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Background and aims: Observational data indicate that diets rich in fruits and 
vegetables have a positive effect on inflammatory status, improve metabolic 
resilience and may protect against the development of non-communicable 
diseases. Nevertheless, experimental evidence demonstrating a causal relationship 
between nutrient intake (especially whole foods) and changes in metabolic 
health is scarce. This study investigated the pleiotropic effects of sulforaphane 
from broccoli sprouts, compared to pea sprouts, on biomarkers of endothelial 
function, inflammation and metabolic stress in healthy participants subjected to a 
standardized caloric challenge.

Methods: In this double-blind, crossover, randomized, placebo-controlled trial 
12 healthy participants were administered 16  g broccoli sprouts, or pea sprouts 
(placebo) followed by the standardized high-caloric drink PhenFlex given to 
disturb healthy homeostasis. Levels of inflammatory biomarkers and metabolic 
parameters were measured in plasma before and 2 h after the caloric overload.

Results: Administration of broccoli sprouts promoted an increase in levels of 
CCL-2 induced by caloric load (p =  0.017). Other biomarkers (sICAM-1, sVCAM-1, 
hs-CRP, and IL-10) individually showed insignificant tendencies toward increase 
with administration of sulforaphane. Combining all studied biomarkers into the 
systemic low-grade inflammation score further confirmed upregulation of the 
inflammatory activity (p  =  0.087) after sulforaphane. No significant effects on 
biomarkers of metabolic stress were detected.

Conclusion: This study has demonstrated that sulforaphane facilitated 
development of a mild pro-inflammatory state during the caloric challenge, 
which could be suggestive of the onset of the hormetic response induced by this 
phytonutrient. The use of integrative outcomes measures such as the systemic 
low-grade inflammation score can be viewed as a more robust approach to study 
the subtle and pleiotropic effects of phytonutrients.

Clinical trial registration: www.clinicaltrials.gov, identifier NCT05146804.
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1 Introduction

Non-communicable diseases (NCDs) are the leading cause of 
death worldwide, accounting for 71% of total deaths each year (1). 
Chronic low-grade inflammation (CLGI) plays a crucial role in the 
pathology of NCDs, but also appears to affect apparently healthy 
people as a consequence of poor lifestyle choices, e.g., overeating, 
smoking and excessive alcohol consumption (2–4). A wealth of 
observational data indicates that healthy lifestyle choices, such as 
moderate exercise and diets rich in fruits and vegetables, have a 
particularly positive effect on inflammatory status and the 
development of various NCDs (5–7). Nevertheless, randomized 
placebo-controlled trials frequently fail to demonstrate causal 
relationships between nutrient intake (especially whole foods) and 
changes in metabolic health (8–11).

With an increasing understanding of disease, health is no longer 
seen as simply a fixed entity of complete physical, mental, and social 
well-being, but redefined as our body’s ability to cope with everyday 
challenges (11–15). The concept of this phenotypic flexibility implies 
that health can be measured by the ability to adapt to conditions of 
temporary stress. Challenge testing, which may involve exercise or 
caloric overload, is often used in practice to assess phenotypic 
flexibility. This may be a more sensitive way of assessing the effects of 
fruits and vegetables on the health status of the healthy low-risk 
population (14–21). Unlike drugs, food-derived compounds exert 
subtle effects in the general population rather than treating specific 
disease states in patients (12, 13). While pharmacology is still 
dominated by the “one disease—one target—one drug” paradigm, 
nutritional interventions frequently work on many pathways involved 
in the development of chronic diseases, with hormetic principles at its 
heart (11–14, 22, 23). Moreover, nutritional science (and within claims 
substantiation) often still focuses on this more pharmacological 
approach, so that it is only considered ‘effective’ if one nutrient affects 
one target (24). All things considered, it is challenging to measure 
beneficial effects in healthy people, and especially when you are trying 
to see the effect of one nutrient on one target. It is assumed that any 
intervention works via a hormetic mechanism if the final beneficial 
effect on phenotypic flexibility is in fact achieved through initial 
structural damage or functional overstrain, which is ultimately 
responsible for the activation of the protective mechanisms (25–37). 
For example, physical activity and mild stress-inducing phytonutrients 
called hormetins are known to increase levels of oxidative stress, but 
this appears to be beneficial for health (11, 22, 38–41). Most dietary 
hormetins are known to induce the expression of antioxidant enzymes 
by triggering a pro-oxidant response via activation of the nuclear 
factor E2-related factor 2 (Nrf2)-pathway (42–50). While the degree 
of immediate hormetic effects following exposure to a particular stress 
may be only moderate, the chain of events following the initial phase 
leads to biologically amplified effects that are much larger, synergistic, 
and pleiotropic and therefore require integrative approach to 
assessment of the outcomes (12, 13, 16, 34, 38, 40). Norde et al. (51) 

proposed a novel approach to measure CLGI by combining multiple 
biomarkers into a systemic low-grade inflammation score.

Glucoraphanin, the biogenic precursor of sulforaphane, is present 
in large amounts in broccoli sprouts (52, 53). After damage to plant 
tissue, e.g., through chewing, glucoraphanin comes into contact with 
the enzyme myrosinase, which is separated from its substrate in the 
intact vegetable, and subsequently is converted to sulforaphane (53–
55). Sulforaphane is the most potent naturally occurring inducer of 
Nrf2 (42–48). Previous studies showed that long-term consumption 
of broccoli sprouts improved fasting blood glucose levels and 
stabilization of insulin response in type 2 diabetic patients, particularly 
obese patients (56, 57). To our knowledge, no experimental study has 
been conducted to investigate the effects of broccoli sprouts on 
integrative outcome measures. In the current study, we investigate the 
pleiotropic effects of broccoli sprouts, compared to pea sprouts, on 
biomarkers of endothelial function, inflammation and metabolic 
stress in healthy participants subjected to a standardized 
caloric challenge.

2 Methods

We have conducted a randomized, placebo-controlled, double-
blind study with a cross-over design (58, 59). The study protocol 
(NL77272.068.21) was approved by the Medical Ethics Review 
Committee of Maastricht University Medical Centre+ (MUMC+) and 
Maastricht University, Maastricht, the Netherlands, and performed in 
full accordance with the declaration of Helsinki of 1975 as revised in 
2013, Fortaleza, Brazil (60). The trial registration number within 
ClinicalTrials.gov is NCT05146804. All subjects provided written 
informed consent.

2.1 Subjects

Twelve healthy participants (11 males and one female) were 
recruited by local and social media advertisements. Inclusion criteria 
were that participants were between 18 and 50 years old, had a body 
mass index (BMI) between 18.5 and 30 kg/m2, with a stable weight 
(<5% body weight change) and constant eating habits over the past 3 
months. Exclusion criteria were the previous diagnosis of an 
inflammatory condition or disease or a history of hypothyroidism, 
chronic kidney or/and liver disorders, coronary artery disease, 
malignant hypertension, seizures, involved in intensive sports 
activities more than four times a week or at top sport level, regular 
intake of medication that may affect inflammatory response including 
NSAIDs, psychotic, addictive, or other mental disorders, aversion, 
intolerance or allergy to cruciferous vegetables and/or palm olein, 
dextrose, protein supplement, vanilla aroma, the use of dietary 
supplements with potential effects on antioxidant or inflammatory 
status and/or viral or bacterial infections requiring the use of 
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antibiotics, laxatives and anti-diarrheal drugs 4 weeks prior to 
inclusion, excessive alcohol consumption (≥28 consumptions approx. 
250 g alcohol per week), pregnancy and/or breastfeeding, reported 
slimming or medically prescribed diet, as well as adhering to a 
vegetarian or vegan lifestyle. The sample size calculation is based on a 
crossover study by Meijer et al. (61) [Trial NL3290 (NTR3435)] in 
which they examined whether broccoli seedlings could reduce 
glucose-induced postprandial inflammation in healthy male 
participants. Meijer et  al. measured plasma concentrations of 
sVCAM-1 and sICAM-1 (primary outcomes) at different timepoints 
in healthy men after consumption of broccoli seedlings or lettuce 
(placebo). The detectable difference used for the sample size 
calculation is calculated based on the mean concentrations of 
sVCAM-1 (ng/mL). Variance = Mean difference/SD 
Variance = (26.7–2.4)/14.20 = 1.711.

‘Variance explained by special effect’ was set to 0.5. We calculated 
an effect size of 0.54. A power of 80% was implemented, the chance of 
having a type I error was 5% and an effect size of 0.54 (medium effect 
size). In present study, we have two groups (two repeated measures, 
within-between interaction) yielding 10 participants, and considering 
a 20% dropout, which results in the final sample size of 12 participants.

2.2 Study design and procedures

Commercially available broccoli sprouts BroccoCress®, a rich 
source of glucoraphanin (the parental glucosinolate of sulforaphane), 
were used as the experimental product. In total, 16 g of sprouts were 
utilized, equivalent to one serving (portion) of microgreens. 
Sulforaphane (BroccoCress®) and the placebo (Affilla Cress®) were 
randomly administered to each participant on separate testing days 
(as detailed in section 2.3). The period between two visits was 
7 ± 3 days. Information about demographics, alcohol consumption, 
and anthropometric data were assessed on the first visit. Body mass 
index (BMI), total body fat and visceral fat were measured using the 
Omron BF511R® monitor. The same testing scheme was applied 
during two visits (Figure 1), i.e., each participant received a single 
serving of intervention/placebo, which after 90 min was followed by 
oral administration of the PhenFlex challenge. Blood samples were 
collected twice, just before intake of PhenFlex and 120 min after. All 
participants were instructed to come fasted to each visit, to avoid 
consumption of broccoli or other cruciferous vegetables 2 days before 

the visit and to restrain from intense physical activity on the day of the 
visit. During the visit, participants remained in the testing location 
and were allowed to drink water ad libitum. No food intake was 
permitted during the visit.

2.3 Intervention and caloric challenge 
(PhenFlex)

The broccoli sprouts were cut approximately 1 cm below the leaves 
(with the hypocotyl being cut below the cotyledons), weighed, and 
mashed with a small amount of tap water (approximately 13°C) in a 
kitchen blender for 30s at room temperature immediately before 
administration (Premium Impuls Blender Smoothiemaker; Impuls; 
180 W). Subsequently, tap water (approximately 13°C) was added to the 
mixture to bring the total amount to 250 mL and participants were 
instructed to drink the entire mixture immediately. Commercially 
available pea sprouts (Affilla Cress®) were used as a placebo in this study 
since pea sprouts do not contain glucoraphanin/sulforaphane. Affilla 
Cress (16 g) was prepared and administered in a similar fashion. Blinding 
of participants was ensured by the even appearance of both drinks and 
the use of nasal plugs during the consumption of the investigational 
products. The placebo or intervention product was prepared by a 
researcher who was not involved in any other study procedures and data 
analysis. Ninety minutes after administration of the investigational 
products, participants were asked to drink the high-fat, high-glucose, 
high-caloric product (PhenFlex) (62). For the preparation of the 
PhenFlex (400 mL, 950 kcal) 60 g palm olein, 75 g dextrose, 20 g protein, 
0.5 g artificial vanilla aroma and 320 mL tap water were used (62). In all 
cases, PhenFlex mixtures were freshly prepared, and the participants 
were instructed to consume the drink within 5 min.

2.4 Blood sampling and assessment of 
biomarkers

Samples of venous blood were taken twice per visit from the 
antecubital vein for measurement of inflammatory and metabolic 
biomarkers. Samples were collected in 4 mL BD tubes containing 
K2EDTA as anticoagulant, and centrifuged for 5 min (at 3,000 g, 4°C) 
within 30 min after collection. Plasma was stored at ≤−80°C until the 
day of analysis.

FIGURE 1

Schematic presentation of a study visit. Administration of intervention (sulforaphane/placebo) was followed in 90  min by administration of standardized 
caloric challenge PhenFlex. Blood samples were obtained before (90  min) and 2  h after (210  min) PhenFlex challenge.
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Plasma samples were analyzed for inflammatory biomarkers, 
sVCAM-1, sICAM-1, IL-1β, IL-6, TNF-α, CCL-2, IL-8, IL-10, 
adiponectin, hs-CRP, and IL-12 p70 using Enzyme-linked 
immunosorbent assays (R&D Systems Netherlands; 
Supplementary Table 1). A systemic low-grade inflammation score 
was generated summing the z-score log-transformed inflammatory 
biomarkers plasma concentration (sICAM-1, sVCAM-1, IL-6, TNF-α, 
CRP, IL-12, CCL-2, IL-1β, and IL-8). The z-score log-transformed 
plasma adiponectin and IL-10 levels were subtracted from the 
systemic low-grade inflammation score due to their anti-inflammatory 
properties (51). Plasma samples were analyzed for glucose via 
colorimetric assay (Cayman Chemical; Glucose Colorimetric Assay 
Kit, Item No. 10009582) and lipoprotein A using Enzyme-linked 
immunosorbent assay (Abcam®; Human Lipoprotein A SimpleStep 
ELISA® Kit, ab212165).

2.5 Statistical analysis

All normally distributed data are presented as mean ± standard 
deviation (SD). The non-normally distributed data are shown as 
median (interquartile range). For categorical variables, frequency and/
or percentages are presented. Differences between the groups were 
assessed by paired sample T-tests for normally distributed parameters, 
or Wilcoxon signed-rank tests for the data that was not normally 
distributed. Wilcoxon signed-rank tests were performed to check for 
potential carryover effects. Associations between clinical features and 
biomarkers were assessed using Pearson (normally distributed 
parameters) or Spearman’s rank (non-normally distributed) 
correlation coefficient. All analyses were performed, two-tailed with a 
p ≤ 0.05 considered statistically significant.

3 Results

3.1 Subject characteristics

Between November 2021 and January 2022, a total of 12 subjects 
were enrolled into the study and randomly allocated to either initial 
administration of sulforaphane or placebo. Baseline characteristics of 
the study population (n  = 12) are summarized in Table  1. All 
participants completed the study and were included in the data analysis 
for biochemical testing (Figure 2). The pre-test (Wilcoxon rank sum 
test) revealed no differences between treatment allocations for all 
parameters (all z < 0.00, p > 0.14). Absence of sulforaphane in placebo 
was verified by testing urine samples which showed significantly higher 
concentration of the total metabolites of sulforaphane after intake of 
broccoli sprouts (8.2 vs. 0.4 μmol, p < 0.001).

3.2 The effect of sulforaphane on 
endothelial activation

The single serving of sulforaphane or placebo induced no 
significant changes in concentrations of sICAM-1 and sVCAM-1 in 
healthy participants before and 2 h after the PhenFlex challenge. A 
general trend was seen in the enhancement of endothelial activation 
in the sulforaphane group, however not significant; sICAM-1 
(sulforaphane 1.5 ± 10.1 vs. placebo 3.1 ± 7.8 ng/mL, p = 0.696) and 

sVCAM-1 (sulforaphane 3.1 ± 5.2 vs. placebo 0.9 ± 4.5 ng/mL, 
p = 0.431; Table 2; Figure 3).

3.3 The effect of sulforaphane on 
inflammatory biomarkers

Eleven inflammatory biomarkers, sICAM-1, sVCAM-1, IL-6, 
TNF-α, hs-CRP, adiponectin, IL-12 p70, CCL-2, IL-10, IL-1β, and IL-8, 
were measured in plasma before and 2 h after the PhenFlex challenge. 
Levels of sICAM-1, sVCAM-1, hs-CRP, adiponectin, CCL-2, and IL-10 
and changes are listed in Table 2. Changes in CCL-2, measured as 
differential concentrations before and 2 h after caloric load, showed a 
significant change between groups, with sulforaphane causing a 
significant increase in this biomarker compared to placebo [1.9 (3.3) 
vs. 0.0 (4.8) pg./mL, p  = 0.017; Figure  4]. Changes in sICAM-1, 
sVCAM-1, hs-CRP (sulforaphane 2.2 ± 4.3 vs. placebo −0.5 ± 2.9 pg./
mL, p = 0.275), and IL-10 [sulforaphane −0.6 (26.3) vs. placebo 4.4 
(5.1) pg./mL, p  = 0.715] revealed an overall slight and statistically 
non-significant pro-inflammatory effect of sulforaphane (Table 2). No 
detectable levels of IL-6, TNF-α, IL-12, IL-1β, and IL-8 were quantified.

3.4 The effect of sulforaphane on the 
systemic low-grade inflammation score

Aside from CCL-2, a more robust change was observed with the 
integration of the individual biomarkers in the composite systemic 
low-grade inflammation score (Table 3; Figure 4). In the sulforaphane 
group the composite score revealed a pro-inflammatory trend after 
caloric challenge [−0.092 (1.06) before vs. after 0.018 (1.06), p = 0.087] 
which was less prominent in the placebo group [−0.001 (0.81) before 
vs. after 0.014 (0.81), p = 0.251].

TABLE 1 Characteristics of the study participants.

Characteristics Population (n =  12)

Sex (n, %)

  Female 1 (8.3)

  Male 11 (91.7)

Age [years, mean (SD)] 26.9 (3.6)

BMI (kg/m2) 23.1 (1.6)

Body fat (%)

Female 28.9 (n/a)

  Male 21.4 (3.1)

  All 22.0 (3.6)

Visceral fat level [mean (SD)] 5.17 (1.57)

Alcohol consumption, n (%)

  Moderate 0 (0)

  Heavy 9 (75)

  Very heavy 3 (25)

Smoking status, n (%)

  Smoker 5 (42)

  Non-smoker 7 (58)
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Before the PhenFlex challenge, no significant correlations between 
inflammation biomarkers and demographic, anthropometric, and 
lifestyle data were observed, with the exemption of IL-10 and smoking 
(p = 0.042), and the number of cigarettes per day (p = 0.042). Moreover, 
moderate strength correlations between the systemic low-grade 
inflammation score and fat percentage (rs = −0.551, p = 0.079) and the 
number of cigarettes per day (rs = 0.557, p = 0.075) were observed.

3.5 The effect of sulforaphane on glucose 
and lipid metabolism during caloric 
overload

The single serving of sulforaphane or placebo induced no 
significant changes in concentrations of glucose and lipoprotein A 

in healthy participants before and 2 h after the PhenFlex challenge 
(Table  4). Before the PhenFlex challenge, fasting glucose levels 
correlated negatively with age (p = 0.003), BMI (p = 0.046) and fat 
percentage (p  = 0.034), and positively with adiponectin 
concentrations (p = 0.015). Fasting lipoprotein A concentrations 
correlated positively with CCL-2 (p  = 0.049) and IL-10 levels 
(p  = 0.005; Table  5). Moreover, administration of sulforaphane 
caused changes in glucose levels in response to the caloric load 
which correlated positively with changes in sICAM-1 (p = 0.006), 
adiponectin (p = 0.048) and lipoprotein A (p = 0.005). Changes in 
lipoprotein A concentrations in response to the challenge after 
sulforaphane administration correlated positively with changes in 
sICAM-1 levels (p  = 0.004). In the placebo group, changes in 
glucose levels in response to caloric loading only negatively 
correlated with changes in IL-10 (p < 0.001; Table 6).

FIGURE 2

CONSORT flow diagram.
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4 Discussion

4.1 The PhenFlex challenge did not 
unbalance endothelial homeostasis in 
young healthy participants

In the present study, metabolic overload did not significantly 
affect plasma adhesion marker levels in healthy participants, as 
measured 2 h after caloric overload. In contrast, previous research has 
shown that a single administration of the PhenFlex challenge 
increased the levels of sVCAM-1 and sICAM-1 after 2 h in healthy 
volunteers (18). Additionally, Derosa et al. demonstrated significant 
increases in these plasma adhesion markers within 2 h after an oral 
glucose tolerance test (OGTT) (63). A possible explanation for the 
lack of effect found on these markers in our study is the fact that the 
subjects in the current study were given whole food products (sprouts 
of broccoli or pea) before undergoing the challenge. Both products 
contain retinol, vitamin E and ascorbic acid, which could have 
counteracted the expected transient disruption of post-exposure 
endothelial homeostasis observed in other studies. This hypothesis is 
supported by findings of Nappo et  al., who showed that 
supplementation with vitamin C and E prevented an increase in 
sICAM-1 and sVCAM-1  in healthy middle-aged subjects after a 
high-fat meal (64). Furthermore, Rubin et al. found no changes in 
plasma adhesion markers in young participants (25 years on average), 
after a standardized lipid-rich meal which contained retinol (65). 
Thus, in this study, the effect of sulforaphane on endothelial 
homeostasis may have been influenced by the other nutrients present 
in the whole food product. Nonetheless, the associations between 
metabolic parameters and inflammatory biomarkers during the 

PhenFlex challenge, particularly between plasma sICAM-1, and 
glucose and lipoprotein A concentrations in the sulforaphane group, 
provided relevant information on the modulation of endothelial 
function and metabolic homeostasis by sulforaphane in response to a 
high-glucose, high-fat product. Consistent with our findings, Chen 
et  al. demonstrated significant relationships between the plasma 
glucose and insulin responses to an OGTT and plasma sICAM-1 
concentrations in healthy participants (66). The fact that these 
correlations were not observed in the pea sprouts group (placebo) 
supports the hypothesis that the other bioactive compounds in the 
whole food products may have blunted the transient disruption of 
post-exposure homeostasis expected after caloric load. This is also 
revealed in part by the only correlation between circulating IL-10 and 
plasma glucose. The presence of other nutrients in broccoli sprouts 
may have interfered with the strong effects of sulforaphane, which, 
however, were still evident as more correlations were shown in 
this group.

4.2 An integrative measure to investigate 
the pleiotropic effects of phytonutrients is 
superior to single biomarkers

In this study, sulforaphane facilitated the development of a mild 
pro-inflammatory state during caloric challenge, as evidenced by a 
moderate increase in sICAM-1, sVCAM-1, hs-CRP, CCL-2 and 
decrease in IL-10. The effects of dietary intervention on chronic 
inflammation in other studies that used the PhenFlex challenge are 
inconsistent (62, 67). Kim et al. examined the effect of a single-intake 
microencapsulated garlic powder and/or tomato extract in healthy 

TABLE 2 The plasma concentrations of sICAM-1, sVCAM-1, hs-CRP, Adiponectin, CCL-2, and IL-10 before (min 90) and after (min 210) the PhenFlex 
challenge, Median (IQR).

Inflammatory biomarker Sulforaphane Placebo

sICAM-1* (ng/mL) Before 56.6 ± 25.6
#p = 0.428

63.9 ± 23.3
#p = 0.513

After 59.0 ± 22.3 65.8 ± 20.0

∆ sICAM-1* (ng/mL) 1.5 ± 10.1 3.1 ± 7.8 ##p = 0.696

sVCAM-1* (ng/mL) Before 50.5 ± 5.6
#p = 0.128

51.5 ± 7.9
#p = 0.659

After 54.5 ± 10.2 52.1 ± 7.9

∆ sVCAM-1* (ng/mL) 3.1 ± 5.2 0.9 ± 4.5 ##p = 0.431

hs-CRP* (ng/mL) Before 50.9 ± 9.0
#p = 0.277

53.4 ± 10.8
#p = 0.466

After 52.4 ± 8.7 52.7 ± 10.7

∆ hs-CRP* (ng/mL) 2.2 ± 4.3 −0.5 ± 2.9 ##p = 0.275

Adiponectin^ (ng/mL) Before 50.4 (6.9)
#p = 0.799

51.1 (0.8)
#p = 0.767

After 50.9 (3.7) 52.5 (3.8)

∆ Adiponectin^ (ng/mL) 0.5 (4.1) 0.5 (3.7) ##p = 0.779

CCL-2 (pg/mL) Before 16.9 (25.6)
#p = 0.314

18.2 (24.2)
#p = 0.374

After 19.1 (24.1) 18.3 (23.5)

∆ CCL-2 (pg/mL) 1.9 (3.3) 0.0 (4.8) ##p = 0.017

IL-10^ (pg/mL) Before 55.7 (213.4)
#p = 0.893

51.4 (178.8)
#p = 0.225

After 51.2 (231.9) 56.1 (184.1)

∆ IL-10^ (pg/mL) −0.6 (26.3) 4.4 (5.1) ##p = 0.715

Significance for #within and ##between group comparison; ^Anti-inflammatory biomarker; *Normally distributed (mean ± SD).
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male smokers during the metabolic challenge. Consumption of 
tomato extract elicited a differential response, increasing CCL-2 and 
decreasing sVCAM-1 6 h after PhenFlex compared to placebo. When 

garlic powder was consumed, IL-13 levels decreased after 2 h and 
IL-1α increased 6 h after the challenge, indicating a pro-inflammatory 
effect of the food product. The combination of interventions elicited 

FIGURE 3

Plasma concentrations of sICAM-1 (pg/mL) and sVCAM-1 (pg/mL) in the sulforaphane and placebo groups before, after, and the changes during the 
PhenFlex challenge (A-D). Data are presented as boxplots [median, interquartile range, outliers (circles)]. Timepoints: 1—before administration of 
PhenFlex (90  min); 2—2 h after PhenFlex (210  min). Comparison between timepoints in sulforaphane/placebo.

FIGURE 4

Plasma concentrations of CCL-2 (pg/mL) in the sulforaphane and placebo groups before, after, and the changes during the PhenFlex challenge (A,B). 
The systemic low-grade inflammation score (SIS) in the sulforaphane and placebo before and after the PhenFlex challenge (C). Data are presented as 
boxplots [median, interquartile range, outliers (circles)]. Timepoints: 1—before administration of PhenFlex (90  min); 2—2 h after PhenFlex (210  min). 
Comparison between timepoints in sulforaphane/placebo, *p <  0.05.
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a mixed response, with IL-10 and CCL-7 being reduced 6 h after the 
metabolic challenge (67). Hoevenaars et al. investigated the effects of 
a 12-week whole grain wheat (WGW) intervention compared to 
refined wheat (RW) and observed increased CRP, IL-6, IL-8, and 
decreased IL-1β in RW and decreased CRP, serum amyloid A, IL-8, 
and IL-10 in WGW, indicating pro- and anti-inflammatory effects in 
respective groups (62). These inconclusive results highlight the 
importance of implementing integrative outcome measures to unravel 
the subtle, pleiotropic effects of phytonutrients. As an illustration, the 
study of Weseler et al. testing the effects of grape seed extract on 
multiple biomarkers reflecting vascular health integrated them into a 
vascular health index, which unveiled an improvement in overall 
vascular health from flavanols, which was less clear from the analysis 
of individual outcomes (13, 16). In addition, previous cross-sectional 
studies evaluated CLGI through an index that pools multiple 
indicators to provide a better overall picture of the synergistic changes 
of inflammatory biomarkers (51, 68–72).

To the best of our knowledge, this experimental study is the first 
to examine the effects of phytonutrients on calorie-induced 
inflammation as measured by a composite scoring system. 
Intriguingly, the score more accurately reflected the pro-inflammatory 
effect of broccoli sprouts than single biomarkers during phasic 
response. In addition, the relationships between risk factors for the 
development of NCDs such as high visceral fat and smoking, and 
inflammation became more apparent through the use of the score. 
Specifically, fat percentage and smoking showed a moderate inverse 
relationship with the score. Using the systemic low-grade 
inflammation score also led to another finding; five of the 11 
inflammatory biomarkers were undetectable in the blood of our 
young and healthy population. These findings suggest that even a well-
characterized scoring system may show limitations. For future 
research, assessing the health status or risk profile of the test 
population and adjusting the scoring system could be beneficial. The 

six biomarkers detectable under basal conditions in our study may 
be more suitable for challenge testing in young healthy subjects (19, 
36, 73–76).

4.3 Metabolic challenge studies may reveal 
the beneficial effects of phytonutrients in 
multiple ways depending on mechanism of 
action in the body

Over the past few decades, research has increasingly focused on 
antioxidants as the main health-promoting compounds in fruits and 
vegetables, leading to a gigantic array of antioxidant supplements on 
the market today (5–7, 12, 77–79). However, initial excitement 
regarding the potential health benefits of antioxidants failed to 
be confirmed by clinical evidence (12). There is quite a bit of debate 
about whether supplementing with antioxidants is healthy, ineffective, 
or even harmful (5, 11, 12, 22, 28, 36, 77, 78, 80–86). So far, whole 
foods and fresh produce have not shown a clear protective effect 
against the PhenFlex challenge (62, 67). In fact, dietary interventions 
high in hormetins facilitated the development of a mild 
pro-inflammatory state during caloric overload, e.g., broccoli sprouts 
and garlic extract (67). We  hypothesize that this moderate 
pro-inflammatory state in the sprouts containing sulforaphane may 
be  due to the initial pro-oxidative action (to activate Nrf2) of 
hormetins present in fresh produce. As a result, the exogenous 
antioxidant capacity of the direct antioxidants present in both sprouts 
is blunted in the broccoli sprouts compared to the pea sprouts. This, 
in turn, led to a reduced initial integrative anti-inflammatory capacity 
against the caloric overload demonstrated by the broccoli sprouts 
compared to the placebo. However, we  speculate that because 
sulforaphane also enhances endogenous antioxidant defenses via Nrf2 
activation at a later stage, whole foods that increase both exogenous 
and endogenous antioxidants may have more significant effects on 
phenotypic flexibility (Figure  5). This may explain why 
supplementation of direct antioxidants such as ascorbic acid and 
vitamin E attenuates the metabolic stress of caloric loads (64, 65), 
while hormetins in fresh produce, e.g., sulforaphane, diallyl sulfide, 
withaferin A and rutin, induce a mild pro-inflammatory effect via 
activation of the Nrf2-pathway (38, 49, 50, 67, 87). We hypothesize 
that the health effects of fruit and vegetable consumption are due to 
the wide variety of bioactive compounds in the food matrices and the 
synergy between the different mechanisms of action of these 
phytonutrients in the body, rather than just antioxidants (36). One 
aspect of synergy may be a buffering effect (88, 89). The effect of a 
large intake of a given nutrient may vary depending on whether it is 
taken in concentrated form or as part of a food matrix, e.g., the matrix 
may slow down the absorption of the nutrient, which lowers the 
likelihood of a bolus effect (89).

The limitations of our study include a small sample size and a 
short observation period. A longer time of observation (6, 8, 12, or 
even 24 h) could have helped to demonstrate that the increase in 
inflammatory activity caused by sulforaphane represents the initial 
part of the hormetic response. In fact, previous research, conducted 
with larger sample sizes, has demonstrated the sustained anti-
inflammatory effects of sulforaphane (56, 90). At the same time, 
biotechnological advancements that allow continuous monitoring of 
certain functions (e.g., glucose) and innovative designs (e.g., n-of-1 
trials) may enable more accurate research into personalized nutrition 

TABLE 3 The systemic low-grade inflammation score (SIS) before (min 
90) and after (min 210) the PhenFlex challenge, Mean  ±  SD.

Systemic low-
grade 
inflammation 
Score (SIS)

Sulforaphane Placebo

SIS Before −0.092 ± 1.06
#p = 0.087

−0.001 ± 0.81
#p = 0.251

After 0.018 ± 1.06 0.014 ± 0.81

#Significance for within group comparison.

TABLE 4 The plasma concentrations of glucose and lipoprotein A before 
(min 90) and after (min 210) the PhenFlex challenge, Mean  ±  SD.

Parameter Sulforaphane Placebo

Glucose* 

(mg/dL)

Before 73.8 ± 7.8
#p = 0.363

76.8 ± 5.2
#p = 0.133

After 66.8 ± 11.5 67.0 ± 16.7

∆ Glucose* (mg/dL) −6.9 ± 17.8 −9.8 ± 18.5 ##p = 0.589

Lipoprotein 

A* (μg/mL)

Before 166 ± 128
#p = 0.214

189 ± 144
#p = 0.269

After 172 ± 132 199 ± 130

∆ Lipoprotein A* (μg/

mL)

3.8 ± 14.6 10.7 ± 26.3 ##p = 0.580

Significance for #within and ##between group comparison; *Normally distributed.
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strategies in the future (91–94). Learning more about the interplay 
between phytonutrients may eventually reveal whether “an apple a day 
can keep the doctor away”—at least for a while.

5 Conclusion

This study has shown that the subtle and pleiotropic effects of 
phytonutrients can be  studied in a short time by challenging the 

resilience and efficacy of adaptive mechanisms of healthy participants. 
Broccoli sprouts containing sulforaphane facilitated the development 
of a mild pro-inflammatory state during the caloric challenge, which 
suggests the onset of a hormetic response and became more evident 
when applying integrative outcome measures. The multifaceted 
approach allowed for more accurate quantification of the effects of 
phytonutrients in relation to inflammation and metabolic processes. 
Considering innovative integrative research approaches (e.g., 
composite scores, wearables, n-of-1 designs) would enhance our 

TABLE 5 Univariate correlates of demographic parameters with fasting metabolic and inflammatory parameters.

Parameter Demographic Inflammatory

Age BMI FP Smo Cig Adi CCL-2 IL-10

Metabolic Glucose −0.81 −0.61 −0.64 - - 0.71 - -

Lp(a) - - - - - - 0.61 0.94

Inflammatory IL-10 - - - −0.83 −0.83

Variables were correlated using Pearson (normally distributed parameters) or Spearman’s rank (non-normally distributed) correlation. Only significant correlations are shown. FP, Fat 
percentage; Smo, Smoking; Cig, Cigarettes per day; Lp(a), Lipoprotein A; Adi, Adiponectin; IL-10, Interleukin-10; CCL-2, Chemokine ligand 2; SIS, Systemic low-grade inflammation score.

TABLE 6 Univariate correlates of changes in metabolic parameters (glucose and lipoprotein A) with inflammatory parameters during the PhenFlex 
challenge.

Sulforaphane Placebo

Parameter sICAM-1 Adi Lp(a) IL-10

Glucose 0.79 0.64 0.81 −1.00

Lipoprotein A 0.82 - n/a -

Variables were correlated using Pearson (normally distributed parameters) or Spearman’s rank (non-normally distributed) correlation. Only significant correlations are shown. Lp(a), 
Lipoprotein A; Adi, Adiponectin.

FIGURE 5

Hormesis hypothesis on health effects of fruits and vegetables. Changes in integrative anti-inflammatory capacity in response to intervention, followed 
by caloric load. The dotted lines represent the expected sustained effects on integrative anti-inflammatory potential through an increase in 
endogenous antioxidants via Nrf2 activation by hormetins. Black: Broccoli sprouts (with sulforaphane); Gray: Pea sprouts (without sulforaphane); T0 
and T1—time points of blood sampling.
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understanding of the hormetic principles of phytonutrients and 
stimulate research into the health effects of food.
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