatts_Photon-main/documentation” folder. To open the main page for the html

documentation open “/html/index.html” from the documentation folder.

The “Particle Photon code” part of it discusses more details about the main files for the Photon.

The GUIs are built in Javascript and Node.js. To make them accessible without the IP address of the Pi

and to make communication more secure for the Pi, domain names were procured. The user GUI is

connected to the URL https://sustainablecharging.nl/. It is also connected to https://hanev.duckdns.org/

just in case something happens to the official site. The admin GUI is connected to

https://hanevadmin.duckdns.org/ because it does not need an official site and using a free Dynamic DNS

provider was the easiest way to give it a URL. The port number does not need to be specified after the

URLs anymore after a Nginx reverse proxy server was configured to route the user GUI URLs to port

1880 on the Pi and the admin GUI URL to port 1881. If the URLs are changed, the Pi will not respond

anymore until another entry is added for the reverse proxy. To add more security and protect the Pi

from internet attacks, a firewall was set up and auto-updating TLS certificates were made for these

URLs. They can be accessed only with HTTPS now.

The programming side of the GUIs is accessed by adding “/admin” after the main URLs. To see and edit

the flows used by Node-RED one needs to enter the programmer’s username and password (different

for the two GUis).

The inbound data for graphs and the userlist table is taken from the SQLite databases in the Web

https://sustainablecharging.nl/
https://hanev.duckdns.org/
https://hanevadmin.duckdns.org/

27

3

 server. If access to the server is cut, they do not update anymore. Ideally, the server is not available

only when there is no internet access and the Node-RED programs do not work either. In reality, HAN’s

server is reset almost weekly on Sundays (presently), so an automatic reboot action on Monday at

4.30am was added in the root crontab of the Pi. The databases in the HAN server and the local SD card

databases do not synchronize.

The basics of Node-RED programming are explained in the last team’s report. The Modbus meter data

flows were not modified since then. Only the graphs were cleaned up. The new Javascript functions for

parsing and formatting the SQLite data from the databases is straightforward – a variable is given to

each measurement value and they are sent as an array to the graphs. The graphs with multiple lines in

them also use topics for their variables.

Figure 21

EVcharger data

format node

The user registering page sets message parameters from the user input instead of using variables

because this allows for the use of prepared SQL statements to automatically insert the data into the

correct columns and eliminates the risk of SQL injection.

Figure 22 Registering

param_set node

Figure 23 Registering insert_user node

28

The user registering page is the only one that interacts both with the server database and the local

database.

29

Test plan and results

The subsystems were tested for functionality swiftly and fixed along the way before being connected

together. The controllers and the websites are (almost) always running and new measurement data is

added all the time and can be checked by accessing the URLs.

The situation with the quarantine made it hard to execute physical tests for system verification with

actual cars. Still, one test with an EV (Nissan Leaf) and another customer car took place on 05.01.2021.

No Test Expected result Pass/Fail

1
Swipe card at free

charger

Message with RFID and socket nr. is

sent over MQTT and shown on

website
Pass

2
Swipe card with a

connected car

Message with RFID and socket nr. is

sent over MQTT and shown on

website
Pass

3
Swipe card with

charging car

Message with RFID and socket nr. is

still sent over MQTT and shown on

website
Pass

4
Swipe card at all

sockets

All 4 sockets send messages with the

RFID and their socket nr. and the

messages appear on the website
Pass

5
Swipe one card many

times in a row

User RFID is logged only once, then

messages that “you already swiped in

the last 20s” are sent

Pass*

a user card can be logged out

after a minimum of 20s after

logging in

6
Swipe different card

after log in with user

card

Second card is denied log in and an

appropriate message is shown on the

website
Pass

7
Swipe unauthorized

card

Card is declined with a message on

the website but Measurements still

contain its RFID
Pass

8
Swipe card to log out,

then swipe another

user’s card

After first card is successfully logged

out another RFID card is logged in

immediately (after less than 20s)
Pass

9
Connect and charge car

at all sockets
All 4 sockets send Measurements over

MQTT

Fail – only socket 1 and 2

charge and send Measurement

messages

10
Software reset on

charger with a charging

car

Charger keeps charging and sending

Measurements even after reset

Fail – charger does not

recognize the car after reset, it

needs to be plugged in again to

restart charging

11
Connect car without

swiping card
Car still charges and Measurements

are sent

Pass – charger works and

sends Measurements with “No

ID” as user RFID

12
Connect car after

swiping card
Car charges and Measurements with

the swiped RFID are sent
Pass

13
Unplug car without

swiping card
Car can be unplugged and

Measurements stop
Pass

30

14
Unplug car without

swiping after starting

charge with a swipe

Car can be unplugged and charger

automatically sends log out message

with RFID for database

Pass – log out message is sent

after 1 minute

15
Disconnect fully

charged car to plug

another instead

When car is fully charged automatic

log out message is sent and socket is

unlocked
Pass

16
Try to disconnect

another user’s charging

car

Another user’s cable cannot be

unplugged from socket if his car is

still charging.

Pass*

It can be unplugged after

charger software reset.

17
Swipe another

(unauthorised) card

while a car is charging

The new card is denied and

Measurements will still contain the

initial swiped RFID at log in

Fail – the second card is

always denied if someone else

is logged in at socket but

Measurements will contain the

newly swiped RFID

18
Set Current setpoint

from admin website
New setpoint is set and Measurements

show capped charging current

Pass*

After reset the has to be

enabled in the control room

first

19
Switch to sustainable

mode from website

Charger reads the automatic setpoint

messages sent by the Pi, answers with

actual setpoint set (min. 6A),

Measurements show the limited

current

Pass

20

Switch back from

sustainable mode to

administrator setpoint

mode

Measurements still work but the

current is not limited by the old

setpoint.

Fail – charger switches back

successfully but setpoint has to

be manually changed

afterwards

There were 4 failure points found in this test. Afterwards, they were checked and point 9 and 20 were

solved. All 4 charging sockets send measurements now because they were set to send measurements at

all times, not only when the chargers are putting out current. The Photon function to switch back to the

manual admin setpoint mode now automatically executes two maxCurrentC#() callbacks and sets the

setpoints to 32A, which is the maximum output Current for the chargers.

An answer to point 9 was not found, so the Photons should not be reset while cars are using the

chargers. Point 17 was fixed in software but it was not tested physically afterwards because of a lack of

time.

31

Conclusion and recommendations

In conclusion, the team managed to rebuild and expand the software of the Pi and of the Particle

Photons, the databases, the GUI and its website with the functionality specified in the Realization part of

the report. Looking back at the requirements given from the project description and analysis, most of

them were met, apart from the issues labelled as future improvements below.

What was finished: The Pi’s storage is backed up to another spare SD card automatically every week; the

databases are backed up to HAN’s server through WebDAV; the Pi runs all the necessary programs by

itself (at boot); the scripts themselves do not crash if they cannot access the SQL DBs; the EV

measurements add the charging user’s name from the userlist and car information; the EV system sends

consumption data, but not entire databases, as the Photons are too weak for that; Q, S, Pf are also

requested from the Modbus meters and logged in the Modbus DB, a new calculation method for the

setpoint was created and moved to the Pi, so it is still accurate if all sockets are used now; the GUI has a

new page for the EV chargers and a new page for registering users who still need to be verified by the

admin manually; a new GUI for the administrator to interact with the Photons and to verify new users

was made, the energy meter graphs start in the correct time zone now.

On the technical side: MQTT is used by the controllers to communicate; Python 3.7, C++ 14 and a little

JavaScript were used to program during the project; the used libraries were updated and JSON libraries

were added to the Pi and Photons; all MQTT messages (besides the Pi answer to RFID swipes) use the

JSON format; the wrong power values on the GUI were fixed; the GUI do not need port numbers to be

accessed anymore.

Issues that could not be tackled: The SOPRA microgrid was not connected to a bigger interface together

with the Smart Grid table because the simulation table project encountered issues and is not ready to

communicate with the microgrid; The EV chargers do not send entire databases, just 1 measurement or

1 RFID swipe at a time because exceeding the 512b message size limit poses crashing risks for the

Photons (very little RAM available).

Thus, Appendix 1 provides a Start-up and User Manual on how to access the Raspberry Pi over the

internet, Appendix 2 discusses accessing and flashing new software to the Photons, and Appendix 3

shows how to enter the programming mode of the GUIs.

As a future improvement, it is suggested to: update the car registering feature of the user GUI because

the table that links the userID and the carID is updated only in the server DB; test if the Photons hold a

charging car’s RFID and one cannot overwrite it with another swiped RFID while the car is still charging;

make the user GUI take data from the local DBs if the server ones are unavailable and make admin GUI

edit and write to the local user DB, too; synchronise the server DBs with the local ones or move most of

the SQL data traffic to the local DBs and update the server DBs once a day or so.

Other observed issues are sometimes HAN’s server refuses to respond and sends an empty database, so

the Pi needs to reconnect to the server to start working again; both Photons randomly shut down one

day at 10.20am and had to be physically restarted.

32

Appendix 1 How to access the Raspberry Pi and SOPRA PC
To access the Raspberry Pi remotely, you have to use VNC Viewer. For Windows, download it from

https://www.realvnc.com/en/connect/download/viewer/windows/.

Run VNC Viewer and enter the following VNC server address in the top search bar: 80.113.19.27

The username for it is: pi . The password for it is: controlsystem .

The log files for the scripts are on the desktop. The main scripts themselves are

“/home/pi/Documents/Modbus/main3.py” and “/home/pi/Documents/userID/SQLfunction.py”. You

can also find them through File Manager (2 folders icon at the top left of the screen). Other important

files like the *.sh scripts and the Node-RED folder are in “/home/pi/”. The HAN WebDAV server is

“/mnt/dav/” and the databases are in its Data folder. The local databases are in “/media/DATABASE/”,

also called 16 GB VOLUME on the left side of the File Manager.

To access the PC connected to the Pi and the EV chargers you need Teamviewer. The partner ID is

1487692927 . The password changes occasionally, so you need to ask your supervisor about it or find it

in person in the SOPRA room.

https://www.realvnc.com/en/connect/download/viewer/windows/

33

The files used by the Pi are in the “HANwatts_Pi-main” folder with the report. Their functions and

locations in the Pi are given here as well for convenience. The filenames are the same in the Pi.

Filename Location Function

/Modbus/main3.py /home/pi/Documents/Modbus/main3.py Main Modbus program

 /home/pi/Desktop/readinglog.txt Log file for main3.py

/userID/SQLfunction.py /home/pi/Documents/userID/SQLfunction.py Main EV charger program

 /home/pi/Desktop/Userlog.txt Log file for SQLfunction.py

sql_databases/modbusData.db /mnt/dav/Data/modbusData.db Modbus databases

 Also in /media/DATABASE/

sql_databases/usertable.sqlite3 /mnt/dav/Data/usertable.sqlite3 Users databases

 Also in /media/DATABASE/

runDBreset.sh /home/pi/runDBreset.sh
Script to copy and empty DBs (used

in crontab)

rc.local /etc/rc.local File that runs scripts at boot

root_crontab (type in terminal) sudo crontab -e File that schedules periodic jobs

runNodeRed.sh /home/pi/runNodeRed.sh
Script to run admin GUI (used in

rc.local)

/node-red-1881/settings.js /home/pi/node-red-1881/settings.js
Config file with user-passwords for

admin GUI

/node-red/settings.js /home/pi/.node-red/settings.js
Config file with user-passwords for

normal user GUI

runmosquitto.sh /home/pi/runmosquitto.sh
(unused) Script to run secured local

MQTT broker

mosquitto.conf /home/pi/mosquitto.conf
Configuration file for

runmosquitto.sh

passwords /home/pit/passwords
File with MQTT users and

passwords for mosquitto.conf

*Tutorial for Nginx, firewall
https://discourse.nodered.org/t/node-red-server-

with-nginx-reverse-proxy-howto-guide/27397
Tutorial needed to add new URLs to

reverse proxy

34

Appendix 2 Particle Photon access
To access the Photons you need access to the Particle administrator account that is linked to them.

Go to http://console.particle.io/ and log in. The user name is nguyenxuan.trung@han.nl

Ask Mr Nguyen for the password to the Particle account.

You should see the 2 EV Photons and their IDs after you log in.

A blue circle on the left of the IDs indicates that they are online.

To access the IDE and the software of the Photons, click on the lowest icon on the left of the site (Web

IDE).

To work on the current software running on the Photons choose “HAN-evse-json1” from the list of apps.

The current software is compiled for Photon v2.0.1.

Choose the device you want to flash from the target icon on the left of the screen, then press on the star

to the left of the device’s name. Don’t forget to set the correct CHARGEROFFSET for your device.

http://console.particle.io/
mailto:nguyenxuan.trung@han.nl

35

After modifying the program, verify it by clicking the second top icon on the left side (the checkmark).

The IDE will say “Code verified! Great work.“ if you have no errors. You can flash it to your device by

clicking the top icon on the left side (the lightning).

36

Appendix 3 Node-RED GUI editing access
To edit the normal user GUI at https://sustainablecharging.nl/ you have to go to

https://sustainablecharging.nl/admin/ . The username is: admin . The password is: controlsystem .

The credentials can be changed after finding adminAuth in the ‘’settings.js” file in the “/home/pi/

.node-red/” folder. The password must be encrypted with bcrypt. You can go to the “password crypt

generate” page in the editor to generate a new password fast.

You should see this page after you have logged in. The pages here do not represent the pages in the GUI.

After you make any changes to the nodes you must click Deploy in the top right corner of the site. It will

turn red if there are any changes to save.

To generate a new password, go this page and enter your password instead of controlsystem in the

yellow-ish node. Click on the bug icon on the right side of the screen and select “current flow” from the

3 filters under it. Click on the blue square on the left of the timestamp node to generate the encrypted

password and copy it from the string message on the right side of the screen.

https://sustainablecharging.nl/
https://sustainablecharging.nl/admin/

37

To access the admin GUI, go to https://hanevadmin.duckdns.org/ and input username: user. The

password is: password. These credentials can be changed after finding httpNodeAuth in the

‘’settings.js” file in the “/home/pi/node-red-1881/” folder.

To access the editor for this GUI go to https://hanevadmin.duckdns.org/admin/ and enter username:

trung and password: controlsystem . These credentials can be changed in the same way as the ones for

user GUI, but in the “/home/pi/node-red-1881/” folder.

https://hanevadmin.duckdns.org/
https://hanevadmin.duckdns.org/admin/

38

Appendix 4 Webdav

Open Terminal.

Type cd /etc/davfs2

sudo nano secrets

change username and password

/mnt/dav CristianBatog "W@ttsN3xt"

Crontab for Automate the job is in etc.

Sudo nano rc.local

Last issues:

Port 80 has been changed to port 5000 -> Fixed by sudo nano /etc/fstab change port to 5000

192.168.110.5 port 5000

39

/HANWattsFolder

CristianBatog "W@ttsN3xt"

	Summary
	Table of Contents
	Introduction
	Background

	Analysis
	Problem statement.
	Assignment
	Preconditions
	Comments regarding the requirements

	Working method:

	Design
	Functional design
	Technical design

	Realisation
	Conclusion and recommendations
	Appendix 1 How to access the Raspberry Pi and SOPRA PC
	Appendix 2 Particle Photon access
	Appendix 3 Node-RED GUI editing access
	Appendix 4 Webdav

