
Final Report

Stabilizing an Inverted Pendulum within TwinCAT3

Company supervisors’ information

1st company supervisor Nikolas Eimer

Email N.Eimer@beckhoff.com

2nd company supervisor Marnick Sluismans

Email msluismans@beckhoff.nl

School supervisor’s information

Name Amin Mannani

Email amin.mannani@han.nl

Student’s information

School HAN University of Applied Science

Student name Suat Nguyen

Student number 593604

Email snguyen@beckhoff.nl

ss.nguyen@student.han.nl

By submitting this report, the intern certifies that this is his original

work, and he has cited all the referenced materials, in the forms of

texts, models, and books properly.

mailto:N.Eimer@beckhoff.com
mailto:msluismans@beckhoff.nl
mailto:amin.mannani@han.nl
mailto:snguyen@beckhoff.nl
mailto:ss.nguyen@student.han.nl

1 Preface 1

1. Preface

At HAN University of Applied Sciences, also known as Hogeschool van Arnhem en Nijmegen,

every Industrial Power Systems student, who is following an Electronic and Electrical Engineering

programme, finishes his studies with a graduation project either at a company or at the university.

This report is the product of a five-month graduation project performed at BECKHOFF

Automation.

This project is about stabilizing an Inverted Pendulum within TwinCAT3 which is an IDE,

Integrated Development Environment, developed by BECKHOFF. Besides the company and the

Project Plan report, this report describes a problem diagnosis and an analysis of an internship

machine at BECKHOFF. Also in this report, you will read my journey about how I found an answer

for my question:

How can I use Control System theories in the real world?

During my graduation project, which was not easy, I have received a ton of support from different

people. Therefore, I would like to use this opportunity to show my appreciation to these people.

Firstly, my first BECKHOFF supervisor, Nikolas Eimer, for always being willing to listen to my

questions and to give advice. Secondly, my second BECKHOFF supervisor, Marnick Sluismans,

for the knowledge and help with the understanding of software and hardware. He has encouraged

and believed in me since the first day of my project. Next, Simon Sleeking, Geert Baars, Rob

Rawlyk, and other colleagues who always helped me during the project for their time and

willingness to help. Furthermore, my teacher, Amin Mannani, for his time and feedback. I feel truly

lucky to have a teacher who understands and cares about his students. I am very glad to have

such wonderful people around me.

Finally, I want to dedicate my thesis to my parents and my brother who have supported me from

the beginning of my life.

Control System is difficult for everyone. Applying it in practice is even more difficult. Curiosity and

perseverance matter.

Sincerely,

Suat Nguyen, Eindhoven, January 2022

2 Summary 2

2. Summary

The Inverted Pendulum is one of the classical control problems of an inherently unstable system.

The idea is that the pendulum, fixed on a cart, stays upright in its vertical position while the cart

is moving, or disturbances are applied. The system is used to demonstrate the capability of the

target hardware and software platform developed by BECKHOFF. With the platform, it is possible

to run controllers in real-time while connecting to Input/Output signals from the real world.

The Inverted Pendulum setup is built based on a machine mainly used in transportation, called

XTS, eXtended Transport System. Due to a limitation of the setup, the pendulum starts from an

upright position, making a unique setup. Compared to other work that has already been done in

the past, their pendulums start from a downward position. The Inverted Pendulum setup was not

working at BECKHOFF. A controller, written in PLC languages, must be implemented to keep the

pendulum in its vertical position.

In order to obtain a controller for the system, first, a mathematical model of the system is analyzed,

then a physical machine is investigated. How does the machine work? How can it be controlled?

Besides this, an encoder, which reads an angle of the pendulum, is analyzed. When the inputs

and outputs are clearly understood, a correct model corresponding to the system has been built

and simulated in MATLAB/Simulink. A PID Tuner from Simulink is used to tune PID controller

parameters to achieve a robust design with the desired response time.

It turned out that the traditional PID-Controller was not suitable enough for

the system. In specific, the steady state error never becomes 0, and the

control signal grows unboundedly. Instead of using the PID-Controller, a

pole placement technique has been used. A new controller has been

made and simulated. The simulation gives a good result. Based on the

new controller and the Simulink model, a PLC program has been

implemented.

As shown on Figure 1, the Inverted Pendulum is balanced on its own for

the first time on 15-12-2021.

Figure 1: Stabilized inverted
pendulum

2 Summary 3

Table of Contents
1. Preface ... 1

2. Summary .. 2

3. Version log .. 6

4. Introduction ... 7

4.1. About the company .. 7

4.2. About an Inverted Pendulum setup .. 7

5. Analysis of research context and problem ... 8

5.1. Balancing a stick .. 8

5.2. Problem statement ... 8

5.3. Current situation .. 8

5.4. The scope of the project .. 9

5.5. Goal and research questions ... 9

6. Mathematical modeling ..10

6.1. Force analysis ...12

6.2. Linearization ...13

7. Traditional motors ..14

7.1. DC motor ..14

7.2. Servo motor ..15

7.3. Linear motor..15

8. Inverted Pendulum setup ...17

8.1. Traditional motors and the XTS system ..18

8.1. Connection diagram ..19

8.2. XTS machine itself ..19

8.2.1. Motor module ...20

8.2.2. Mover ..21

2 Summary 4

8.2.3. Guide rail ...21

8.3. Controller ..22

8.4. Controlling the mover ..23

8.4.1. Movement without programming ..24

8.4.2. Movement with programming ...25

8.5. Pendulum encoder ..27

8.5.1. Homing position of the pendulum ...28

8.5.2. Counting direction of the encoder ..28

9. Controller design ..29

9.1. Laplace transform ...29

9.2. Transfer function ...29

9.3. Parameter identification ..30

9.3.1. Travelling distance of the mover ..30

9.3.2. Mass and length of the pendulum ..30

9.3.3. Mass moment of inertia of the pendulum (I) ...31

9.3.4. Mass of the mover ...31

9.3.5. Angular displacement of the blocking angle unit ..32

9.4. Selecting a controller and simulating ...33

9.4.1. Importing data to MATLAB ...34

9.4.2. P-Controller ...35

9.4.3. PI-Controller ..35

9.4.4. PID and PD-Controller ...37

9.4.5. PI + I2-Controller ..38

10. PLC program ..41

10.1. Building a PLC program ..41

10.2. Hold and drop strategy ..42

2 Summary 5

10.3. Full motion strategy ...43

11. Conclusion and Recommendation ..44

11.1. Conclusion ..44

11.2. Recommendation ..44

Reflection ..46

Appendix A. Approved LTC statement ..50

Appendix B. Approved graduation assignment application form ...51

Appendix C. Final version of Project Plan ...56

Appendix D. Move functions ...63

Appendix E. Connecting the encoder with the BECKHOFF system65

Appendix F. Servo Control Technology ..67

Appendix G. MoveAbsolute UML Code ...73

Appendix H. Hold and drop strategy UML code ..75

Appendix I. Full motion strategy UML code ...77

References ...79

3 Version log 6

3. Version log

Below is the version log of the document:

Version Date Author Comments

0.01 20-09-2021 Suat Nguyen First version

0.02 01-11-2021 Suat Nguyen Half report

0.03 14-12-2021 Suat Nguyen Draft of the final report

0.04 19-12-2021 Suat Nguyen Finished the report

0.05 31-12-2021 Suat Nguyen Updated the report based on feedback

0.06 05-01-2022 Suat Nguyen Final version

4 Introduction 7

4. Introduction

This document will present the Final Report towards the Stabilizing an Inverted Pendulum

within TwinCAT3 project by first introducing the project as a whole, and then further specifying

the machine used in this project.

4.1. About the company

BECKHOFF Automation, also known as BECKHOFF, is a manufacturer of automation

technology. Their products are divided into four different areas [1]:

• IPC – Industrial PC is a PLC built with standard PC hardware and software, allowing users

to choose the devices that are best-suited to users’ specific applications, such as selecting

OS (Windows or TC/BSD which is a FreeBSD derivate), or hard drive (HDD, SSD, M2 …).

Also, interfaces can be chosen which is important for a flexible solution.

• Fieldbus I/O – Input/Output terminals. These terminals are used to make a communication

between the IPC and the real world. The diverse I/O systems offer solutions for all common

signals in automation technology, such as Digital/Analog Input/Output signals, power

measurement, current, voltage, and communication with almost every fieldbus standard.

• Motion – stepper motor, servo motor, linear motor. Producing different types of drives in

48VDC region as well as in high voltage area 230 – 480VAC.

• Real-time control software TwinCAT to implement PLC programs, and other purposes

such as HMI integration, measurement with scope view…

4.2. About an Inverted Pendulum setup

The Inverted Pendulum is a classical control problem of an unstable dynamic system. The system

consists of an inverted pendulum mounted on top of a cart, which is moving on a guide rail. The

pendulum will simply fall over if the cart is not moved to balance it.

The system is used to demonstrate the capability of the target hardware/software platform

developed by BECKHOFF. With this platform, it is possible to run models and controllers in real-

time while connecting these models with input/output signals from the real world. The

demonstrator will be used at BECKHOFF for educational (external and internal) and promotional

purposes.

5 Analysis of research context and problem 8

5. Analysis of research context and problem

In this chapter, research questions and problem statements will be addressed.

5.1. Balancing a stick

During childhood, each of us had a chance to balance a stick on your finger. Simply put the stick

vertically on one of our fingers and try to move our hand in such a way that the stick should not

fall. When the stick is not moving or balanced, it is in a state called equilibrium. By that time, any

forces on the stick are balanced by the force in the opposite direction. Observe carefully and we

can see that to balance the stick, we have to move our hand quickly to a direction where the stick

is falling.

Figure 2: Balancing a stick on one finger [2]

That is the most basic way of balancing a rod on one finger. In this project, the stick, or an inverted

pendulum will be balanced by a PLC.

5.2. Problem statement

The problem of this project is that a control system needs to be designed to maintain an inverted

pendulum in an upright position while compensating disturbances. The control system should be

capable of controlling the pendulum within TwinCAT3 which is an IDE, Integrated Development

Environment developed by BECKHOFF.

5.3. Current situation

The current Inverted Pendulum set-up is not yet working at BECKHOFF. The system consists of

six different parts, which are not yet fully assembled as shown in Figure 3: an IPC, Industrial PC

5 Analysis of research context and problem 9

(1), an encoder for the pendulum (2), a mover/cart (3), a guide rail and motor modules with a built-

in encoder (4), a pendulum (5), and a blocking angle unit (6).

Figure 3: Inverted Pendulum set-up

5.4. The scope of the project

The scope of the project is restricted to the Inverted Pendulum set-up, the BECKHOFF

hardware/software platform and two different feedback systems. What is more, the swing-down

process of the pendulum is ignored due to the limitation of the hardware. That means the

pendulum will start from an upward position.

5.5. Goal and research questions

The ultimate goal of the project is to have the controller for the Inverted Pendulum running in

TwinCAT3. That means a PLC program, written in Structured Text (ST), must be implemented.

The intern is allowed to use MATLAB/Simulink to build and verify models. After that, a code

generator will be used to convert the Simulink blocks to the PLC language. If the converting

process is not feasible, the intern needs to build a separate control system in TwinCAT3.

To make the Inverted Pendulum run in TwinCAT3, the following table shows research questions

and sub-questions.

6 Mathematical modeling 10

Tag Question

1 How is the XTS machine built up? What is the role of each component?

1.1 How to control the mover?

2 What are the equations of motion of the system?

2.1 What are the equations for the transfer function?

2.2 What are the Simulink models corresponding to the system?

3 What kind of controller can control the pendulum? How can it be designed?

4 How to use the code generator to convert Simulink blocks to PLC languages? Is this

task feasible? If not, how to write a similar controller in PLC languages?

6. Mathematical modeling

Mathematical modeling is a tool to gain a clear understanding of a system. In Figure 4 a schematic

of the cart and the pendulum are given with the applicable forces. Free body diagrams of each

part are illustrated clearly to visualize the applied forces, moments, and reactions.

In this system, we will consider a two-dimensional problem where the pendulum is tilted in a

vertical plane, and a force F that moves the cart horizontally. The outputs of the system are the

angular position of the pendulum 𝜃 and the horizontal position of the cart x.

The following process is guided by a theory book, Feedback Control of Dynamic Systems 7th

Edition by Gene F. Franklin, J. David Powell, Abbas Emami-Naeini, on page 61. [3]

6 Mathematical modeling 11

Figure 4: Free body diagram of the system [4]

Below a list of the relevant parameters and their meaning are given:

Parameter Meaning SI Unit

x Cart position mm

m (small m) Mass of the pendulum kg

M Mass of the cart kg

b Coefficient of friction of the cart N/m/sec

I (I in inertia) Mass moment of inertia of the pendulum kg.m2

L Total length of the pendulum m

l (l in length) Length to pendulum center of mass m

𝜃 Angular position of the pendulum radian

F Force applied to the cart N

The variable b is defined as a coefficient of friction of the cart. There is also a coefficient of friction

for the pendulum, but its value compared to the cart is considerably small, which is why the friction

of the pendulum is not mentioned here.

6 Mathematical modeling 12

6.1. Force analysis

Figure 5: Free body diagram of the cart

Summing the forces in the free body diagram of the cart in the horizontal direction, we have

−𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 − 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 + 𝐹𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚 + 𝐹𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑎𝑟𝑡 = 0

→ −𝑀𝑎 − 𝑏𝑣 + 𝑁 + 𝐹 = 0

→ 𝐹 = 𝑀𝑥̈ + 𝑏𝑥̇ − 𝑁 Equation 1

Summing the forces in the free body diagram of the cart in the vertical direction, no useful

information can be found.

Figure 6: Free body diagram of the pendulum

Summing the forces in the free body diagram of the pendulum in the horizontal direction, we have

−𝐹𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑐𝑎𝑟𝑡 − 𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑐𝑎𝑟𝑡 − 𝐹𝑐𝑒𝑛𝑡𝑟𝑖𝑓𝑢𝑔𝑎𝑙 + 𝐹𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 = 0

→ −𝑁 −𝑚𝑎 − 𝐼𝜔2 sin𝜃 + 𝐼𝛼 cos 𝜃 = 0

→ 𝑁 = −𝑚𝑥̈ −𝑚𝑙𝜃̇2 sin 𝜃 + 𝑚𝑙𝜃̈ cos 𝜃 Equation 2

Summing the forces in the free body diagram of the pendulum in the vertical direction, we have

𝐹𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑐𝑎𝑟𝑡 − 𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 + 𝐹𝑐𝑒𝑛𝑡𝑟𝑖𝑓𝑢𝑔𝑎𝑙 + 𝐹𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 = 0

6 Mathematical modeling 13

→ 𝑃 −𝑚𝑔 + 𝐼𝜔2 cos𝜃 + 𝐼𝛼 sin𝜃 = 0

→ 𝑃 −𝑚𝑔 +𝑚𝑙𝜃̇2 cos 𝜃 + 𝑚𝑙𝜃̈ sin 𝜃 = 0

→ 𝑃 = 𝑚𝑔 −𝑚𝑙𝜃̇2 cos 𝜃 − 𝑚𝑙𝜃̈ sin𝜃 Equation 3

Substituting Equation 2 into Equation 1, we have

𝐹 = 𝑀𝑥̈ + 𝑏𝑥̇ − 𝑚𝑥̈ + 𝑚𝑙𝜃̇2 sin 𝜃 − 𝑚𝑙𝜃̈ cos 𝜃

→ 𝐹 = (𝑀 +𝑚)𝑥̈ + 𝑏𝑥̇ + 𝑚𝑙𝜃̇2 sin𝜃 − 𝑚𝑙𝜃̈ cos 𝜃 Equation 4

Summing moments about the center of mass, we have

𝐼𝜃̈ = 𝑃𝑙 sin𝜃 − 𝑁𝑙 cos 𝜃

→ 𝐼𝜃̈ = (𝑚𝑔 −𝑚𝑙𝜃̇2 cos 𝜃 − 𝑚𝑙𝜃̈ sin 𝜃)𝑙 sin 𝜃 − (−𝑚𝑥̈ − 𝑚𝑙𝜃̇2 sin 𝜃 + 𝑚𝑙𝜃̈ cos 𝜃)𝑙 cos 𝜃

→ 𝐼𝜃̈ = 𝑚𝑔𝑙 sin 𝜃 −𝑚𝑙2𝜃̈ + 𝑚𝑙𝑥̈ cos 𝜃

→ (𝐼 + 𝑚𝑙2)𝜃̈ − 𝑚𝑔𝑙 sin𝜃 = 𝑚𝑙𝑥̈ cos 𝜃 Equation 5

6.2. Linearization

Before a model can be made in Simulink, Equation 4 and Equation 5 have to be linearized.

Assuming a small deviation 𝜃 from equilibrium, the following small angle approximations of the

nonlinear functions can be used:

𝜃 ≅ 0

cos 𝜃 ≅ 1

sin 𝜃 ≅ 𝜃

𝜃̇2 ≅ 0

This results in the equations of motion expressed by Equation 6 and Equation 7.

𝐹 = (𝑀 +𝑚)𝑥̈ + 𝑏𝑥̇ − 𝑚𝑙𝜃̈ Equation 6

(𝐼 + 𝑚𝑙2)𝜃̈ − 𝑚𝑔𝑙𝜃 = 𝑚𝑙𝑥̈ Equation 7

Before using a Laplace transformation to solve the differential equations, a physical machine must

be analyzed in order to know which characteristics have influence on the equations.

7 Traditional motors 14

7. Traditional motors

The XTS system is a combination of rotary and linear systems. In order to understand the basic

principle of the XTS system, this chapter briefly describes a working principle of a DC motor, a

servo motor, and a linear motor.

7.1. DC motor

A DC motor, which uses direct current, converts electrical energy to mechanical energy. The DC

motor has two electrical components called stator and rotor. A current, from a power source, runs

through a stator, which contains a set of coil windings, generating an electromagnetic field that

lets the rotor rotate. The coil windings on the stator are turned ON and OFF in a sequence to

make the rotor keep spinning. As a result, torque and speed will be formed. The output torque

and speed depend on the input voltage and the design of the motor.

Figure 7: Electrical components of a DC motor [5]

Figure 8 shows a basic principle of how to control DC motors with a small “computer.” Two DC

motors are connected to a drive which is controlled by an Arduino board. By using an Arduino

IDE and a small program, making two DC motors work is easy.

7 Traditional motors 15

Figure 8: DC motors are driven by an Arduino board [6]

7.2. Servo motor

The concept of servo motors is quite similar to the DC motor, but the servo motor is constantly

monitored to control its motion. Besides the stator and rotor, the motor uses sensors, feedback

encoder and controller to create a closed-loop system, allowing accurate control of its position,

torque, velocity, and acceleration.

Figure 9: Servo motor components [7]

Controlling the servo motor is similar to the DC motor. The motor will be connected to a drive

which is driven by a small computer. By using a sophisticated IDE and a small piece of program,

the motor will work.

7.3. Linear motor

A DC motor and servo motor are commonly called rotary motor because a rotor or a shaft keeps

spinning within a stator. A linear motor does not have a spinning feature. In fact, a “shaft” of the

7 Traditional motors 16

linear motor moves back and forth along a track. The following picture is illustrating the

relationship between the rotary motor and the linear motor.

Figure 10: The stator has been "cut" and flattened out [8]

As can be seen, the linear motor has been constructed the same as the rotary motor but flattened

out. A current, from a power source, runs through the flattened coils magnetizing the phases north

or south, which results in an electromagnetic field. By turning the coils ON and OFF in a sequence,

a carriage with its own permanent magnets can be moved in a desired direction. A load can be

attached to the carriage that moves along the electromagnetic field. With this principle, the linear

motor can be used in transportation.

Controlling the linear motor is the same as the rotary motor. The motor will be connected to a

drive which is driven by a small computer. By using a sophisticated IDE and a small piece of

program, the motor will work as desired.

8 Inverted Pendulum setup 17

8. Inverted Pendulum setup

XTS, eXtended Transport System, is a linear transport system from BECKHOFF that moves in a

circle or in desired geometries that are suited for applications, for example: straight, s-shape,

square, rectangle, as shown in Figure 11. The machine can have one (or several) wireless

“movers” that can be moved highly dynamically up to a velocity of 4 m/s. The “movers” can

accelerate, position, and brake. They can group themselves, avoid collisions and queue. [9]

Figure 11: Flexible track layouts [9]

Figure 12 is a representation of a complete XTS system. The system consists of movers, guide

rail, motor modules and a control system. Communication between the XTS system and a PC is

done by the EtherCAT protocol [10]. In the graduation assignment, straight modules and one

mover will be used, as shown in Figure 13.

Figure 12: A complete XTS system [9]

8 Inverted Pendulum setup 18

Figure 13: XTS module used in the project

8.1. Traditional motors and the XTS system

The following table shows a connection between traditional motors and the XTS system.

Feature Traditional motors XTS system

Rotary motor Linear motor

Stator

 [11]

 [8]

 [9]

Called Motor module

Rotor/Carriage

 [12]

 [8]

 [9]

Called Mover

Drive L298N… Integrated inside the motor

module

Controller Arduino Uno, Raspberry Pi… BECKHOFF IPC CX5140

IDE Arduino, Atmel studio, PyCharm… TwinCAT3.1

8 Inverted Pendulum setup 19

Technically speaking, a giant XTS system can be interpreted as a small servo motor, but it has

been developed in such a way that it can be used in transportation. The XTS system uses a servo

technology to drive the mover. That means a current, from a power source, runs through each

motor module creating an electromagnetic field. By turning the coils ON and OFF in a certain

sequence, the mover with its own permanent magnets can be moved in a desired direction. A

built-in feedback system is monitoring its motion.

8.1. Connection diagram

The following diagram shows different components connected electrically, and how data is

exchanged.

Figure 14: Connection diagram

8.2. XTS machine itself

The XTS itself has three physical components: motor modules, a mover, and a guide rail. These

components will be explained in the following chapters to get a better understanding of the

working system.

8 Inverted Pendulum setup 20

8.2.1. Motor module

The XTS motor module can be interpreted as the stator of DC motors.

The system consists of individual motor modules that can be combined to form a complete

“roundabout.” There are 2 types of motor module used in the system: with and without supply

cables and data cable. The length of each motor module is 250 mm, in total the system in the

project will be 500 mm in length.

The article-name for the motor module with supply cables and data cables is: AT2001-0250

The article-name for the motor module without supply cables and data cables is: AT2000-0250

Figure 15: Motor module with supply and data cable (left), motor module without supply cables (right) [9]

The motor module consists of a coil package to generate a magnetic field for the mover. EtherCAT

and power for control at 24V DC, and power for the motor coil at 48V DC, are passing from module

to module via the PCB between them. For power electronics, the motor current is controlled

directly on the motor module, and temperature is internally monitored to prevent overload.

Figure 16: Motor module characteristics [9]

8 Inverted Pendulum setup 21

8.2.2. Mover

Figure 17: Mover [9]

The XTS mover can be interpreted as the shaft of DC motors.

The article-name for the XTS mover used in this project is AT9011-0050-0550. There is a variety

of different movers based on different requirements like speed, weight, lifetime etc.

The XTS mover with a width of 50 mm has 6 guide rollers, made of Teflon which a good

combination for low friction and reasonable lifetime of the rollers, and mounted permanent

magnets. As mentioned above, a magnetic field, which is created by the motor modules, is used

to propel the mover. The position feedback is generated within the motor module. The system

uses non-contact position detection feedback utilizing an encoder flag attached to the mover.

The mover is entirely passive and purely mechanical. There are no sliding contacts or cables

attached to the mover. Individual energizing of coils of the motor module generates a travelling

magnetic field, which moves the magnetic plates of the mover along with it.

The lifetime of the rollers depends on the payload, speeds, surroundings, and application.

8.2.3. Guide rail

Figure 18: Guide rail [13]

8 Inverted Pendulum setup 22

Figure 19: Simple assembly of the guide rail via mechanical interface on the motor module [13]

The article-name for the guide rail used in this project is: Guide rail with lock, 500mm in length.

In addition to the motor modules, a rail system is needed for the mover to travel smoothly and

easily. The guide rail is designed intentionally like an arrow. The encoder counts in the direction

of the guide rail. The 0 position is at the tail of the arrow unless defined otherwise in the

parameters.

8.3. Controller

An Arduino board or a Raspberry Pi is a tiny computer that is used to explore the electronic world,

for example, in schools. By using a sophisticated IDE running on a personal computer, a piece of

code can be transferred from a user computer to the dedicated board via a communication

protocol.

At BECKHOFF, these types of computers are called IPC’s, Industrial PC’s, the sophisticated IDE

is called TwinCAT Engineering, and EtherCAT is the communication protocol.

0 position

8 Inverted Pendulum setup 23

Figure 20: CX5140 | Embedded PC with Intel Atom® processor [14]

The CX5140 is an embedded PC with an Intel Atom quad-core processor. Its operating system

can be Windows 7, Windows 10, Windows CE or TC/BSD. Depending on the TwinCAT runtime

environment, the CX5140 can be used for implementing PLC or PLC/motion control projects with

or without visualization.

Unlike the Arduino board or the Raspberry Pi, the CX5140 itself does not have I/O terminals

integrated. The I/O terminals can be physically plugged in, or taken out depending on what users

need, allowing more freedom of selecting components and building a control cabinet.

The following pictures show how the system can be extended.

Figure 21: Expandable system. Left: 2 terminals are added. Right: 4 terminals are added

8.4. Controlling the mover

There are two possible ways to control the mover: with and without programming (“manual”

moving). Both solutions can be done within TwinCAT Engineering.

8 Inverted Pendulum setup 24

Before controlling the XTS mover, a tuning process needs to be taken into consideration. More

details can be found in Appendix F.

8.4.1. Movement without programming

By using the NC Axis, Numerical Control, in TwinCAT, the mover can be controlled manually. This

method is used for testing and tuning purposes.

Figure 22: System operation

To move manually, first set the controller enable by meaning of pressing the Set button. There

are 8 buttons to controller a mover.

• F1: The mover will travel instantly with a velocity of 600mm/s in the negative direction.

• F2: The mover will travel instantly with a velocity of 100mm/s in the negative direction.

• F3: The mover will travel instantly with a velocity of 600mm/s in the positive direction.

• F4: The mover will travel instantly with a velocity of 100mm/s in the positive direction.

• F5: Start movement. For example: a target position of 500mm, and target velocity is

300mm/s. As soon as the F5 button is pressed, the mover will move to the target position

with the target velocity.

• F6: Stop movement

• F8: Reset any error

• F9: Start the homing sequence

8 Inverted Pendulum setup 25

8.4.2. Movement with programming

Function blocks from the TC2_MC2 library, developed by BECKHOFF, can be used for controlling

motors from the PLC. For example, a MC_MoveAbsolute function is used to start positioning to

an absolute target position and monitors the axis movement over the entire travel path.

Figure 23: Inputs and Outputs of the MC_MoveAbsolute function [15]

MC_MoveVelocity starts a continuous movement with specified velocity and direction. Position

input can be ignored. The NC itself will calculate the setpoint for position and acceleration for the

next cycle.

Figure 24: Inputs and Outputs of the MC_MoveVelocity function [16]

In order to use these move functions (or other function in the TC2_MC2 library) and to have a

desired sequence, a state machine has to be built. In the following example, the state machine

has been designed with the MC_MoveAbsolute function. In this state machine, a mover will move

forwards and backwards.

Besides the MC_MoveAbsolute function itself, the MC_Power function and the MC_Reset

function must be used as well.

- MC_Power: An axis (the mover) will be enabled and powered.

- MC_Reset: Reset any error during movement.

Figure 25 shows a state diagram for the move-process of an axis.

8 Inverted Pendulum setup 26

Figure 25: State Machine for the MC_MoveAbsolute function. Full UML code can be found in Appendix G

There are many more functions that can be used for different purposes. Their descriptions and

functionalities can be found in the information system.

Appendix D will explain in depth which move functions are suitable for the project.

8 Inverted Pendulum setup 27

8.5. Pendulum encoder

Figure 26: Pendulum encoder [17] and mounting units

An encoder is used to measure the angular position of the pendulum. The encoder is attached to

the mover through mounting units, as shown in Figure 26. The pendulum is mounted directly to

the rotational shaft of the encoder. By measuring the distance or displacement of the pendulum

in a rotary motion, the encoder converts rotational movements into electrical signals.

The following table shows the technical data of the encoder.

Company Kubler

Order code 8.F3653.3543.C412

Interface protocol BiSS-C

Supply voltage 10-30V DC

Resolution 14-bit

Encoder type Absolute encoder, single turn

Table 1: Technical data of the encoder [17]

BiSS stands for Bidirectional Serial Sensor Interface. It is a communication protocol used to

transmit data between a transmitter and a receiver. In the project, the transmitter is the encoder

of the pendulum, and the receiver is the BECKHOFF IPC. BiSS can be configured as uni-

directional or bi-directional communication. The uni-directional communication means data can

only be transmitted in one way which is from the transmitter to the receiver. It is not possible for

the receiver to send configuration data to the transmitter. On the other hand, for the bi-directional

8 Inverted Pendulum setup 28

communication, data can be exchanged between the receiver and the transmitter at once without

interrupting sensor data transmission. [18]

With the absolute single turn encoder, a coded position value is assigned to each angular position

to record the absolute position. Even after the encoder has been disconnected and connected

again, the position is still available. The encoder has a resolution of 14-bit single turn, that means

it will count from 0 to 16383 (214 – 1) over one rotation and then starts from 0 again.

𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =
𝑂𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑒𝑛𝑐𝑜𝑑𝑒𝑟

16384
∗ 2𝜋 (𝑜𝑟 ∗ 360𝑜)

Equation 8

The connection wiring is shown in Appendix E.

8.5.1. Homing position of the pendulum

In this project, a homing position of the pendulum is defined when the pendulum stays naturally

to the left, as shown in Figure 28. According to the datasheet of the encoder, there is one pin

used to set a zero position, called SET input. As soon as the pin is set to HIGH, the homing

position will be set to 0.

Figure 27: Homing position function

8.5.2. Counting direction of the encoder

In this project, the counter value, or the output value from the encoder, will be increased at

clockwise rotation, and vice versa. The counter value will be decreased at counterclockwise

rotation.

9 Controller design 29

Figure 28: Counting direction

According to the datasheet, it is possible to change the counting direction from counterclockwise

(CCW) to clockwise (CW), and vice versa. However, this function will be not used. The positive

counting direction is clockwise.

9. Controller design

To stabilize the inverted pendulum, in this chapter, a controller will be chosen and simulated in

MATLAB/Simulink. Its result will be explained in more detail.

9.1. Laplace transform

As explained in Appendix D, velocity is one of the inputs that can be used to control the mover,

so Equation 7 needs to be adjusted.

(𝐼 +𝑚𝑙2)𝜃̈ − 𝑚𝑔𝑙𝜃 = 𝑚𝑙𝑥̈

→ (𝐼 + 𝑚𝑙2)𝜃̈ − 𝑚𝑔𝑙𝜃 = 𝑚𝑙𝑣̇

Taking the Laplace transformation of the linearized equations of motion, we get

(𝐼 + 𝑚𝑙2)𝑠2Θ−𝑚𝑔𝑙Θ = 𝑚𝑙𝑠𝑉

→ ((𝐼 + 𝑚𝑙2)𝑠2 −𝑚𝑔𝑙)Θ = 𝑚𝑙𝑠𝑉 Equation 9

9.2. Transfer function

From Equation 9 can be obtained:

Θ

𝑉
=

𝑚𝑙𝑠

(𝐼 + 𝑚𝑙2)𝑠2 −𝑚𝑔𝑙

Equation 10

9 Controller design 30

By making the denominator of Equation 10 equal to 0, we can see that there is no free “s”s, so

the type of system is 0.

In addition, from the transfer function, we get

- Zero at 𝑠 = 0

- Poles at 𝑠 = ±√
𝑚𝑔𝑙

𝐼+𝑚𝑙2

There is one pole located in the right half plane, so the system is unstable in open loop.

9.3. Parameter identification

9.3.1. Travelling distance of the mover

Due to safety purposes, there are two plastic pieces added to the guide rail to prevent the mover

from travelling out of the system. Because of that, the travelling distance of the mover is

shortened. With the help of TwinCAT and the encoder flag on the mover, the travelling distance

can be precisely measured, as shown in Figure 29.

Figure 29: Two blocking plastic pieces and the coordinate system

9.3.2. Mass and length of the pendulum

Figure 30: Pendulum being balanced around its center of mass

The mass of the pendulum, including a mounting base and a ball, is determined with the help of

a scale m = 0.254(kg). A ruler was used to identify the length of the pendulum L = 0.275(m)

The length to pendulum center of mass, ℓ = 0.16(𝑚)

9 Controller design 31

Feature Value

m 0.254(kg)

L (total length of the pendulum) 0.275(m)

l (length to pendulum center of mass) 0.16m

9.3.3. Mass moment of inertia of the pendulum (I)

The moment of inertia can be easily calculated with the formula for I below. In this formula, it is

assumed that the system weight is at the center of mass of the pendulum.

Ι =
𝑚𝑙2

3
=
0.254 × 0.162

3
= 2.167 × 10−3(𝑘𝑔.𝑚2)

9.3.4. Mass of the mover

Figure 31: Mover and mounting units

The mass of mover consists of the mover itself, the L unit, the encoder, and the blocking angle

unit.

Name Mass (kg)

Mover 0.41

L unit + Encoder 0.181

Blocking angle unit + 2 bolts 0.018

Total 0.609

9 Controller design 32

9.3.5. Angular displacement of the blocking angle unit

Because of the short travelling distance, a blocking-angle was designed, so the pendulum will not

turn towards the ground. With the help of TwinCAT, the angular position can be calculated by the

following equation.

𝐴𝑛𝑔𝑙𝑒 =
𝑅𝑒𝑎𝑑𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒

16384
∗ 2𝜋 (𝑜𝑟 ∗ 360𝑜)

Figure 32: Output value from the encoder shown in TwinCAT (the red box)

Measuring procedure:

- Move the pendulum by hand to the left side of the

blocking angle unit. The SET pin of the encoder must

be set HIGH to reset the homing position. Record the

reading value from the encoder, in this case, 0.

- Move the pendulum by hand to the right side of the

blocking angle unit and record the reading value from

the encoder, in this case, 2065.

𝐴𝑛𝑔𝑙𝑒 =
𝑅𝑖𝑔ℎ𝑡𝑉𝑎𝑙𝑢𝑒 − 𝐿𝑒𝑓𝑡𝑉𝑎𝑙𝑢𝑒

16384
∗ 2𝜋 (𝑜𝑟 ∗ 360𝑜)

=
2065 − 0

16384
∗ 2𝜋 (𝑜𝑟 ∗ 360𝑜)

= 0.252𝜋 (𝑜𝑟 45.373535𝑜)

Since we want the pendulum to stabilize around the equilibrium

point, the angular position of the equilibrium point is

Left value Right value

Equilibrium

Figure 33: Angular displacement

9 Controller design 33

0.252𝜋

2
= 0.126𝜋 (𝑜𝑟

45.373535

2
= 22.686767𝑜)

The above-mentioned value is also the setpoint value for the controller.

Also, using the earth gravity, the setpoint value can be found easily, as

shown in Figure 34.

𝐴𝑛𝑔𝑙𝑒 =
𝑅𝑒𝑎𝑑𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒

16384
∗ 2𝜋 (𝑜𝑟 ∗ 360𝑜)

=
1033

16384
∗ 2𝜋 (𝑜𝑟 ∗ 360𝑜) = 0.126𝜋 (𝑜𝑟 22.6978𝑜)

9.4. Selecting a controller and simulating

In order to stabilize the inverted pendulum in its upright position, a feedback control system can

be used, which monitors the pendulum’s angle and moves the mover sideways when the

pendulum start to fall over.

Figure 35: A closed-loop system

A PID controller has been selected first because of its simplicity. A PID controller controls a

process through three parameters: Proportional (P), Integral (I), and Derivative (D). These

parameters can be weighted, or tuned, to adjust their effect on the process.

𝑢(𝑡) = 𝐾𝑝𝑒𝑟𝑟𝑜𝑟(𝑡) + 𝐾𝑖∫ 𝑒𝑟𝑟𝑜𝑟(𝑡)𝑑𝑡
𝑡

0

+𝐾𝑑
𝑑

𝑑𝑡
𝑒𝑟𝑟𝑜𝑟(𝑡)

A PID controller works by calculating the error between the output of the Process and a given

desired value. With this error, an output is calculated based on equation above.

- Proportional: the actual error is multiplied by a gain of Kp, which means that the bigger

the error, the bigger the output. Ideally, this constant should be as large as possible to get

Figure 34: Checking
the setpoint value with
the earth gravity

9 Controller design 34

a quick response but increasing the gain too much can cause oscillation and overshooting

in output values.

- Integral: the error is integrated over time and multiplied by Ki, making it possible to correct

the constant error that the proportional part can have. The integration is often

approximated as the sum or errors in each time step. The I-Control will increase the type

of system by one, meaning one pole will be added to the system.

- Derivative: the error is derived with respect to time in order to get the error change rate,

and then multiplied by Kd. The derivative action is sensitive to noise, which could cause

overshooting in output values.

Using a PID tuner in Simulink, controller gains can be found automatically.

9.4.1. Importing data to MATLAB

The first step is importing data and the transfer function to MATLAB.

Figure 36: Importing data to MATLAB

Figure 37: 1 zero and 2 poles

9 Controller design 35

9.4.2. P-Controller

At first, a P-Controller is selected.

Figure 38: P-Controller

Figure 39: P-Controller results

As shown in Figure 39, the steady state error becomes 0, but on the Show Parameters window,

it says that the closed-loop system is unstable. That means the P-Control is not suitable for the

system.

9.4.3. PI-Controller

Next, a PI-Controller is selected.

9 Controller design 36

Figure 40: PI-Controller

Figure 41: PI-Controller results

As can be seen from Figure 41, the steady state error does not become 0. In fact, there is a 1.02 −

1 = 0.02 difference, and the PID tuner says the closed-loop system is stable.

A simulation has to be run to check the results in the data inspector.

9 Controller design 37

Figure 42: Data inspector for the PI-Controller

On the first graph of Figure 42, we can see that the output, the orange line, remains constant, and

it does follow the input with a 0.02 difference, as explained above.

On the second graph of Figure 42, the green line, which is the output of the PI-controller, which

is also the control signal, shrinks unboundedly as time increases toward infinity.

So, the PI-Controller is not suitable for the system.

9.4.4. PID and PD-Controller

Both PD and PID-Controller give the same result as the PI-Controller. That means the steady

state error becomes constant with a 0.02 difference and the control signal shrinks unboundedly

as time increases toward infinity.

So, the PD and PID-Controller are not suitable for the system.

9 Controller design 38

9.4.5. PI + I2-Controller

This controller is built based on a pole-placement method. Pole-placement method is to set the

desired pole location and to move the pole location of the system to that desired pole location to

get the desired system response. In specific, the desired poles will be placed in the left half plane

where the system becomes stable.

Figure 43: PI-I2 Controller

For the PI+I2 controller, K1 can be represented as P-Control.
𝐾2

𝑠
 can be represented as I-Control.

𝐾3

𝑠2
 can be represented as double I-Control.

A transfer function of the system will be

𝑇𝐹 =

𝐾1𝑠
2 + 𝐾2𝑠 + 𝐾3

𝑠2
×

𝐴𝑠
𝐵𝑠2 + 𝐶

1 +
𝐾1𝑠

2 + 𝐾2𝑠 + 𝐾3
𝑠2

×
𝐴𝑠

𝐵𝑠2 + 𝐶

=
(𝐾1𝑠

2 + 𝐾2𝑠 + 𝐾3)𝐴

𝑠(𝐵𝑠2 + 𝐶) + (𝐾1𝑠
2 + 𝐾2𝑠 + 𝐾3)𝐴

Since we are interested in pole locations, the denominator of the transfer function must be equal

to 0.

𝑠(𝐵𝑠2 + 𝐶) + (𝐾1𝑠
2 + 𝐾2𝑠 + 𝐾3)𝐴 = 0

→ 𝐵𝑠3 + 𝐾1𝐴𝑠
2 + (𝐾2𝐴 + 𝐶)𝑠 + 𝐾3𝐴 = 0

≡ (𝑠 − 𝛼)(𝑠 − 𝛽)(𝑠 − 𝛾) = (𝑠2 − (𝛼 + 𝛽)𝑠 + 𝛼𝛽)(𝑠 − 𝛾)

= 𝑠3 − (𝛼 + 𝛽 + 𝛾)𝑠2 + (𝛼𝛽 + 𝛼𝛾 + 𝛽𝛾)𝑠 − 𝛼𝛽𝛾

→ {

𝐵 = 1
𝐾1𝐴 = −(𝛼 + 𝛽 + 𝛾)

𝐾2𝐴 + 𝐶 = 𝛼𝛽 + 𝛼𝛾 + 𝛽𝛾
𝐾3𝐴 = −𝛼𝛽𝛾

→

{

𝐵 = 1

𝐾1 =
−(𝛼 + 𝛽 + 𝛾)

𝐴

𝐾2 =
𝛼𝛽 + 𝛼𝛾 + 𝛽𝛾 − 𝐶

𝐴

𝐾3 =
−𝛼𝛽𝛾

𝐴

9 Controller design 39

Alpha, Beta and Gamma are the desired pole locations. They must be located in the left half

plane. Based on these values, the three parameters of the controller K1, K2 and K3 can be

calculated.

Figure 44: Selecting Alpha, Beta and Gamma

Check the Data Inspector.

9 Controller design 40

On the first graph, we can see that the error value is nearly 0 as time increases, and the output is

following the input nicely. On the second graph, the control output remains bounded. Therefore,

with this controller, the system will be stable around the equilibrium.

With the three selected pole locations, controller gains can be found easily.

{

 𝐾1 =

−(𝛼 + 𝛽 + 𝛾)

𝐴

𝐾2 =
𝛼𝛽 + 𝛼𝛾 + 𝛽𝛾 − 𝐶

𝐴

𝐾3 =
−𝛼𝛽𝛾

𝐴

=

{

 𝐾1 =

−(−1 − 2 − 6)

0.0406
= 221.67488

𝐾2 =
2 + 6 + 12 + 0.3987

0.0406
= 502.431

𝐾3 =
1 ∗ 2 ∗ 6

0.0406
= 295.5665

10 PLC program 41

10. PLC program

In this chapter, strategies and state machines will be addressed.

Since the main goal of the project is to make the pendulum stay at its upright position, there are

two strategies to implement a PLC program: hold and drop strategy, and full motion strategy.

- Hold and drop strategy: the pendulum must be moved manually to its equilibrium range,

Figure 45, and then a PLC program will be executed instantly to balance the pendulum.

- Full motion strategy: a PLC program has to move the Mover in such a way that the

pendulum can enter the equilibrium range, and then balance the pendulum.

Figure 45: Equilibrium range

10.1. Building a PLC program

Figure 46: Translating from the Simulink model to the real application

10 PLC program 42

Since the correct model and the controller have been found, we now can design a PLC program

based on Figure 46.

A state diagram is a tool used to describe the behavior of systems. It helps showing the flow of a

process and needed conditions to switch states. This effort is quickly compensated by faster

development of the PLC program. In other words, the total development time is shorter if one

expends a little time in planning the program structure. More importantly, the number of bugs in

the code that must be detected and corrected will also be smaller.

Unified Modeling Language (UML) is used to make the state diagram.

10.2. Hold and drop strategy

Figure 47: Hold and drop strategy

The full UML code can be found in Appendix H.

10 PLC program 43

10.3. Full motion strategy

Figure 48: Full motion strategy

The full UML code can be found in Appendix I.

11 Conclusion and Recommendation 44

11. Conclusion and Recommendation

In the final chapter of the report, the main conclusion as well as possible recommendation will be

discussed. The research questions will be concluded.

11.1. Conclusion

Tag Research questions Where has it been answered?

1 How is the XTS machine built? What is the

role of each component?

Chapter 8.2

1.1 How to control the mover? Chapter 8.4

2 What are the equations of motion of the

system?

Chapter 6

2.1 What are the equations for the transfer

function?

Chapter 9.2

2.2 What are the Simulink models

corresponding to the system?

Chapter 9.4

3 What kind of controller can control the

pendulum? How can it be designed?

Chapter 9.4.5

4 How to use the code generator to convert

Simulink blocks to PLC languages? Is this

task feasible? If not, how to write a similar

controller in PLC languages?

The Simulink PLC Coder does not

generate a PLC code from the Simulink

model.

The intern has already implemented a

similar controller in PLC languages.

11.2. Recommendation

It would be great to have a gyroscope sensor to define the setpoint value for the system. During

the testing phase, I found out the mover keeps moving to the right while the pendulum stays at

upright position. I re-checked the function block that calculates the setpoint value and Equation

8. Everything seems to be correct. Apparently, the issue does not come from the PLC program

nor the equation, it is from the box, holding the XTS machine. The box itself has a small slope.

11 Conclusion and Recommendation 45

The temporary solution is modifying manually the setpoint value a bit to the left. In the future, the

permanent solution will be setpoint autotuning.

0 Reflection 46

Reflection

When control system lectures were introduced to me in my second year, I found it pretty difficult

to understand the topic and its usage in the “real world.” I could not find any practical connection

between the theory and the real world. It was way too abstract. After two courses of studying the

control system, nearly one year, I did not know how to use control system theories in the real

world. I only knew how to build simple blocks in MATLAB/Simulink, but for the real world, I had

no idea.

At HAN, every semester, students have to do a project either at a company or at school. Every

semester, I went to different companies to look for a project that had control systems involved.

Every semester, I got rejected because control system projects were meant for final year students.

When I knew I would be doing a graduation soon, I started looking for a company that had control

system projects or PLC related projects. Many companies offered a lot of interesting projects, but

the one I wanted was not found yet. One day, I got a response that hooked me immediately.

BECKHOFF would like to have an Inverted Pendulum running with a XTS machine.

With the knowledge by that time, I barely knew what control system was. The simplest controller,

PID, I did not know how to use it. I am aware that the graduation project is very different compared

to other semester’s projects. If I fail the graduation assignment, I have to do another 5-month

assignment. Despite the lack of knowledge, I made a decision that I am still really proud of it: Let’s

fail successfully.

In September, when I officially worked on the machine, I realized the machine itself was more

complex and overwhelming than expected. The final goal was even more overwhelming. I had a

ton of questions and I even had doubts about the questions themselves whether they were the

right questions. There was a steep learning curve and a large number of subtasks to do.

One of the first problems that I encountered was an unpleasant sound coming from the machine.

When the pendulum was mounted firmly on the mover for the first time, the machine got powered

and then a loud sustained metal-on-metal noise suddenly happened. I had no choice but turned

off the machine immediately. I thought I broke the costly machine already.

Talking to colleagues, I knew that the machine must be tuned in order to find its stabilization. I

received a lot of documentations and e-learning videos to do the tuning procedure. After three

days of trial and error, I could not reduce the sound. One of the support members checked my

0 Reflection 47

laptop and did the tuning for me. By looking at the way how he solved it, I realized many steps

were hidden and were not documented, or it is assumed that users already know about it. XTS

machine is an advanced transport system from BECKHOFF. The machine is sold with a training

included. Unfortunately, the XTS training takes place physically in Germany. Due to Corona, I

could not attend the training.

Remembering how that colleague did the tuning, and doing it again, I found out a connection

between the control system theory and the machine. Basically, the machine has an internal

closed-loop system to control itself, and that closed-loop system has been tuned already. Any

disturbance applied to the machine will change the behavior of the system. In this case, the

pendulum, the disturbance, messed up the closed-loop system. At school, I often saw Figure 49,

but I was not sure how disturbance looked like in the real world. Now I can easily see it.

Figure 49: Closed-loop control system [19]

Furthermore, repeating the tuning procedure, I saw myself following a sequence that I could not

interpret clearly. One month later, in October, Marnick encouraged me to build a controller for the

pendulum, I recognized that the XTS internal controller was built based on Ziegler-Nichols

method. Turn off all controller gain parameters except the P-parameter. Tune the Kp value until

the ultimate gain is found. Adjust the Kp value and turn on the I-parameter. Keep tuning until the

oscillation period is found.

That date, I understood how to use the simplest PID controller in practice. That date, I developed

a new skill. Also, that date, I recognized distinctly that I had to deal with two different closed-loop

systems: one was for the XTS machine itself, and another one was for the pendulum which was

the one I had to build.

Third week of October, I built a PLC program based on the Ziegler-Nichols method, and with some

help from Marnick, the pendulum was able to balance on its own for a short moment. It was one

of the remarkable moments for both of us. I thought the Ziegler-Nichols method was the right way

0 Reflection 48

to find a controller. I just needed to improve my PLC program a bit, and then I could see the final

goal. I was so excited.

However, I kept trying and trying, different state machines were designed, I still could not make

the pendulum balance for a long period. As soon as the pendulum entered the equilibrium range,

aggressive movements happened, messing up the entire balancing state. I got stuck.

In November, I confronted my difficulties with Amin. He understood the struggles and explained

control system in the way that I could understand it. However, the special “lectures” were different

compared to the time I studied at school. It was way too easy to visualize in my head. I could see

a connection between Simulink models and my PLC program. I knew exactly where I could

implement the Simulink parameters in my PLC program. It was just a strange feeling.

The reason why I got the strange feeling was from the experience that I worked on the physical

machine. By trying to build different PLC programs to make the pendulum move and seeing its

physical movement, I had also built up my intuitive understanding of the system. But it was not

organized in a neat way. Listening to Amin’s instruction, I could find a way to link them together.

By that month, I had a chance to talk to an XTS expert. He understood the struggle I had been

through, and what I was after. The main issue of my program is that the pre-defined move function

is not suitable for my application. He wanted me to build my own move function using “External

SetPoint Generator” functions.

That task of developing-my-own-move-function was not easy because there was no

documentation, no example code. I returned to the trial-and-error method of iterative

programming. Put that function in TwinCAT, change some parameters, run it, and see its result.

After nearly four weeks of trial and error, I had my own move function running. By that time, I

realized the underlying concept of using the External SetPoint Generator functions. It is building

a tracking trajectory which is used to effect desired trajectories of a target device. Another

achievement was developing.

The second week of December, I found out a critical error that brought me down deeply, the

communication between the encoder and the BECKHOFF system was not set correctly. Instead

of getting a constant signal, I received a fluctuating signal. After hours of diagnostics, the problem

solved itself by changing just one parameter. But I did not feel delighted at all, I felt hopeless. The

deadline of submitting the final report was nearby, but my report was not halfway done yet. Month

0 Reflection 49

after month trying and trying, I could not make the pendulum stay upright. Another error just

solved. What errors were still hidden? I was getting lost in anxiety.

The next day, I got an unexpected call from Amin. That talk was longer than usual. I will not forget

that talk.

On Wednesday morning, 15-12-2021, around 9 o’clock, I triggered one of the parameters in my

PLC program for testing, and then I noticed that the pendulum was able to balance on its own for

a few seconds. The duration was short, but I saw it. The balancing of the pendulum was smooth.

That brief moment linked many uncertain things together inside my head. Some states and

parameters were implemented incorrectly, and then.

It finally worked.

Stabilizing an Inverted Pendulum within TwinCAT is one of the most difficult challenges that I

have been through. My journey had a lot of ups and downs. Sometimes, it went deeply down.

Without encouraging and supporting from other people, I might not have been able to make it

work.

It was a fantastic journey.

0 Reflection 50

Appendix A. Approved LTC statement

0 Reflection 51

Appendix B. Approved graduation assignment application form

0 Reflection 52

0 Reflection 53

0 Reflection 54

0 Reflection 55

0 Reflection 56

Appendix C. Final version of Project Plan

Problem statement

The Inverted Pendulum is a classical control problem of an unstable dynamic system. The system

consists of an inverted pendulum mounted on top of the mover, which is moving on the guide rail.

The pendulum will simply fall over if the mover is not moved to balance it.

The system is used to demonstrate the target hardware/software platform developed by

BECKHOFF. With this platform, it is possible to run models and controllers in real-time while

connecting these models with input/output signals from the real world. The demonstrator will be

used at BECKHOFF for promotional and educational purposes.

The current Inverted Pendulum demonstrator is not yet working at BECKHOFF. The system

consists of six different parts, which are not yet fully assembled as shown in Figure 2: an IPC (1),

an encoder for the pendulum (2), a mover (3), a guide rail/motor module with a built-in encoder

(4), a pendulum (5), and a blocking angle unit (6).

Figure 50: Inverted Pendulum set-up

Figure 51 shows how to assemble the pendulum with the mover. The intern needs to find out what

screws are suitable to mount the pendulum to the mover.

0 Reflection 57

Figure 51: Correct way to assemble the pendulum to the mover

A basic schematic of the system is shown in Figure 52. A controller has to be designed to keep

the pendulum upwards in its vertical position. Therefore, the deviation of the pendulum from its

upright position and the position of the mover are significant measurements. The encoder is used

to measure the position (or angle) of the pendulum. The built-in encoder in the guide rail itself,

mentioned above, is used to measure the position of the mover.

Figure 52: sketch of the system

The scope of the project

The scope of the project is restricted to the Inverted Pendulum set-up, the hardware/software

platform and two different feedback systems. What is more, the swing-down process of the

pendulum is ignored due the limitation of the hardware. That means the pendulum will start in a

vertical upward position.

0 Reflection 58

What must be done?

The ultimate goal of the project is to have the controller for the Inverted Pendulum running in

TwinCAT3. That means a PLC program, written in Structured Text, must be implemented. The

intern is allowed to use MATLAB/Simulink to build and verify models. After that, a code generator

will be used to convert the Simulink blocks to the PLC language. If the converting process is not

feasible, the intern needs to build a separate control system in TwinCAT3.

To make the inverted pendulum run in TwinCAT3, the following table shows research questions

and sub-questions.

Tag Question

1 How is the XTS machine built? What is the role of each component?

1.1 How to control the mover?

2 What are the equations of motion of the system?

2.1 What are the equations for the transfer function?

2.2 What are the Simulink models corresponding to the system?

3 What kind of controller can control the pendulum? How can it be designed?

4 How to use the code generator to convert Simulink blocks to PLC languages? Is this

task feasible? If not, a similar controller must be separately built in PLC languages.

What could be done?

Human Machine Interface (HMI) is a dashboard that enables users to engage and interact with

machines. For this project, it would be great if the intern can use TwinCAT HMI to implement the

HMI program.

Planning and schedule

A global planning will be shown in Table 2: Global planning. For the time being, the intern will join

several training courses (and/or customer visits, customer meetings) provided by BECKHOFF.

These unscheduled events might change the global planning. The intern undertakes to inform all

people involved in the project about this in good time.

0 Reflection 59

Every Monday, at 11.00, the intern will attend a group meeting, via Microsoft Teams, with

BECKHOFF support team to present what he did in the previous week, what he will do next, and

ask for support if needed.

Month Week Activities Deliverables Notes

August +
September

35 Get to know
colleagues,
TwinCAT, laptop,
offices, etc.

Collect all information
related to the XTS
assignment. Start
writing the Project
Plan report.

September 36 TwinCAT training (3
days) provided by
BECKHOFF.

Finish the Project Plan
report. (Deadline 10-
09-2021)

Hand in the first
biweekly report.

 37 Motion control theory
provided by
BECKHOFF.

Start writing a
Research report.

 38 PLC motion in
TwinCAT.

Hand in the biweekly
report.

The first meeting
between school,
company, and intern, via
Microsoft Teams. Date
and time will be informed
in good time.

September
+ October

39 XTS – first step

Design a model.

October 40 Design a model. Hand in the biweekly
report.

41 Design a model.

42 Design a model. Hand in the biweekly
report.

43 Submit (partial)
Research report v1 to
school. (Deadline 29-
10-2021)

0 Reflection 60

November 44 Combining
everything.

Start writing the final
report.

Hand in the biweekly
report.

45 Combining
everything.

Start writing the final
report.

46 Combining
everything.

Start writing the final
report.

TwinCAT training in
Dutch as language
practice.

Hand in the biweekly
report.

47

November
+
December

48 Submit the draft final
document to school,
and the Research
report v2 if needed.
(Deadline 26-11-2021)

December 49 Continue the final
report.

Write a manual guide
for BECKHOFF.

50 Continue the final
report.

Write a manual guide
for BECKHOFF.

Hand in the last
biweekly report.

51 Christmas and new year holidays

52

January
2022

01 Submit the final
document to school.
(Deadline 07-01-2022)

02 Team presentation
with BECKHOFF via
Microsoft Teams

 Date and time will be
informed in good time.

0 Reflection 61

03 Final presentation
with school via
Microsoft Teams

 The presentation will be
held via Microsoft Teams.

04

Table 2: Global planning

Explanation:

Biweekly reports – The deadline is every 2 weeks.

The supervising lecturer must be capable of providing adequate supervision. For this reason, it is

important that the intern keeps him up to date during the graduation project. The intern does so

by writing a report every 2 weeks. These reports should provide clarity on:

- How things are going in general (work relationships, contact with the company supervisor,
etc.).

- The progress of the graduation assignment.

Biweekly reports give the supervising lecturer a better idea of the work level and allow him to step

in if the intern is veering off course.

Research report – The deadline of version 1 will be on 29-10-2021, version 2 will be on (26-11-

2021) (if needed).

Final report – The deadline of the draft report will be on 26-11-2021, final report will be on 07-

01-2022.

The final report consists of a main document with appendices. The research report will be one of

the parts of the final report.

The goal of the draft report is to give both the lecturer and the intern a good idea of the progress.

Project organization

During the internship, the intern will spend five days or 40 hours per week on the assignment.

Communication between the company supervisor and the intern is important, so in this case, it

will be mainly oral. Due to Covid restriction, some colleagues will be working from home, an online

meeting via Microsoft Teams will take place.

Mr. Amin Mannani, the school supervisor, will help the intern as well. To keep the school

supervisor up-to-date with the internship, the intern needs to send biweekly reports.

Working hours: from 8:15 – 8:30 to 16:30. Rest hours: 12.30 – 13.00

The entire team involved in the project are listed in the table below.

0 Reflection 62

 Name Role Email

Company Nikolas Eimer Location
manager

N.Eimer@beckhoff.com

Marnick Sluismans Support
Engineer

msluismans@beckhoff.nl

School Amin Mannani School
supervisor

amin.mannani@han.nl

Intern Suat Nguyen Electrical
student

snguyen@beckhoff.nl

ss.nguyen@student.han.nl

Table 3: group's information

mailto:N.Eimer@beckhoff.com
mailto:msluismans@beckhoff.nl
mailto:amin.mannani@han.nl
mailto:snguyen@beckhoff.nl

0 Reflection 63

Appendix D. Move functions

One of the essential things that I have noticed during the time working on the machine is the Move

function. BECKHOFF library has a lot of Move functions which can be used for different purposes,

but which Move function is suitable for this task? With the help of many BECKHOFF colleagues,

I am able to distinguish between BECKHOFF standard Move functions and BECKHOFF custom

Move function, in this case the External Setpoint Generator function.

Feature MoveVelocity function External Setpoint Generator function

Motion profile

and complexity

A pre-made trajectory is already

integrated in the Move function

itself.

User-friendly and very easy to

use.

Users have to build a partial (or full)

trajectory from scratch.

Need to understand what is happening

inside a black box, and how a signal

goes from A to B.

Overshoot Velocity does not make a big jump

at the beginning.

Velocity is pretty high at the beginning

because a full motion profile has not

been built completely. The mover has to

travel a short distance but starting from 0

velocity. That means its acceleration and

its derivative, jerk, go to infinite.

Fast response There are some delays between a

commanded velocity and an

actual velocity because the PLC

itself needs to have some time to

calculate the entire motion profile

before sending to the mover.

Instant update.

The mover will move based on the

motion profile pre-defined by users.

0 Reflection 64

Is the pendulum

able to swing?

Yes, the pendulum is able to

swing, but aggressive movement

will happen around the equilibrium

point.

The current function itself cannot make

the pendulum swing because it has a

high velocity at the beginning, messing

up the entire path. The function itself

should not start from 0 velocity or a full

motion profile has to be designed.

Figure 53: Signals travelling from the PLC to the actual drive [20]

In Figure 53, there are four different blocks corresponding to different tasks. AX5000 is taken as

an example.

- PLC block: this is a place where users type a PLC program.

- SVB block: this is an internal system where a trajectory, max. velocity, acceleration,

deceleration, and jerk are designed automatically. That means the system itself will try to

calculate what value should be suitable for the next cycle.

o When the External SetPoint Generator function is used; the SVB block is disabled,

allowing users to design their own desired trajectory.

o However, when the SVB block is disabled, there is no safety function enabled.

Besides designing the Move function, users have to design their own safety

functions, otherwise, damage will be unpredictable.

- SAF block: this block will directly send all calculated parameters to a drive.

- AX5000: A drive receives the calculated parameters and sends them to a physical Axis.

0 Reflection 65

Appendix E. Connecting the encoder with the BECKHOFF system

Encoder BECKHOFF terminals

Abbreviation Color Function EL5042 EL2004 EL2262

WH White Power supply ground Pin 7

BN Brown Power supply +V DC Pin 6

GN Green C+, clock signal Pin 2

YE Yellow C-, clock signal Pin 10

GY Gray D+, data signal Pin 1

PK Pink D-, data signal Pin 9

BU Blue Set input Pin 1

RD Red Direction input

BK Black Incremental output

channel A (cosine+)

VT Violet Incremental output

channel A (cosine-)

GY-PK Gray-Pink Incremental output

channel B (sine+)

RD-BU Red-Blue Incremental output

channel B (sine-)

0 Reflection 66

The SET input pin means the encoder can be set to zero at any position by means of a HIGH

signal.

After wiring, some parameters need to be adjusted in the CoE - Online tab in TwinCAT, as shown

below.

Check communication in the Diag History tab.

There is no red error message which means the terminal is ready to deploy.

0 Reflection 67

Appendix F. Servo Control Technology

Since the XTS is a closed-loop servo system, the motion control will command and change both

the present position and present velocity to the updated target position and target velocity, and

target acceleration profile.

The XTS system as delivered is configured for an empty mover, which means there is no payload

on top of the mover. Any payload added to the mover will affect how the mover behaves. The

mass, the stiffness, and the location of the center of gravity of the load have a drastic influence

on the behavior of the mover.

As soon as a load is added to the mover, and the mover is enabled, the mover will begin to

oscillate and make a very loud unpleasant noise. If the mover keeps oscillating, there is no further

steps that can be achieved, for example: the mover cannot move left or right with a simple

command. Therefore, oscillation must be eliminated, and updating the motion profile must be

done.

Figure 54: Closed-loop control system [16]

By using the Tuning Assist, implemented in TwinCAT, the mass, the stiffness, the location of the

center of gravity of the load and the mover will be updated in the motion control profile. According

to the Tuning documentation, depending on the construction of the load and natural resonant

frequencies it may be the case that it is not possible to tune the load mover combined. The load

must be redesigned.

Servo Control Technology

The XTS Soft Drive is equivalent to a Servo Drive, but it has been developed for the XTS system.

For the XTS, the Soft Drive calculates the current command and gives that current (force) to the

XTS Driver to commutate. A typical Servo Drive Configuration has the following setup.

Error = ValueSetpoint – ValueActual

0 Reflection 68

Actual motor values might not be equal to setpoint values because error always exists in the

system. It is possible to reduce the error in the system by tunning properly. As a result, this will

reduce the error in the shortest possible time and improve system stability, and to give a more

predictable response.

The Controller calculates the motion control profile and provides target positions to the Servo

Drive which calculates and turns resulting numbers to a current. The current goes to a motor,

flows through coils and provides a torque which moves the mover. The motor contains an encoder

that the Drive can read and turns that back to the Drive. The Drive performs the following separate

but related tasks.

Figure 55: Cascade control [21]

Cascade control has many layers in which the outer layer controls the inner layer. As can be seen

in Figure 55, the output of the position loop drives the input of the velocity loop which its output

drives the input of the current loop.

The inner loops always have a higher update rate compared to the outer loops to ensure the outer

loop sends the right commands to the inner loop. That means the current control loop has the

highest update rate, and the position control loop has the slowest update rate.

Current/Torque control loop

0 Reflection 69

Figure 56: Current/Torque control loop [21]

The Drive ensures the amount of the current flowing through the coil matches with the amount of

current requested. Constant current flow is equal to constant torque. The Drive also must ensure

that the current control loop work well. If the current/torque/force cannot be controlled accurately,

nothing else will function

Velocity control loop

Figure 57: Velocity control loop [21]

As the name implies, the next loop is responsible for the velocity of the system. The first integral

of acceleration and the first derivative of position. This control loop is generally not calculated as

often as the current loop because it takes time for the acceleration to be converted in velocity

(integration), and position to be converted in velocity (derivative).

The velocity control loop takes a requested velocity and based on the actual encoder position; an

actual velocity is calculated. After that, a new acceleration command is generated to speed the

mover up or slow it down. To ensure the velocity control loop work properly, the current control

loop must work properly.

Position control loop

0 Reflection 70

Figure 58: Position control loop [21]

The final loop is the position control loop. This loop works the same as the velocity loop. The loop

makes use of the position as feedback and outputs a new commanded velocity. Typically, this

loop runs at the slowest update rate. If the velocity control loop doesn’t work correctly, the position

control loop has no chance to control the position.

Tuning procedure

According to the Tuning documentation, the current control

loop is performed within the motor module. This loop is

optimized and does not need to be tuned nor be accessible

to end-users. Some parameters exist in TwinCAT that should

never be changed.

The Soft Drive is located under each individual Axis, and it is

made of several parts, as shown in Figure 59.

Figure 59: Soft Drive

0 Reflection 71

Figure 60: Cascading Gain diagram, and how the gain structure is laid out

The Position Control Loop allows users to change Proportional Gain of the system.

The Velocity Control Loop allows users to adjust Velocity Proportional Gain as well as the Integral

time constant.

The Filter Object will help to reduce the resonant frequencies which may cause Axis oscillation.

The Feed Forward object will adjust the acceleration Feedforward Proportional Gain.

In the following lines, I will describe shortly the way of working in order to tune the control loops:

The order in which to tune the control loops is the following:

- Disable the Position and Velocity Control Loop.

- Enable the Tuning Assist object.

- Eliminate resonant frequencies. The goal of eliminating resonant frequencies is to get rid

of an unpleasant sound, and select filters needed for the system.

o The use of the Tuning Assist can determine the filters and filter settings needed

much more precisely than trial and error.

o Changing these filters until the mover settles nicely without significant oscillations.

As a result, an unpleasant sound will be reduced significantly.

- Disable the Tuning Assist object.

0 Reflection 72

- Re-enable and tune the Velocity Control Loop. The goal of tuning the Velocity Control

Loop is to get the mover to respond as quickly and accurately as possible to new velocity

commands. The Velocity Command should change as quickly as possible.

o First, set all Integral parameters to zero. With Tn set to zero, the system is no

longer looking at the error over time.

o Adjust the Velocity Kp so that it brings the velocity to 85-90% of the commanded

velocity.

o Then, adjust the Velocity Ki, or integral time constant, so that the system has the

velocity overshoot by about 5-10% and settle quickly. The Velocity Kp might be

increased or decreased slightly to give a final velocity tuning.

- Re-enable and tune the Position Control Loop. With the Velocity Control Loop tuned, the

Position Control Loop can be adjusted. If the Velocity Control Loop is not well tuned, it is

impossible to tune the Position Control Loop.

o The feedforward values will be adjusted here.

o The Position Kp can be adjusted so that the following error is as small as possible

through the move but stop before getting more noise or oscillation.

After doing all steps above, the mass, the stiffness, the location of the center of gravity of the load

and the mover have been updated in the motion control profile. The system is ready to be

controlled by NC and PLC.

0 Reflection 73

Appendix G. MoveAbsolute UML Code

@startuml

'---------- MC_MOVEABSOULTE@BECKHOFF

hide empty description

[*] --> STATE_INIT

STATE_INIT --> STATE_ENABLE: NOT power.Enable AND NOT Reset.Execute AND NOT

MoveAbsolute.Execute

STATE_INIT: power.Enable:= FALSE

STATE_INIT: Reset.Execute:= FALSE

STATE_INIT: MoveAbsolute.Execute:= FALSE

STATE_ENABLE --> STATE_ERROR: power.Error

STATE_ENABLE --> STATE_1stPOSITION: power.Status

STATE_ENABLE: power.Enable:= TRUE

STATE_ENABLE: power.Enable_Positive:= TRUE

STATE_ENABLE: power.Enable_Negative:= TRUE

STATE_ENABLE: power.Override:= 100

STATE_1stPOSITION --> STATE_ERROR: MoveAbsolute.Error

STATE_1stPOSITION --> STATE_2ndPOSITION: NOT MoveAbsolute.Busy AND

MoveAbsolute.Done

STATE_1stPOSITION: MoveAbsolute.Position:= 450 //mm

STATE_1stPOSITION: MoveAbsolute.Velocity:= 550 //mm/s

STATE_1stPOSITION: MoveAbsolute.Execute:= TRUE

STATE_2ndPOSITION --> STATE_1stPOSITION: NOT MoveAbsolute.Busy AND

MoveAbsolute.Done

STATE_2ndPOSITION --> STATE_ERROR: MoveAbsolute.Error

0 Reflection 74

STATE_2ndPOSITION: MoveAbsolute.Position:= 110 //mm

STATE_2ndPOSITION: MoveAbsolute.Velocity:= 400 //mm/s

STATE_2ndPOSITION: MoveAbsolute.Execute:= TRUE

STATE_ERROR --> STATE_INIT: NOT Reset.Busy AND Reset.Done

STATE_ERROR: Reset.Execute:= TRUE

@enduml

0 Reflection 75

Appendix H. Hold and drop strategy UML code

@startuml

'---------- HoldAndDrop@BECKHOFF

hide empty description

[*] --> STATE_INIT

STATE_INIT --> STATE_ENABLE: NOT power.Enable AND NOT Reset.Execute AND NOT

EnableSetPointGenerator.Execute AND NOT DisableSetPointGenerator.Execute

STATE_INIT: power.Enable:= FALSE

STATE_INIT: Reset.Execute:= FALSE

STATE_INIT: EnableSetPointGenerator.Execute:= FALSE

STATE_INIT: DisableSetPointGenerator.Execute:= FALSE

STATE_ENABLE --> STATE_ERROR: power.Error

STATE_ENABLE --> STATE_WAITING: power.Status

STATE_ENABLE: power.Enable:= TRUE

STATE_ENABLE: power.Enable_Positive:= TRUE

STATE_ENABLE: power.Enable_Negative:= TRUE

STATE_ENABLE: power.Override:= 100

STATE_WAITING --> STATE_EQUILIBRIUM: pendulum is in the Equilibrium range

STATE_WAITING --> STATE_ERROR: DisableSetPointGenerator.Error

STATE_WAITING: DisableSetPointGenerator.Execute:= TRUE

STATE_EQUILIBRIUM --> STATE_WAITING: pendulum is not in the Equilibrium range

STATE_EQUILIBRIUM --> STATE_ERROR: EnableSetPointGenerator.Error

STATE_EQUILIBRIUM: EnableSetPointGenerator.Execute:= TRUE

STATE_EQUILIBRIUM: EnableSetPointGenerator.Position:= 0

0 Reflection 76

STATE_EQUILIBRIUM: EnableSetPointGenerator.PositionType:=

POSITIONTYPE_ABSOLUTE

STATE_ERROR --> STATE_INIT: NOT Reset.Busy AND Reset.Done

STATE_ERROR: Reset.Execute:= TRUE

@enduml

0 Reflection 77

Appendix I. Full motion strategy UML code

@startuml

'---------- FullMotion@BECKHOFF

hide empty description

[*] --> STATE_INIT

STATE_INIT --> STATE_ENABLE: NOT power.Enable AND NOT Reset.Execute AND NOT

EnableSetPointGenerator.Execute AND NOT DisableSetPointGenerator.Execute

STATE_INIT: power.Enable:= FALSE

STATE_INIT: Reset.Execute:= FALSE

STATE_INIT: EnableSetPointGenerator.Execute:= FALSE

STATE_INIT: DisableSetPointGenerator.Execute:= FALSE

STATE_ENABLE --> STATE_ERROR: power.Error

STATE_ENABLE --> STATE_DIRECTION: power.Status

STATE_ENABLE: power.Enable:= TRUE

STATE_ENABLE: power.Enable_Positive:= TRUE

STATE_ENABLE: power.Enable_Negative:= TRUE

STATE_ENABLE: power.Override:= 100

STATE_DIRECTION --> STATE_HOMING_LEFT: DisableSetPointGenerator.Done AND the

pendulum stays on the right

STATE_DIRECTION --> STATE_HOMING_RIGHT: DisableSetPointGenerator.Done AND the

pendulum stays on the left

STATE_DIRECTION --> STATE_ERROR: DisableSetPointGenerator.Error

0 Reflection 78

STATE_DIRECTION: DisableSetPointGenerator.Execute:= TRUE

STATE_HOMING_LEFT --> STATE_EQUILIBRIUM: pendulum is in the Equilibrium range

STATE_HOMING_LEFT --> STATE_ERROR: MoveAbosute.Error

STATE_HOMING_LEFT: DisableSetPointGenerator.Execute:= TRUE

STATE_HOMING_LEFT: MoveAbosute.Position:= 300

STATE_HOMING_LEFT: MoveAbosute.Velocity:= 550

STATE_HOMING_LEFT: MoveAbosute.Execute:= TRUE

STATE_HOMING_RIGHT --> STATE_EQUILIBRIUM: pendulum is in the Equilibrium range

STATE_HOMING_RIGHT --> STATE_ERROR: MoveAbosute.Error

STATE_HOMING_RIGHT: DisableSetPointGenerator.Execute:= TRUE

STATE_HOMING_RIGHT: MoveAbosute.Position:= 200

STATE_HOMING_RIGHT: MoveAbosute.Velocity:= 550

STATE_HOMING_RIGHT: MoveAbosute.Execute:= TRUE

STATE_EQUILIBRIUM --> STATE_DIRECTION: pendulum is not in the Equilibrium range

STATE_EQUILIBRIUM --> STATE_ERROR: EnableSetPointGenerator.Error

STATE_EQUILIBRIUM: EnableSetPointGenerator.Execute:= TRUE

STATE_EQUILIBRIUM: EnableSetPointGenerator.Position:= 0

STATE_EQUILIBRIUM:EnableSetPointGenerator.PositionType:= POSITIONTYPE_ABSOLUTE

STATE_ERROR --> STATE_INIT: NOT Reset.Busy AND Reset.Done

STATE_ERROR: Reset.Execute:= TRUE

@enduml

0 References 79

References

[1] "beckhoffinfo," [Online]. Available: https://www.beckhoff.com/nl-nl/.

[2] "acrome.net," [Online]. Available: https://acrome.net/post/what-is-a-linear-inverted-

pendulum. [Accessed 2021].

[3] "pearson.com," [Online]. Available: https://www.pearson.com/uk/educators/higher-

education-educators/program/Franklin-Feedback-Control-of-Dynamic-Systems-Global-

Edition-7th-Edition/PGM1069431.html.

[4] "latexdraw.com," [Online]. Available: https://latexdraw.com/free-body-diagram-of-an-

inverted-pendulum-in-tikz/.

[5] "galco.com," [Online]. Available: https://www.galco.com/comp/prod/moto-ac.htm.

[6] "create.arduino.cc," [Online]. Available: https://create.arduino.cc/projecthub/ryanchan/how-

to-use-the-l298n-motor-driver-b124c5.

[7] "forum-cnc.pl," [Online]. Available: http://forum-

cnc.pl/index.php?action=printpage;topic=1197.0.

[8] "wikimedia.org," [Online]. Available:

https://upload.wikimedia.org/wikipedia/commons/thumb/f/f6/Linearmotorprinzip.png/330px-

Linearmotorprinzip.png.

[9] "beckhoffus.com," [Online]. Available: https://learn.beckhoffus.com/enrollments/96608648.

[10] "EtherCAT – the Ethernet Fieldbus," [Online]. Available:

https://www.ethercat.org/pdf/english/ETG_Brochure_EN.pdf.

[11] "marposs.com," [Online]. Available: https://www.marposs.com/eng/application/stator.

[12] "dragonwinch.com," [Online]. Available:

https://www.dragonwinch.com/en/rotor,84,465.html.

0 References 80

[13] "beckhoff.com," [Online]. Available:

https://download.beckhoff.com/download/document/motion/xts_ba_en.pdf.

[14] "cx5140," [Online]. Available: https://www.beckhoff.com/en-en/products/ipc/embedded-

pcs/cx5100-intel-atom/cx5140.html.

[15] "MC_MoveAbsolute," [Online]. Available:

https://infosys.beckhoff.com/content/1033/tcplclib_tc2_mc2/70094731.html .

[16] "MC_MoveVelocity," [Online]. Available:

https://infosys.beckhoff.com/content/1033/tcplclib_tc2_mc2/70102411.html?id=590573568

675090408 .

[17] "kubler.com," [Online]. Available:

https://www.kuebler.com/us/products/measurement/encoders/product-finder/product-

details/F3653.

[18] "BiSS and SSI - An Overview," [Online]. Available:

https://www.celeramotion.com/zettlex/support/technical-papers/biss-and-ssi-an-overview/.

[19] "Basic introduction to feedback control," [Online]. Available:

https://www.eecs.umich.edu/courses/eecs373.w05/lecture/control.html.

[20] "AX5000 | Digital Compact Servo Drive," [Online]. Available:

https://infosys.beckhoff.com/english.php?content=../content/1033/ax5000_system_doku_h

w2/647266187.html&id=1824986000795241014.

[21] "Servo Control Technology," [Online]. Available:

https://infosys.beckhoff.com/content/1033/xts_soft_drive/3526933643.html .

[22] "PLC Libraries Motion," [Online]. Available:

https://infosys.beckhoff.com/content/1033/tcplclib_tc2_mc2/index.html?id=4786081293094

367280 .

[23] "EtherCAT," [Online]. Available: https://ethercat.org/en/why_use_ethercat.htm.

0 References 81

[24] "TF4100 | TwinCAT 3 Controller Toolbox," [Online]. Available:

https://www.beckhoff.com/en-en/products/automation/twincat/tfxxxx-twincat-3-

functions/tf4xxx-tc3-controller/tf4100.html.

[25] "FB_CTRL_PID," [Online]. Available:

https://infosys.beckhoff.com/content/1033/tf4100_tc3_controller_toolbox/245435787.html?i

d=3129912176963096789 .

[26] "Tuning a PID regulator," [Online]. Available: https://isd-soft.com/nl/tech_blog/tuning-pid-

regulator/.

[27] "twincat," [Online]. Available: https://www.beckhoff.com/en-

en/products/automation/twincat/.

