WHAT IS THE EFFECT OF CONSTRAINT-INDUCED MOVEMENT THERAPY AND HAND-ARM BIMANUAL INTENSIVE THERAPY IN THE FUNCTION OF THE UPPER LIMB IN HEMIPLEGIC CEREBRAL PALSY?

A COMPARISON

LITERATURE REVIEW

Student: Sarah Toner

Student number: 368297

Supervisor: Anne Griet Brader

HANZEHOGESCHOOL GRONINGEN | INTERNATIONAL PHYSIOTHERAPY PROGRAM

Table of Contents

Introduction	1
Method	4
Search Strategy	4
Search Terms	4
Selection of studies	5
Quality Assessment	6
Data Extraction	6
Data Analysis	6
Results	7
Population Characteristics	8
Interventions Characteristics	8
Outcome Characteristics	9
Methodological Quality of Included Studies	9
Data Comparison	. 11
Outcome Results Assisting hand assessment (AHA)	
Melbourne assessment of unilateral upper limb function (MUUL)	. 19
Jebson-taylor test of hand function (JTTHF)	. 19
Quality of upper extremity skills test (QUEST)	. 19
Reach – Grasp – Eat	. 20
Walking with tray for upper extremity movement control	. 22
Discussion	. 23
Summary of Results	. 23
Points of Discussion	. 24
Limitations	. 26
Recommendations	. 27
Conclusion	. 28
Bibliography	. 29
Appendix	. 33
Appendix 1: Search String	. 33
Appendix 2: Method Quality Assessment: PEDro scale	. 36
Appendix 3: CONSORT 2010 Checklist	. 37
Appendix 4: Data Extraction	. 41

Preface

This literature review is a thesis submission for the bachelor of physiotherapy graduation assignment at Hanze University of Applied Science, Groningen. The review is a comparative of two interventions; constraint-induced movement therapy and hand-arm bimanual intensive therapy to improve upper limb function in hemiplegic Cerebral Palsy. The basis of this research stemmed from my interest in central neurological pathologies during my bachelor study. I would like to thank the teachers at Hanze University of Applied Sciences for their knowledge and guidance over the years. I would also like to give a special thanks to my supervisor, Anne Griet Brader, for her support, advice and feedback during the completion of this research.

Abstract

Aim: Cerebral palsy is the most common motor disability in early childhood with 29% of patients suffering from hemiplegic Cerebral Palsy. Constraint-induced movement therapy is a proven unimanual intervention to improve upper limb function focusing on the affected side while hand-arm bimanual intensive therapy was created after constraint-induced movement therapy as a bimanual intervention. The purpose of this literature review is to examine the efficacy of constraint induced movement therapy and hand-arm bimanual intensive therapy to improve upper limb function in children with unilateral cerebral palsy and to compare to find the most suitable treatment.

Methods: For this literature review, an extensive search was performed in five electronic databases (Cochrane Library, PubMed, PEDro, Embase, Cinahl and Google Scholar) for relevant literature between February and March 2021. The review was based on the methodology for conducting a systematic review; literature search, inclusion criteria, methodological quality assessment, data extraction and data analysis.

Results: Five Randomised Control Trials were reviewed with a total population of 83 participants. Results state that constraint-induced movement therapy and hand-arm bimanual intensive therapy are both interventions sufficient in improving upper limb function in unilateral Cerebral Palsy. Statistically significant evidence was found that constraint-induced movement therapy shows more improvements in unimanual function of the paretic upper limb in the Quality of Upper Extremity Skills Test and an experimental Reach-Eat-Grasp set up. In a bimanual task experimental set up, hand-arm bimanual therapy displayed significantly more improvements in bimanual function of the upper extremity.

Conclusion: Results of this study show that both interventions improve function of the upper limb with constraint-induced movement therapy having better improvements in unimanual function and hand-arm bimanual intensive therapy delivering more improvements in bimanual function. The concept of specificity of training applies. A hybrid intervention combining the two interventions should be considered. Further research is recommended due to limitations in this study.

Key words: Constraint-induced movement therapy; hand-arm bimanual intensive therapy; bimanual; unimanual; upper limb function; hemiplegic cerebral palsy

Introduction

Unilateral Cerebral Palsy is a motor disability in children which can have major negative effects on the upper extremity function on one side of the body. The purpose of this study is to analyse the efficacy of two therapies aimed at improving upper limb function in hemiplegic cerebral palsy; constraint-induced movement therapy and hand-arm bimanual intensive therapy.

Cerebral palsy (CP) is a general term for non-progressive posture and movement disorders that occurs during infancy or early childhood up to the age of two. Cerebral means association to the brain, while palsy means weakness or difficulty using the muscles. This disorder is caused by abnormal development of the brain or damage to the developing brain which affects one's ability to control muscles (Centre for Disease Control and Prevention, 2020). Reasons for occurrence include; premature birth, maternal infection, hypoxia associated with birth trauma, multiple births, gene mutation or traumatic head injury (Reddappa, 2012).

CP is the most common motor disability found in early childhood. World population-based studies report prevalence ranging from 1.5 to over four per 1,000 live births or children within the specific age range. Incidence and prevalence overall is approximately two per 1,000 live births (Stavsky et al., 2017). A study found that, while the total rate of CP is relatively stable, due to increasing improvements in obstetric and neonatal care, the contribution of premature births and the complications that come with it are steadily increasing the prevalence of this disorder (Stavsky *et al.*, 2017). Other associated disabilities are frequently present alongside the motor deficits. These include abnormalities in vision, speech, hearing, seizures, intellectual and learning disabilities. The range of severity of CP can be wide from the ability to talk, carry out self-care independently, walking, running and other skills to total dependency and immobility (Reddappa, 2012).

CP is classified according to the main type of movement disorder that is present and dependant on the area of the brain that is affected. Spastic or hypertonic CP is the most common type of CP. This causes an increase in muscle tone that is velocity dependant causing stiff and sometimes painful limbs. Symptoms include; involuntary movements, continuous muscle spasms, muscle and joint contractures, abnormal gait, upper limb flexion pattern, limited stretching abilities, poor co-ordination and muscle movement control. This makes activities of daily living (ADL's) difficult for these patients (Jansheski, 2020).

Among those who have CP, 29% have hemiplegia which affects one side of their body with the upper limb typically being more affected than the lower. This may cause patients to develop a "learned non-use" in the affected side since it is more efficient to use the nonaffected side. It can lead to learning alternative strategies to manage through ADL's and can occur even when there is only mild impairment (Chiu & Ada, 2016).

Constraint-Induced Movement Therapy

The aim of Constraint-induced movement therapy (CIMT) is to prevent and overcome learned non-use of the affected side and to encourage intensive, targeted repetitive practice of unilateral and bimanual activities. CIMT involves restraining of the unaffected upper limb so the affected limb can carry out activities. This enables the patient to find solutions to the movement problem and find alternative strategies involving the affected side.

In the original CIMT protocol, there are three components; 1) intensive graded practice of the affected arm aimed at improving task specific use for up to six hours a day for two weeks; 2) constraining of 'forced use' of the non-affected upper limb with a glove to promote the use of the paretic arm for 90% of waking hours; and 3) applying behavioural methods that enhance adherence to transfer the gains and skills obtained in the clinical settings to the patients everyday environment also called a 'transfer package' (Kwakkel *et al.*, 2015).

While CIMT has shown good effectiveness in the available research, a review by Chiu & Ada found that while CIMT is more effective than no intervention, it is no more effective when compared to a 'usual intervention' (not specified) that is dose equivalent. This suggests that the effect may be due to nothing more than large amounts of intense practice involved with the therapy rather than the restraining of the unaffected upper limb in its self (Chiu & Ada, 2016)

Hand-Arm Bimanual Intense Therapy

Hand-Arm Bimanual Intense Therapy (HABIT) is a therapy that was developed after CIMT that takes one of the key components of CIMT, the intense practice, but focuses on improving coordination in both hands using structured task practice in bimanual and functional activities. It uses principles of motor learning and neuroplasticity in the therapy (Gordon *et al.*, 2007)

This was developed by Columbia University after researching CIMT. They found promising results for the CIMT approach in paediatric settings but discovered several conceptual problems and limitations; 1) restraining of the child's non-affected limb could potentially be invasive when elicited practice is responsible for improving motor function rather than restraint, 2) CIMT was created for adults with hemiplegia from stroke or traumatic brain injuries to overcome learned non-use whereas some children with CP have never effectively learned how to use their affected limb, 3) CIMT focuses on unimanual treatment when functional independence in everyday life requires coordination and cooperation of both hands. While there are studies suggesting that CIMT can transfer to improvements in

bimanual therapy, Gordon *et al*, believed this might be better accomplished by using bimanual skills directly (Gordon *et al*., 2007)

Based on the information above, while there are a lot of similarities to these two therapies in regard to specific task orientated practice and the intense amount of therapy involved, the main approach of the two are quite different. A meta-analysis by Alahmari *et al*, reviewed research between 2000-2018 suggested there is "trivial benefit" in using HABIT over CIMT but the results were non-conclusive (Alahmari *et al*., 2020). Another meta-analysis by Tervahauta *et al*., collected data in 2016 and also found that, with the available research, it was not possible to conclude which one is more effective (Tervahauta *et al*., 2017). Since these reviews were published, there has been more research carried out on this topic.

The objective of this literature review is to do an updated review from 2015 to 2021 on the effects of CIMT and HABIT in hemiplegic CP to determine the most suitable therapy to improve upper limb function. The hypothesis is that CIMT and HABIT will both have improvements in the hemiplegic side but CIMT will show greater improvement. It is also hypothesized that HABIT will have greater improvements in bimanual tasks when compared to CIMT. The hypotheses are based on the theory of training specificity.

Method

Search Strategy

This literature review was based on the methodology in conducting a systematic review: literature search, inclusion criteria, methodological quality assessment, data extraction and data analysis (Van Tulder *et al.*, 2003). It was conducted by one researcher in six electronic databases between the 22nd of February and the 6th of March 2021. Databases included were Cochrane Library, PubMed, PEDro, Embase, Cinahl and Google Scholar. PEDro was chosen as it is a physiotherapy specific database with the most relevant randomised control trials. Cochrane was used as it is internationally recognised as the highest standard in evidence-based health care. Cinahl was selected as it is a comprehensive resource of nursing and allied health including physiotherapy for evidence-based research. PubMed and Embase were selected as they are comprehensive medical databases that evaluate physical therapy interventions. Google scholar was used to find any remaining articles that were not found in the other databases.

Search Terms

The search terms and filters used in each databases were created to find the appropriate articles and answer the research question at hand.

Boolean operator "AND" were used to search in Cochrane Library, PubMed, PEDro and Cinahl. Medical Subject Headings (MeSH) terms are applied in Cochrane Library, PubMed and Embase. The final search terms and filters per database can be found in *table 1*. Search strings that led to these final search terms can be viewed in *appendix 1*.

Database	Filters	Search Terms	
Cochrane	2015-2021	"Cerebral palsy AND constraint induced	
Library		movement therapy AND hand arm bimanual	
		intensive therapy"	
PubMed	2015-2021	"Cerebral palsy AND constraint induced	
	English	movement therapy AND hand arm bimanual	
		intensive therapy"	
PEDro	2015-2021	"Cerebral palsy AND constraint induced	
		movement therapy AND hand arm bimanual	
		intensive therapy"	

าร

Embase	2015-2021	"Cerebral palsy AND constraint induced movement therapy AND hand arm bimanual
		intensive therapy"
Cinahl	2015-2021	"Cerebral palsy AND constraint induced
	Apply Related Words	movement therapy AND hand arm bimanual
	Search within full text	intensive therapy"
	Apply equivalent	
	subjects	
	English	
Google	2015-2021	"Cerebral palsy AND constraint induced
Scholar	All word	movement therapy AND hand arm bimanual
		intensive therapy"

Selection of studies

The studies obtained from the search strategy were screened through their titles and abstracts in order to find the relevant literature for further analysis. The inclusion criteria consisted of clinical trials, controlled clinical trials and randomised control trials, with hemiplegic/unilateral cerebral palsy, a comparison between unimanual and bimanual therapy and outcome measurements for upper limb function. Exclusion criteria included incomplete research, languages other than English and studies published before 2015. Studies selected were based on their relevance to the study and the inclusion/exclusion criteria (see *table 2*). Articles that match the inclusion/exclusion criteria will then be reviewed by the researcher and an independent reviewer (KA). Any disagreements will be discussed and amended by a third party (PD).

Table 2. Inc	lusion/Exclusion	Criteria
--------------	------------------	----------

Inclusion Criteria	Population	Unilateral cerebral palsy,
		hemiplegic cerebral palsy
	Research design	Clinical trials, randomised
		control trials, controlled
		clinical trials
	Intervention	Hand-arm bimanual
		intensive therapy, constraint
		induced movement therapy
	Outcome measurements	Upper limb function
		measurements

Exclusion Criteria	Any language other than
	English, published before
	2015, incomplete research

Quality Assessment

The quality of selected literature was analysed according to the PEDro scale. This is a scoring system with 11 criteria to evaluate internal and external validity and to ensure there is sufficient statistical information in order for the results to be interpreted. A point is awarded for the completion of each criteria and a piece of literature can be awarded a total score of ten points (criteria 1 is excluded from the total score). Interpretation of the scoring system can be found in *table 3* (Moseley et al., 2011). The inter-rater reliability of the PEDro scale is demonstrated as "fair" to "excellent" for RCT's of physiotherapy intervention (Intraclass correlation coefficient (ICC) 0.53-0.91). The convergent validity supported by Van Tulder 2003 scale is 0.71 for trials of physiotherapy intervention (Cashin & McAuley, 2020). Application of the PEDro scale for the chosen literature can be found in *appendix 2*. For reporting quality, each clinical trial was assessed by the Consolidated Standards Of Reporting Trials (CONSORT) 2010 statement checklist. (Schulz *et al.*, 2010). Application of the CONSORT 2010 statement can be found in *appendix 3*.

Table 3.	PEDro Scale	Interpretation
----------	-------------	----------------

PEDro Score	Interpretation
0-3	"Poor quality"
4-5	"Fair quality"
6-10	"High quality"

Data Extraction

Data was extracted and analysed by one reviewer. Extracted data included study design, author, publication year, title, population, inclusion criteria, details of the intervention for the CIMT group and HABIT group, outcome measurements, results, strengths and weaknesses of the studies. All results extracted can be found in a data comparison table in *table 5* with a summary of the population and intervention characteristic while a more extensive summary of each article can be found in *appendix 4*.

Data Analysis

There was no manipulation of the data extracted from the clinical trials. Results were considered statistically significant when the p-value is below 0.05.

Results

The original search with the final search terms, before filters found 492 potential articles. After filters were applied, 280 potential studies were identified from the search strategy. There were 35 articles that were eliminated due to duplicated articles, a further 234 articles were eliminated through screening abstracts for full text available and relevance. Through the inclusion/exclusion criteria, another six articles were excluded leaving a total of five studies included in the present literature review. It should be mentioned that three of the studies included in this review, which were found through the search strategy, were also present in the meta-analysis by Tervahau *et al.* The flow diagram describing the search results can be found in *figure 1.*

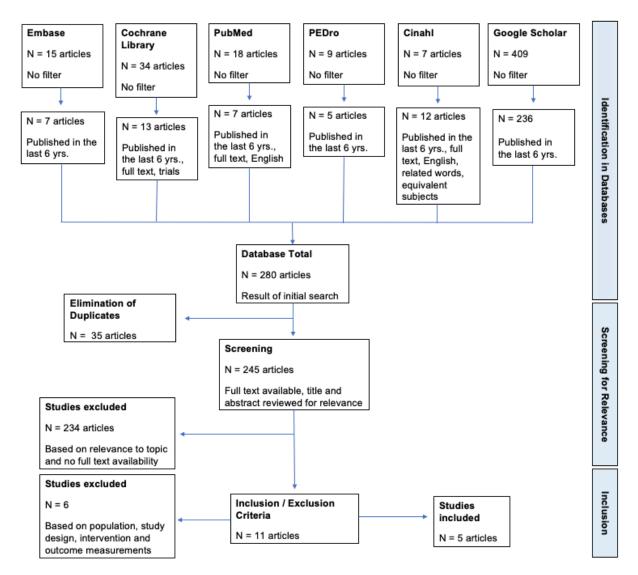


Figure 1 – Flow diagram of search method

Population Characteristics

The five articles included in the presented study are all randomised control trials. Two studies were published in 2015 (Gelkop *et al.*, 2015; Sakzewski *et al.*, 2015), one study in 2016 (Zafer *et al.*, 2016) and two were published in 2020 (Hung, Shirzad, *et al.*, 2020; Hung, Spingarn, *et al.*, 2020). There was a total of 83 participants between the five studies. All studies consisted of a small population with the largest containing 20 participants (Hung, Spingarn, *et al.*, 2020) and the smallest consisting of 12 participants (Gelkop *et al.*, 2015). They consisted of 47 males and 36 females between the ages of 1.5 to 16 years. There was no statistically significance between participants characteristics in four out of the five studies (Gelkop *et al.*, 2015; Hung, Shirzad, *et al.*, 2020; Hung, Spingarn, *et al.*, 2020; Sakzewski *et al.*, 2015). One study did not specify the population characteristics of the two groups and hence it is unclear the difference between the interventions (Zafer *et al.*, 2016). See *table 2* for details.

The eligibility criteria widely varied across the studies. These can be found for each study in the data extraction table in *appendix 4*.

Interventions Characteristics

All studies included both CIMT and HABIT interventions (Gelkop et al., 2015; Hung, Shirzad, et al., 2020; Hung, Spingarn, et al., 2020; Sakzewski et al., 2015; Zafer et al., 2016). In each study, the CIMT interventions involved a restraint of the less affected upper limb while carrying out unimanual tasks and the HABIT interventions had no restraint and carried out bimanual tasks. The total dosage hours varied across the studies with the largest containing 96 hours which consisted of two hours a day for eight weeks (Gelkop et al., 2015). Two other studies had a large dosage that consisted of 90 hours which was divided into six hours a day over 15 consecutive days (Hung, Shirzad, et al., 2020; Hung, Spingarn, et al., 2020). The other two studies had a relatively small total dosage size of 30 hours, that was divided into six hours a day over five days (Sakzewski et al., 2015) and 24 hours which was delivered for two hours a day over two weeks (Zafer et al., 2016). The type of restraints used in the CIMT intervention was also different across the studies. These included; a glove (Gelkop et al., 2015; Sakzewski et al., 2015), a cotton sling with the opening sewn shut (Hung, Shirzad, et al., 2020; Hung, Spingarn, et al., 2020) and a mitt that constrained the hand and sling strapped to the trunk (Zafer et al., 2016). While four of the studies interventions were carried out by occupational therapists, physiotherapists or therapist's assistance in a special education setting or training camp (Gelkop et al., 2015; Hung, Shirzad, et al., 2020; Hung, Spingarn, et al., 2020; Sakzewski et al., 2015), one studies

intervention was carried out by the parents in a home setting (Zafer *et al.*, 2016). All interventions involved whole or part tasks that involved ADL's and gross and fine motor play activities. A brief summary of interventions can be found in *table 5.* A more extensive description of the intervention of each study can be found in the *data extraction table* in *appendix 4.*

Outcome Characteristics

The assessments used to quantify upper limb function varied across the included studies. Two studies used the Quality of Upper Extremity Skills Test (QUEST) (Gelkop *et al.*, 2015; Zafer *et al.*, 2016). The Assisted Hand Assessment (AHA) was used in two studies (Gelkop *et al.*, 2015; Sakzewski *et al.*, 2015). One study used the Melbourne Assessment of Unilateral Upper Limb Function (MUUL) and the Jebson-Taylor Test of Hand function (JTTHF) (Sakzewski *et al.*, 2015). Two studies used experimental set ups. One study used a single handed reach-grasp-eat movements to assess unimanual temporal and joint movement control, and motor planning using kinematic analysis (Hung, Spingarn, *et al.*, 2020). The other experimental set up was a bimanual task which involved carrying a tray with two hands to assess upper limb movement control also using kinematic analysis (Hung, Shirzad, *et al.*, 2020). Description of the results for each outcome can be found under *Outcome results*.

Methodological Quality of Included Studies

The PEDro scale rated four out of the five studies to be of "good quality" (Gelkop *et al.*, 2015; Hung, Shirzad, *et al.*, 2020; Hung, Spingarn, *et al.*, 2020; Sakzewski *et al.*, 2015) while one study was found to have "fair quality" (Zafer *et al.*, 2016). See *table 4* for the results of the PEDro scale and *appendix 2* for the application of the PEDro scale.

Study	PEDro Score	Interpretation
Gelkop <i>et al</i> . 2015	8/10	"Good quality"
Hung <i>et al</i> . Jan 2020	6/10	"Good quality"
Hung <i>et al</i> . June 2020	8/10	"Good quality"
Zafer <i>et al</i> . 2015	5/10	"Fair quality"
Sakzewski <i>et al</i> . 2015	7/10	"Good quality"

Table 4 – Results of the PEDro scale on the included studies

The quality of the reporting in each article was assessed by the CONSORT 2010 checklist which consists of 25-items. Two studies had 22 of the 25 items (Gelkop *et al.*, 2015; Hung,

Spingarn, *et al.*, 2020), while another two had 20 of the 25 items (Hung, Shirzad, *et al.*, 2020; Sakzewski *et al.*, 2015) and one study had 14 of the 25 items (Zafer *et al.*, 2016).

The data comparison table in *table 5*, includes the study, study design, a summary of the population, intervention characteristics and the full results extracted. The remaining data extracted from each article can be found in *appendix 4*.

Data Comparison

Table 5. Data comparison table

Study	Participants	Intervention	Outcome results		
		Characteristic			
			СІМТ	HABIT	Interaction
Gelkop	N = 12	Both groups received	AHA (95% CI)	AHA (95% CI)	AHA
et al.	(CIMT 6, HABIT 6)	2 hours of CIMT or	Post-baseline	Post-baseline	Test session effect: p value (η2)
(2015)	Age:	HABIT per day (1hr	• 47.3 (32.4, 62.3)	• 43.0 (28.0, 58.0)	• <i>p</i> < 0.001 (0.68)
	1.5 – 7 yrs.	individual, 1hr group),	Immediate post-intervention	Immediate post-intervention	Interaction (g \times ts: p value (η 2))
RCT	CIMT: 4.25 ± 1.58	6 days per week for 8	• 59.0 (46.7, 71.3)	• 52.5 (40.2, 64.8)	• <i>p</i> = 0.48 (0.02)
	HABIT: 4.33 ± 1.86)	weeks. Total dose: 96	8 week follow up	8 week follow up (95% Cl)	
High	Gender:	hours	• 57.2 (45.7, 68.7)	• 52.2 (40.7, 63.7)	
quality	2 M, 10 F (CIMT +		QUEST total (95% CI)	QUEST total (95% CI)	QUEST total
	BIT 1 M, 5 F)	CIMT: Glove worn	Post-baseline	Post-baseline	Test session effect: p value (η2)
	Hemiplegic side:	only 2 hours a day	• 55.0 (35.4, 74.6)	• 56.8 (37.2, 76.4)	• <i>p</i> < 0.001 (0.78)
	6 L : 6 R	during therapy	Immediate post-intervention	Immediate post-intervention	Interaction ($g \times ts$: p value (η 2))
	CIMT: 3 L : 3 R		• 74.0 (56.9, 91.2)	• 70.4 (53.3, 87.6	• p = 0.671 (.01)
	HABIT: 3 L : 3 R	Whole and part task	8 week follow up	8 week follow up	
	MACS:	practice	• 73.0 (57.9, 88.1)	• 70.0 (54.9, 85.1)	
	1 - 111		QUEST PE (95% CI)	QUEST PE (95% CI)	QUEST PE
	CIMT: I (1), II (2), III	Usual / customary	Post-baseline	Post-baseline	Test session effect: p value (ŋ2)
	(2)	care continued: 2-3	 44.4 (17.5, 71.3) 	• 49.7 (22.8, 76.6)	• <i>p</i> < 0.005 (0.41)
	HABIT: I (I), II (3), III	sessions of OT + 2-3	Immediate post-intervention	Immediate post-intervention	Interaction ($g \times ts$: p value (η 2))
	(1)	sessions of PT each	 60.7 (40.1, 81.2) 	• 57.2 (36.7, 77.7)	• $p = 0.564 (0.05)$
	GMFCS	lasting 45-60 mins	8 week follow up	8 week follow up	
	N/A	per week	• 58.3 (35.0, 81.7)	• 58.8 (35.4, 82.2)	
			QUEST DM (95% CI)	QUEST DM (95% CI)	QUEST DM
			Post-baseline	Post-baseline	Test session effect: p value (ŋ2)

		Special education	• 58.4 (46.2, 70.6)	• 65.6 (53.4, 77.8)	• <i>p</i> < 0.001 (0.57)
		setting	Immediate post-intervention	Immediate post-intervention	Interaction (g \times ts: p value (η 2))
			• 79.4 (65.9, 92.9)	• 70.0 (56.5, 83.5)	• <i>p</i> < 0.05 (0.16)
			8 week follow up	8 week follow up	
			• 73.1 (62.8, 83.5)	• 73.8 (63.5, 84.1)	
			QUEST WB (95% CI)	QUEST WB (95% Cl)	QUEST WB
			Post-baseline	Post-baseline	Test session effect: p value (η2)
			• 60.7 (27.2, 94.2)	• 55.6 (22.1, 89.1)	• <i>p</i> < 0.001 (0.57)
			Immediate post-intervention	Immediate post-intervention	Interaction (g × ts: p value (η 2))
			 86.8 (56.8, 116.9) 	• 84.4 (54.4, 114.5)	• <i>p</i> = 0.883 (0.01)
			8 week follow up	8 week follow up	
			• 86.4 (62.1, 110.7)	• 73.2 (49.0, 97.5)	
			<u>QUEST G</u> (95% CI)	<u>QUEST G</u> (95% Cl)	QUEST G
			Post-baseline	Post-baseline	Test session effect: p value (η 2)
			• 54.8 (38.3, 71.3)	• 56.6 (40.1, 73.5)	• <i>p</i> < 0.001 (0.68)
			Immediate post-intervention	Immediate post-intervention	Interaction (g \times ts: p value (η 2))
			• 68.9 (54.3, 83.5)	• 68.9 (54.3, 83.5)	• <i>p</i> = 0.566 (0.03)
			8 week follow up	8 week follow up	
			• 73.3 (57.7, 89.0)	• 71.9 (56.2, 87.5)	
			СІМТ	HABIT	Interaction
Hung,	N = 20	Both groups received	Temporal Measures	Temporal Measures	Temporal Measures
Spingar	(CIMT 10, HABIT 10)	6 hours per day of	Reaching movement time mean	Reaching movement time mean	Reaching movement time mean
n, <i>et al</i> .	Age:	CIMT or HABIT for 15	SD(s) + CV	SD(s) + CV	SD(s) + CV
(2020)	6 – 12 yrs.	consecutive	Pre-test conditions	Pre-test conditions	N/A
	CIMT: 7.6 ± 2.2	weekdays (adjusted	 1.26 (0.55)* + 0.35 (0.29)* 	 1.21 (0.38)* + 0.28 (0.15)* 	
RCT	HABIT: 7.7 ± 1.7	for holidays). Total	Post-test conditions	Post-test conditions	
	Gender:	dose: 90 hours	 1.01 (0.42)* + 0.27 (0.23)* 	 1.01 (0.27)* + 0.22 (0.15)* 	
	11 M : 9 F				

High	CIMT: 6 M : 4 F	CIMT: Cotton sling	Grasping movement time mean	Grasping movement time mean	Grasping movement time mean
quality	HABIT: 5 M : 5 F	with hands opening	SD(s) + CV	SD(s) + CV	SD(s) + CV
	Hemiplegic side:	sewn shut during	Pre-test conditions	Pre-test conditions	N/A
	11 L, 9 R	therapy	• 0.68 (0.81)* + 0.78 (0.63)	• 0.64 (0.43)* + 0.88 (0.47)	
	CIMT: 4 L : 6 R		Post-test conditions	Post-test conditions	
	HABIT: 7 L : 3 R	Whole and part task	• 0.44 (0.55)* + 1.05 (0.76)	• 0.43 (0.39)* + 1.12 (0.71)	
	Race	practice	Eating movement time mean SD(s)	Eating movement time mean SD(s)	Eating movement time mean
	16 Caucasian, 2		+ CV	+ CV	SD(s) + CV
	Hispanic, 2 African	Training camp	Pre-test conditions	Pre-test conditions	N/A
	American		 1.41 (0.44)* + 0.24 (0.10) 	 1.35 (0.66)* + 0.25 (0.13) 	
	CIMT: 8 Caucasian :		Post-test conditions	Post-test conditions	
	1 Hispanic : 1 African		 1.21 (0.51)* + 0.30 (0.20) 	 1.22 (0.35)* + 0.27 (0.18) 	
	American				
	HABIT: 8 Caucasian :		Movement control measures	Movement control measures	Movement control measures
	1 Hispanic : 1 African		Reaching movement mean SD + CV	Reaching movement mean SD + CV	Reaching movement mean SD +
	American		Pre-test conditions	Pre-test conditions	cv
	MACS:		Hand curvature	Hand curvature	Hand curvature
	I — II		 1.54 (0.17)* + 0.43(0.40)* 	 1.54 (0.21) + 0.49(0.36)* 	• Interaction $g \times ts = p <$
	CIMT: I (2), II (8),		Trunk involvement (cm)	Trunk involvement (cm)	0.05
	HABIT: II (2), II (8)		 13.26 (8.03)* + 0.45(0.26)* 	 11.42 (8.74)* + 0.36(0.22)* 	
	GMFCS		Upper arm excursion (°)	Upper arm excursion (°)	
	N/A		• 25.85 (5.33) + 0.42(0.28)	• 30.44 (17.03) + 0.44(0.41)	
	JTTHF:		Elbow excursion (°)	Elbow excursion (°)	
	CIMT: 221 ± 108		 38.97 (11.04)* + 0.40(0.22) 	 43.86 (16.92)* + 0.43(0.24) 	
	HABIT: 226 ± 100		Wrist excursion (°)	Wrist excursion (°)	
			 33.50 (10.87)* + 0.62(0.57) 	 26.84 (6.61)* + 0.52(0.34) 	
			Post-test conditions	Post-test conditions	

 1.25 (0.09)* + 0.13(0.07)* 	 1.52 (0.18) + 0.20(0.15)* 	
Trunk involvement (cm)	Trunk involvement (cm)	
• 8.83 (6.47)* + 0.30(0.24)*	• 8.46 (6.60)* + 0.27(0.19)*	
Upper arm excursion (°)	Upper arm excursion (°)	
• 26.63 (6.80) + 0.61(0.38)	• 28.21 (10.03) + 0.57(0.30)	
Elbow excursion (°)	Elbow excursion (°)	
• 51.92 (16.04)* + 0.30(0.20)	 49.21 (14.34)* + 0.50(0.29) 	
Wrist excursion (°)	Wrist excursion (°)	
 39.07 (10.50)* + 0.66(0.38) 	 39.61 (11.54)* + 0.58(0.24) 	
Grasping movement mean SD + CV	Grasping movement mean SD + CV	Grasping movement mean SD +
Pre-test conditions	Pre-test conditions	CV
Hand vertical position (cm)	Hand vertical position (cm)	Hand vertical position (cm)
 11.49 (3.12)* + 0.45(0.24) 	 12.12 (2.26) + 0.45(0.23) 	 Interaction g × ts = p <
Post-test conditions	Post-test conditions	0.05
Hand vertical position (cm)	Hand vertical position (cm)	
 8.05 (3.32)* + 0.37(0.13) 	 11.61 (2.85) + 0.51(0.32) 	
Eating movement mean SD + CV	Eating movement mean SD + CV	Eating movement mean SD +
Pre-test conditions	Pre-test conditions	CV
Upper arm excursion (°)	Upper arm excursion (°)	
 15.53 (8.72) + 0.48(0.30) 	 15.19 (8.13) + 0.59(0.29) 	
Elbow excursion (°)	Elbow excursion (°)	
 51.27 (15.37)* + 0.42(0.29) 	• 50.32 (17.93)* + 0.36(0.27)	
Wrist excursion (°)	Wrist excursion (°)	
• 45.60 (23.66) + 0.43(0.29)	 45.74(20.88) + 0.52(0.38) 	
Head rotation excursion (°)	Head rotation excursion (°)	Head rotation excursion (°)
 19.56 (9.51)* + 0.49(0.29) 	 19.19(7.24) + 0.47(0.20) 	• Interaction $g \times ts = p <$
Head flexion excursion (°)	Head flexion excursion (°)	0.05
 11.78 (3.54) + 0.48(0.26) 	 13.73(6.45) + 0.51(0.25) 	
11.10 (0.04) • 0.40(0.20)		

			Post-test condition	Post-test condition	
			Upper arm excursion (°)	Upper arm excursion (°)	
			 14.90 (7.90) + 0.59(0.25) 	 17.39 (11.88) + 0.44(0.23) 	
			Elbow excursion (°)	Elbow excursion (°)	
			• 59.66 (16.65)* + 0.59(0.51)	 62.62 (18.57)* + 0.59(0.40) 	
			Wrist excursion (°)	Wrist excursion (°)	
			 49.24 (29.56) + 0.59(0.40) 	• 51.54 (28.28) + 0.44(0.23)	
			Head rotation excursion (°)	Head rotation excursion (°)	
			 11.34 (3.77)* + 0.45(0.22) 	 18.02(7.69) + 0.54(0.37) 	
			Head flexion excursion (°)	Head flexion excursion (°)	
			 9.60(3.50) + 0.41(0.19) 	 14.20(6.39) + 0.59(0.40) 	
			СІМТ	HABIT	Interaction
Hung,	N = 16	Both groups received	Upper Extremity Movement Control	Upper Extremity Movement Control	Upper Extremity Movement
Shirzad,	(CIMT 8, HABIT 8)	6 hours per day of	task	task	Control task
et al.		CIMT or HABIT for 15	Vertical hand difference [cm] mean	Vertical hand difference [cm] mean	Vertical hand difference [cm]
(2020)	Age:	consecutive	(SD)	(SD)	mean (SD)
	6 – 12 yrs.	weekdays. Total	Pre-training condition	Pre-training condition	N/A
RCT	CIMT: 8.9 ± 2.2	dose: 90 hours	• 4.94 (1.26)	• 5.06 (0.63)	
	HABIT: 8.3 ± 1.7		Post-training condition	Post-training condition	
High	Gender:	CIMT: Cotton sling	 5.07 (0.93)* 	 3.61 (0.73)* 	
quality	10 M : 6 F	during therapy	Lateral hand excursion [cm] mean	Lateral hand excursion [cm] mean	Lateral hand excursion [cm]
	CIMT: 4 M : 4 F		(SD)	(SD)	mean (SD)
	HABIT: 6 M : 2 F	Training camp	Pre-training condition	Pre-training condition	N/A
	Hemiplegic side:		 5.20 (0.77)* 	 5.24 (1.01)* 	
	9 L : 7 R		Post-training condition	Post-training condition	
	CIMT: 4 L : 4 R		• 4.61 (0.22)*	 4.32 (0.58)* 	
	HABIT: 5 L : 3 R		Vertical hand excursion [cm] mean	Vertical hand excursion [cm] mean	Vertical hand excursion [cm]
	MACS:		(SD)	(SD)	mean (SD)

1 – 11	Pre-training condition	Pre-training condition	N/A
CIMT: I (2), II (6)	• 6.20 (1.24)	• 6.08 (1.14)	
HABIT: I (2), II (6)	Post-training condition	Post-training condition	
GMFCS	• 5.84 (1.13)	• 5.23(1.09)	
1 – 11	Non-paretic limbs elbow excursion	Non-paretic limbs elbow excursion	Non-paretic limbs elbow
CIMT: I (3), II (5)	[cm] mean (SD)	[cm] mean (SD)	excursion [cm] mean (SD)
HABIT: I (2), II (6)	Pre-training condition	Pre-training condition	N/A
	• 16.11 (5.05)	• 15.80 (4.71)	
	Post-training condition	Post-training condition	
	• 13.48 (3.51)	• 13.77 (4.66)	
	Paretic limbs elbow excursion [cm]	Paretic limbs elbow excursion [cm]	Paretic limbs elbow excursion
	mean (SD)	mean (SD)	[cm] mean (SD)
	Pre-training condition	Pre-training condition	N/A
	• 12.53 (4.80)	• 12.58 (3.26)	
	Post-training condition	Post-training condition	
	• 12.87 (3.75)	• 12.28 (2.97)	
	Non-paretic limbs shoulder	Non-paretic limbs shoulder	Non-paretic limbs shoulder
	excursion [^o] mean (SD)	excursion [″] mean (SD)	excursion [º] mean (SD)
	Pre-training condition	Pre-training condition	N/A
	• 15.66 (4.02)	• 15.31 (5.01)	
	Post-training condition	Post-training condition	
	• 15.49 (2.20)	• 14.26 (3.10)	
	Paretic limbs shoulder excursion	Paretic limbs shoulder excursion	Paretic limbs shoulder
	[″] mean (SD)	[″] mean (SD)	excursion [^o] mean (SD)
	Pre-training condition	Pre-training condition	N/A
	• 14.99 (3.46)	• 15.48 (3.96)	
	Post-training condition	Post-training condition	
	• 15.95 (4.76)	• 15.43 (3.23)	

			СІМТ	HABIT	Interaction
Zafer et	N = 18	Both groups received	QUEST total (Mean ± SD)	<u>QUEST total (</u> Mean ± SD)	QUEST total
<i>al.</i> (2016)	(CIMT 9, BMT 9)	2 hour per day of	Pre-treatment	Pre-treatment	Pre-treatment
	Age:	CIMT or HABIT, 6	• 63.05 ± 5.28	• 61.27 ± 3.68	• <i>p</i> value = 0.421
RCT	1.5 – 12 yrs.	days a week for 2	Post-treatment	Post-treatment	Post-treatment
	(8.75 ± 3.06)	weeks. Total dose: 24	• 84.12 ± 3.32	• 79.97 ± 2.23	• <i>p</i> value = 0.007
Fair	Gender:	hours	QUEST PE (Mean ± SD)	QUEST PE (Mean ± SD)	QUEST PE
quality	15 M : 3 F		Pre-treatment	Pre-treatment	Pre-treatment
	Hemiplegic side:	CIMT: mitt and sling	• 73.69 ± 6.18	• 72.15 ± 6.07	• <i>p</i> value = 0.603
	N/A	worn 6 hours per day.	Post-treatment	Post-treatment	Post-treatment
	MACS:		• 80.80 ± 3.25	• 78.80 ± 2.24	• <i>p</i> value = 0.149
	N/A	Home setting	QUEST DM (Mean ± SD)	QUEST DM (Mean ± SD)	QUEST DM
	GMFCS		Pre-treatment	Pre-treatment	Pre-treatment
	N/A		• 52.41 ± 8.14	• 50.43 ± 7.37	• <i>p</i> value = 0.597
			Post-treatment	Post-treatment	Post-treatment
			• 85.91 ± 3.12	• 82.71 ± 2.47	• <i>p</i> value = 0.028
			QUEST WB (Mean ± SD)	QUEST WB (Mean ± SD)	QUEST WB
			Pre-treatment	Pre-treatment	Pre-treatment
			• 72.97 ± 6.96	• 70.42 ± 6.87	• <i>p</i> value = 0.446
			Post-treatment	Post-treatment	Post-treatment
			• 81.86 ± 7.78	• 75.36 ± 6.91	• <i>p</i> value = 0.080
			QUEST G (Mean ± SD)	QUEST G (Mean ± SD)	QUEST G (Mean ± SD)
			Pre-treatment	Pre-treatment	Pre-treatment
			• 53.13 ± 7.20	• 52.10 ± 5.87	• <i>p</i> value = 0.743
			Post-treatment	Post-treatment	Post-treatment
			• 87.90 ± 3.13	• 83.00 ± 3.21	• <i>p</i> value = 0.005
			СІМТ	HABIT	Interaction
	N = 17		<u>MUUL</u> (95%Cl)	<u>MUUL</u> (95%Cl)	MUUL

Sakzew-	(mCIMT 9, BIT 9)	Both groups received	EMD baseline to 3 weeks	EMD baseline to 3 weeks	N/A
ski e <i>t al</i> .	Age:	6 hours per day of	• - 1.0 (- 4.6, 2.6) <i>p</i> = 0.6	• - 0.8 (- 4.0, 2.4): <i>p</i> = 0.6	
(2015)	5 – 16 yrs.	CIMT or HABIT for 5	EMD baseline to 26 weeks	EMD baseline to 26 weeks	
	mCIMT: 8.7 ± 1.5	days. Total dose: 30	• - 0.9 (- 4.5, 2.7) : <i>p</i> = 0.6	• - 0.4 (- 3.6, 2.8): <i>p</i> = 0.8	
RCT	BIT: 8.9 ± 1.5	hours	<u>AHA</u> (95%Cl)	<u>AHA</u> (95%Cl)	AHA
	Gender:		EMD baseline to 3 weeks	EMD baseline to 3 weeks	N/A
High	9 M : 8 F	mCIMT: Glove worn	• - 2.0 (- 6.1, 2.1) : <i>p</i> = 0.3	• 1.3 (- 1.1, 3.8) : <i>p</i> = 0.3	
quality	mCIMT: 5 M : 4 F	during the 6 hours of	EMD baseline to 26 weeks	EMD baseline to 26 weeks	
	BIT: 4 M : 4 F	the camp activities	• - 0.2 (- 4.3, 3.9) : <i>p</i> = 0.9	• 2.2 (- 0.2, 4.7) : <i>p</i> = 0.07	
	Hemiplegic side:		<u>JTTHF</u> (95%Cl)	<u>JTTHF</u> (95%Cl)	JTTHE
	7 L : 11 R	Circus theme camp	EMD baseline to 3 weeks	EMD baseline to 3 weeks	N/A
	mCIMT: 3 L : 6 R		• 0.2 (- 45. 6, 46.0) : <i>p</i> = 0.9	• - 48.2 (- 99.8, 3.4) : <i>p</i> = 0.07	
	BIT: 4 L : 5 R		EMD baseline to 26 weeks	EMD baseline to 26 weeks	
	MACS:		• 9.2 (- 36.6, 55.0) : <i>p</i> = 0.7	• - 42.1 (- 93.7, 9.5) : <i>p</i> = 0.1	
	I — II				
	mCIMT: I (3) : II (6)				
	BIT: I (1), II (8)				
	GMFCS:				
	I – II				
	mCIMT: I (6), II (3)				
	BIT: I (6), II (3)				

Abbreviations: CIMT = constraint induced movement therapy; mCIMT = modified constraint induced movement therapy; HABIT = hand-arm bimanual intensive therapy; BIM = bimanual Therapy; BMT = bimanual therapy; CP = cerebral palsy; M = male; F = female; L = left; R = right; OT = occupational therapist; PT = physiotherapist; MACS = manual ability classification system; GMFCS = gross motor function classification system; QUEST = quality of upper extremity skills test; PE = protective extension; DM = dissociated movements; WB = weight bearing; G = grasp; MUUL = Melbourne assessment of unilateral upper limb function; AHA = assisting hand assessment; JTTHF = Jebsen Taylor test of hand function; COPM = Canadian occupational performance measure; SD = standard deviation; CV = coefficient of variation; EMD = estimated mean difference; CI = confidence interval; g x ts = group x test session; yrs. = years; mins = minutes; s = seconds; cm = centimetres; ° = degrees, * = p < 0.05 pre-test condition compared with post-test condition

Outcome Results

Assisting hand assessment (AHA)

Two studies used the AHA as part of the upper limb assessment. One study found improvements in both CIMT and HABIT with no difference between the interventions while another study found no significant changes at all.

One study (Gelkop *et al.*, 2015) found significant improvements in both CIMT and HABIT groups (p < 0.001). The main effect occurred between the post baseline and immediately post intervention with average improvements between 45.2 to 55.8 AHA units (p < 0.05) which was maintained at the two month follow up. There was no significant difference between the two interventions (p = 0.48). One study (Sakzewski *et al.*, 2015) found no significant changes in either CIMT or BIM (bimanual therapy) intervention group at the three week (p = 0.3; p = 0.3, respectively) or 26 week follow up (p = 0.9; p = 0.07, respectively). One child receiving CIMT and one receiving BIM achieved a clinically meaningful change whereas in the other study (Gelkop *et al.*, 2015), five participants from each group improved ≥ 5 AHA units, thereby exceeding the smallest detectable difference (Krumlinde-Sundholm, 2012).

Melbourne assessment of unilateral upper limb function (MUUL)

This assessment was used in one study (Sakzewski *et al.*, 2015) that found no significant changes for neither CIMT or BIM. The study saw no significant changes at the three week (p = 0.6; p = 0.6, respectively) or 26 week (p = 0.6; p = 0.8, respectively) follow up with one child in the CIMT group achieving a change greater than measurement error.

Jebson-taylor test of hand function (JTTHF)

One study (Sakzewski *et al.*, 2015) used this test as part of their results and there were no significant changes seen. There were no significant improvements in both CIMT and BIM at the three week (p = 0.9; p = 0.07, respectively) or 26 week follow up (p = 0.7; p = 0.1, respectively).

Quality of upper extremity skills test (QUEST)

Two studies used QUEST as part of their upper limb functionality assessment (Gelkop *et al.*, 2015; Zafer *et al.*, 2016). Both studies found significant improvements in the QUEST total and the dissociated movement subset test. They both saw more improvements in the CIMT groups within the QUEST total and dissociated movement. One study found improvements for both interventions for grasp with CIMT having further progress than HABIT.

QUEST total

One study (Gelkop *et al.*, 2015) demonstrated significant improvements in CIMT and HABIT intervention groups in the QUEST total score (p < 0.001) displayed primarily between the post baseline (CIMT: 55.0 (95% confidence interval (CI): 35.4, 74.6)) (HABIT: 56.8 (95% CI: 37.2, 76.4)) and immediate post intervention (CIMT: 74.0 (95% CI: 56.9, 91.2)) (HABIT: 70.4 (95% CI: 53.3, 87.6)) with average improvements between 55.9 to 72.1 which was maintained at the two month follow up (CIMT: 73.0 (95% CI: 57.9, 88.1)) (HABIT: 70.0 (95% CI: 54.9, 85.1)). On average, there was 35% and 24% improvement for the CIMT and HABIT group, respectively, with no significant difference between the two groups (p = 0.671). Another study (Zafer *et al.*, 2016) also showed significant improvements in both CIMT and HABIT between pre-treatment (Mean ± SD - CIMT: 63.05 ± 5.28, HABIT: 61.27 ± 3.68) and post-treatment (Mean ± SD - CIMT: 84.12 ± 3.32, HABIT: 79.97 ± 2.23) with average improvements of 21% and 19% respectively. Both groups exceeded the "smallest detectable difference" (i.e. 14%) for QUEST (Klingels *et al.*, 2008). They also showed significant difference between the two groups in the CIMT group compared to the HABIT group.

QUEST subset

One of the studies (Gelkop *et al.*, 2015) found a significant increase for all QUEST subset scores in both CIMT and HABIT (p < 0.05). All subset scores had no significant difference between the group except the dissociated movement test (p < 0.05). This difference suggested that the CIMT group showed greater improvements when compared to the HABIT group between post-baseline and immediate post-intervention. A second study (Zafer *et al.*, 2016) also found significant differences between CIMT and BIM in dissociated movements subset test (p = 0.028) as well as the grasp subset test (p = 0.005). These figures demonstrate that CIMT had significantly more improvements than BIM. There was an insignificant difference in the grasp subset of the test in Gelkop *et al.*, 2015 (p = 0.566) and insignificant difference for both weight bearing and protective extension in both studies; (Gelkop *et al.*, 2015) (p = 0.883; p = 0.564, respectively) and (Zafer *et al.*, 2016) (p = 0.08; p = 0.149, respectively).

Reach – Grasp – Eat

One study used this experimental reach-grasp-eat setup to test the function of the upper limb (Hung, Spingarn, *et al.*, 2020). In this study it was found that while both interventions had improvements overall, CIMT had further development in the reaching movement in regard to time and hand curvature as well as the hand vertical position within the grasp movement. CIMT also had further improvements in head rotation excursion in the eating movement.

Reaching movement

A decrease in the time it took to carry out the reaching movement decreased after both CIMT and HABIT. There was significant improvement in the trunk involvement, elbow flexion/extension excursion and wrist rotation in both groups and also significant improvement for the hand curvature in the CIMT intervention but not the HABIT.

Reaching movement time significantly decreased in both CIMT and HABIT groups (p = 0.007) with no group differences (p = 0.05) as well as a significant decrease in the coefficient of variation (CV) (movement consistency) after intervention (p = 0.011). There was a significant improvement for hand curvature in the CIMT group (p = 0.017) with a significant difference between the interventions (p = 0.034). According to the analysis, the CIMT group decreased curvature of the hand (straighter hand movement) significantly but the HABIT intervention group did not. CV of hand curvature also decreased significantly post intervention (p = 0.002) with no significant values between the two groups (p = 0.945). There was a significant decrease in trunk involvement during the reaching movement (p = 0.013) and significant improvement in elbow flexion/extension excursion and wrist rotation (p = 0.013). There were no significant statistics for the upper arm excursion after either intervention (test session: p = 0.80).

Grasping movement

Grasping time decreased for both groups and there was an improvement observed for the vertical position of the hand with CIMT having better results when compared to HABIT.

Grasping movement times significantly decreased after both CIMT and HABIT (p = 0.007) with no group differences (p > 0.05). For hand vertical position, there was a significant improvement found (p = 0.049) with a significant difference between the interventions (p = 0.034). According to the findings, children in CIMT group significantly lowered their hand vertical position but the HABIT group did not. For CV, there was no significant improvements for either group (p = 0.24).

Eating movements

For the eating part of the movement, there were improved times in both groups. There were improvements in the elbow flexion/extension, head rotation excursion with further improvements within the CIMT group in regard to the head rotation excursion compared to the HABIT.

Eating movement times significantly decreased after both CIMT and HABIT (p = 0.007; p = 0.048, respectively) with no group differences (p > 0.05). There was no significant change for the upper arm excursion (p = 0.73). A significant improvement was seen specifically in the elbow flexion/extension excursion during the eating movement for both groups (p = 0.034). There was no significant difference for wrist rotation excursion (p = 0.55). Significant improvements were displayed in both groups for the head rotation excursion (p = 0.01) as well as a significant difference between the two groups (p = 0.045). According to the analysis, there was a significant decreased for the CIMT group during the eating movement, but not the HABIT group. No significant values were found for head flexion excursion (p = 0.40). There were no significant changes were found for CV of the upper arm, elbow, wrist rotation, head rotation and head flexion excursion during the eating movement after training.

Walking with tray for upper extremity movement control

One study used this experimental setup to test upper limb movement control (Hung, Shirzad, *et al.*, 2020). In the study, a significant difference between the groups was seen for the bimanual movement with HABIT having more improvements than CIMT in regard to the vertical height between the two hands. Both interventions had improvements with the lateral excursion of the tray. There was no improvement in the vertical hand excursion or for the paretic and non-paretic should and elbow.

For the bimanual movement control, there was a significant difference between the groups for the maximum distance between the vertical height of the two hands (p = 0.029). According to the study, the HABIT intervention group significantly decreased the maximum height difference between the two hands during the dual task after training but the CIMT group did not. There was a significant decrease in lateral excursion of the tray after both CIMT and HABIT groups (p = 0.029). Vertical hand excursion of the tray saw no significant changes after intervention (test session: p = 0.104). There were no significant changes for the paretic and non-paretic shoulder as well as the elbow excursion for both interventions (p = 0.05).

Discussion

The main goal of this literature review was to do an updated review of the meta-analysis based on recent scientific evidence, on the effectiveness of CIMT and HABIT in hemiplegic cerebral palsy for upper limb function. One meta-analysis found a "trivial benefit" for HABIT over CIMT but more research was needed (Alahmari et al., 2020) and another found that it was "not possible to conclude which therapy is more effective than the other in improving unimanual or bimanual function" (Tervahauta *et al.*, 2017). CIMT and HABIT are both interventions that are used to improve hand function in children with CP but there is currently no evidence that can conclude which evidence is better than the other. This review showed that CIMT and HABIT are both interventions which can increase the quality and function of the upper limb. The results also showed that while the CIMT intervention saw better quality of movement and skills in unimanual tasks in the paretic hand, HABIT showed more improvements in bimanual tasks.

Summary of Results

The main objective was to find the most suitable intervention for hemiplegic cerebral palsy patients to improve the function of their upper extremity through the use of intense therapies targeted at such areas. All the included studies had a variation of outcomes measurements. These included; AHA (Gelkop et al., 2015; Sakzewski et al., 2015), QUEST total and subset (Gelkop et al., 2015; Zafer et al., 2016), reach-eat-grasp experimental setup (Hung, Spingarn, et al., 2020), walking with a tray experimental setup (Hung, Shirzad, et al., 2020), MUUL and JTTHF (Sakzewski et al., 2015). When looking at the AHA, MUUL and JTTFH, there were no significant difference between the two interventions. However in two studies, the quality of movement recorded in the paretic hand in the QUEST total and dissociated movement subset scores, saw that the CIMT groups had significantly more improvements (Gelkop et al., 2015; Zafer et al., 2016). One study also found significantly more improvements with CIMT intervention in the grasp subset score (Zafer et al., 2016). CIMT also did significantly bigger improvements in the reach-eat-grasp experimental setup in another study (Hung, Spingarn, et al., 2020). Whereas in the dual task experimental set up where the participant had to walk with a tray in two hands, the HABIT group had significantly more improvements (Hung, Shirzad, et al., 2020). From these results we can say that CIMT improves the use of the paretic hand more than HABIT but when it comes to tasks using both the paretic hand and the non-paretic hand, HABIT does significantly better than CIMT. This confirms the original hypothesis of training specificity. A systematic review by Dong et al. reported the same outcome (Dong et al., 2013).

The systematic review by Tervahau *et al.* does not support the same findings as Dong *et al.* or this review. This could be due to the fact that newer research and experimental set-ups focusing on unimanual and bimanual tasks were in the present review. Another reason could be that the analysis by Tervahau *et al.* also took into consideration the methodology of the included studies and the effect size. This gives a more detailed overview and systematic evaluation of the studies (Tervahauta *et al.*, 2017). As mentioned in the analysis, the study by Zafer *et al.* shows benefit of calculating effect sizes. The effect size of the study favours CIMT but due to large effect sizes not occurring in other studies found, it is hard to make a definite statement about the impact CIMT.

Points of Discussion

According to the PEDro-scale, four out of the five included RCT's were graded as "high quality" evidence (Gelkop et al., 2015; Hung, Shirzad, et al., 2020; Hung, Spingarn, et al., 2020; Sakzewski et al., 2015) while one RCT was graded as "fair quality" (Zafer et al., 2016). The overall strength of reporting quality was carried out by the CONSORT 2010 statement. It was seen that while four out of five of the articles had between 20 – 22 of the 25 items on the checklist (Gelkop *et al.*, 2015; Hung, Shirzad, *et al.*, 2020; Hung, Spingarn, *et al.*, 2020; Sakzewski *et al.*, 2015; Hung, Shirzad, *et al.*, 2020; Hung, Spingarn, *et al.*, 2020; Sakzewski *et al.*, 2015), one only had 14 items (Zafer *et al.*, 2016). From the quality assessment, it should be noted that the study by Zafer *et al.* is of lower quality than the other four studies in regards to evidence and reporting quality.

Within the included studies, there were three that had a large dose of CIMT and HABIT and two that had a relatively small dose. Three of the studies had a large dose of 90-96 hours (Gelkop et al., 2015; Hung, Shirzad, et al., 2020; Hung, Spingarn, et al., 2020) whereas Zafer et al. had a total of 24 hours of interventions over two weeks and Sakzewski had 30 hours of interventions over five days. Even though the study by Zafer et al. had a much lower dosage, there were still significant values and differences between the two interventions in the QUEST assessment that were of similar results to Gelkop et al. This could be due to the higher pre-treatment QUEST scores for the study by Zafer et al. (QUEST total; CIMT- 63.05 ± 5.28 , HABIT – 61.27 ± 3.68)) when compared to the pretreatment scores from Gelkop et al. (QUEST total; CIMT – 55.0 (35.4, 74.6), HABIT – 56.8 (36.2, 76.4)). Another reason could be that Zafer et al. was the only study that did not specify no botulinum toxin therapy 6 months prior to the study. Botulinum toxin injections help to reduce spasticity, improve range of motion and function, and when combined with occupational therapy it is more effective than the therapy alone at reducing impairments (Hoare et al., 2010). If any patient had a botulinum toxin injection during the study or the months prior, this could have shown further improvement than those without. Sakzewski et

al. did not see any significant changes with its low dose including the AHA where the higher dosed intervention by Gelkop *et al.* did have a significant improvement in both intervention. The study by Sakzewski *et al.* was also compared to previous study by the same researchers in 2011 (Sakzewski et al., 2011). This study compared CIMT and HABIT with a higher dose of 60 hours. When comparing the two doses, they found lower dose to be insufficient in improving upper limb function when compared to the higher dose. In a systematic review by Hoare et al, CIMT was compared to interventions with different dose comparison. It was found that original high dosed CIMT may improve bimanual ability and unilateral capacity more than low dose (Hoare *et al.*, 2019). It also found that it was no more effective than an equal dose comparison. This reiterates Chiu & Ada's hypothesis that CIMT's effectiveness may be due to the large amount of intense practice involved with the interventions rather than the restraining itself (Chiu & Ada, 2016).

Across the five studies, there was a wide range of hand function level among the participants. Three studies did not include a GMFCS level (Gelkop et al., 2015; Hung, Spingarn, et al., 2020; Zafer et al., 2016) and one study did not report a MACS level (Zafer et al., 2016). The GMFCS is the most well-known and established classification for measuring function in children with CP aged 2-18 years (Paulson & Vargus-Adams, 2017). The MACS level is a specific classification for the upper extremity. This measurement is used to classify the hand and arm function in children with CP and is complementary to the GMFCS (Paulson & Vargus-Adams, 2017). A study found that children with a MACS level I and II develop faster and reach a limitation in development quicker than a child with a MACS level III (Nordstrand et al., 2016). There was also a wide range of age in all five studies. The age range across the studies was 1.5 to 16 years. Zafer et al. and Sakzewski et al. had the largest range with over ten years between participants. A study found that children with unilateral CP show rapid development at a young age between 18 months and eight years (Paulson & Vargus-Adams, 2017). After this age, development begins to slow down (Nordstrand et al., 2016). Therefore, it makes it difficult to make a clear statement of the effect of the studies that have included a wide age range and level of hand function.

It should be noted that while four out of the five articles (Gelkop *et al.*, 2015; Hung, Spingarn, *et al.*, 2020; Sakzewski *et al.*, 2015) intervention were carried out by occupational therapists, physiotherapists or therapist assistance, in the study by Zafer *et al.*, the intervention was carried out by the parents in a home setting. Therapists initially guided the parents about how to carry out the intervention. The parents were then responsible for the progression and protocol adherence with no supervision. The only point of contact the parent had with the therapist after the initial guidance was through the phone. Although a similar outcome was seen for the QUEST assessment in the study by Gelkop *et al.*, the lack of supervision could

have had an effect on adherence to protocol, progression and the overall outcome of the study.

One of the final steps of the CIMT protocol is the "transfer package" where the improved unimanual function is integrated with meaningful bimanual ADL's activities. In the studies included in this review, not one included the "transfer package" in the CIMT intervention. Participants in the CIMT group received only unimanual training and participants in the HABIT group only received bimanual training. The systematic review by Tervahau *et al.* found a similar finding where only one study fulfilled the "transfer package" step of CIMT. This leaves out a very important aspect of CIMT and hence, it does not give a true reflection of CIMT and the potential improvement that it could have in improving bimanual function

Limitations

There were a number of limitations in this review that need to be taken into consideration when interpreting the results.

As can be seen in the assessment outcomes of the studies included in this literature review. there is a lack of consensus to which is the most suitable to assess upper extremity function. This is because there are many elements to test including range of motion of several joints, movement fluency and quality of movement which are needed to get a full picture of an individual's upper limb function. There is currently no gold standard to fully assess this. Both Hung et al. studies, went for an experimental set up, one using a single-handed task assessment another using bimanual task assessment. These two studies had completely different outcomes in which the study with the unimanual assessment found CIMT to have significantly better outcome and the other assessing bimanual function demonstrated that HABIT is a significantly better outcome. This shows that while these experimental set ups are useful in finding specific outcomes, they are not ideal when looking at the overall picture. There is also values for reliability for these assessments. Whereas, two articles used the QUEST assessment which has a good inter and intra reliability (Intra-class Correlation Coefficient; 0.86; 0.96, respectively) (Thorley et al., 2012) mainly looks at tasks using the affected limb hence its findings were predominantly in favour of CIMT. A better tool or tools for assessment needs to be found that assess both unimanual and bimanual tasks.

The lack of a standardised protocol of in terms of dosage, intensity and duration among the studies may account for variation in the results of some studies. By calculating effect size this could have made comparing studies more accurate but due to the studies having different outcomes, this was not possible.

Recommendations

Further research on the efficacy of CIMT and HABIT should be considered with larger sample sizes, a standard intervention protocol and with a measurement tools assessing both bimanual and unimanual function. Interventions should also include the "transfer package" step within the CIMT protocol in order to see a true reflection on the approach of CIMT. Further research should also be carried out on a hybrid intervention of both CIMT and HABIT. A study that compared a hybrid intervention and a bimanual intervention, concluded that they both had a similar effect for improving the use of the affected hand in bimanual tasks but that the hybrid intervention had more improvements in unimanual function (Cohen-Holzer *et al.*, 2017). Deppe *et al.*, also came to the same conclusion (Deppe *et al.*, 2013). This shows that a combined intervention could have significant improvements in both the bimanual function and the unimanual function of the paretic hand.

The results of the presented literature review show positive effects for CIMT and HABIT in the upper limb of hemiplegic Cerebral Palsy patients. Therefore, it is recommended to apply these methods in physiotherapy and occupational therapy. The concept of training specificity should be considered before deciding on an intervention since CIMT shows more improvements in unimanual and HABIT in bimanual. With the application of the "transfer package" in the CIMT protocol, further improvement in bimanual skills may be possible. It is also recommended to include the higher dosed interventions as they show more improvements than the lower doses.

Conclusion

The findings of this review found both CIMT and HABIT to be effective forms of therapy to improve upper limb function. The CIMT intervention had further improvements in unimanual function while HABIT had more improvement for bimanual function. Hence, specificity of training should be taken into consideration before deciding a therapy. Further research should be done on the topic due to limitations in this study as well as research into a hybrid intervention combining the two therapies.

Bibliography

- Alahmari, K., Tedla, J. S., Sangadala, D. R., Mukherjee, D., Reddy, R. S., Bairapareddy, K. C., & Kandakurti, P. K. (2020). Effectiveness of Hand-Arm Bimanual Intensive Therapy on Hand Function among Children with Unilateral Spastic Cerebral Palsy: A Meta-Analysis. *European Neurology*, *83*(2), 131–137. https://doi.org/10.1159/000507325
- Cashin, A. G., & McAuley, J. H. (2020). Clinimetrics: Physiotherapy Evidence Database (PEDro) Scale. *Journal of Physiotherapy*, 66(1), 59. https://doi.org/https://doi.org/10.1016/j.jphys.2019.08.005
- Centre for Disease Control and Prevention. (2020). *What is Cerebral Palsy?* Centre for Disease Contol and Prevention. https://www.cdc.gov/ncbddd/cp/facts.html
- Chiu, H.-C., & Ada, L. (2016). Constraint-induced movement therapy improves upper limb activity and participation in hemiplegic cerebral palsy: a systematic review. *Journal of Physiotherapy*, 62(3), 130–137. https://doi.org/https://doi.org/10.1016/j.jphys.2016.05.013
- Cohen-Holzer, M., Katz-Leurer, M., Meyer, S., Green, D., & Parush, S. (2017). The Effect of Bimanual Training with or Without Constraint on Hand Functions in Children with Unilateral Cerebral Palsy: A Non-Randomized Clinical Trial. *Physical & Occupational Therapy In Pediatrics*, 37(5), 516–527. https://doi.org/10.1080/01942638.2017.1280871
- Deppe, W., Thuemmler, K., Fleischer, J., Berger, C., Meyer, S., & Wiedemann, B. (2013). Modified constraint-induced movement therapy versus intensive bimanual training for children with hemiplegia – a randomized controlled trial. *Clinical Rehabilitation*, 27(10), 909–920. https://doi.org/10.1177/0269215513483764
- Dong, V. A.-Q., Tung, I. H.-H., Siu, H. W.-Y., & Fong, K. N.-K. (2013). Studies comparing the efficacy of constraint-induced movement therapy and bimanual training in children with unilateral cerebral palsy: A systematic review. *Developmental Neurorehabilitation*, 16(2), 133–143. https://doi.org/10.3109/17518423.2012.702136
- Gelkop, N., Burshtein, D. G., Lahav, A., Brezner, A., AL-Oraibi, S., Ferre, C. L., & Gordon, A. M. (2015). Efficacy of Constraint-Induced Movement Therapy and Bimanual Training in Children with Hemiplegic Cerebral Palsy in an Educational Setting. *Physical & Occupational Therapy In Pediatrics*, 35(1), 24–39. https://doi.org/10.3109/01942638.2014.925027
- Gordon, A. M., Schneider, J. A., Chinnan, A., & Charles, J. R. (2007). Efficacy of a hand-arm bimanual intensive therapy (HABIT) in children with hemiplegic cerebral palsy: a

randomized control trial. *Developmental Medicine & Child Neurology*, 49(11), 830–838. https://doi.org/https://doi.org/10.1111/j.1469-8749.2007.00830.x

- Hoare, B. J., Wallen, M. A., Imms, C., Villanueva, E., Rawicki, H. B., & Carey, L. (2010).
 Botulinum toxin A as an adjunct to treatment in the management of the upper limb in children with spastic cerebral palsy (UPDATE). *The Cochrane Database of Systematic Reviews*, 2010(1), CD003469–CD003469.
 https://doi.org/10.1002/14651858.CD003469.pub4
- Hoare, B. J., Wallen, M. A., Thorley, M. N., Jackman, M. L., Carey, L. M., & Imms, C. (2019).
 Constraint-induced movement therapy in children with unilateral cerebral palsy. *The Cochrane Database of Systematic Reviews*, *4*(4), CD004149–CD004149. https://doi.org/10.1002/14651858.CD004149.pub3
- Hung, Y.-C., Shirzad, F., Saleem, M., & Gordon, A. M. (2020). Intensive upper extremity training improved whole body movement control for children with unilateral spastic cerebral palsy. *Gait & Posture*, 81, 67–72. https://doi.org/https://doi.org/10.1016/j.gaitpost.2020.07.009
- Hung, Y.-C., Spingarn, A., Friel, K. M., & Gordon, A. M. (2020). Intensive Unimanual Training Leads to Better Reaching and Head Control than Bimanual Training in Children with Unilateral Cerebral Palsy. *Physical & Occupational Therapy In Pediatrics*, 40(5), 491– 505. https://doi.org/10.1080/01942638.2020.1712513
- Jansheski, G. (2020). *Spastic Cerebral Palsy*. Cerbral Palsy Guidance. https://www.cerebralpalsyguidance.com/cerebral-palsy/types/spastic/
- Klingels, K., De Cock, P., Desloovere, K., Huenaerts, C., Molenaers, G., Van Nuland, I., Huysmans, A., & Feys, H. (2008). Comparison of the Melbourne Assessment of Unilateral Upper Limb Function and the Quality of Upper Extremity Skills Test in hemiplegic CP. *Developmental Medicine & Child Neurology*, 50(12), 904–909. https://doi.org/https://doi.org/10.1111/j.1469-8749.2008.03123.x
- KRUMLINDE-SUNDHOLM, L. (2012). Reporting outcomes of the Assisting Hand Assessment: what scale should be used? *Developmental Medicine & Child Neurology*, 54(9), 807–808. https://doi.org/https://doi.org/10.1111/j.1469-8749.2012.04361.x
- Kwakkel, G., Veerbeek, J. M., van Wegen, E. E. H., & Wolf, S. L. (2015). Constraint-induced movement therapy after stroke. *The Lancet. Neurology*, *14*(2), 224–234. https://doi.org/10.1016/S1474-4422(14)70160-7
- Moseley, A. M., Herbert, R. D., Maher, C. G., Sherrington, C., & Elkins, M. R. (2011). Reported quality of randomized controlled trials of physiotherapy interventions has improved over

time. Journal of Clinical Epidemiology, 64(6), 594–601. https://doi.org/https://doi.org/10.1016/j.jclinepi.2010.08.009

- Nordstrand, L., Eliasson, A.-C., & Holmefur, M. (2016). Longitudinal development of hand function in children with unilateral spastic cerebral palsy aged 18 months to 12 years. *Developmental Medicine & Child Neurology*, 58(10), 1042–1048. https://doi.org/https://doi.org/10.1111/dmcn.13106
- Paulson, A., & Vargus-Adams, J. (2017). Overview of Four Functional Classification Systems Commonly Used in Cerebral Palsy. *Children (Basel, Switzerland)*, 4(4), 30. https://doi.org/10.3390/children4040030
- Reddappa, P. (2012). A comparative study on the effectiveness of neurodevelopmental therapy with myofascial release over neurodevelopmental therapy on hand function of children with spastic cerebral palsy. *International Journal of Physiotherapy and Rehabilitation, Volume 2.*
- Sakzewski, L., Provan, K., Ziviani, J., & Boyd, R. N. (2015). Comparison of dosage of intensive upper limb therapy for children with unilateral cerebral palsy: How big should the therapy pill be? *Research in Developmental Disabilities*, 37, 9–16. https://doi.org/https://doi.org/10.1016/j.ridd.2014.10.050
- Sakzewski, L., ZIVIANI, J., ABBOTT, D. F., MACDONELL, R. A. L., JACKSON, G. D., & BOYD, R. N. (2011). Randomized trial of constraint-induced movement therapy and bimanual training on activity outcomes for children with congenital hemiplegia. *Developmental Medicine & Child Neurology*, 53(4), 313–320. https://doi.org/https://doi.org/10.1111/j.1469-8749.2010.03859.x
- Schulz, K. F., Altman, D. G., & Moher, D. (2010). CONSORT 2010 Statement: Updated Guidelines for Reporting Parallel Group Randomized Trials. *Annals of Internal Medicine*, 152(11), 726–732. https://doi.org/10.7326/0003-4819-152-11-201006010-00232
- Stavsky, M., Mor, O., Mastrolia, S. A., Greenbaum, S., Than, N. G., & Erez, O. (2017). Cerebral Palsy-Trends in Epidemiology and Recent Development in Prenatal Mechanisms of Disease, Treatment, and Prevention. *Frontiers in Pediatrics*, *5*, 21. https://doi.org/10.3389/fped.2017.00021
- Tervahauta, M. H., Girolami, G. L., & Øberg, G. K. (2017). Efficacy of constraint-induced movement therapy compared with bimanual intensive training in children with unilateral cerebral palsy: a systematic review. *Clinical Rehabilitation*, *31*(11), 1445–1456. https://doi.org/10.1177/0269215517698834
- Thorley, M., Lannin, N., Cusick, A., Novak, I., & Boyd, R. (2012). Reliability of the Quality of

Upper Extremity Skills Test for Children with Cerebral Palsy Aged 2 to 12 Years. Physical&OccupationalTherapyInPediatrics,32(1),4–21.https://doi.org/10.3109/01942638.2011.602389

- van Tulder, M., Furlan, A., Bombardier, C., Bouter, L., & Group, the E. B. of the C. C. B. R. (2003). Updated Method Guidelines for Systematic Reviews in the Cochrane Collaboration Back Review Group. *Spine*, *28*(12). https://journals.lww.com/spinejournal/Fulltext/2003/06150/Updated_Method_Guidelines _for_Systematic_Reviews.14.aspx
- Zafer, H., Amjad, I., Malik, A. N., & Shaukat, E. (2016). Effectiveness of Constraint induced movement therapy as compared to bimanual therapy in Upper motor function outcome in child with hemiplegic Cerebral palsy. *Pakistan Journal of Medical Sciences*, 32(1), 181–184. https://doi.org/10.12669/pjms.321.8491

Appendix

Appendix 1: Search String

Search trials per database carried out between the 22nd of February to the 6th of March 2021:

Table 6 – Search String in the Cochrane Library database

Cochrane	Cochrane Library						
Search attempt	Search terms	Filters applied	Number of hits				
1	"Cerebral palsy AND constraint- induced movement therapy AND hand-arm bimanual intensive therapy"	None	N = 17				
2	"Cerebral palsy AND constraint induced movement therapy AND hand arm bimanual intensive therapy"	None	N = 34 articles				
3	"Cerebral palsy AND constraint induced movement therapy AND hand arm bimanual intensive therapy"	Trials	N = 32 articles				
4	"Cerebral palsy AND constraint induced movement therapy AND hand arm bimanual intensive therapy"	Trials 2015-2021	N = 13 articles				

Table 7 – Search String in the PubMed database

PubMed			
Search	Search terms	Filters applied	Number of
attempt			hits
1	"Cerebral palsy AND constraint-	None	N = 14
	induced movement therapy AND		articles
	hand-arm bimanual intensive therapy"		
2	"Cerebral palsy AND constraint	None	N = 18
	induced movement therapy AND hand		articles
	arm bimanual intensive therapy"		
3	"Cerebral palsy AND constraint	2015-2021	N = 7
	induced movement therapy AND hand	English	articles
	arm bimanual intensive therapy"		

Table 8 – Search String in the Embase database

Embase	Embase						
Search	Search terms	Filters applied	Number of				
attempt			hits				
1	"Cerebral palsy AND constraint-	None	N = 14				
	induced movement therapy AND		articles				
	hand-arm bimanual intensive therapy"						
2	"Cerebral palsy AND constraint	None	N = 14				
	induced movement therapy AND hand		articles				
	arm bimanual intensive therapy"						
3	"Cerebral palsy AND constraint	2015-2021	N = 7				
	induced movement therapy AND hand	English	articles				
	arm bimanual intensive therapy"						

Table 9 – Search String in the PEDro database

PEDro			
Search	Search terms	Filters applied	Number of
attempt			hits
1	"Cerebral palsy AND constraint-	None	N = 9
	induced movement therapy AND		articles
	hand-arm bimanual intensive therapy"		
2	"Cerebral palsy AND constraint	None	N = 9
	induced movement therapy AND hand		articles
	arm bimanual intensive therapy"		
3	"Cerebral palsy AND constraint	2015-2021	N = 5
	induced movement therapy AND hand		articles
	arm bimanual intensive therapy"		

Table 10 – Search String in the Cinahl database

Cinahl			
Search	Search terms	Filters applied	Number of
attempt			hits
1	"Cerebral palsy AND constraint-	None	N = 7
	induced movement therapy AND		articles
	hand-arm bimanual intensive therapy"		

2	"Cerebral palsy AND constraint	None	N = 7
	induced movement therapy AND hand		articles
	arm bimanual intensive therapy"		
3	"Cerebral palsy AND constraint	Apply related words	N = 26
	induced movement therapy AND hand	Also search within the	articles
	arm bimanual intensive therapy"	full text of the articles	
		Apply equivalent	
		subjects	
4	"Cerebral palsy AND constraint	Apply related words	N = 12
	induced movement therapy AND hand	Also search within the	articles
	arm bimanual intensive therapy"	full text of the articles	
		Apply equivalent	
		subjects	
		2015-2021	
		English	

Table 11 – Search string in the Google Scholar database

Google S	Google Scholar						
Search	Search terms	Filters applied	Number of				
attempt			hits				
1	"Cerebral palsy AND constraint-	With all of the words	N = 409				
	induced movement therapy AND		articles				
	hand-arm bimanual intensive therapy"						
2	"Cerebral palsy AND constraint	With all of the words	N = 236				
	induced movement therapy AND hand	2015-2021	articles				
	arm bimanual intensive therapy"						

Appendix 2: Method Quality Assessment: PEDro scale

Table 12 – PEDro scale application

Study	Hung, Springarn <i>et al</i> . 2020		Gelkop et <i>al</i> . 2015	Zafer et <i>al</i> . 2016	Sakzewski <i>et al</i> . 2015
Total Score	6 / 10	8 / 10	8 / 10	5 / 10	7 / 10
1. Eligibility criteria were specified	1	1	1	1	1
2. Subjects were randomly allocated to groups (in a crossover study,					
subjects were randomly allocated an order in which treatments were received)	1	1	1	1	1
3. Allocation was concealed	1	1	1	0	1
4. The groups were similar at baseline regarding the most important prognostic indicators	1	1	1	1	1
5. There was blinding of all subjects	1	0	0	0	1
6. There was blinding of all therapists who administered the therapy	0	0	1	0	0
7. There was blinding of all assessors who measured at least one key outcome	1	1	0	0	1
 Measures of at least one key outcome were obtained from more than 85% of the subjects initially allocated to groups 	0	1	1	1	1
9. All subjects for whom outcome measures were available received the treatment or control condition as allocated or, where this was not the case, data for at least one key outcome was analysed by "intention to treat"	0	1	1	0	0
10.The results of between-group statistical comparisons are reported for at least one key outcome	0	1	1	1	0
11.The study provides both point measures and measures of variability for at least one key outcome	1	1	1	1	1

Appendix 3: CONSORT 2010 Checklist

Table 13 – CONSORT statement reporting quality

Section / Topic	Item no.	Checklist item	Reported	Reported			
·			Gelkop et <i>al</i> . 2015	Hung, Springarn e <i>t al</i> . 2020	Hung, Shirzad, <i>et al</i> . 2020	Zafer et al. 2016	Sakzew- ski <i>et al</i> . 2015
Total amount o	f chec	klist items	22 / 25	22 / 25	20 / 25	14 / 25	20 / 25
Title and Abstra	act						
Title and abstract	1	 Identification as a randomised trial in the title Structured summary of trial design, methods, results, and conclusions (for specific guidance see CONSORT for abstracts) 	© ✓	© ✓	© ✓	© ✓	© ✓
Introduction							
Background	2	 Scientific background and explanation of rationale Specific objectives or hypotheses 	\checkmark	\checkmark	\checkmark	√ √	√ √
Methods			I	1	•		
Trial design	3	 Description of trial design (such as parallel, factorial) including allocation ratio) Important changes to methods after trial commencement (such as eligibility criteria), with reasons 	√ √	✓ ✓	√ √	√ √	√ ✓
		Eligibility criteria for participants	\checkmark	\checkmark	\checkmark	\checkmark	✓
Participants	4	Settings and locations where the data were collected	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Interventions	5	• The interventions for each group with sufficient details to allow replication, including how and when they were actually administered	\checkmark	~	~	~	\checkmark
Outcomes	6	Completely defined pre-specified primary and secondary outcome measures, including how and when they were assessed	V	~	~	~	✓

		• Any changes to trial outcomes after the trial commenced,	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
		with reasons					
		How sample size was determined	\checkmark	\checkmark	Ø	\bigcirc	Ø
Sample Size	7	When applicable, explanation of any interim analyses	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
		and stopping rules					
Randomisation	•			·			·
		Sequence					
		Method used to generate the random allocation	\checkmark	\checkmark	\checkmark	\otimes	\checkmark
Sequence	8	sequence	\checkmark	\checkmark	\checkmark	\otimes	\checkmark
		Type of randomisation; details of any restriction (such as blocking and block size)					
		Mechanism used to implement the random allocation					
Allocation	9	sequence (such as sequentially numbered containers),	1	<u>_</u>	<u> </u>	\otimes	<u> </u>
Anocation	9	describing any steps taken to conceal the sequence until	v	, v	· ·		, v
		interventions were assigned					
		Who generated the random allocation sequence, who					
Implanantatio		enrolled participants, and who assigned participants to					
Implementatio	10	interventions	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
n							
		If done, who was blinded after assignment to	\checkmark	\checkmark	\checkmark	0	\checkmark
Diliu alias a	44	interventions (for example, participants, care providers,					
Blinding	11	those assessing outcomes) and how					
		If relevant, description of the similarity of interventions	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
		Statistical methods used to compare groups for primary	\checkmark	\checkmark	\checkmark	\otimes	\checkmark
Statistical	10	and secondary outcomes					
methods	12	 Methods for additional analyses, such as subgroup 	\checkmark	\checkmark	\checkmark	\otimes	\otimes
		analyses and adjusted analyses					
	1	Results		1	1	1	1
		Repute					

Participant flow (a diagram is strongly recommended)	13	 For each group, the numbers of participants who were randomly assigned, received intended treatment, and were analysed for the primary outcome For each group, losses and exclusions after randomisation, together with reasons 	\checkmark	\checkmark	0	0	√ √
Recruitment	14	Dates defining the periods of recruitment and follow-upWhy the trial ended or was stopped	\odot	√ ⊘	0	0	√ ⊘
Baseline data	15	A table showing baseline demographic and clinical characteristics for each group	\checkmark	\checkmark	\checkmark	\otimes	\checkmark
Numbers analysed	16	 For each group, number of participants (denominator) included in each analysis and whether the analysis was by original assigned groups 	\checkmark	\checkmark	\checkmark	0	\checkmark
Outcomes and estimation	17	 For each primary and secondary outcome, results for each group, and the estimated effect size and its precision (such as 95% confidence interval) For binary outcomes, presentation of both absolute and relative effect sizes is recommended 	√ Not applicable	√ Not applicable	√ Not applicable	√ Not applicable	✓ Not applicable
Ancillary analysis	18	 Results of any other analyses performed, including subgroup analyses and adjusted analyses, distinguishing pre-specified from exploratory 	0	Ø	0	0	Ø
Harms	19	All-important harms or unintended effects in each group (for specific guidance see CONSORT for harms)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Discussion							
Limitations	20	 Trial limitations, addressing sources of potential bias, imprecision, and, if relevant, multiplicity of analyses Discussion of research, programmatic, or policy implications 	\checkmark	~	~	V	\checkmark

Generalisa- bility	21	Generalisability (external validity, applicability) of the trial findings	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Interpretation	22	• Interpretation consistent with results, balancing benefits and harms, and considering other relevant evidence	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Other Informati	on						
Registration	23	Registration number and name of trial registry	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Protocol	24	• Where the full trial protocol can be accessed, if available	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Funding	25	 Sources of funding and other support (such as supply of drugs), role of funders 	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Appendix 4: Data Extraction

Table 14 - Data extracted from the study by Gelkop et al. 2015

Gelkop et al. 2	015 "Efficacy of Constraint-Induced Movement Therapy and Bimanual Training in Children with Hemiplegic Cerebral Palsy in an
Educational Set	iting"
Participants	N = 12 (CIMT 6, HABIT 6)
	Age = 1.5 – 7 years (CIMT: 4.25 ± 1.58, HABIT: 4.33 ± 1.86)
	Gender = 2 Male, 10 Female (CIMT + BIT 1 Male, 5 Female)
	Hemiplegic side = 6 Left : 6 Right (CIMT: 3 Left : 3 Right, HABIT: 3 Left : 3 Right)
	Race = N/A
	Manual Ability Classification System = I - III (CIMT: I (1), II (2), III (2), HABIT: I (I), II (3), III (1))
	Gross Motor Function Classification System = N/A
Eligibility	20° of wrist extension
criteria	Ability to release objects from the hand
	Age appropriate cognitive skills
	No intensive therapeutic interventions involving the upper limb or botulinum toxin therapy in the past 6 months
	no intention to start new treatment during the study
Intervention	Both interventions received 2 hours/day of intervention (1 hour individual session, 1 hour group session) for 6 days a week
	for a total of 8 weeks. Total dosage is 96 hours. It was administered during the children's regular preschool or kindergarten
	hours.
	Individual sessions were one on one with occupational therapist and group sessions were carried out by two or three
	occupational therapists and therapist's assistance resulting in a 1:2 or 1:1 interventionist to child ratio

	Both intervention groups had individualised programs specified to their ability and comprised of intense, progressive activities
	based on motor learning approaches. Assessing task difficulty was done in order to progress difficulty and was dependent on
	child's own individual progression
	Each group participated in whole and part task practice based on activities of daily loving and child friendly games, indoors
	and outdoors with age specific encouragement. Instructions were given to make the intervention enjoyable and intrinsically
	motivating
	СІМТ
	Custom made gloves were worn on the less affected upper limb and unimanual activities were performed with the affected
	hand. Glove was worn for 2 hours of CIMT. Children performed unilateral fine and gross motor functional and play activities
	tailored to the child's age. Interventionists assisted when necessary to complete activities.
	HABIT
	No restraint was used. Children participated in fine and gross motor bimanual activities tailored to their age. Activities were
	chosen based on the paretic hand function of each child and focused on using the assisting hand for increasing complex
	bimanual tasks. Therapists avoided verbal cues to use the paretic hand but instead created tasks that required the use of
	both hands.
Outcome	Measurements of all assessments were taken "pre-baseline", "post-baseline", "immediate post-intervention" and "2 month
measurements	post-intervention
	Assisting Hand Assessment – Effectiveness of the child using his/her paretic hand in bimanual activity
	Quality of Upper Extremity Skills Test – identify upper extremity function in four areas; dissociated movement, grasp,
	protective extension, and weight bearing.
	Manual Ability Classification System – Classify children into 5 levels based on their hand function in daily living

Strengths	Randomization of intervention
	No difference between populations at baseline
	Follow up
	Blinding of participants and assessors
	No drop outs
Weakness	Small sample size
	A longer follow up needed
	No control group
Conclusion	Effectiveness of CIMT and HABIT was seen in improving the quality of bimanual hand-use and movement in children with
	hemiplegic CP with a modified schedule of 2hr/day for 8 weeks

Table 15 - Data extracted from the study by Hung, Springam, et al. 2020

Hung, Springarn, et al. 2020 "Intensive Unimanual Training Leads to Better Reaching and Head Control than Bimanual Training in Children	
with Unilateral C	Cerebral Palsy"
Participants	N = 20 (CIMT 10, HABIT 10)
	Age = 6 – 12 years (CIMT: 7.6 ± 2.2, HABIT: 7.7 ± 1.7)
	Gender = 11 Male : 9 Female (CIMT: 6 Male : 4 Female, HABIT: 5 Male : 5 Female)
	Hemiplegic side = 11 Left, 9 Right (CIMT: 4 Left : 6 Right, HABIT: 7 Left : 3 Right)
	Race = 16 Caucasian, 2 Hispanic, 2 African American (CIMT: 8 Caucasian : 1 Hispanic : 1 African American, HABIT: 8
	Caucasian : 1 Hispanic : 1 African American)
	Manual Ability Classification System = I – II (CIMT: I (2), II (8), HABIT: II (2), II (8))
	Gross Motor Function Classification System = N/A
	JTTHF = CIMT: 221 ± 108, HABIT: 226 ± 100

Eligibility	Ability to lift affected arm 15cm above a table and grasp a light object
criteria	Attend regular school
	Ability to follow instructions during screening and complete tests
	No botulinum toxin therapy in the last 6 months
	No orthopaedic surgery on affected arm in the past year
	No visual problems that could interfere with the study
	No current or unstable seizures
	No other health problems associated with CP
Intervention	Both groups received 6 hours a day of either CIMT or HABIT for 15 consecutive days. Total dosage was 90 hours. It was
	administered in two separate rooms during a training camp
	Ratio of interventionist was either 1:1 or 2:1. Interventionist and children were blinded to the study hypotheses.
	Both interventions involved age appropriate gross and fine motor play activities and whole and part task practice. Whole
	tasks included board games or eating lunch. Part tasks included motor skills broken into smaller components (pic up small
	blocks for grasping) while increasing repetitions and skill requirements (putting block further away).
	СІМТ
	A cotton sling with the hand opening sewn shut on the non-paretic arm. Children were asked to complete mostly unimanual
	activities using the paretic arm. Children were monitored for skill progression (e.g. moving object higher to encourage wrist
	extension). Interventionist aided when necessary. The paretic arm was as the active manipulator for eating.
	HABIT
	Children completed bimanual activities with no restraint. Children were monitored for skill progression from passive assist
	(e.g. stabilising paper while writing), to active assist (e.g. re-orienting paper while cutting paper) to an active manipulator (e.g.
	flipping cards). The paretic arm was used as the passive or active assisted hand while eating

Outcome	Measurements were taken at pre-intervention and post-intervention
measurements	Experimental set up: Reach – eat – grasp
	Participants were asked in a seated position to reach forward to grasp a cookie (3 x 7 cm, held vertically with a 1 cm stand)
	that was 30cm from the edge of the table with the more affected hand and bring it to their mouth. Participants sat 15 cm in
	front of the table with their elbows at table height and flexed at 90° at the starting position. Their hands were positioned 30 cm
	apart at the edge of the table and a head rest placed to certify proper head starting position. This was timed and 3D
	kinematic analysis collected data on movements.
Strengths	Randomization of intervention
	No difference between populations at baseline
	No drop outs
Weakness	No follow up
	No data for reliability and sensitivity of assessment
	No control group
	Small sample size
Conclusion	Both CIMT and HABIT resulted in faster movement, increased trunk stability and increased elbow flexion /extension and wrist
	rotation joint excursions while performing a unimanual reach-grasp-eat task. It was concluded that the CIMT group improved
	the more affected upper extremity end point path planning, grasp motor planning, and head rotation stability. This could make
	using the more paretic arm more efficient and increase the amount of use of the limb. Their findings support the concept of
	specificity of practice

Table 16 - Data extracted from the study by Hung, Shirzad, et al. 2020

Hung, Shirzad et al. 2020 "Intensive upper extremity training improved whole body movement control T for children with unilateral spastic cerebral palsy"

Participants	N = 16 (CIMT 8, HABIT 8)
	Age = 6 – 12 years (CIMT: 8.9 ± 2.2, HABIT: 8.3 ± 1.7)
	Gender = 10 Male : 6 Female (CIMT: 4 Male : 4 Female, HABIT: 6 Male : 2 Female)
	Hemiplegic side = 9 Left : 7 Right (CIMT: 4 Left : 4 Right, HABIT: 5 L : 3 R)
	Race = N/A
	Manual Ability Classification System = I – II (CIMT: I (2), II (6), HABIT: I (2), II (6))
	Gross Motor Function Classification System = I – II (CIMT: I (3), II (5), HABIT: I (2), II (6))
Eligibility	Able to perform task independently
criteria	Ability to follow instructions during screening and complete tests
	No botulinum toxin therapy in the last 6 months
	No orthopaedic surgery on affected arm in the past year
	No other health problems associated with CP
Intervention	Both CIMT and HABIT group received 6 hours of intervention for 15 consecutive days. Total dosage was 90 hours.
	Intervention was given in a training camp environment.
	Interventionist to child ratio was 1:1 with an experienced supervisor constantly present.
	Training involved age appropriate gross and fine motor play activities. Most activities were performed in sitting with only a
	few motor activities preformed in standing such as ball activities.
	CIMT
	A cotton sling was used to restrain the child's non-paretic arm. Training involved using the arm as the active manipulator in
	activities (e.g. flipping cards).
	HABIT

	Training involved bimanual activities with no restraint (e.g. cutting paper with the non-paretic arm while the paretic arm
	orientates the paper).
Outcome	Measurements were taken at pre-intervention and post-intervention
measurements	Experimental set-up – Walking with a tray
	This experimental set up involved the child walking along a flat 4.06m long path at a self-selected pace while carrying a tray
	at a steady level. Their elbows must be flexed at 90°, without touching the body. The tray (24 x 34 cm) weighed 420 g and
	had adjustable handle (width range: 34-54 cm) in order to suit the width of the child's shoulders. Demonstrations were
	performed by the researcher and two trials were given before the assessed trial.
Strengths	Randomization of intervention
	No difference between populations at baseline
	No drop outs
Weakness	No follow up
	No data for reliability and sensitivity of assessment
	No control group
	Small sample size
Conclusion	Findings supported the concept of practice specificity. The HABIT group improved more in bimanual coordination than CIMT
	did.

Table 17 - Data extracted from the study by Zafer et al. 2016

Zafer et al. 2016 "Effectiveness of constraint induced movement therapy as compared to bimanual therapy in upper motor function outcome in	
child with hemiplegic cerebral palsy"	
Participants	N = 18 (CIMT 9, BMT 9)
	Age = 1.5 – 12 years (8.75 ± 3.06)

	Gender = 15 Male : 3 Female
	Hemiplegic side = N/A
	Race = N/A
	Manual Ability Classification System = N/A
	Gross Motor Function Classification System = N/A
Eligibility	Age 1.5 to 12 years
criteria	10° of wrist extension
	10° of finger extension
	Score 40 – 60 on QUEST grasp and dissociated movement domains
Intervention	Intervention was given to both groups for 2 hour a day, 6 days a week, for 2 weeks. Total dose was 34 hours. It was carried
	out in the home of the child.
	Intervention was done by the parent of the child with initial guidance by the therapist about timing of the restraint for CIMT
	and the intervention applied. After this no supervision of the intervention took place with the parent having full responsibility
	for the child's adherence and completion of the program. Contact through the phone was maintained to ensure progress and
	adherence to protocol.
	Both groups received activities of daily living task training. Tasks compromised of upper extremity reaching, grasping,
	manipulation, releasing and weight bearing on the limb
	СІМТ
	The non-paretic arm was restrained by a mitt and sling strapped to the trunk in order to constrain the hand and elbow.
	Restraint was given for 6 hours of the day. Activities given to the parent to carry out with the child included daily and
	unimanual activities.
	HABIT

	Activities that the parent had to carry out with the child included daily and bimanual activities with no restraint.
Outcome	Measurements were taken pre-intervention and post-intervention
measurements	Quality of Upper Extremity Skills Test – identify upper extremity function in four areas; dissociated movement, grasp,
	protective extension, and weight bearing.
Strengths	Randomization of intervention
	No difference between populations at baseline
Weakness	Predominantly male population
	No follow up
	No control group
	Small sample size
	Small dose
	No supervision
	No representation of population characteristics
Conclusion	CIMT is a better approach to improve the function of the paretic arm when compared with BMT. There was significant
	improvements within grasp and dissociated subset scores in QUEST in CIMT as compared to BMT. CIMT is considered a
	better approach for unilateral conditions while for bilateral conditions, BMT is more appropriate.

Table 18 - Data extracted from the study by Sakzewski et al. 2015

Sakzewski et al. 2015 "Comparison of dosage of intensive upper limb therapy for children with unilateral cerebral palsy: How big should the		
therapy pill be?"	therapy pill be?"	
Participants	N = 17 (mCIMT 9, BIT 9)	
	Age = 5 – 16 years (mCIMT: 8.7 ± 1.5, BIT: 8.9 ± 1.5)	

	Gender = 9 Male : 8 Female (mCIMT: 5 Male : 4 Female, BIT: 4 Male : 4 Female)
	Hemiplegic side = 7 Left : 11 Right (mCIMT: 3 Left : 6 Right, BIT: 4 Left : 5 Right)
	Race = N/A
	Manual Ability Classification System = I – II (mCIMT: I (3) : II (6), BIT: I (1), II (8))
	Gross Motor Function Classification System = I – II (mCIMT: I (6), II (3), BIT: I (6), II (3))
Eligibility	Minimal ability to grasp with the impaired upper limb
criteria	Predominant spasticity interfering with upper limb function
	No botulinum toxin therapy in the last 6 months
	No previous surgery to the upper limb
Intervention	Each treatment received 6 hours of intervention per day for 5 days. Total dose was 30 hours. Intervention took place at a
	circus camp.
	Intervention and supervision was carried out by occupational therapists, physiotherapists and student and volunteer
	therapists. Ratio of interventionist to child was 1:2.
	Both interventions included activity based goal directed therapy using principles of motor learning. Goals were made by the
	child and family to determine intervention priorities. Intervention was given in groups (10 – 15 children)
	CIMT
	Children were constrained using an individually made glove on their non-paretic limb. Therapy and circus activities were
	preformed mainly using the paretic arm. During circus aerial activities, the glove was removed and finger of the non-paretic
	hand were taped to restrict manipulation. Other than that, the glove was only removed when going to the toilet.
	HABIT
	Children focused on activities that involved coordination of both hands using repetitive bimanual tasks.

Outcome	Measurements were taken before intervention and 3 weeks and 26 weeks post baseline
measurements	Manual Ability Classification System – Classify children into 5 levels based on their hand function in daily living
	Melbourne Assessment of Unilateral Upper Limb Function – Quality of movement of the paretic limb
	Assisting Hand Assessment – Effectiveness of the child using his/her paretic hand in bimanual activity
	Jebson-Taylor Test of Hand Function – Speed and dexterity of the upper limb
Strengths	Randomization of intervention
	No difference between populations at baseline
	No drop outs
Weakness	No follow up
	No control group
	Small sample size
	Small dose
Conclusion	Concluded that a small dose of CIMT is insufficient in improving upper limb motor outcomes.