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ABSTRACT 
 
 

 ELECTROCHEMICAL BIOSENSORS FOR CLINICAL ANALYSIS OF MICRO RNA BIOMARKERS OF CANCER 
 
 
 

By 

Esther Tanumihardja 
 
 
 

Genetic assays are very useful tools for clinical diagnostics and therapeutics. This thesis addresses the 

development of electrochemical microRNA genosensor, envisioned to be used as a clinical diagnostic tool. 

Dysregulation of numerous microRNAs have been reported to be closely associated to diseases. This makes them 

valuable biomarkers for minimally-invasive diagnostics. However, detection of microRNA is challenging, especially 

in the minute amount of circulating microRNAs. The research focused on achieving a reliable and sensitive sensing 

mechanism for circulating microRNA biomarkers of hypoxia. The approach can potentially be a rapid and less-

laborious alternative to the traditional immunohistochemistry assay.  

Based on review of different genosensor approaches, a model based on conformational change signalling was 

conceptualized, which then was put into experimental testing using synthetic nucleic acid polymers and 

electrochemistry (voltammetry) interrogation methods. Experimental results revealed that a robust, reliable 

genosensor signalling could be achieved the proposed model. However, required detection limit was not achieved 

in experimental data, and thus still need further work for genosensor’s clinical application. 
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Chapter 1  

Rationale 

Malignant tumour, or cancer, is a non-communicable disease where a group of cells undergo uncontrolled 

proliferation, which lead eventually to growth of abnormal tissues. This proliferation, more often than not, results 

in some degree of hypoxia [1]. Incidences of hypoxia have been reported in almost all solid tumour cases [2].  

Generally, hypoxia is a state of reduced oxygen availability in one site when compared to its normal/healthy 

counterpart. In the case of (solid) tumours, this is initially caused by the limitation of oxygen diffusion in avascular 

tumours when the cells outgrow its oxygen supply. The tissues might prompt angiogenesis, creating new 

microvasculature. It was reported, however, that the new microvasculature is commonly defective, thus not 

allowing correction of the oxygen deficit, ensuing chronic hypoxia [3], [4]. 

Chronic hypoxic microenvironment affects the biology of both tumour and immune cells significantly. Whereas 

acute hypoxia leads to short-lived responses (caused by modifications of existing proteins), chronic hypoxia leads 

to more enduring responses caused by modifications of gene expressions [5]. Both pro-apoptosis and pro-survival 

oncogenic phenotype changes have been reported as hypoxia-induced responses [6]. Discrepancies still exist in the 

underlying mechanisms leading to such responses. Nevertheless, in pro-survival response, tumour’s invasiveness is 

increased, metastasis is promoted, as well as resistance to therapies (radiotherapy, phototherapy, chemotherapy, 

and immunotherapy) [3]. Withal, hypoxia is often times strongly correlated to poor prognosis of the disease [7]. 

Therefore detection of hypoxia is of major concern both in cancer diagnosis, as well as treatment. 

Detection of hypoxia is a challenge. There are no definite clinical signs of hypoxia to begin with. Physiological 

or biochemical assessment is required for diagnosis. Since hypoxia is a strictly localized condition, applicability of 

global parameters is downplayed. There are a number of detection methods employed in tumour hypoxia detection 

nowadays [7], the most common one being immunohistochemical analysis of invasively harvested tissue. 

Ultimately, hypoxia is diagnosed in comparison with tissues’ healthy counterpart [7], [8]. 

Immunohistochemistry is a technique using antibodies to dye specific protein of interest in a tissue. A (dye) 

label is tagged to the said antibodies. Through specific binding, the protein of interest will in turn be stained by the 

dye. Their presence, therefore, can be observed by means of microscope for diagnosis, based on the intensity of 

the staining, number of stained cells, localisation of stain within tissue. The whole process takes typically days, 

including processing the tissue, cutting the slides, and staining [9]. Thus apart from the invasiveness, the approach 

is also highly time and labour consuming. Consequently, another detection approach is highly desirable. 

This project contributes to the development of a rapid biosensor in detecting hypoxia microRNA biomarker. 

This detection approach can be a faster, less-invasive, and less laborious alternative to the currently employed 

analysis approaches. The proposed approach is based on the reported dysregulation of certain microRNA biomarker 

as a response to hypoxia [2], [5], [10]. 

In short, the project is focused in answering the following central research question. 

How can genosensor be applied to detect microRNA hypoxia biomarkers for clinical diagnosis purpose? 

The central research question can be dissected into the following sub-questions, focusing on different pivotal 

aspects of the outcome. 

 What phenomenon underlies reliable signalling for microRNA genosensor? 

 What is sufficient level of sensitivity for such genosensor, and how can it be reached? 
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Chapter 2  

Background 

Overview 
This chapter summarizes background information regarding biomarker as the aim of detection. The definition, 

applicability, and merit of microRNA biomarkers are presented. 

Cancer Biomarkers 
Biomarkers (also named as molecular markers or signature molecules) are defined as biological molecules that 

are also a signature of a certain process/condition or disease [11]. In case of cancers, their level should predict the 

incidence of cancer. Cancer biomarker molecules can assume different roles in the cancer pathogenesis; they can 

also take form of different molecules. There are DNA biomarkers, RNA biomarkers, protein biomarkers, or glycol 

biomarkers [12]. Cancer biomarkers that are relevant in this project are reviewed briefly in the following part. 

Nucleic Acids 
Nucleic acids are essential biopolymers found in all forms of life. There are two types of nucleic acids, 

ribonucleic (RNA) and deoxyribonucleic (DNA) acid, respectively. They hold important functions in encoding, 

transmitting, and expressing genetic information responsible for the development and functioning of living 

organisms [13]. They function in a flow named as the central dogma of molecular biology [14]: DNA segments are 

transcribed into strands of messenger RNA (mRNA), and in ribosome, these strands are translated into protein. 

DNA and RNA have strong chemical resemblances. Both are structured from monomers called nucleotides [15]. 

Nucleotides are composed of a common phosphate and sugar group, with a differentiating nitrogenous base. The 

bases adenine (A), guanine (G), and cytosine (C) are found in both DNA and RNA. Organic base thymine (T) can be 

found only in DNA, and uracil (U) only in RNA. These bases form complementary pairings through hydrogen bonds, 

where adenine binds with thymine in DNA, or uracil in RNA; and cytosine with guanine. Through this bonding two 

complementary polynucleotide strands hybridize with each other. [14]–[16] The structure of nucleotides and 

bonding between them are illustrated in figure 2.1.A. Cytosine-guanine bonding is stronger than that of adenine-

thymine/adenine-uracil, caused different number of hydrogen bonds involved in the two pair. 

The two hybridized strands coil round the same axis in a right-handed fashion, constructing a double-helix 

structure with diameter of 2 nm. In this hybridized duplex, the sugar-phosphate units create a negatively charged 

backbone on the outside of the duplex, with the nitrogenous bases in the inside, stacked above one another with 

space of 3.4 Å between each stack [15], [16]. The structure is given in figure 2.1.B for clarity. 

The strong hydrogen bonds between the bases, along with π-stacking (attractive, non-covalent interaction 

between aromatic rings), keep the duplex stable [17]. However, phosphate residues on the backbones are 

negatively charged [16], making the backbones to repel each other. Duplex stability increases with the increase of 

salt contents in the solution as they screen the repulsive negative charges. Deviation of neutral pH and increase of 

temperature also destabilize the duplex structure [16]. The duplex stability is conventionally expressed by its 

‘melting temperature’. It is a temperature at which, under the given conditions, half of the duplexes is denatured 

to single strands. This can be determined experimentally based on the absorbance of 260nm ultraviolet light. Single 

strand polynucleotides have higher absorbance at this wavelength due to the lack of stacked bases. [16] Therefore, 

the melting temperature of a duplex can be determined from the temperature-absorbance plot. 
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Figure 2.1. (A) Nucleotides structure and hydrogen bond between them (B) DNA structure and dimensions illustration 

In 1993, the conductive properties of DNA duplex were demonstrated [18]. Photo-induced electron transfer 

observed between two intercalated metal on the opposite ends of a 15-base pair DNA duplex showed that be 

nitrogenous base pairs can facilitate long range charge transport. Since then, this property has been studied 

extensively, as it introduced many potential applications [19]–[21]. The most interesting application for this project 

is the application for detecting DNA damage and repair [21], [22]. 

microRNA as Cancer Biomarker 
The human genome is currently approximated to contain around 20,000 genes, where a mere 1.5% codes 

protein. The rest of the non-protein-coding genes were first regarded to be of no use [23]. However, it was found 

that a high percentage of these genes are also translated into RNA, the more functional polynucleotides, suggesting 

that they serve certain functions. This eventually led to the discovery of a class of functional non-protein-coding 

ribonucleic acids, to be later named as microRNAs [24]. 

MicroRNAs (miRNAs) are endogenous RNAs with length of 18-22 nucleotides found in most eukaryotes. It has 

now become evident that miRNAs play an essential role in regulating gene expressions at post-transcriptional level. 

With more than 900 distinct miRNAs in human genome, they account for up to 5% of the human genes, regulating 

more than 30% of the protein-coding genes [25]–[27]. 

miRNAs perform gene expression regulation through several modes of action. Despite the difference, generally 

miRNAs have gene-silencing effect. A single miRNA can regulate many different mRNAs (up to hundreds), and the 

expression of one mRNA can be regulated by multiple miRNAs. This highlights the substantial influence of miRNAs 

in regulating gene expression. While individually miRNAs have minimum repressing effect, jointly miRNAs regulate 

almost all cellular pathways [28]. 

Dysregulation of miRNAs has been associated with various human diseases [29]. One of most studied ones its 

role in human cancer. In case of cancers, genes coding for regulation of cell’s life cycle are of high relevance. One 

type of such genes is the oncogenic miRNA genes; as they override apoptosis, making cells to survive and proliferate 

instead. Up-regulation of such miRNAs induces cancerous growth. Conversely, tumour suppressing miRNA genes 

can also play a role. Its under-expression also leads to uncontrolled cancerous growth [6]. The proposed approach 

is based on the dysregulation of certain microRNAs as a response to hypoxia in cancers. 

Despite some detection challenges, miRNAs have proven its merit as biomarker. Circulating endogenous 

miRNAs are proven to have high stability. Its level is not affected by digestion with Ribonuclease or extreme pHs 

[30]. This contrasts with exogenous miRNAs that are rapidly degraded in serum. Endogenous miRNAs gain their 

stability by forming complexes with proteins [31] or by being encapsulated in particles [32]. Circulating miRNA 

biomarkers are present in minute amount, estimated between 200 aM to 20 pM concentration level [33]. 

A B 
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Along with the numerous pathways altered by hypoxia [34], many microRNAs have also been studied to be 

subsequently dysregulated [35]–[37]. The project did not study the pathway regulation of a specific microRNA. 

Instead, it aimed at a more general sensing method applicable in detecting microRNA biomarkers.  
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Chapter 3  

Situational and Theoretical Analysis 

Overview 
This chapter describes and reviews range of biosensors developed in the past years. Advances in the relevant 

fields are presented and discussed in relation to the project’s aim. 

Genosensors 
Biosensors are sensors using biological substrate in targeting (bio) molecules. Most minimally, biosensors entail 

a biological recognition layer (bioreceptor) and a transducer. Bioreceptor selectively reacts/interacts with the 

analyte. This reaction or interaction provides a signalling that can be transduced into electrical signal, performed by 

the suitable transducer. Various setups of biosensors have been developed in the last decades. Different 

bioreceptors have been used, such as DNA [38], antibody [39], enzyme [40], [41], etc. As well as numerous 

transduction methods, such as optical [42], piezoelectric [43], and electrochemical [44]–[46]. 

Traditionally, nucleic acid detection and analysis were dominated by polymerase chain reaction (PCR) based 

methods [47], [48]. PCR analysis relies on synthesizing copies of DNA of interest. Through temperature modulation, 

polymerase enzymes can be employed to create DNA chains of a specific gene, specified by attachment of 

specifically designed primers to the original DNA strands. Different enzymes can be employed to create RNA strands 

instead, or to create DNA strands from its RNA counterpart, such technique is called reverse-transcription PCR. The 

produced DNA can then be isolated and analysed. Mature miRNAs, however, are very small in size that they cannot 

be assayed by reverse-transcription PCR [49], the most powerful conventional RNA quantitative assay [50].  miRNAs 

have, on the other hand, very much similar size/length to probes used in hybridization-/genosensors, making this a 

suitable detection strategy for miRNAs. 

Genosensor is a type of biosensors, predominantly used to quantify the expression of a gene of interest. 

Signalling of a genosensor depends on hybridization between DNA target strands and the complementary DNA 

probes immobilized on solid surface. Base-pairing provides excellent recognition properties since it is selective and 

robust [45]. This biosensor field has grown significantly with the growing interest of genetic diagnostics, especially 

after the mapping of the human genome [51], [52]. Genetic diagnostics brought a new angle of timely disease 

diagnostics, thus improving disease prognosis and allowing genetic therapeutic approach [53]. Nowadays, one of 

the most sough-after applications would be the point-of-care diagnostics [54], [55]. 

Optical Genosensors 
Optical biosensors make use of optical transducers to signal the selective reaction between bioreceptor and 

the sample analyte. Signalling sources from the difference in optical character before and after reaction; in 

genosensors, before and after hybridization. Several methods are available, namely using fluorescence [42], [56]–

[58], surface plasmon resonance (SPR) [59], chemiluminescence [60]–[62], etc. 

Early fluorescence approach required target labelling step [57], [63], therefore they are not of high interest for 

this project. Most interesting genosensors were developed using the molecular beacon approach: nucleic acid 

strand with self-complementary ends, forming thus a stem-loop structure. For molecular beacon genosensing, one 

end of the probe strand is modified with a fluorophore (chemical compound that absorbs light of certain wavelength 

and re-emits light at another wavelength), while the other end is modified with a quencher (another compound 

that absorbs re-emitted energy and dissipates it as heat) [42]. In absence of target DNA, probes are in the stem-
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loop conformation. When the fluorophore is excited, it emits light at its emission wavelength. However, the stem-

loop conformation brings the fluorophore in close proximity with the quencher. The emitted light is then quenched. 

Contrariwise, in presence of target DNA, the probes hybridize and forms the more thermodynamically stable duplex 

conformation. The fluorophore is then distanced from the quencher, allowing it to fluoresce upon hybridization 

[42]. This fluorescence (at fluorophore’s emission wavelength) is monitored by a photodetector, outputting 

information about hybridization rate, and thus level of target DNA. Single-nucleotide polymorphism selectivity level 

has been reported using such setup [64], [65]. It was achieved by sensing within temperature window at which the 

less-stable single-base mismatched duplex is dissociated but fully matched duplex is stably hybridized. 

 
Figure 3.1. Optical detection scheme using molecular beacon (taken from [42]). 

Another popular optical label-free optical approach is the SPR. SPR requires a demanding setup where a single 

wavelength light is shone on a thin (gold) platform, which reflects the light unto a detector [66], as pictured in figure 

3.2. On the other side of the platform, bioreceptor layer is formed. This layer is placed close enough with the 

platform, allowing it to resonate with light’s evanescent wave. The SPR biosensing then sources from the change in 

refractive index close to the surface caused by adsorption of analyte. This alters the angle of minimum reflective 

intensity. This angle shift is proportional to the mass of the analyte adsorped on the bioreceptor layer [59]. 

In case of genosensors, DNA probes are immobilized to recruit the target strands unto the surface. 

Hybridization rate with target strands causes proportional shift of the SPR angle. This makes SPR, apart from label-

free, also a wash-free and real-time system. 

 
Figure 3.2. Principle of surface plasmon resonance biosensing. Image is taken from [67]. 
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Piezoelectric Genosensors 
Piezoelectric material is certain type of material that deforms in application of electric field. Such characteristics 

are exploited to create a mass-sensitive sensor [43], [68]. Piezoelectric genosensors commonly use quartz crystal 

microbalance (QCM) as the piezoelectric material. The quartz’ resonant frequency depends on the total oscillating 

mass. Therefore it increases when extra material is deposited on its surface. In genosensors, probes are immobilized 

on top of the crystal. Hybridization with target strands add mass to the material. The shift in resonant frequency is 

then directly proportional to the amount of mass of hybridized target strands [68], [69]. Ultrasensitive label-free, 

reusable genosensors have been reported with using this system [70], [71]; however, at the expense of complicated 

setup and expensive equipment. 

Electrochemical Genosensors 
Electrochemistry is a branch of chemistry concerned with the interrelation of electrical and chemical effects. It 

studies chemical changes caused by the application of an electric charge and the production of electrical energy by 

chemical reaction [72]. The branch comprises a very wide spectrum of use and applications. However, analytical 

use will be reviewed in this document. 

Analytical electrochemistry makes use of electrochemical processes to detect or quantify a species of interest 

[73]. Electrochemical processes are controlled and isolated in such a way that a measurable electrical process is 

quantitatively related to the concentration of the analyte in the sample. To achieve so, situation on the electrode 

where reaction of interest occurs has to be isolated. 

Electrochemical genosensors directly outputs measurable electrical signal. Therefore unlike optical- or mass-

readout setup, electrochemical genosensors do not need complicated transducers. This makes electrochemical 

genosensors inexpensive with very promising possibility of miniaturization and automation. Electrochemical 

genosensors have also been reported to be selective and robust enough to analyse complex biological samples in 

minute amount [74], [75]. Electrochemical readout is also undiscerning of high samples turbidity, as it is a challenge 

for optical readout sensors [54]. All in all, electrochemical genosensors offer ideal characteristics for an inexpensive, 

fast, and simple point-of-care diagnostic setup. 

Advances in Electrochemical Genosensors 
Recent years have seen a lot of works in the field of electrochemical genosensors. The first strategies exploited 

the inherent electroactivity of the DNA bases by directly oxidizing immobilized DNA strands  [76]. Most activity 

comes from the oxidation of the guanine bases, due to its low oxidation potentials [77]. The oxidation signal then 

reflects the amount of guanine available for oxidation at the surface of the electrode. Another study [78], [79] 

showed that signal can be improved through electrocatalytic amplification by introducing metal complexes. 

Though this approach requires no modification and is very simple, it suffers from a number of shortcomings. 

Firstly, since the probe strands also contain guanine residues, they also undergo oxidation. Signalling can be 

improved by substituting the guanine bases in the probe with inosine, a nucleoside that binds with cytosine (thus 

preserving selectivity) but with a much higher oxidation potential, allowing guanine oxidation signal to refer to 

hybridization. The need of special modification, however, downplayed the simplicity of the setup. Oxidation also 

damages DNA [80]. It is an undesirable trait for genosensor, for it would be limited in durability and lifetime. 

Later detection schemes took another approach by using an exogenous species to undergo redox instead of 

the DNA. Different moieties have been explored for this purpose, from redox enzyme until nanoparticles. Formerly, 

this redox moiety is modified unto the target DNA strands [81], adding an undesirable laborious step in detection. 

Popular improvement of the system include a sandwich assay, achieved by attaching a second synthetic sequence 

to the overhanging bases (bases that are not hybridized) of the captured target strands, as illustrated in figure 3.3. 
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Figure 3.3. Steps of the sandwich-type assay: (1) Oligonucleotide probes are deposited on the electrode; (2) the capture probe 

and the target are hybridized; (3) the electrode-bound target and the labelled oligonucleotide are hybridized, the labels are in 

electrical contact with the redox polymer; and (4) the electrocatalytic reduction current of H2O2 to water is measured. (taken from 

[82]) 

Sandwich assay does eliminate the need to label/modify the analyte. Many variants of electrochemical 

sandwich assay detection schemes have been demonstrated to achieve excellent sensitivities. Sensor using colloidal 

gold nanoparticles in sandwich assay format was reported to achieve detection limit as low as 0.8 femtomoles [83]. 

Application of sandwich assay in miRNA detection has not been studied too extensively, since the small size of 

miRNAs does not usually allow numerous overhanging bases to work with. Some studies have shown similar ideas 

for miRNA detection, by using overhanging probes sequences instead. A study [84] demonstrated that a stem-

looped capture probes with two complementary regions, one for (synthetic) detection probe and another for the 

target strands, can achieve a miRNA detection limit of sub-femtomoles level. 

Redox moieties that bind intrinsically with DNA duplex have also gained a lot of attention for they do not require 

any labelling modification. State of the art genosensing uses such moiety in DNA-mediated charge transport to bring 

selectivity up to single nucleotide polymorphism level. Barton [85] reported a system using probe with intercalating 

redox tethered on its top. When target DNA hybridizes with the probe, the redox active species intercalates with 

the duplex. Charge will be transported from the redox species to electrode through the base-stacking of the fully 

matched duplexes. One unstacked base pair can shut this transport down, resulting in lower redox signal. Thus, this 

reagentless setup can discriminate single nucleotide polymorphism undiscerning of temperature or destabilization 

of mismatches. 

Another study [86] demonstrated the use of freely diffusing redox-labelled peptide nucleic acid (PNA) probes. 

PNAs are engineered polymer, designed very similarly to DNA, but without the negatively-charged phosphate 

groups on its backbone [87]. This eliminates the cumbersome immobilization process. Detection was based on 

repulsion between negatively charged electrode surface and the negatively charged DNA (target) backbone. In 

absence of the target strands, the non-charged PNA probes diffuses freely, bringing redox active label to-and-fro 

from the electrode surface. In presence of target strands, hybridized duplex are repelled from the electrode surface, 

preventing the redox label to reach and thus react with the electrode. 

Reagentless setups have also proven some merit in the field of electrochemical genosensors. Reagentless 

sensors allow measurement in homogeneous environment, without freely diffusing mediators [88]. This improves 

practicality, sample conservation, and even perhaps, in vivo measurements. The simplest, and grown to be very 

popular, of such setups was proposed by Fan and co-workers [44]. The designed probe is very much similar to the 

optical molecular beacon approach [42], only with a redox species covalently attached to one end. When these 

probes are immobilized on the electrode, redox label is placed in proximity to the electrode, allowing efficient 

electron transfer. Introduction of complementary target strands, probes unravel and distance the redox label from 

the electrode. Electron transfer will be then inhibited; decrease of redox current is related of the concentration of 

target strands. The group reported detection on picomolar level with such setup. 

Electrochemical Cell and Measurement 
Electroanalysis requires a setup to attain a well-defined situation in order to establish a quantitative 

relationship between certain electrical quantity and the amount of analyte present [73]. Such is arranged in 
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electrolytic cells, where reactions are effected by application of external voltage. Electrolytic cells comprise of 

electrolyte and electrodes. Electrolyte is a solution in which ions are dissolved. Electrodes are electrical conductors 

used to make contact with non-metallic part of the circuit, in this case the electrolyte. 

Most typically, cell reaction of interest takes place on one electrode. This electrode, termed as ‘working 

electrode’, is coupled with a non-polarizable electrode called the ‘reference electrode’ thus completing a closed 

circuit. All measurements are measured against the potential of reference electrodes, therefore they need to have 

a known, unchanging potential. In two-electrode cells, current flows through the reference electrode, which 

disturbs the potential of the reference electrode. Therefore for sensitive analytical setup, a three-electrode setup 

is needed. [72] 

Three-electrode cells employ a third electrode, named as ‘counter electrode’ or ‘auxiliary electrode’. Current 

will flow between the working and counter electrode, instead of the reference electrode. Counter electrodes should 

not undergo redox reaction by electrolysis that might produce interfering substances, so they are typically made 

out of inert materials. This way, voltage can be applied and measured accurately relative to the unchanging 

reference electrode. [72] Choices of used electrodes/electrodes material depend on specific application.  

An electronic instrument named potentiostat is used to drive and measure the cell reaction. Different 

experimental setup can be realized with a potentiostat and electrolytic cell. Analytical chemistry makes use of a 

number of different techniques, e.g. potentiometry [89], voltammetry [90], [91], electrochemical impedance 

spectroscopy (EIS) [92], etc. Potentiometry is a passive measurement system. Though practical, it is very limited in 

its application. Potentiometric construction is only mostly used for reference electrodes. EIS can be a powerful tool 

in analytical chemistry, as it can provide different information of complex systems. However, it is still rather new in 

development, and require a more demanding equipment. 

Voltammetry techniques are very widely used for its versatility and sensitivity. Voltammetry is a controlled-

potential technique, which measures the resulting current. The potentiostat applies voltage across the working and 

counter electrode, and while the potential on the working electrode is maintained according to certain pattern (fed 

by the function generator). Working electrode potential is contrasted against the reference electrode, and fed back 

to the potentiostat through a high-impedance feedback loop. Since potential and current are directly related to 

each other, maintaining/modulation of potential will cause in (unique) modulation of the current. This current is 

then monitored for it corresponds to the amount of electrons needed sustain support electrochemical processes 

at the given potential. [72] This scheme is presented in figure 3.4 below. 

 
Figure 3.4. Schematic representation of potentiostat (taken from [72]) 

Two different sources of current contribute the read-out of the system. First is the capacitive/non-Faradaic 

current. Ions in the solutions will either be attracted or repelled by the potential applied to the electrode. This 

creates an uneven charge distribution, called the double-layer, which induces the displacement current. This 

current is generally small and unchanging over limited potential ranges; it is usually termed as a background current. 

Secondly, the Faradaic current, originating from the electrochemical transformation of electroactive species and 

thus transfer of electrode across the electrode-electrolyte interface. 
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By applying negative potentials to the working electrode, the energy of the electrons is elevated. If the energy 

is high enough, they can flow from the electrode into the vacant electronic state of the electronic species. This 

current is named reduction current. Contrariwise, positive potentials will lower the electrode’s electron energy. At 

low enough energy, electrons in the electrolyte find a more favourable energy in the electrode and flow there. This 

results in cathodic current. At which potentials these processes occur is unique to the substances involved and their 

standard potentials (E0). 

From voltammetry techniques, information from the measured current is usually plotted either against time or 

potential (or both). In potential step techniques (e.g. chronoamperometry), where potential is modulated from one 

to another one step-wise manner, current is often times plotted against time. However, this technique only 

interrogates electrochemical behaviour of the system at one given potential. Numerous experiments is necessary 

to attain complete electrochemical behaviour of the system. Therefore, sweeping techniques are more commonly 

used, where potential is swept/varied linearly with time. The current is recorded as a function of the applied 

potential and plotted the i-E plot or a voltammogram. There are mainly two different conventions used in presenting 

a voltammogram. In this document, the IUPAC convention is used in compliance with the international standard. 

The noting of this convention is given in figure 3.5. 

 
Figure 3.5. IUPAC convention of voltammograms 

By differing the applied potential waveform and current measurement strategy, different techniques of 

voltammetry are available, such as the cyclic voltammetry, differential pulse voltammetry, square wave 

voltammetry, etc. Each technique has their own advantages, provides different information, and therefore can be 

used for many different analytical purposes. For our purpose, we first need sensitive technique to obtain 

information of an unknown system.  

One useful method for this purpose is cyclic voltammetry (CV). A triangular waveform of potential is applied in 

CVs. The potential is swept linearly forward and back between two predetermined potentials (named potential 

window). This method is very useful in initial characterization of complicated electrochemical processes taking place 

at the electrode-solution interface [72]. 

A typical applied waveform in CV is given in figure 3.6.a. When such waveform is applied to an electrolytic cell 

in presence of a redox active species, voltammogram as such in figure 3.6.b is obtained. The redox species undergo 

the following reaction.  

 𝑂𝑋 + 𝑛𝑒− → 𝑅𝐸𝐷 ( 3.1 ) 

Where OX is the oxidized form of the species, n represents the stoichiometric number of electrons involved in 

the process, and RED represents the reduced form of the species. For illustration purpose, the species’ E0 is set to 

be -209 mV. 
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Initially, insufficient energy is present to drive any electrochemical reaction, so only non-Faradaic current is 

observed. As the voltage becomes increasingly negative (approaching species’ E0), species starts to undergo 

reduction. This decreases the surface concentration of OX, followed by more OX diffusing from bulk to surface. 

More and more OX undergoes reduction, resulting in increasing reduction current. As voltage is swept past E0, 

reduction is very rapid that surface concentration of OX reaches 0, ensuing maximum diffusion rate. Since the 

potential is still further swept, but mass transfer is already at its maximum rate, depletion takes place. The reduction 

is then limited by availability of substance on the electrode surface, this can be observed in the drop of reduction 

current, making the reduction curve to have its ‘peak’ shape. Once the potential sweep is reversed, similar 

mechanism takes place for the oxidation process of the RED. 

Another type of voltammetry of interest is the differential pulse voltammetry (DPV). A waveform of a pulse of 

constant amplitude, modulated on top of a staircase (illustrated in figure 3.7.a), is applied. Current is sample before 

and after application of modulation pulse. Taking the difference between the two measurements lessens the 

influence of background current, resulting in a more sensitive technique than the normal sweeping techniques. On 

the other hand, DPV results in a simplified voltammogram (illustrated in figure 3.7.b) when compared to CV’s. Thus 

less (qualitative) information is obtained, while a relatively more complicated measurement protocol is necessary. 

Hypothesis 
The above information postulates that genosensors for microRNA detection can be realized, and that 

electrochemical detection offers apt features for clinical application. Gene clinical diagnostics do not require 
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Figure 3.6. (a) Typical applied waveform of CV (b) Example of cyclic voltammogram, time-point correlated with (a) 
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Figure 3.7. (a) Typical applied waveform of DPV (b) Example of differential pulse voltammogram 
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massive data accumulation/multiplexing. Instead, reliability and generality of sensor application are of great 

importance. Therefore this project strives first for sensor’s reliability. Optimum sensitivity, practicality, and speed 

of assay are also addressed to some extent.  
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Chapter 4  

Conceptual Model 

Overview 
So far, the motivation and aim of the project have been made clear. Relevant advances in the field have also 

been presented, along with the hypothesis statement. This chapter explores in more detail how electrochemical 

genosensor for microRNA can potentially be realized for our objective. Choices regarding components/building 

blocks of the genosensing and processes involved in the sensing are discussed separately, leading to the envisaged 

genosensor. 

Transduction Method 
Different biosensor transduction methods were already given briefly in the previous chapter. The mentioned 

methods are contrasted in table 4.1, especially in their applicability for genosensing. As mentioned already, 

electrochemical surpasses other reviewed common readout methods in applicability for point-of-care and/or 

clinical application. There are challenges in reaching an ultrasensitive electrochemical genosensor, however it offers 

the most robust, cheap, and versatile readout method for our purpose. 

Transduction Method Pros Cons 

Optical Can achieve high sensitivity; inherent 

absorbance trait of DNA base-stack; can 

potentially operate with minute sample 

amounts; SPR is real-time. 

Cumbersome and expensive equipment; 

sample turbidity can be a concern 

(except for SPR); fluorophores are not 

photostable and have non-uniform rate 

of photobleaching [45]; SPR might 

require amplification [59]. 

Piezoelectric Can achieve high sensitivity; label-free; 

real-time. 

Cumbersome and expensive equipment; 

challenging fabrication [43]; selectivity 

challenge operating in rich matrices; 

temperature sensitivity. 

Electrochemical Low-power; outputs directly electronic 

signal; simple equipment; promising for 

miniaturization and automation; can 

operate with minute sample; stable 

redox active labels. 

Sensitivity might be a challenge; 

operation in rich matrices risks 

interference from other (non-specific) 

electroactive species. 

Table 4.1. Comparison table of genosensing transduction methods 

A number of different electrochemical interrogation methods have also been briefly presented in the previous 

chapter. Table 4.2 recaps the advantages and disadvantages of the methods. Practically, both voltammetry and 

impedance spectroscopy can both be useful methods in the development of genosensor. However, given the 

available equipment and limited time, the project focused on using voltammetry methods. Voltammetry should 

also give enough information necessary in the research, and its versatility allowed a lot to explore.  

Interrogation Method Pros Cons 

Potentiometric Passive measurement. Not sufficient for self-determining 

measurement system; limited sensitivity; 
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most probably, selective membrane is 

necessary. 

Voltammetry Versatile; has different interrogation 

methods; wide applications. 

Active measurement, interference of 

background current. 

Impedance spectroscopy Provides some other information, 

compared to voltammetry 

measurements. 

Active measurement, demands more 

complicated equipment; more expensive. 

Table 4.2. Comparison table of electroanalysis interrogation methods 

Voltammetry’s versatility can be seen from the different techniques available. Table 4.3 compares the different 

techniques. Based on the depicted information, cyclic voltammetry (CV) is very suitable for initial characterization 

of an unknown system. Resulting cyclic voltammogram reveals a lot of information of system’s general response, 

as well as system’s reversibility and kinetics. It is also one of the most used techniques in genosensor research. 

Therefore a lot of published information can be used as comparison in this research. 

For quantification protocols, pulse voltammetry techniques (i.e. differential pulse voltammetry and square 

wave voltammetry) are preferred for their increased sensitivity, as well as clearer voltammograms. The symmetrical, 

unambiguous voltammogram allows more accurate data processing for quantification purposes. 

Voltammetry Techniques Pros Cons 

Chronoamperometry Simple protocol. Only gives information at one potential 

against time (E, t plot); substantial 

measurements needed to obtain 

wholesome information [72]. 

Cyclic voltammetry Characterize system at a range of 

potentials: outputs (E, i plot) in one 

measurement; relatively simple 

protocol; gives information about 

reversibility, kinetics. 

High background current [72], difficulty 

to use for quantification for the 

ambiguity of baseline. 

Differential potential voltammetry Moderated background current; highly 

sensitive for direct evaluation of 

concentrations; generates clear, 

symmetric bell-shape voltammogram. 

[72] 

Complicated protocol; simplified 

voltammogram/current shape. 

Square wave voltammetry Versatile; outputs different diagnostic 

angles; highly sensitive for direct 

evaluation of concentrations, generates 

clear, symmetric bell-shape 

voltammogram. [72] 

Highly dependent on frequency; 

complicated protocol; no renewal of 

diffusion layer. 

Table 4.3. Comparison table of voltammetry methods 

Bioreceptor 
It is rather the obvious choice to use nucleic acid polymers as the bioreceptor molecule for genosensors. They 

offer specificity through the specific base-pairing, and make a robust, easily available probes for hybridizations with 

target. Apart from DNA, other nucleic acid polymers have been engineered over the years, such as the locked 

nucleic acid (LNA) and peptide nucleic acid (PNA). LNA has a modified sugar group with an extra bridge [93], 

enhancing a tighter base stacking [94]. LNA-DNA/RNA duplex have much higher melting temperatures than their 

natural counterparts because of this organization. PNA is another DNA analogue, but without any backbone charge 

[87], as already mentioned in the previous chapter. The lack of repulsion between the backbones also results in 

higher stability of the PNA-DNA/RNA duplex [95]. The engineered nucleic acid polymers offer favourable 
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characteristics which aid hybridization rate of the genosensors. However, due to their limited availability and higher 

price, DNA probes will be used in this research. Thermodynamics of DNA probes were first studied to reveal the 

range of temperature within which the envisaged genosensor can function. 

The signalling and selectivity of the genosensors depend vastly on sensor’s bioreceptor layer. Many variables 

need to be adjusted in achieving genosensor for the desired application. Probe design obviously holds a very 

important role in the functioning and signalling of the bioreceptor layer.  

Molecular-beacon/stem-loop probe has been reported to achieve best selective signalling irrespective to read-

out techniques [96]. Optical studies [42], [64] revealed that stem-loop probes is uniquely suitable to achieve single-

nucleotide polymorphism selectivity level, especially for mutation in the loop part. In electrochemistry read-out, 

stem-loop probes were reported to have significantly wider optimal frequency range than linear probes 

genosensors [97]. Table 4.4 summarizes the comparison of all the relevant presented probe configuration. 

Probe Structure Pros Cons 

Linear probes Unrestricted with self-complementary 

sequence; predictable immobilization. 

Narrower operational. 

Stem-loop probes  Wider operational range; elevated 

selectivity; more predictable single-

strand conformation. 

More complicated thermodynamics. 

Diffusing probes [86] Immobilization-free; multiplexing 

possibility is proven. 

No regeneration of probes; 

quantification is not addressed (and 

potentially limited) 

Table 4.4. Comparison table of genosensor probe structures 

The choice of probe structure is closely related to the signalling scheme of the genosensor. The schemes visited 
in the previous chapter are contrasted in table 4.5. For our genosensor purpose, conformational change seems to 
offer the most benefits, along high promise of success. It is also reflected from the numerous previous studies in 
different applications of such signalling. This also provides advantage of many works to which the research results 
can be compared. 
 

Signalling Scheme Pros Cons 

Conformational change Reagentless; amendable to multiplexing; 

suitable for single-nucleotide 

polymorphism. 

Signalling is not as straightforward; 

probe labelling might be necessary. 

DNA bases electrochemistry Label-free; simple assay. Limited sensor lifetime, limited 

multiplexing possibility; high 

background signals. 

Sandwich assay Potentially label-free; can be multiplexed. Limited applicability for short 

microRNAs; probe labelling might be 

necessary. 

Table 4.5. Comparison table of genosensor signaling scheme 

Signalling based on stem-loop conformational changes also delivers more reliable results when compared to 

signalling of linear probes genosensors, where it is solely based on hybridization-induced probe dynamics change 

[98]. For these reasons, stem-loop probes are used in this project. For operational reasons, such probe should create 

stable hairpin structure in room temperature (25oC). Conversely, it should not be overly stable either, that 

hybridization with target is deterred. Such characteristic is amendable through engineering probe’s self-

complementary sequence [99]. 

To signal the conformational change, a redox label is modified to the 5’ of the probes. Redox probe used is 

methylene blue (MB), a redox-active species with E0 of -0.209 V vs Ag/AgCl (3 M KCl) at pH 7 [85], [100]. MB has 
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grown to be a popular genosensor label for its potential range that is close to those of many biological molecule. 

Furthermore, such range allows measurement to occur negatively charged electrodes. Repulsion between the 

surface and DNA/duplex make the strand to be vertically oriented in a more predictable way. 

The label is modified unto the 5’ terminus through a C6 linker. This linker is long enough to allow mobility of the 

label to reach the bulk solution as well as to potentially intercalate into the duplex. However it is not too long that 

label reaches electrode surface independent of hybridization/conformation of the probe [85]. The probe is modified 

with thiol on its 3’ terminus (also through a C6 linker) for its reported flexibility. DNA immobilized on its 3’ terminus 

has been reported to have more flexibility than those immobilized on its 5’ terminus [101]. 

Bioreceptor Monolayer 

Assembly of Monolayer 
In constructing the genosensor, DNA probes need to be attached on electrode’s surface where it will recruit 

target strands to the electrode surface through the specific base-pair interaction. Probes are preferred to be 

attached on one of its ends, to allow conformational change-induced signalling as well as to ease target strands in 

reaching these probes [102], [103]. Therefore a site-specific and predictable immobilization strategy is required, to 

form the monolayer that is stable for the hybridization and measurement time-frame. 

Self-assembly methods are often used in constructing a uniform sensing monolayer in a simple, yet predictable 

way. Since 1983, it has been shown that thiolated compounds form self-assembled monolayer (SAM) on different 

metals through chemisorption [104]. Thiol-modified DNA probes can be simply incubated on top of the gold 

electrode, where the strands organize themselves into a stable monolayer on the gold surface. The resulting 

monolayer has been characterized over the year [105], confirming that it results in strong and robust uniform 

monolayer, stable for more extended amount of time, more than enough to perform multiple measurements. The 

self-assembled monolayer is currently the common practice in building genosensors. Other methods (e.g. covalent 

attachment) would require other specific surface modification, to which access is limited. Therefore no other 

alternative immobilization approaches are explored for the project.  

Nitrogen residues in DNA bases also interact significantly with gold; this may cause DNA to lie down instead of 

standing upright [106]–[108]. These non-specifically adsorbed DNAs introduce hindrance and might generate 

signalling that is insensitive to the presence of target strands. As solution, mixed-monolayer can be formed instead. 

After thiolated-DNA strands are adsorbed, the surface is then exposed to a second thiolated ‘backfilling’ 

species/diluent. Mercaptohexanol (MCH) is commonly used as backfilling agent for its insulating property and its 

suitable length, allowing optimum self-organization [109]. MCH will adsorb on the electrode surface, filling 

uncovered parts of the surface and remove non-specific, weakly adsorbed DNA strands. This two-steps surface 

modification (as illustrated in figure 4.1) results in a specific, uniform, and insulated modified surface. Concentration 

of MCH exposed to the modified surface can also be used as a surface coverage-tuning tool [107]. 

Some variations in the two-steps self-assembly process have been introduced. Firstly, the inversed two-steps 

method [110], where first the diluent was deposited on the electrode, followed by the probes. Imaging results 

 
Figure 4.1. Schematic representation of two-steps self-assembly process. (a) First deposition of DNA strands (b) MCH backfills 

uncovered surface and removes weakly adsorbed DNA strands (taken from [107]). 
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suggested that this method resulted in more diluted, but more homogeneous layer of binary monolayer. An 

optimized one-step modification was also put forward by Doneux, et al [111]. It was suggested that it was possible 

to deposit both diluent and probes together in one step by carefully adjusting the solution concentration ratio. This 

method was suggested to result also in more diluted layer of probes, but perhaps more homogeneous. All strategies 

have been reported to have merit in their applications. Therefore the most suitable procedure was studied 

experimentally. 

Assembly Techniques Pros Cons 

Conventional two-steps Widely reported (a lot of examples to 

study from); well-characterized; can be 

fine-tuned. 

Can result in inhomogeneous layer; 

more cumbersome protocol. 

Inversed two-steps Result in more evenly distributed probes. Result in diluted layer; more 

cumbersome protocol. 

Coadsorption Optimized one-step protocol; result in 

more evenly distribute probes. 

Not yet widely studied. 

Table 4.6. Comparison table of mixed monolayer assembly techniques 

Surface Coverage 
An important variable in the overall performance of the genosensor is the surface coverage of the DNA probes, 

which describes the density at which the probes are immobilized; usually expressed as Γ in picomole cm-2. Clearly, 

enough probes should be present to generate adequate signal. However, too dense monolayer will introduce steric 

hindrance for the target strands and deter hybridization [66]. Furthermore, signalling mechanism can also be vastly 

affected by surface coverage.  

Conveniently, there are means in experimental procedure of fabrication that can tune the fabricated DNA 

monolayer surface coverage. Probe concentration and incubation time are directly related to the resulting surface 

coverage [112]. Ionic strength present during SAM formation is also a powerful tool in tampering surface coverage. 

High ion concentration can screen/neutralize the repulsive negative charges of DNA backbone. With less repulsion 

between the DNA strands, more packed layer can be formed. 

Most of the reported successful conformational genosensors operate at surface coverage below 4 picomole 

cm-2 [44], [113]. This agrees with the work dedicated to study the relationship between surface coverage and 

hybridization efficiency of hairpin probes [114]. The study revealed that most efficient hybridization (at ~90% 

efficiency) was achieved at surface coverage between 1-2 picomole cm-2. Therefore as a rule of thumb, surface 

coverage range of 1-4 picomole cm-2 is worth to be studied. 

Signalling Mechanism 
As discussed earlier, project strives for sensor’s reliability. One drawback in using a stem-loop probe is its 

unattractive signal-OFF reporting [44], [115], where presence of target is inferred from the decrease of signal. 

Especially when operating in a complex biological matrices, signal-OFF reporting scheme is vulnerable to false-

positive outcomes. In rich matrices, many non-specific interactions can compromise or interfere with bioreceptor 

integrity or desorb the probes altogether, these cases will result also in decreased signal amplitude. Therefore it is 

preferred that such response is not associated with positive result. Furthermore, from technical point-of-view, 

signal-OFF can only have operational limit of signal suppression up until 100%. Signal-ON reporting (presence of 

target analyte is then correlated with increase of signal amplitude), can theoretically have unbounded signal 

increase. 

Recent years have reported numerous works in engineering signal-ON genosensors [116], [117], [113]. One of 

the simplest approaches in modifying the use of stem-loop probe was suggested by simply using truncated probes 

[113]. Shorter probes hybridize to form rod-like duplexes that undergo rotational movement governed by diffusion. 
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In sufficiently diluted surface coverage and with negatively charged surface electrode, this movement can bring 

redox active species (in this case, methylene blue) tethered on the probes to reach electrode surface. 

It is noteworthy that there are other models that might fit application objective. However, this simplest setup 

holds high promise for success as well as high commercial interest for its (potentially) reagentless, simplistic design. 

Furthermore, in the framework of the project itself, technical laboratory works will be performed by entirely 

inexperienced student. Therefore, this simplistic setup is highly favourable over other approaches that might 

require multi-step hybridizations, etc. 

Genosensor Model 
Previous parts present envisaged genosensor design part by part. Here, the whole model is summarized and 

presented. 

A stem-loop DNA is used as probe. Its 3’ terminus is modified with thiol for immobilization on gold surface 

(through thiol-gold self-assembly), and its 5’ terminus is modified with methylene blue redox label through C6 linker. 

In absence of target strands, probe will be conformed in stem-loop structure, confining redox label unto electrode 

surface.  

In presence of complementary strands, probe will hybridize to form a rigid rod-like duplex conformation. Such 

rigid duplex should undergo rotational movement, displacing the redox label to and from the electrode surface, 

facilitating redox reaction of probe. Signal-ON response can be calibrated against the amount of complementary 

strands presence to evaluate genosensor’s performance. 
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Chapter 5  

Research Approach 
 

Overview 
In answering the research questions, sets of experiments were performed. This chapter recaps and details the 

experiments done in the course of the project. The experimental setup used is elaborated, followed by the different 

reasoning/purposes of the different experiments done in the project. 

All experiments were done in the facility of Electrochemical Biosensors and Bioelectrocatalysis group at iNano, 

Aarhus. 

Experimental Setup 
For the envisaged genosensor, gold disk working electrode (with diameter of 1.5mm) was used, for its 

favourable characteristic in achieving the self-assembling bioreceptor layer. Platinum electrode with high surface 

area was used as counter, chosen mostly for convenience. As reference electrode, silver wire coated with a thin 

layer of silver chloride was used, named as the silver-silver chloride electrode or ‘Ag/AgCl’. It is typically enclosed in 

potassium chloride solution. For the experiments, Ag/AgCl reference electrode (purchased from Sigma-Aldrich, 

Germany) kept in 3 M potassium chloride was used. For this constant make up, its potential was fixed at 210 mV, 

compared to normal hydrogen potential (NHE) [118], [119]. Ag/AgCl reference was used for its stability, 

availability/practicality, and non-toxicity. 

Electrochemical cell, with electrolyte volume of ~3mL, was used. Taking into account the small gold electrode 

size when compared to the amount of electrolyte, this cell size was still regarded as a small A/V (area/volume) 

system, where reaction at the electrode surface was regarded as not to alter cell’s bulk concentration. The 

electrodes (especially the working and reference electrodes) were put at a fixed distance of around 1 cm for each 

experiment, to achieve moderate and comparable Ohmic drop between measurements. 

Metrohm potentiostat (µAutolabIII/FRA2) ran the experiments, with protocols programmed in the NOVA 1.8 

software. 

Characterization of Gold Electrodes 
The conceptualized sensing signalling originates from conformational changes introduced by hybridization with 

complementary strands. In order to achieve efficient and reproducible signalling, it was important to have a clean 

smooth surface of the gold electrode. Therefore, firstly, a study to characterize gold electrodes was carried out. 

During this phase, I also learnt to attune to the preparation of gold electrodes, as well as practical electroanalytical 

chemistry in general. 

Immobilization Strategies 
Different immobilization strategies were also visited briefly in the course of the project. The strategies named 

and elaborated in table 4.6 were studied experimentally. Process and results are included in appendix B.2. Based 

on the outcome of the study, conventional two-steps modification method came to be most resource-efficient 

method, with relatively consistent results. Results were only reflected from electrochemical interrogation methods, 

due to lack of access to molecular-level imaging equipment. Nonetheless, electrochemical results obtained were 

consistent with published works [44], [85], suggesting that (mixed) monolayer was formed in the predicted way. 
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Thermodynamic Study 
To accurately observe the envisaged signalling scheme, thermodynamic study was also required. Melting 

temperature of different foldings/duplexes holds important role in the sensing. Both theoretical and experimental 

studies of melting temperatures were done. Theoretical study was based on literatures as well as through the 

normative DINAmelt algorithm [120], [121]. Results of the theoretical study were contrasted against experimental 

results. 

It was also reported that immobilisation on solid surface affects DNA stability. A study [122] suggested that 

difference in the dielectric constant between immobilized and bulk solution duplexes results in reduction in 

effective ionic strength. Decrease in ionic strength renders duplexes less stable, therefore have lower melting 

temperatures. Experiments have observed lowering of Tm of about 5oC [123]. Due to lack of experimental 

equipment, Tm of immobilized strands were only reasoned based on published literatures. 

DNA Experiments 
It is normative when suggesting a new detection method or variation to start with experiments using synthetic 

oligonucleotides. Such experiments are to demonstrate that immobilization and detection method work as 

expected and is selective of target strands. This research strives to prove the concept first on this level, operating 

in physiologically relevant buffer condition. 

The proven concept was then transferred to the aimed microRNA genosensors. Where the performance was 

once again evaluated for microRNA affinity. Performance of the modelled system was finally tested in biological 

serum, simulating biological sample. The more complex matrix might yield different sensing results. This attests 

sensor’s performance in a more representative way for clinical application. 
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Chapter 6  

Characterization of Gold Electrodes 

Overview 
Prior to each sensor fabrication, gold electrodes needed to be cleaned and characterized. This chapter presents 

and discusses this process and the characterization of the gold electrodes. 

Electrode Preparation Steps 
Gold disk electrodes (CH Instruments, Austin, TX; diameter 3 mm) were electrochemically cycled in 0.5 M NaOH 

between -0.4 and -1.6 V for 10 cycles at 0.05 V s-1, to remove all thiol residues from the electrode surface. Studies 

carried out in the lab showed that thiols desorbs from gold surface at -1.4 V vs Ag/AgCl (3 M KCl). 

To achieve a smooth gold surface [124], the electrodes were mechanically polished [38] on a microcloth pad in 

1 µm diamond (Struers, Copenhagen, Denmark) for 2 minutes, followed by another 2 minutes of polishing in 0.1 

µM alumina slurries (Struers, Copenhagen, Denmark). The electrodes were washed with Milli-Q water and ultra-

sonicated in 1:1 ethanol−water solution for minimum 10 minutes, to remove remaining polishing material [38]. 

The electrodes were then washed with water and electrochemically polished stepwise in 1 M H2SO4 from -0.3 

to 1.7 V for 10 cycles at 0.3 V s-1 and in 1 M H2SO4/10 mM KCl from 0 to 1.7 V for 10 cycles at 0.3 V s-1 [38]. 

Finally, the electrodes were cycled in 0.1 M H2SO4 from 0 to 1.7 V for 2 cycles at 0.3 V s-1 to determine the 

electrochemical surface area of the electrode. The clean electrodes were kept in absolute ethanol at 4oC before 

use. 

Characterization of Gold Electrodes 
The electrochemical surface area the electrode surface was estimated after the last cycling step by integration 

of the gold surface oxide reduction peak in 0.1 M H2SO4 and by using a conversion factor of 400 µC cm-2 [125], the 

amount of charge needed for one-electron reduction of gold oxide. The electrode surface is considered to be clean, 

if a reproducible sharp gold oxide reduction peak, with a clear defined ‘shoulder’ is obtained, as given in figure 6.1. 

 
Figure 6.1. Representative CV of clean bare gold electrode in 0.1 M H2SO4. Scan rate: 0.3 V s-1. 
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Impurities on the electrode surface causes a distortion of the voltammogram’s gold oxide peak. Figure 6.2 

represents a cyclic voltammogram of a gold electrode that was considered to be not clean. Same cleaning steps 

were repeated for such gold electrodes until a clear defined ‘shoulder’ is obtained. 

 
Figure 6.2. Representative CV of not clean gold electrode in 0.1 M H2SO4. Scan rate: 0.3 V s-1. 

The geometrical surface area of an electrode can be calculated as follows: 

 𝐴 = 𝜋𝑟2 = 𝜋 (0.15 𝑐𝑚)2 = 0. 070685 𝑐𝑚2 ( 6.1) 

However, a completely smooth surface cannot be achieved. The roughness of the surface adds to the effective 

surface area. In a molecular scale process, this difference can introduce a strong inaccuracy to any 

calculation/determination forward on, e.g. determination of surface coverage. Consequently, the real surface area 

which contributes to the electrochemical process needs to be determined experimentally. 

Roughness factor is defined as the ratio between the electrochemical surface area and the geometrical surface 

area. Yang, et al [115] studied that folding-based genosensors work comparably well on rough (electrodeposited) 

gold surface, with roughness factor up to ~7. However, it was also shown that sensors fabricated on electrode 

surfaces with roughness factor above 4 have less reproducible results. For gold disk electrodes, it is not too 

challenging to obtain roughness factor below 4. Therefore all experiments will use strictly clean gold disk electrodes 

with roughness factor below 4.  

Electrode Modification with DNA 
To fabricate the sensors, clean electrode surface were modified with thiolated DNA strands through self-

assembly in a single-point attachment. DNA probe strands, derivatized on its 3’ end with disulfide and on its 5’ end 

with methylene blue, were purchased and used as is. Disulfide bonds were reduced with TCEP to obtain accessible 

thiol ends. TCEP does not contain thiol residues itself, nor does it interfere with thiol adsorption [126]. Therefore 

TCEP does not need to be removed before cross-linking reactions take place during immobilization. 

Solutions containing 10 µM DNA strands in 20 mM phosphate buffer (pH 7) and 0.15 mM NaCl were drop-

casted (deposited as a bubble of solution on a surface) on the clean gold disk electrodes. Self-assembly was allowed 

during 12-16 hours incubation at room temperature. During incubation electrode was covered to prevent 

evaporation and was protected from light. 
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Determination of DNA Monolayer Surface Coverage 
Big part of the analysis of the genosensors is based on the DNA monolayer surface coverage. Even though all 

sensors are fabricated under the same protocol, each fabricated sensor is unique to each other. Each electrode has 

unique gold surface and the monolayer formation is governed by independent gold-thiol interaction. Therefore 

each fabricated DNA monolayer needs to be studied experimentally. 

Surface coverage (Γ) of a monolayer can be defined by the following equation [127], [101]. 

 Γ =
𝑄

𝑛𝐹𝐴
 ( 6.2 ) 

Where Q is the charge passed to the electrode (Coulomb), n is the moles of electrons in the electron-transfer 

process (for the SAM we will be using n=1), F is Faraday’s constant and A is the experimentally determined 

electrochemical area of the electrode (cm-2). The values of Q can be determined by integration of the methylene 

blue reduction/oxidation peaks in the cyclic voltammograms of the folded probes, integration is done by software 

(NOVA 1.8). 

Kinetics of Electrode Processes 
The signalling of electrochemical genosensors depends also heavily on the kinetics of the processes taking place 

on the electrode. Kinetic information of a process can be derived from its voltammogram.  

As mentioned earlier, there are two different source of currents measured in a voltammetry system. The 

Faradic process, however, forms the peaks of interest in the voltammogram. This peak is directly correlated to the 

reaction rate at the electrode surface, which is limited by the concentration of redox species at the electrode 

surface. Along with the redox reaction, the concentration of the analyte at the electrode surface decreases, and 

that of redox product increases. Redox reactions occur at a much higher speed than diffusion of these species. 

Consequently, a ‘depletion’ area is created, where concentration deviates from the bulk. Figure 6.3 illustrates the 

concentration gradient of redox species (in this case, Fe(CN)6
3-) formed over time when sufficient potential is 

applied. 

 
Figure 6.3. Concentration gradients (in red) for Fe(CN)6

3– following the application of a potential that completely reduces it to 

Fe(CN)6
4–. Picture is courtesy of UCDavis ChemWiki [128]. 

In an unstirred system (no forced convection), the redox reaction is then limited by the diffusion of the analyte 

from the bulk concentration to the electrode surface. Such system is named a diffusion-limited system. Peak current 

of such case is governed by the Randle-Sevcik equation given below. 

 Ip = k  n3/2 A D1/2 v1/2 Cb ( 6.3 ) 
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Where the constant k = 2.69 x 105; n is the number of moles of electrons transferred per mole of electroactive 

species (e.g. ferricyanide); A is the area of the electrode in cm2; D is the diffusion coefficient in cm2 s-1; υ is the scan 

rate of the potential in volt s-1; and Cb is the bulk solution concentration in mole L-1. The equation reveals that the 

peak current intensity is proportional to both the scan rate and bulk concentration. This makes it a good quantitative 

parameter for analytical purposes. 

On the other hand, a system can have absorbed species on its electrode surface. In such case, diffusion does 

not play a role. The peak current is directly related to the surface concentration of the absorbed species, and is 

governed by the following equation. 

 𝐼𝑝 = 𝑘  𝑛2 𝑣𝐴Γ ( 6.4 ) 

Where the constant k = 9.39 x 105; n is the number of moles of electrons transferred per mole of electroactive 

species; A is the area of the electrode in cm2; and Γ is the surface coverage of the absorbed species in pmol cm-2.  

Experimentally, the kinetic property of a system can be known by studying peak currents as a function of both 

scan rate and square root of scan rate. Should the peak current be linear to square root of scan rate, it is implied 

that system is governed by diffusion. A system with linearity between peak current and square root is a surface 

process, limited by its absorbed redox species. 

Gold Electrode Characterization by Diffusion Electrochemistry 
The surface of the gold electrode can also be characterized through diffusion electrochemistry in presence of 

redox mediator, such as ferricyanide (Fe(CN)6
3-). Ferricyanide in the solution is reduced to ferrocyanide (Fe(CN)6

4-) 

when reaching the surface of the gold electrode. 

Separation between the cathodic and anodic peaks of a system reveals system’s reversibility. Reversible 

systems have the peak separation (ΔEp) defined as followed. 

 Δ𝐸𝑝 =
0.059

𝑛
𝑣𝑜𝑙𝑡𝑠 ( 6.5 ) 

Where n is the number of moles of electrons transferred per mole of electroactive species. Increasing value of ΔEp 

suggests irreversibility of the system, caused by some thermodynamic barrier resulting in sufficiently slow electron 

transfer. 

 
Figure 6.4. Representative cyclic voltammogram of clean bare gold electrode in deaerated solution of 1 mM K3Fe(CN)6/100 mM 

KCl. Scan rate: 100 mV s-1. 
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Figure 6.4 shows the cyclic voltammogram of a clean bare gold electrode in the presence of ferricyanide redox 

species and KCl as supporting electrolyte. Supporting electrolyte is required to minimize migration of charged redox 

species in the electric field gradient. Ferricyanide-ferrocyanide is a known reversible redox couple, undergoing one-

electron transfer each redox reaction. Therefore ideally, its cathodic and anodic peaks should be separated by 

59mV. 

From the obtained voltammograms, it was found that the anodic peak of the reaction took place at 0.28501 ± 

0.00985 V and the cathodic at 0.21516 ± 0.00914 V. The two are separated by 0.06984 ± 0.00598 V. This value is 

very close to the theoretical value of peak separation of reversible system. This suggests the system is only limited 

by diffusion and that the redox couple underwent redox reaction uninhibitedly. This also implies that the electrode 

surface is free of impurities, since impurities would inhibit electron transfer to some degree. 
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Chapter 7  

Probes and Thermodynamic Study 

Overview 
This chapter is dedicated in presenting the probes used in the project and the study of their thermodynamics. 

Conformational change of the probes are governed by their (and the duplexes) thermodynamics, therefore this 

study was aimed to provide some information of the genosensor’s performance. 

Two approaches are presented in this chapter: theoretical approximation and experimental approach. Details 

behind each approach are elaborated separately. The findings are then concluded in the end. 

Probes Sequences 
There are a number of sequences used in the project. Synthetic DNA sequence of 20 nucleotides was used as 

a proof for immobilization and detection. Later, similar setup was then applied for the specific microRNA detection. 

The sequence is chosen based on length,  

The hsa-mir-618 and hsa-let-7c microRNA sequences were chosen for this project. Both miRNA sequences are 

shown to be upregulated by hypoxic environment. miRNA hsa-mir-618 has been reported to be a stable biomarker, 

with aberrant expression up to 1.5 times more in hypoxia than in normoxia [35]. This specific sequence was also 

chosen for its similarity with the proven synthetic DNA setup, in terms of length, melting temperature, etc. The 

second miRNA sequence was used, to observe (roughly) the generality of the setup. Table 1 below sums up the 

sequences used, complete with the probes modification. 

Type Oligo Name Sequence (5’-3’) and Modification 

DNA probe DNA hsa-mir-618 AttoMB2-CTC TAG AAG GAC AAG TAG AG-Thiol(6-S-S) 

DNA probe DNA hsa-let-7c AttoMB2-GTA GTT CAC CAT ACA ACC TAC TAC-Thiol(6-S-S) 

DNA target cDNA hsa-mir-618 CTC TAC TTG TCC TTC TAG AG 

DNA target cDNA hsa-let-7c GTA GTA GGT TGT ATG GTG AAC TAC 

RNA target cRNA hsa-mir-618 AAA CUC UAC UUG UCC UUC UGA GU 

RNA target cRNA hsa-let-7c UGA GGU AGU AGG UUG UAU GGU U 

DNA probe SyntheticDNA MB2-GC AGT AAC AAT ACC CAC TGC-Thiol(6-S-S) 

DNA target cSyntheticDNA GCA GTG GGT ATT GTT ACT GC 

Table 7.1. Summary of sequences used. ‘c’ denotes complementary (target) sequences. Self-complementary region of the probes 

are underlined. 

Melting Temperature Calculation 
For each of the sequences, its melting temperature and melting/folding in solution are simulated/estimated 

theoretically. The process is done using DINAmelt web server. The prediction is based on equilibrium 

thermodynamic, using the nearest-neighbour model for computation [120], [129]. Nearest-neighbour model 

suggests that stability of a duplex/folding does not depends solely on the identity of the bases that hybridize (thus 

the relative content of cytosine and guanine), but also on the sequential composition of the strands [130].  
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Furthermore, the algorithm in DINAmelt is also regularly updated based on recent research/studies in the field. 

All in all, it makes the web server very widely used and it is regarded as the most accurate approximation of nucleic 

acid melting temperatures. The simulated results are tabulated below. 

Type Oligo Name Melting Temperature  

in 20 mM PBS (pH 7)/0.150 M NaCl/0.005 M MgCl2  

DNA probe DNA hairpin hsa-mir-618 38.0oC 

DNA probe DNA hairpin hsa-let-7c 37.0oC 

DNA duplex hsa-mir-618 DNA duplex 62.6oC 

DNA duplex hsa-let-7c DNA duplex 66.7oC 

RNA duplex hsa-mir-618 DNA-RNA duplex 60.9oC 

RNA duplex hsa-let-7c DNA-RNA duplex 62.0oC 

DNA probe SyntheticDNA hairpin 55.3oC 

DNA duplex SyntheticDNA duplex 68.4oC 

Table 7.2. Melting temperatures of sequences used, hairpin and duplex. Generated by DINAmelt algorithm [129]. 

Allegedly, the theoretical/simulation calculation showed lower melting temperatures of hairpin folded probes 

than the probe-target duplexes. Probe-target duplexes are thus the more thermodynamically favourable melting 

state, which is suitable for the aimed affinity genosensor. All folding/duplexes were also calculated to have 

sufficiently high melting temperature to allow operation in room temperature (around 25oC). Even when the lower 

melting temperature of immobilized probes are taken into account [123], the least stable hsa-let-7c hairpin probe 

would still have a relatively high melting temperature at around 32oC. 

The syntheticDNA probe and microRNA probes had different compositions of the self-complementary 

sequences (table 1, appendix A). This lead to difference in probe melting/folding temperatures, where the 

microRNA probes had significantly lower melting temperatures than the synthetic DNA probe. Due to the less stable 

self-complementary sequence, the microRNA probes should have an increased affinity to the complementary 

strands [99]. It is expected for such probe to achieve lower detection limit than the more stable syntheticDNA probe. 

Melting Temperature Measurement 
Melting temperature of some duplexes were also determined experimentally. Melting curves were acquired 

by monitoring absorbance of 260 nm ultraviolet light by the sample as a function of temperature. Experiment was 

performed by Cary100 Bio UV-visible spectrophotometer. 600 µL of 1.5 µM DNA duplex in 20 mM PBS buffer (pH 

7) containing 150 mM NaCl and 5 mM MgCl2 were used as samples for the experiments. Temperature was 

modulated between 20oC and 80oC in modulation rate of 1oC per minute. To ensure uniformity of states of the 

probes, three complete heating-cooling transitions were cycled for each sample. The curves from the last transition 

were used for analysis. 

Due to limited access to the experimental equipment, only two samples of the microRNA duplexes could be 

analysed. The resulting absorbance sigmoidal plots were then normalized, as presented in the following figures. 

Figure 7.1 presents the normalized absorbance-temperature plot of the hsa-mir-618 fully complementary duplex. 

50% of the absorbance, occurred at temperature of 63.52oC; thus defining duplex’s melting temperature. This value 

is very close to the DINAmelt calculated/simulated value of 62.6oC, as given in table 7.2. 
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Figure 7.1. Normalized absorbance-temperature plot of hsa-mir-618 DNA duplex in 20 mM PBS (pH 7) containing 150 mM NaCl 
and 5 mM MgCl2. 50% absorbance level is also shown for determination of Tm. 

Figure 7.2 presents the normalized absorbance-temperature plot of the hsa-let-7c fully complementary duplex. 

50% of the absorbance, occurred at temperature of 67.535oC; thus defining duplex’s melting temperature. This 

value is very close to the DINAmelt calculated/simulated value of 66.7oC, as given in table 7.2. 
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Figure 7.2. Normalized absorbance-temperature plot of hsa-let-7c DNA duplex in 20 mM PBS (pH 7) containing 150 mM NaCl 
and 5 mM MgCl2. 50% absorbance level is also shown for determination of Tm. 

Conclusion 
The theoretical approximation of the melting temperatures of the probe foldings and duplexes revealed that 

the designed probes possess suitable thermodynamic characteristics to instigate signalling based on conformational 

change. Experimental data of the duplex melting temperature were in great accordance to the theoretical 

approximation. Therefore it was safe to assume that the theoretical approximation was accurate enough to use as 

estimation. 
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Chapter 8  

Samples Analysis 

Overview 
This chapter presents and discusses the obtained experimental results. Firstly, results obtained from the 

synthetic DNA analysis are given; followed by the microRNA analysis. Protocol performed in achieving the results is 

given roughly for each experiment, with the complete protocol included in the appendices. 

Synthetic DNA Analysis 
Below the results of the synthetic DNA analysis are presented. 20-nucleotide long probe was used, with the 

sequence given in table 1, under ‘syntheticDNA’. The oligonucleotide was modified with methylene blue (containing 

–COH side group) on its 5’ terminus and thiol on its 3’ terminus.  

The probes were immobilized as single-stranded DNA on clean gold disk electrode surface through self-

assembly. Electrodes had electrochemical surface area of 0.080 ± 0.003 cm2. Self-assembling probes was let for 16 

hours and subsequently backfilling with 2 mM mercaptohexanol for 30 minutes. Resulting surface coverage was 

calculated to be 1.47 ± 0.32 pmol cm-2. 

Figure 8.1 shows the cyclic voltammogram of the probe-modified gold electrode. The clear peaks revealed the 

observable formal potential of the redox label at around -0.23525 ± 0.00448 V, estimated from E1/2 = (Ered + Eox)/2 

[72]. It was comparable to formal potential of methylene blue in solution. These peaks were not obtained in 

measurement of electrodes only modified with mercaptohexanol backfilling agent (voltammogram is shown in 

appendix B.1). The peaks observed in figure 8.1 can then be credited to the redox-active label methylene blue. 

Based on the comparable formal potential values, tethering also did not significantly alter the electroactivity of 

methylene blue. 
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Figure 8.1. Cyclic voltammogram for gold electrode modified with methylene blue-tagged DNA probes in the absence of target 

DNA in 20 mM PBS (pH 7) with 0.150 mM NaCl. Scan rate: 0.1 V s-1. (inset) Relationship between peak currents and scan rates. 
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Similar cyclic voltammetry measurements were done at different scan rates, to observe the kinetics at work. 

Scan rate was varied from 0.05 V s-1 until 5 V s-1. Peak currents of the obtained voltammograms were plotted against 

the corresponding scan rate in the inset of figure 8.1. The linear relationship between the scan rates and peak 

currents suggested that system was governed by surface process (equation 6.4), by the surface-confined methylene 

blue. As a contrast, the peak currents were also plotted against the square root of scan rates, as given in appendix 

B.5, where it showed less correlation. 

The fabricated sensors were then studied in presence of target DNA. Sensor response was calibrated in 

presence of different concentration of target DNA in range of 0.1 nM to 5 µM. Target strands were diluted serially 

in 20 mM PBS buffer (pH 7) containing 150 mM NaCl and 5 mM MgCl2 to obtain different concentrations. 

Hybridization was achieved by incubating 10 µL of the target solution on the modified electrodes for 30 minutes. 

Variability of the sensor was observed from three different electrodes, which were equivalently prepared and 

measured. Calibration measurement used differential pulse voltammetry (DPV) interrogation method with 40 mV 

modulation amplitude, 10 mV step potential, and scan rate of 20 mV s-1. Measurement was done in deaerated 20 

mM PBS buffer (pH 7) containing 0.15 M NaCl. 

The result is presented in figure 8.2 below. Although minimized, capacitive current was still present on DPV 

measurements. This ‘background’ current hindered accurate comparison between measurements. Therefore it was 

corrected by subtracting a polynomial-fitted baseline curve. The baseline curve was fitted manually, done in NOVA 

software. The corrected voltammograms of the cathodic current are overlaid in the figure 8.2 below. 

The presented differential pulse voltammograms showed the expected bell-shaped peak at similar potential 

with the verified methylene blue peak of the CV. This suggests that DPV also observed the same methylene blue 

peak. It was observable that the DPV peak current had a much bigger magnitude than CV peaks, making DPV the 

more sensitive interrogation technique. 

The source of signal changes was verified in control experiments. The sensors were challenged with DNA-free 

buffer as well as non-cognate DNA strands. The process and results of these experiments are presented in appendix 

B.3. 
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Figure 8.2. Representative baseline corrected differential pulse voltammograms recorded before and after interaction with the 

complementary target DNA. (inset) Genosensor response across three equivalently prepared electrodes, normalized for the blank, 

calibrated against DNA concentration. 
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The sensor showed an increase in DPV peak current with the increase of target DNA present. This signal-ON 

reporting was consistent with previously reported response of 20-nucleotide long probes [113]. The sensor reacted 

consistently starting from the presence of 0.1 nM target DNA, suggesting it could detect 1 femtomole of 

complementary target. Peak current increased linearly with the increase of target DNA concentration up until 100 

nM. 

At 1.43 pmol cm-2 surface coverage, around 150 femtomoles of the DNA should be present on the electrode 

surface. Theoretically, response saturation is expected at incubation of 10 µL of around 15 nM complementary DNA. 

Curiously, saturation was observed in presence of around 10.000 femtomoles of target DNA. An unproportioned, 

sharp increase in the peak current was also observed at incubation of 500 nM target DNA. These suggested that 

either hybridization yield was considerably low [99], leading to saturation only at 60 fold excess of complementary 

strands; or the occurrence of secondary phenomenon at sensor’s saturation that resulted in amplified DPV signal. 

‘Background’ signal could roughly be obtained again after hybridization by rinsing the electrode surface with 

Milli-Q water for 40 seconds. Stream of water breaks the hydrogen bonds between the bases, allowing target strand 

to dehybridize, and probe DNA to conform back to its initial hairpin structure. Comparison of regenerated signal is 

included in appendix B.4. This also confirmed that the increased of DPV peak current was attributed to the 

hybridized probes. 

Model Evaluation 
Overall, the syntheticDNA experiment evidenced a (reusable) signal-ON genosensor based on the 

conceptualized model, with absolute detection limit of 1 femtomole. The exact signalling mechanism can be 

inferred from the kinetics study presented in appendix B.5. The diffusion-governed system for the hybridized probes 

agreed with the conceptualized signalling mechanism put forward in chapter 4. 

The concept was then transferred to build a microRNA genosensor. Similar probe length was chosen for the 

miRNA genosensors, with identical end grafting-modification. The methylene blue redox label, however, did not 

contain –COH side group as the syntheticDNA probes did. This difference was due to the different labelling 

approach. The syntheticDNA probes were modified previously in house, while the microRNA probes were purchased 

already labelled. With the lack of –COH side group, intercalation of label into the duplex base-stack should occur 

more easily. Furthermore, minimum change was expected by this alteration. 

As previously revealed, the miRNA probes was designed with a lower content of C-G bonding in its self-

complementary sequence. This lead to a much less stable stem, as reflected from probe’s melting temperature. 

With the less stable stem-loop conformation, higher target affinity should be achieved by the probes, thus 

improving sensor’s detection limit. 

microRNA Analysis 
microRNA sample analysis is given below. Oligonucleotides were purchased and already modified with 

methylene blue on its 5’ terminus and thiol on its 3’ terminus. Two different sequences were used, namely the hsa-

mir-618 and hsa-let-7c, exact sequences can be found in table 1, both are also 20-nucleotides long. 

Similarly, probes were immobilized as single-stranded DNA on clean gold disk electrode surface through self-

assembly. Electrodes used for hsa-mir-618 and hsa-let-7c had electrochemical surface area of 0.062 ± 0.008 cm2 

and 0.088 ± 0.018 cm2 respectively. Self-assembly was let for 16 hours. Subsequently, electrode was backfilled with 

2 mM mercaptohexanol for 30 minutes. Resulting surface coverage for hsa-mir-618 and hsa-let-7c was calculated 

to be 2.47 ± 0.36 pmol cm-2 and 3.52 ± 1.04 pmol cm-2 respectively.  

Sensor response was calibrated in presence of different concentration of target DNA in range of 0.1 nM to 200 

nM. Target strands were diluted serially in 20 mM PBS buffer (pH 7) with 150 mM NaCl and 5 mM MgCl2 to obtain 

different concentrations. Hybridization was achieved by incubating 10 µL of the target solution on the modified 

electrodes for 30 minutes. Variability of the sensor was observed from two different electrodes for each sample, 
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which were equivalently prepared and measured. Calibration measurement used differential pulse voltammetry 

(DPV) interrogation method with 40 mV modulation amplitude, 10 mV step potential, and scan rate of 20 mV s-1. 

Measurement was done in deaerated 20 mM PBS buffer (pH 7) with 0.15 M NaCl. 
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Figure 8.3. Baseline corrected differential pulse voltammograms of the hsa-mir-618 probe, before and after interaction with the 

complementary target. (inset) Genosensor response across two equivalently prepared electrodes, normalized for the blank, 

calibrated against DNA concentration. 

The sensor started to respond consistently in presence of 70 nM target strands and higher. It was apparent 

that the sensor was much less sensitive than the synthetic DNA sensor results. Response reached saturation in 

presence of 100 nM target RNA. Reflecting on the surface coverage and electrode’s electrochemical surface area, 

173 femtomoles of probes were calculated to be immobilized on the electrode’s surface. 10 µL of 100 nM target 

solution should contain around 1 picomole of target strands. The sensor achieved saturation in presence of (only) 

6 fold excess of targets. It was then suggested that hybridization might occur at a more efficient rate, when 

compared to the syntheticDNA experiment. However, the altered affinity did not seem to have improved sensor’s 

limit of detection. 

E vs Ag/AgCl (3 M KCl), V
-0.4 -0.3 -0.2 -0.1

I,
 n

A

0

50

100

150

200
200nM

100nM

70nM

blank

[Target RNA], 

0.00 0.05 0.10 0.15 0.20

(I
-I
0
)/

I0

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

 



42 
 

Figure 8.4. Baseline corrected differential pulse voltammograms of the hsa-let-7c probe, before and after interaction with the 

complementary target. (inset) Genosensor response across two equivalently prepared electrodes, normalized for the blank, 

calibrated against DNA concentration. 

Similar response pattern was found with the 22-nucleotide hsa-let-7c probes, only to a much smaller 

magnitude. While limit of detection and saturation point was found to be similar to that of hsa-mir-618, sensors’ 

only generated less than half of the hsa-mir-618 response. This might be caused by sensor’s denser surface coverage 

(calculated at 3.52 ± 1.04 pmol cm-2). The crowded electrode surface could hinder the rotational movement of the 

duplexes, deterring the MB labels to reach electrode surface. 

microRNA in Serum Analysis 
Lastly, the sensor’s hybridization was tested in presence of complex biological matrix. Target strand for 

hybridization was diluted in 10% serum and 90% the hybridization usual buffer (20 mM PBS buffer (pH 7) containing 

150 mM NaCl and 5 mM MgCl2). The serum used was stored (frozen in -18oC) bovine serum albumin (BSA). Due to 

time limitation, only one electrode was used for each sample. Other than the hybridization buffer, sensor was 

fabricated and interrogated in the same way as the previous experiments. 

Probes were immobilized as single-stranded DNA on clean gold disk electrode surface through self-assembly. 

Electrodes used for hsa-mir-618 and hsa-let-7c had electrochemical surface area of 0.0684525 cm2 and 0.072356 

cm2 respectively. Self-assembly was let for 16 hours. Subsequently, electrode was backfilled with 2 mM 

mercaptohexanol for 30 minutes. Resulting surface coverage for hsa-mir-618 and hsa-let-7c was calculated to be 

2.38 pmol cm-2 and 3.03 pmol cm-2 respectively.  
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Figure 8.5. Baseline corrected differential pulse voltammograms of the hsa-mir-618 probe in serum, before and after interaction 

with the complementary target. (inset) Genosensor response across two equivalently prepared electrodes, normalized for the 

blank, calibrated against DNA concentration. 

Interestingly, the hsa-mir-618 sensor performed considerably better in presence of serum. Consistent response 

was observed starting at a low 10 nM concentration of target. Response showed linear response to the increase of 

target strands concentration up to 100 nM, the highest concentration used in this experiment.  

The effect of serum presence was not examined to its full extent due to limitation in time. The presence of 

complex biological matrix might have lowered the sensor’s effective affinity to target strands. This could in turn 
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broaden the dynamic range of the sensors. This hypothesis, however, was only based on assumptions. On the other 

hand, experiment was only performed once. Results reproducibility still need to be visited before it can be 

concluded. 
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Figure 8.6. Baseline corrected differential pulse voltammograms of the hsa-let-7c probe in serum, before and after interaction 

with the complementary target. (inset) Genosensor response across two equivalently prepared electrodes, normalized for the 

blank, calibrated against DNA concentration. 

Similarly, the hsa-let-7c sensor’s response also seemed to have a broadened dynamic range, where it started 

to respond consistently when challenged with 50 nM target. The response, however, was still of a much lower 

magnitude than the response of the hsa-mir-618 sensor. Higher surface coverage of the resulting bioreceptor 

monolayer was still obtained, despite the adjustment in diluting the incubating solution during self-assembly. 

Overall, through the performed serum experiment, it could not be concluded that the sensors performed 

better in presence of other biological molecules. However, it was rather safe to assume that presence of 10% BSA 

serum did not disrupt sensing ability of the fabricated genosensor. At 10% serum level, nucleic acid-breaking 

enzymes (e.g. ribonuclease deoxyribonuclease) did not seem to affect the sensing monolayer of sensor, even in the 

time frame for 6 incubation sessions, each of 30 minutes.  
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Chapter 9  

Conclusion and Recommendations 

Lastly, this chapter concludes the findings of the project and answer the formulated central research question. 

In answering the central research question, two sub-research questions stated in the first chapter are first to be 

answered. In the end of the chapter, some recommendations for future works are also put forward. 

Experiment results presented in chapter 8 confirmed a genosensor model with reliable, signal-on reporting. 

The reporting was underlied by hybridization-induced conformational change of the immobilized probes. This 

conformational change introduced a diffusion-governed agility for the tethered redox label. The redox labels were 

then facilitated in reaching reach surface electrode. Signal-on reporting has high merit in clinical diagnosis setup for 

its reliability and unbounded responses. Findings in this project suggested that 20 nucleotide long probes are 

adequate in achieving such signalling mechanism, irrespective of the sequence. Such signalling was observed to be 

transferable from a DNA-DNA hybridization system to a DNA-(micro)RNA system. This satisfied generality 

requirement of clinical genosensing application. 

Detection of circulating microRNA biomarker demands a very low limit of detection, down to sub-femtomolar 

level. Obtained results revealed that such detection limit could not be reached solely by conformational change 

sensing, when interrogated with electrochemistry’s differential pulse voltammetry method. Increasing affinity 

between probes and target strands (by around two-fold) was not observed to result in an improved limit of 

detection.  

Hence, the central research question can be answered. 

‘How can genosensor be applied to detect microRNA hypoxia biomarkers for clinical diagnosis purpose?’ 

Reliable genosensor signalling can be achieved through the depicted conformational change sensing. However, 

genosensor’s sensitivity was still proven to be insufficient for clinical diagnosis applications. 

In general, the proposed sensing system possesses apparent advantages over the traditional 

immunohistochemistry assay; e.g. in terms of speed of diagnosis, versatility, and labour-/instrumentation 

requirement. Therefore it is of great value to continue such work, mostly in improvement of sensor’s detection 

limit. 

Amendment of probes’ thermodynamics and affinity to targets are area worth further exploring. The use of 

engineered nucleic acid polymers should boost limit of detection for their significantly higher hybridization affinity.  

The direct affinity between probes and targets also suggests that limit of detection can be improved by 

increasing the sample size. The used 10 µL sample volume was minute even for real biological samples. Therefore 

it should not be a problem to increase this sample size. To aid this, a bigger electrode might be necessary. 

Furthermore, signal amplification can also be useful means in improving sensor’s sensitivity and limit of detection. 

Amplification can be achieved through electrocatalysis, by using electron transfer intermediaries to carry out redox 

reaction of the label away from the electrode surface. On the other hand, this might underplay the commercially 

and POC attractive reagentless trait. 
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Appendix A  

DNA/RNA Foldings 

This part visualizes the foldings of the sequences used in the project. Folding simulation was done by DINAmelt 

quickmelt algorithm [129]. The schematics presented the differences in the self-complementary/stems between 

the probes in the more apparent way. From the table below, the direct relation between stem’s composition and 

probe’s melting temperature are evident. 

Type Oligo Name 
Foldings  Melting Temperature  

in 20 mM PBS (pH 7)/0.150 M NaCl/0.005 M MgCl2 

DNA 

probe 

DNA hairpin hsa-mir-

618 

 

38.0oC 

DNA 

probe 
DNA hairpin hsa-let-7c 

 

37.0oC 
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DNA 

probe 
SyntheticDNA hairpin 

 

55.3oC 

Table  A.1. Foldings of DNA probes in 20 mM PBS (pH 7) containing 150 mM NaCl and 5 mM MgCl2, generated by DINAmelt 

[129] 

Targets also form hairpin structure which can compete with hybridization with probes. Therefore the folding 

and melting temperature were also analysed to ensure that the probe-target hybrids are the more 

thermodynamically favourable state. 

Type Oligo Name 
Foldings  Melting Temperature  

in 20 mM PBS (pH 7)/0.150 M NaCl/0.005 M MgCl2 

DNA 

target 

 

cDNA hsa-mir-618 

 

36oC 

DNA 

target 
cDNA hsa-let-7c 

 

39.7oC 
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RNA 

target 
cRNA hsa-mir-618 

 

54oC 

RNA 

target 
cRNA hsa-let-7c 

 

55.9oC 

DNA 

target 
SyntheticDNA hairpin 

 

56.4oC 

Table  A.2. Foldings of target strands in 20 mM PBS (pH 7)/150 mM NaCl/5 mM MgCl2, generated by DINAmelt quickfold algorithm 

[129] 
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Appendix B  

Experimental Results 

This chapter presents various experimental results, as previously referred to in the main content of the report. 

Each experiments are elaborated and introduced separately. 

1. Mercaptohexanol-modified gold electrode 

This chapter presents the results of control experiments aimed to ensure that the backfilling agent used in the 

sensor did not introduce interfering effects. Figure B.1 shows the cyclic voltammogram of the gold electrode 

modified only with mercaptohexanol monolayer. Electrode was modified through self-assembly of 2 mM thiolated 

mercaptohexanol in 20 mM PBS (pH 7) buffer with 150 mM NaCl for 30 minutes. Measurement was also done in 20 

mM PBS (pH 7) with 150 mM NaCl. 

As seen in figure B.1, only capacitive current ‘envelope’ was observed in the given voltammogram. This current 

is comparable to the capacitive current observed during measurement with mixed monolayer of probes and 

mercaptohexanol. No faradaic peaks were present within the same potential window as used to observe methylene 

blue peak. Therefore it could be concluded that the backfilling agent did not undergo electroactivity within the used 

potential window. 

 
Fig B.1. Cyclic voltammogram of gold electrode modified with mercaptohexanol monolayer. Measurement was done in 20 mM 

PBS (pH 7) with 150 mM NaCl. Scan rate: 0.1 V s-1. 

To further observe the role of the backfilling agent, another measurement was performed. Similar to the gold 

electrode characterization experiment in chapter 5, the mercaptohexanol-modified electrode was interrogated in 

presence of diffusing redox mediator. Same electrode was then run in deaerated solution of 1 mM K3Fe(CN)6 with 

100 mM KCl as supporting electrolyte. The obtained cyclic voltammogram is presented in figure B.2, overlaid with 

the voltammogram of bare gold electrode in identical situation (also presented in figure 6.4). 

The voltammogram peaks of the mercaptohexanol-modified electrode had significantly higher peak separation 

(0.23605 ± 0.017 mV), when compared to the bare electrode’s voltammogram peaks (0.06984 ± 0.00598 V). This 

was attributed to the insulating property of the mercaptohexanol. Electron transfer could not happen as easily with 

the extra layer of insulation on the electrode, as also put forward in chapter 5. Therefore more energy was required 

to drive the redox reaction, leading to a higher peak separation. 
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E vs Ag/AgCl (3 M KCl), V
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Fig B.2. Cyclic voltammogram of gold electrode modified only with mercaptohexanol monolayer, overlaid with voltammogram of 

clean bare gold electrode as in figure 6.4. Measurement was done in presence of 1 mM K3Fe(CN)6/100 mM KCl. Scan rate: 0.1 V 

s-1. 
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2. Electrode Modification Study 

This appendix presents the results of electrode modification study. Three different monolayer assembly 

methods were studied and compared: the conventional two-steps, the inverse two-steps, and coadsorption. 

Experiments used a 20-nucleotide MB-labelled probe, to be immobilized on clean bare gold disk electrodes. All 

methods were performed using the same probe amount/concentration to have a clear comparison. 

Conventional two-steps method protocol, included in appendix C, begins with deposition of thiolated probes 

unto the gold surface. After 16 hours incubation, the second step of modification followed. This time thiolated 

backfilling agent is incubated for 30 minutes. Electrodes were then interrogated with cyclic voltammetry to 

characterize its modified surface. Fig B.3 shows the CV obtained for electrodes modified using the conventional 

two-steps method. CV shows clear faradaic peaks in the redox potential range of methylene blue. 

 

Fig B.3. Cyclic voltammogram of gold electrode modified with DNA probe/mercaptohexanol mixed monolayer through the 

conventional two-steps method. Measurement was done in 20 mM PBS (pH 7) with 150 mM NaCl. Scan rate: 5 V s-1. 

Inverse two-steps method protocol being with deposition of backfilling agent, followed by deposition of the 

probes. This method output CV as given in fig B.4.a. It was apparent that mainly capacitive current envelope was 

measured, no clear faradaic current was observed. Coadsorption assembly is an optimized method, which deposits 

both probes and backfilling agent in one deposition solution. Coadsorption CV result can be seen in fig B.4.b. 

 

    

Fig B.4. (A) Cyclic voltammogram of gold electrode modified with DNA probe/mercaptohexanol mixed monolayer through 

inversed two-step immobilization method. Measurement was done in 20 mM PBS (pH 7) with 150 mM NaCl. Scan rate: 5 V s-1. 

B A 
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(B) Cyclic voltammogram of gold electrode modified with DNA probe/mercaptohexanol mixed monolayer through coadsorption 

immobilization method. Measurement was done in 20 mM PBS (pH 7) with 150 mM NaCl. Scan rate: 5 V s-1. 

It was apparent that electrodes modified with inverse two-steps and coadsorption failed to adsorp enough 

probes to induce observable methylene blue signal. All methods used the same 10 µM probe concentration, a high 

enough concentration for such purpose. Therefore the conventional two-steps method proved to the most 

resource-efficient method. Similarly, for resource-efficiency, no further study was done in the other two 

immobilization techniques. All genosensors fabricated in the project were modified using the conventional two-

steps modification method. 
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3. Control Experiments 

a) Degradation control experiments 

This experiment was done to verify that the signalling was induced by the presence of complementary target 

strands, as well as to evaluate the bioreceptor monolayer robustness. 4 electrodes were equivalently prepared for 

each sensor. Freshly modified electrodes were interrogated with DPV in 20 mM PBS buffer (pH 7) containing 150 

mM NaCl. Then the electrodes were incubated with DNA-free PBS buffer (pH 7) containing 150 mM NaCl and 5 mM 

MgCl2, same buffer for hybridization with complementary strands, for 1 hour. The electrodes were then 

interrogated again.  

Results given in fig B.5 show that incubation with DNA-free buffer introduced negligible change in DPV signal. 

All fabricated sensors responded in similar way (other results not shown). Therefore it can be safely concluded that 

the used buffer did not induce the observed sensor response. It also revealed that interrogation does not degrade 

the sensor monolayer, as repeated measurement output comparable response. 

 

 

b) Specificity control experiment 

Similarly, specificity of the sensors were also evaluated experimentally. 4 electrodes were equivalently 

prepared for each sensor. Freshly modified electrodes were interrogated with DPV in 20 mM PBS buffer (pH 7) 

containing 150 mM NaCl. Then the electrodes were incubated with 10 µL of 2 µM non-cognate DNA solution in PBS 

buffer (pH 7) containing 150 mM NaCl and 5 mM MgCl2, for 30 minutes. SyntheticDNA sensors were incubated with 

hsa-mir-618 target DNA, and vice versa, as they do not have complementary parts. After incubation, the electrodes 

were then interrogated again.  

Results given in fig B.6 show that when challenged with non-cognate DNA in excess, negligible change in DPV 

signal was observed. All fabricated sensors responded in similar way (other results not shown). This verified the 

specificity of the bioreceptor in ~150 times excess of non-specific DNA strands. 
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Fig B.5. Differential pulse voltammogram of (a) syntheticDNA MB-tagged probes (b) hsa-mir-618 MB-tagged probes. Freshly 

modified DPV is overlaid with DPV of electrode after incubation DNA-free 20 mM PBS buffer (pH 7) containing 150 mM NaCl 

and 5 mM MgCl2 for 1 hour. DPV protocol is as presented in Appendix C.4. 

A B 
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Fig B.6. Differential pulse voltammogram of (a) syntheticDNA MB-tagged probes (b) hsa-mir-618 MB-tagged probes. Freshly 

modified DPV is overlaid with DPV of electrode after incubation with 10 µL of (a) 2 µM has-mir-618 target probes (b) 2 µM 

cSyntheticDNA target probes in 20 mM PBS buffer (pH 7) containing 150 mM NaCl and 5 mM MgCl2 for 30 minutes. DPV protocol 

is as presented in Appendix c.4, sequences are as presented in table 7.1. 
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4. Regeneration 

This part contains the results of regeneration of the fabricated sensors. 

a) Regeneration of syntheticDNA sensors 

Fig B.7 compares the DPV of a synthetic DNA sensor, when it was freshly modified, after incubation with high 

concentration of target strands, and after dehybridization. Dehybridization was achieved by rinsing electrode 

surface with room temperature Milly-Q water for 40 seconds. 
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Fig B.7. Differential pulse voltammograms of syntheticDNA sensors. Dehybridized signal is overlaid with blank and in presence 

of the highest concentration complementary target. 

b) Regeneration of miRNA sensors 

Fig B.8 compares the DPV of a hsa-mir-618 miRNA sensor, when it was freshly modified, after incubation with 

high concentration of target strands, and after dehybridization. Dehybridization was achieved by rinsing electrode 

surface with room temperature Milly-Q water for 40 seconds. 
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Fig B.8. Differential pulse voltammograms of microRNA sensors. Dehybridized signal is overlaid with blank and in presence of 

the highest concentration complementary target. 
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5. Kinetics Study 

As mentioned in chapter 7, peak currents from the modulated scan rates were used to study the kinetics of the 

electrode processes. The figures below plot the peak currents against the scan rates or square root of scan rates. 

Linear line was fitted to each plot, with the coefficient of determination (R2, calculated by equation B.1) given for 

each fitting. This coefficient expresses the proportion of the change in the peak current attributable to the change 

in scan rates or square root of scan rates. The higher the value of R2, the more correlated the two changes are. 

 𝑅2 = (
∑(𝑥 − 𝑥̅)(𝑦 − 𝑦̅)

√∑(𝑥 − 𝑥̅)2(𝑦 − 𝑦̅)2
)

2

 ( B.1 ) 

Fig B.9 plots the peak currents of the synthetic DNA probes in absence of the target DNA, against the scan rates 

(A) and against the square root of scan rates (B). Both correlation had noticeably high R2 values (caused by the very 

close relation between scan rate and square root of square rate). Therefore it was imperative to analyse them in 

comparison rather than in their absolute R2 values. For fig B.9, the peak currents were more correlated directly with 

scan rates, rather than its square root values. This suggested that the electrode process was more governed by a 

confined redox species than by diffusion. 

Similarly, same study was done for the hybridized DNA, with results shown in fig B.10. In contrast, the peak 

currents obtained were more correlated to the square root of scan rates than to the scan rates. This suggested that 

the electrode process was governed by diffusion, which means that the redox probe was not confined on the 

electrode surface anymore (assumedly through the hybridization). 

   
Fig B.9. Representative results of hairpin DNA structure (in no presence of target DNA) 

A B 
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It is noteworthy that not all of the probes conform identically at all time. I.e. not all probes are in stem-loop 

structure when unhybridized/in absence of target strands and not all probes are hybridized in presence of target 

strands. This limits the absolute accuracy of the model/study explained above, since in both cases the electrode 

processes are not governed one sovereign process. Therefore the model was used in strictly relative term, mostly 

to observe the change between processes before and after introduction of target strands. Even then, big variance 

was observed between electrodes from time to time. 

  

   
Fig B.10. Representative results of duplex DNA structure (in presence of 10 µM target DNA) 

B A 
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Appendix C  

Protocols 

1. Buffer Preparation Protocol 

PBS -> osmolarity and ion concentrations are isotonic and non-toxic even to cells -> physiologically-relevant 

 

All material is purchased from Sigma-Aldrich, Germany. 

To make: ~200 mL of 20mM phosphate buffered saline (pH 7.0) with 0.15 M NaCl 

1. In one flask, dissolve the following in 100 mL Milli-Q water:  

174.18 g/mole x 0.020 mol/L x 0.100 L = 0.34836 g of K2HPO4 (dibasic salt) 

58.44 g/mole x 0.150 mol/L x 0.100 L = 0.8766 g of NaCl 

2. In another flask, dissolve the following in 100 mL Milli-Q water: 

136.09 g/mol x 0.020 mol/L x 0.100 L = 0.27218 g of KH2PO4 (monobasic salt) 

58.44 g/mol x 0.150 mol/L x 0.100 L = 0.8766 g of NaCl 

3. Adjust pH, by adding the monobasic salt solution little by little to the dibasic salt solution: 

Start with the dibasic salt solution, stirred, and monitored by pH meter. 

Add the monobasic salt solution little by little (around 1 mL) to the solution.  

Continuously monitor the pH, stop adding when it reaches 7.0. 

Transfer buffer to storage bottle. 

 

To make: ~200 mL of 20mM phosphate buffered saline with 150 mM NaCl and 5 mM MgCl2 

1. In one flask, dissolve the following in 100 mL Milli-Q water: 

174.18 g/mol x 0.020 mol/L x 0.100 L = 0.34836 g of K2HPO4 (dibasic salt) 

58.44 g/mol x 0.150 mol/L x 0.100 L = 0.8766 g of NaCl 

95.21 g/mol x 0.005 mol/L x 0.100 L = 0.047605 g of MgCl2 

2. In another flask, dissolve the following in 100 mL Milli-Q water: 

136.09 g/mol x 0.020 mol/L x 0.100 L = 0.27218 g of KH2PO4 (monobasic salt) 

58.44 g/mol x 0.150 mol/L x 0.100 L = 0.8766 g of NaCl 

95.21 g/mol x 0.005 mol/L x 0.100 L = 0.047605 g of MgCl2 

4. Adjust pH, by adding the monobasic salt solution little by little to the dibasic salt solution: 

Start with the dibasic salt solution, stirred, and monitored by pH meter. 

Add the monobasic salt solution little by little (around 1 mL) to the solution.  

Continuously monitor the pH, stop adding when it reaches 7.0. 

Transfer buffer to storage bottle. 
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2. Electrode Modification Protocol 

a) DNA probe hairpin immobilization through conventional two-steps self-assembly 

1. (If necessary) Dilute 0.5 M TCEP (tris-(2-carboxyethyl)-phosphine) to have 0.5 mM TCEP. 

Take 1 µL of 0.5 M TCEP, add 999 µL of buffer (typically, deposition buffer: 20 mM PBS (pH 7) with 150 mM 

NaCl). 

2. To be drop-casted on each electrode: 10 µL of 10 µM DNA solution. 

Calculate the amount of DNA stock solution necessary to achieve the said solution: 

e.g. DNA stock solution concentration = 100 µM 

        C1 V1 = C2 V2 ; 100 µM V1 = 10 µM x 10 µL ;  V1 = 1 µL of DNA stock solution 

3. In a 0.5 mL tube, put the calculated amount of DNA stock solution, add 1 µL of 0.5 mM TCEP. 

Centrifuge and vortex tube, let for 1 hour reaction time in room temperature, protected from light (when 

probe has methylene blue or other light sensitive moiety). 

4. After reaction time, add buffer to bring total solution volume to 10 µL 

i.e. stock solution volume + TCEP volume + buffer volume = 10 µL 

5. Take 10 µL of the solution, drop cast it on the gold electrode (held upside down on a polystyrene block). 

Cover with 1.5 mL tube to avoid evaporation, cover with aluminium foil to protect from light. 

Leave for self-assembly in room temperature. 

b) DNA duplex immobilization through conventional two-steps self-assembly 

1. (If necessary) Dilute 0.5 M TCEP (tris-(2-carboxyethyl)-phosphine) to have 0.5 mM TCEP. 

Take 1 µL of 0.5 M TCEP, add 999 µL of buffer (typically, deposition buffer: 20 mM PBS (pH 7) with 150 mM 

NaCl). 

2. To be drop-casted on each electrode: 10 µL of 10 µM DNA probe with 15 µM (complementary) target DNA. 

Calculate the amount of DNA stock solution necessary to achieve the said solution: 

e.g. Probe DNA stock solution concentration = 100 µM 

        C1 V1 = C2 V2 ; 100 µM V1 = 10 µM x 10 µL ;  V1 = 1 µL of DNA stock solution 

       Complementary DNA stock solution concentration = 100 µM 

        C1 V1 = C2 V2 ; 100 µM V1 = 15 µM x 10 µL ;  V1 = 1.5 µL of DNA stock solution 

3. In a 0.5 mL tube, put the calculated amount of DNA stock solution, add the calculated amount of 

complementary DNA stock solution, and add 1 µL of 0.5 mM TCEP. 

Centrifuge and vortex tube, let for 1 hour reaction time in room temperature, protected from light (when 

probe has methylene blue or other light sensitive moiety). 

4. After reaction time, add buffer to bring total solution volume to 10 µL 

i.e. Probe DNA volume + complementary DNA volume + TCEP volume + buffer volume = 10 µL 

5. Take 10 µL of the solution, drop cast it on the gold electrode (held upside down on a polystyrene block). 

Cover with 1.5 mL tube to avoid evaporation, cover with aluminum to protect from light. 

Leave for self-assembly in room temperature. 
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3. Backfilling Protocol 

1. Wash the modified electrodes by soaking them in 0.5 mL buffer (20 mM PBS (pH 7)/0.150 M NaCl) for 5 

minutes 

2. Prepare 2 mM mercaptohexanol (NC6OH [134.29 g mol-1, ρ = 0.981 g mL-1], Sigma-Aldrich, Germany) in 

buffer in two steps: first to make 10 mM solution, then dilute it to 2 mM solution. 

134.29 g/mol x 0.100 mol/L x 0.001 L = 1.3424 x 103 g 

1.3424 103 g/0.981 g/mL = 1.368 µL 

3. (Do inside the fume hood! Check MSDS!) 

In a 1.5 mL tube, transfer 1.368 µL of mercaptohexanol stock solution. 

Add 998.632 µL of buffer. Shake rigorously for ~1 minute. This makes the 10 mM mercaptohexanol solution. 

4. Transfer 200 µL of the 10 mM mercaptohexanol solution into another 1.5 mL tube. 

Add 800 µL of buffer. Shake rigorously for ~1 minute. This makes the 2 mM mercaptohexanol solution. 

5. Take 10 µL of 2 mM mercaptohexanol solution, drop cast it on the electrode surface (held upside down on a 

polystyrene block). 

Cover and protect from light with a 1.5 mL tube. Leave for self-assembly for 30 minutes in room 

temperature. 

6. After 30 minutes, wash the backfilled electrodes by soaking in 0.5 mL buffer for another 5 minutes. 

7. Transfer electrodes to new tube with 0.5 mL buffer (they can be taken out of the fume hood).  

After being soaked for another 5 minutes, electrodes are ready. 
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4. Calibration Protocol (hairpin beacon with tethered methylene blue) 

 DPV Protocol (reduction) 

Modulation amplitude: 40 mV  

Step potential: -10 mV  

Scan rate: 20 mV s-1 (Interval time: 0.5 s) 

Initial potential: 0 V 

End potential: -0.45 V 

nb. Methylene blue must be reduced first, before it can be oxidized. 

 DPV Protocol (oxidation) 

Modulation amplitude: 40 mV  

Step potential: 10 mV  

Scan rate: 20 mV s-1 (Interval time: 0.5 s) 

Initial potential: -0.45 V 

End potential: 0 V 

 CV Protocol 

Start potential: 0 V 

Upper vertex potential: 0 V 

Lower vertex potential: -0.45 V 

Stop potential: -0.001 V 

Step potential: -0.001 V 

Scan rate: 0.1 V/s (may be varied to obtain kinetics information) 

 

1. In electrochemical cell, deaerate electrolyte (20 mM PBS (pH 7)/0.15 M NaCl) by bubbling it with argon for 

at least 5 minutes. Blanket the solution with argon afterwards (also during measurement). 

2. Put in the modified working electrode. Run measurements of interest. 

3. After measurements, take out the working electrode. Bubble the electrolyte with argon again. 

4. Slightly rinse the working electrode. Cast 10 µL drop of the target strand solution (starting from the lowest 

concentration) on top of the electrode surface (held upside down on a polystyrene block).  

Cover with 1.5 mL tube, protect it from light with aluminum foil. Incubate in room temperature for 30 

minutes. 

5. Gently flick the electrode after incubation to get rid of the incubating drop. Electrode is ready for 

measurement (step 1-3). 

6. Repeat for the steps for other concentrations of interest. 


