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Abstract   

Current symptom detection methods for energy diagnosis in heating, ventilation and air 

conditioning (HVAC) systems are not standardised and not consistent with HVAC 

process and instrumentation diagrams (P&IDs) as used by engineers to design and 

operate these systems, leading to a very limited application of energy performance 

diagnosis systems in practice. This paper proposes detection methods to overcome these 

issues, based on the 4S3F (four types of symptom and three types of faults) framework. A 

set of generic symptoms divided into three categories (balance, energy performance and 

operational state symptoms) is discussed and related performance indicators are 

developed, using efficiencies, seasonal performance factors, capacities, and control and 

design-based operational indicators. The symptom detection method was applied 

successfully to the HVAC system of the building of The Hague University of Applied 

Sciences. Detection results on an annual, monthly and daily basis are discussed and 

compared.  
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Abbreviations 
ATES 
BEMS  Building energy management system 
BMS  Building management system 
DBN  Diagnostic Bayesian network 
EP  Energy performance 
F  Fault  
FDD   Fault detection and diagnosis 
HVAC  Heating, ventilation and air conditioning 
KPI  Key performance indicator 
OS  Operational state 
P&ID  Piping & Instrumentation Diagram 
S  Symptom 
THUAS The Hague University of Applied Sciences 
4S3F  Four faults and three symptoms 
 
Symbols 
COP  Coefficient of performance [-] 
E  Energy [kW] 
EER  Energy efficiency ratio [-] 
ntot  Number of detections [days, hours] 
nfault  Number of fault detections [days, hours] 
P  Power [kW] 
PF  Performance factor [-] 
SCOP  Seasonal coefficient of performance [-] 
SEER  Seasonal energy efficiency ratio [-] 
T  Temperature [oC] 
Q  Heat [kJ] 
W  Work [kJ] 
δ  Threshold outliers during a time span [%] 
ε   Deviation from expected value [%] 
 
Indices 
cond  condenser 
cw  cold water 
exp  expected 
evap  evaporator 
hp  heat pump 
hw  hot water 
LL  lower limit 
max  maximum 
mea  measured 
min  minimum 
mod  module 
reg  regeneration 
roof  roof system THUAS building 



 Page 3 of 61      

systB  ATES system (B)  
systC  heat pump system (C) 
systD  boiler system (D) 
systG  hydronic cold water system (G) 
systH  hydronic hot water system (G) 
td  thermaldynamic 
TSA  heat exchanger  
UL   upper limit 
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1. Introduction 
 
Energy use in the operational phase of buildings is higher than predicted, for instance by 

energy simulations, during the design phase, see e.g. [1]. Continuous commissioning by a 

building energy management system (BEMS) can help to reduce this unnecessarily high 

energy consumption. However, fully automated building energy analysis systems including 

fault detection and diagnosis (FDD) are not often applied in practice. An important reason 

is that these systems are not setup and implemented simultaneously with the heating, 

ventilation and air conditioning (HVAC) system. In the present article, the authors develop 

further the symptom detection - which indicates the presence of faults - part of the 4S3F 

(four categories of symptoms and three categories of faults) method for energy purposes 

and apply it to a case study of a thermal energy generation system. The 4S3F approach 

using process and instrumentation diagrams (P&IDs) remains close to the way HVAC 

experts diagnose problems. A first draft of this method, described in [2], in which the 4S3F 

architecture was tested on a simple case, presented the following four types of symptoms: 

• Balance based 

• Energy Performance based 

• Operational State based 

• Additional based 

Despite many studies of fault detection methods, there is still no classification of detection 

models with generic key performance indicators (KPIs) and associated detection rules, and 

the implications of detection time spans. The current article demonstrates the proposed 

automated symptom detection part of the 4S3F method as applied to the thermal energy 

plant of the THUAS (The Hague University of Applied Sciences) building in Delft, the 
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Netherlands, using the data in the building management system (BMS). The HVAC system 

that was considered has a gas boiler and a heat pump combined with an aquifer thermal 

energy storage (ATES) system for the storage and supply of both heat and cold. The 

analysis covers a whole year, thus examining the annual energy performance of the heating 

and cooling systems, based on 16-minute data and demonstrates the practical usability of 

the 4S3F architecture for an existing HVAC system.  

The 4S3F diagnosis basic architecture for energy performance is briefly presented in 

Section 2. Section 3 presents the pre-processing part needed for energy performance 

diagnosis, and Section 4 studies the generic approach to symptom detection. This section 

is in two parts. The first describes the KPIs and the second the rules relating to these 

KPIs. Much attention is paid to the development of suitable generic key energy 

performance and operational state indicators. Section 5 describes the HVAC system 

considered for a case study. Sections 6 and 7 describe the implementation of the symptom 

detection in the case study. Section 8 evaluates the case study results, and Section 9 

discusses the detection time span. Finally, Section 10 draws conclusions and 

recommendations concerning the implementation of the 4S3F diagnosis framework.  
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2. 4S3F architecture for Energy Performance Diagnosis 

 

2.1 BMS-data based energy diagnosis 

The generic structure of the processes in a BEMS consists of pre-processing, symptom 

detection, diagnosis and correction phases. A BEMS can be an extension of a BMS 

controlling an HVAC system. 

In the pre-processing phase, the measurement data is prepared for the calculation of 

energy performance indicators. Measurement data is obtained from the BMS (or from 

data loggers if there is no BMS) and is usually stored in a database. Such data is 

susceptible to corruption due to measurement errors (e.g. sensor inaccuracy, drifting 

sensors) or missing data. Data correction for such instances is performed in the pre-

processing phase. In addition, measurement data is not in the proper form for energy 

performance calculations. For example, thermal energy flows must be calculated from 

temperature and flow-rate sensors, missing flow rates or temperatures must be estimated 

using other BMS data and product specifications (resulting in soft sensor values; for soft 

sensors to use in HVAC systems, see e.g. [3]), and outliers must be filtered (which can be 

done automatically: see e.g. the BuildingEQ project [4]).  

In the detection phase, symptoms of malfunctioning are detected. Faults are then 

diagnosed based on the observed symptoms. The last phase is the correction phase, in 

which it is decided which faults must be corrected, based on performance and investment 

considerations. 

 

2.2 Applied 4S3F reference architecture for energy performance diagnosis 
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This section presents the broad outline of the 4S3F architecture (see [2] for a detailed 

explanation of that architecture). The automated energy performance FDD process starts 

with the detection of observable malfunctioning symptoms, based on the measurement 

points and set points in the BMS and the P&IDs which contain HVAC components and 

control components (actuators, sensors and controllers). These symptoms are categorised 

into four main types (4S), see Fig. 2.1: balance symptoms (energy, mass and pressure 

based), energy performance (EP) symptoms, operational state (OS) symptoms, and 

symptoms based on additional information, e.g. maintenance information.  

 

 

 

 

 

 

Fig. 2.1 4S3F DBN structure 

The results of the symptom detection phase are supplied to a diagnostic Bayesian network 

(DBN) model as shown in Fig. 2.1. This model links symptoms to possible faults. We 

distinguish three types of faults: faults in the models used to estimate missing energy data 

or to set up balance models, component faults, and finally faults in control components. 

We define components as being not only trade components but also all HVAC 

subsystems at different aggregation levels. The direction of the arrows is from the faults 

to the symptoms. Hence Fig. 2.1 shows which symptoms may be caused by a specific 

fault. At fault isolation in the 4S3F method, the faults are estimated from the presence 
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and absence of symptoms. The components and controls, and detection rules, can be 

easily extracted from the HVAC P&ID. The present paper addresses only the symptom 

detection part (4S) of the 4S3F framework.  
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3. Pre-processing 
  
On the one hand, the pre-process consists of estimating energy data automatically and 

continuously from the available BMS data. Missing and faulty data are corrected and 

calculations or assumptions for missing data points are made. This correction process can 

also be carried out using the 4S3F method and will be reported in another paper. In the 

case study for this paper all the data used had already been corrected and checked to be 

valid. On the other hand, an important part of the pre-process consists of the 

identification and selection of the systems considered for energy performance diagnosis. 

We propose carrying out this step once in the time interval using the HVAC P&ID and 

following the procedure described in Sections 4.1 and 4.2. 

 

3.1 Selection of the systems and subsystems 

For the purpose of energy performance diagnosis the HVAC system is divided into 

subsystems based on the availability of data that can be used to estimate relevant key 

performance indicators. We propose identifying three system levels for components: 

a. The whole HVAC system. 

b. Aggregated systems according to international classification agreements such as 

EN15316-1 [5] in which heating systems can be categorised into generator, 

distribution and emitter systems. 

c. Subsystems consisting of trade components (e.g. boiler and heat pump).  

It is essential when choosing the aggregation levels of the various subsystems that it must 

be possible to measure their performance and/or make energy balances: in other words, 

there should be enough sensors to perform the task. 
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A more detailed level (e.g. components of a heat pump such as a compressor) has not 

been considered because we assume that FDD methods are or will be available for trade 

components (see [6], which presents a review of such methods for HVAC components 

such as chillers). The 4S3F method can of course be applied easily to trade components 

as well.  
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4. Generic approach to symptom detection 
 
The symptom detection process determines the presence and absence of symptoms. As 

shown in Section 2, these can be balance, energy performance (EP) and operational state 

(OS) symptoms. We do not discuss the possibility of using additional information (e.g. 

from facility managers) as symptoms in this paper.  

Like pre-processing, symptom detection is done in two stages. Firstly, all the possible 

symptoms are listed once in the time interval during the setup of the diagnosis system, 

based on the P&ID. Secondly, symptoms are detected per hour, day, week, month or year 

(see later in this article) using automated comparison of measured values with expected 

values. 

Section 4.1 introduces generic symptom detection models which can be applied 

regardless of the HVAC system to estimate balance, EP and OS symptoms. The rules for 

this are elaborated in Section 4.2.  

 

4.1 Generic symptom detection models for thermal energy plants 

4.1.1 Generic energy balance symptoms  

As dimensionless balance indicators we use efficiencies, in terms of heat losses in the 

diverse systems and components, and mechanical efficiencies. These efficiencies follow 

either directly from the energy balances that are made concurrently in all subsystems at 

various aggregation levels as shown in Section 3.1 or from efficiency rules of heat 

exchangers (e.g. using the NTU-method, as described in [7] or compulsory seasonal 

balances (e.g. for ATES systems, see [8] which presents a review of system performance 

studies of such systems). If the useful energy output of a system is much lower than the 
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input (i.e. the efficiency is low), there is energy wasted in the system and this is a 

symptom that the system under consideration is not working properly. The number of 

systems for which efficiencies can be calculated depends of course on the measurement 

points present in the P&ID. Examples of formulas for these efficiencies are described in 

Section 7 and need to be implemented only once in the time interval. 

 
4.1.2 Generic energy performance (EP) symptoms 
 
A thorough literature study of possible energy performance factors was conducted. The 

literature includes several applications of energy performance indicators to buildings and 

their systems. Benchmarking approaches with simplified methods in which the energy 

consumptions in the buildings are compared with those of similar buildings are very 

common: for example, energy use intensity (EUI), which indicates energy consumption 

(e.g. kWh/m2) (see Chung 2011 [9] and Liu et al. [10]). However, these approaches are 

very rough and do not take advantage of the full potential of energy diagnostics, because 

they are based on the comparison of buildings and systems that are not always identical in 

design and use, and only aggregated seasonal or yearly data is used. Additionally, these 

indicators are not detailed enough to allow for the identification of HVAC-specific faults. 

Another approach, this time building-specific, is the use of black-box, grey-box or white-

box models. Kim and Katipamula [6] presented an overview of FDD methods for HVAC 

systems. Wei et al. [11], Borgstein et al. [12] and Li et al. [13] presented reviews of 

methods for energy performance purposes. Black-box models, which are data-driven 

methods using e.g. ANNs (artificial neural networks) or regression models (see e.g. [14] 

and [15]), compare the actual energy consumptions with past performances. However, it 

is impossible to estimate to what extent past performances were optimal, and the setup of 
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a data-driven model can be time-consuming. Furthermore, the practical usability of such 

models is limited, because identified correlations may not be the result of causal 

relationships and may not have a physical meaning. Moreover, taking transient effects 

into account is a complex process. In grey-box models, such as RC (resistance and 

capacity) network models for buildings and system, the diagnosis is aided by a simple 

model, the parameters of which are determined by data-driven optimisation methods (see 

for instance ABCAT [16]). The white-box approach uses complex models based on 

physics (e.g. a simulation tool such as EnergyPlus, which was applied in the KnoholEM 

project [17]). See also Maile et al. [18], where simulation tools were proposed. These 

approaches are, however, also extremely time-consuming (especially the calibration 

procedure) and depend on the availability of reliable data for a well-functioning HVAC 

system. In addition, the energy performance indicators are generally not dimensionless 

but expressed in terms of energy intensity use, whereas in design practice dimensionless 

energy performance indicators such as efficiency, coefficient of performance (COP) and 

energy efficiency ratio (EER) are commonly used (see e.g. [14]). The main advantage is 

that these indicators are building-independent and reference values can be found in 

handbooks, guidelines and product descriptions or are known from HVAC design. We 

propose combining these dimensionless indicators with a few non-dimensionless 

indicators, related to actual energy rates of components (see e.g. DABO [19]). For 

instance, inadequate heat pump capacity could lead to higher energy consumption by a 

gas boiler at peak load, and excessive capacity could lead to higher energy consumption 

due to lower performance at partial load.  
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Finally, we noticed energy waste outliers: unexpected electrical energy consumption by 

fans during non-working periods, for instance. The BuildingEQ [4] project developed 

energy signature tools to estimate deviations between actual and expected energy values. 

Based on the foregoing, we propose the following classification of key (energy) 

performance indicators: 

• Performance factors, for instance COPs and EERs. The measured COPs and EERs 

can be compared with product, design or guideline specifications. Mismatch can be 

considered as a symptom of malfunctioning. 

• Capacity indicators, which can show that inadequate or excessive capacity has been 

installed.  

• Energy outliers, which indicate energy waste.  

 

4.1.3 Generic operational state (OS) symptoms 

In addition to EP indicators, KPIs not directly related to energy amounts can be used to 

compare the operational performance of control components with preset values (e.g. 

actual temperature versus set-point temperature). DABO [19] compares actual supply 

water temperatures with set points. Several other studies [20 to 25] present examples of 

the use of energy signatures, presenting operational state values such as supply air and 

water temperatures in time series and scatter plots. 

Based on these studies, the following operational state indicators can be considered: 

- Control-based OS indicators. These check the quality of state properties against set 

points in the control system, for instance supply temperatures. Large numbers of 

wrong actual values (in comparison with the set-point value) are symptomatic of 
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malfunctioning. These control-based rules need to be defined in relation to the 

operational mode of the HVAC system (e.g. the cold well pump in the ATES system 

has to be on when the outlet cold well temperature is analysed). 

- Design-based OS indicators. There are state values that are not controlled in the 

control system but that were used as a starting point for the design of the HVAC 

system and are expected to be achieved during operation: the supply water 

temperature from the cold well of the ATES system, for instance. Comparing the 

actual values with the design values helps to identify symptoms. The fact that design 

temperatures are not met could indicate that the system is not working properly, as a 

result of wrong HVAC design or control. 

Set-point values and design values are known to the HVAC designers and generally 

referred to in the HVAC P&ID, in such a way that they can be listed very simply.  

 

4.1.4 Generic additional symptoms 

As well as the balance, EP and OS symptom indicators, additional information about 

HVAC systems can be used as symptoms, for instance: 

• Maintenance information from which a component fault can be excluded. 

• Result from an FDD method supplied by a component manufacturer. 

• User satisfaction with thermal indoor climate. 

 

4.2 Rules for symptom detection  

In practice, measurement accuracy and precision are essential factors in the accurate 

determination of symptoms. Furthermore, the transient behaviour of the HVAC 
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components affects reliable symptom detection, and the detection time interval, e.g. 

hourly, daily and annual, is of great importance.  

To deal with this, the detection rules need to use lower and upper limits for the threshold 

values. A symptom is detected when the deviation ε of an energy balance, an energy 

performance indicator or an operational state indicator ε is higher or lower than the 

threshold values εmin and εmax. Eq. (4.1) shows when the deviation ε is acceptable.  

𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚 < 𝜀𝜀  < 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚          (4.1) 

Eq. (4.2) is the equation for calculating the deviation ε in the case of energy balance and 

EP symptom detection. 

𝜀𝜀 = 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚−𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒
𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒

           (4.2) 

where:  

Xmea= measured symptom indicator. 

Xexp= expected symptom indicator. 

 

The denominator Xexp indicates a characteristic value for the symptom indicator. The 

values for εmin and εmax depend on the type of rule and HVAC design, required control 

accuracy and measurement inaccuracies. 

 

4.2.1 Rules for the detection of energy balance symptoms 

The energy balance symptoms relate to dimensionless indicators (efficiencies). 

For efficiencies Eq. (4.1) becomes with (4.2): 

ɛ= 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚−𝜂𝜂𝑒𝑒𝑒𝑒𝑒𝑒
𝜂𝜂𝑒𝑒𝑒𝑒𝑒𝑒

> 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚        (4.3) 
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For instance, εmin for efficiencies of heat distribution systems could be -5% due to 

measurement inaccuracies and transient behaviour. εmax is not relevant as it would 

indicate higher efficiencies than expected and can therefore not be considered as a 

symptom. 

 

4.2.2 Rules for the detection of energy performance symptoms 

Eq. (4.1) transformed for dimensionless performance factors is shown in Eq. (4.4): 

ɛ= 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒
𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒

> 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚       (4.4) 

where: 

PF = performance factor [-] 

 

The dimensionless performance factors can be COPs and EERs. Acceptable deviations 

for COPs and EERs could be 5% (εmin = -5%). Here too, εmax is not considered because a 

positive deviation would indicate a better COP than expected and cannot therefore be 

considered as faulty. 

For the non-dimensionless performance factors related to capacity, a symptom is detected 

when the difference between the measured value Pmea and the nominal value Pnom (e.g. the 

installed capacity) is lower than a threshold εmin or higher than εmax. See Eq. (4.5). 

𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛
𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛

< 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚      (4.5) 

εmin could be -10% whereas εmax could be higher than 10%, depending on the effect of 

component capacity on energy performance at partial load.  
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For the performance factors related to energy outliers, for instance to detect unexpected 

energy consumption by pumps outside working hours, we propose the following 

equation: 

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚−𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒
𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒

< 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚       (4.6) 

where:  

Emea = measured energy consumption [J] 

Eexp= expected energy consumption [J] 

 

4.2.3 Rules for the detection of operational state symptoms 

For operational state thresholds, we apply rules relating to the state variable under 

consideration. Eq. (4.7) shows the rule for temperatures:  

𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚 < ∆𝑇𝑇 < 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚        (4.7) 

where ∆T is the temperature deviation from the set-point or design value. 

In addition, the number of faults in a time span, for instance a week, month or year, 

should be considered. This is because a deviation occurring only a few times will not 

have a large impact on energy use, whereas if it happens often the repercussions could be 

substantial. We propose simply using the number of faulty values nfault divided by the 

whole number of measurements in the period under consideration. A symptom is 

observed when this ratio δ is larger than the threshold δmax (for instance 10%). See Eq. 

(4.8). 

𝛿𝛿 = 𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡

>  𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚      (4.8) 
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δmax is estimated separately for lower (δLL) and upper (δUL) limits of the state values 

because negative and positive deviations may be symptoms of differing faults. The lower 

limit is linked to ∆T<εmin and the upper limit to ∆T>εmax. 

 

4.2.4 Additional conditions linked to system dynamics and time spans 

Additional conditions are needed to eliminate measurement outliers and effects of 

transient behaviour. In addition to threshold, the dynamic of the system under 

consideration should be taken into account. An additional condition could be that only 

measurements after a certain time span are taken into account. Also, a generator’s energy 

and temperature measurements are considered only when the generator is on. 

Detection can take place at very different time intervals, from the storage interval in the 

BMS to annually. Using a small interval (such as the 16-minute storage interval in our 

case study) does not necessarily yield better symptom description, as this interval may be 

far below the response time of many components and would therefore necessitate the use 

of dynamic indicators. For instance, calculating a COP on the basis of 16-minute data 

makes no sense, as the COP is low at startup because the generator and hydronic systems 

have to be warmed up or cooled down. In the same way, the COP is very high when the 

generator is stopped and thermal energy is still being delivered by the hydronic systems. 

Conversely, aggregating the data at annual level substantially limits the possibilities for 

intervention, and some malfunctioning processes may not be observed. For a real-time 

diagnosis system, time periods of one hour, day, week or month are therefore preferable. 

This is discussed in Section 9. When to use which period is beyond the scope of this 

paper, but an automated approach in which detection at different time levels is used will 
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be preferable in practice. For the sake of demonstration, Section 7 presents symptom 

detection results in the case study on an annual basis only for balance, energy 

performance and operational state indicators as well as the threshold values and 

additional conditions used. 
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5. Case study: the heat and cold generation system of the building of The Hague 
University of Applied Sciences in Delft 
 

The 4S3F method was tested on the THUAS building in Delft. This was selected because 

it has a complex HVAC system with an advanced control system, and extensive 

measurement data is available for analysing energy consumption and indoor climate. In 

addition, it is an operational HVAC system with a reputation for working properly and 

apparently being energy efficient. 

The building mainly contains classrooms, offices for lecturers and other personnel, and a 

restaurant.  

 

 

 

 

 

 

 

Fig. 5.1 Inside the THUAS building  

 

In winter, heat is generated by a heat pump. When the heat loads are high, a gas boiler 

can deliver additional heat. The heat source of the heat pump is warm water delivered by 

the warm well of an ATES system. The ATES system can also deliver heat to the parking 

lane on the roof to keep it free of ice. Such ATES systems are common in the 
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Netherlands: more than 2,000 of them have been installed in recent years and their 

operation is known to be often sub-optimal. 

In the summer months, cold water from the cold well of the ATES system delivers 

cooling. When cooling loads are high, the heat pump produces additional cold at the 

evaporator side. During the summer, heat from the heat pump condenser and the roof 

collector can be used to regenerate the warm well of the ATES system, as the annual 

thermal energy extracted from and pumped into the wells has to be balanced under the 

Dutch regulations.  

As the 4S3F framework is based on HVAC P&IDs, Fig. 5.2 shows the overall principal 

P&ID layout with all the possible heating and cooling states of the HVAC system. The 

systems depicted are connected by lines which represent pipes. Each system has inlet and 

outlet pipes. The outlet pipes of the thermal energy plant are themselves supply pipes to 

the systems (34 to 38) and the inlet pipes of the energy plant are return pipes from these 

systems. Cold and heat are delivered to the rooms of the building by a thermal floor 

system which acts as a Thermally Activated Building System (TABS) and by ceiling 

radiation panels where water is circulated. The hot water groups (34) and (35) as well the 

cold water groups (36) and (37) consist of South and North groups which are divided into 

sub-groups (not shown) for air handling, the ceiling and the floor equipment.  

Heat is produced by a heat pump (12) and a boiler (33). The heat pump extracts heat from 

the ATES system. Warm groundwater flows from the warm well (32) to the cold well 

(31) and delivers heat through a heat exchanger (8). When more heat is needed than the 

heat pump can deliver, the boiler provides the rest. The existing buffers (6), (10) and (16) 
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are needed for the stable functioning of the HVAC installation when operating under 

partial load. 

A heat regeneration system, comprising subsystems (17) to (19), is provided to feed 

additional heat into the warm well of the aquifer system. Because the THUAS building 

needs more heat than cold, this is necessary (and mandatory) to keep both wells in 

thermal balance.  

The hot water header (14) delivers heat to the boiler header (21), to the heat storage 

vessel (16) and to the regeneration unit (17). The return water is collected in the collector 

(15). 

The main cold water header (4) delivers cold water to the header (1) and to the heat 

exchanger of the ground storage installation (8). The cold water header (5), which acts as 

a collector of warmed up return cold water from the building and the heat exchanger of 

the ATES system, delivers warm water to the roof (39) (so as to keep it ice-free) and to 

the evaporator group (11) of the heat pump (12). In the summer, the roof delivers also 

heat to the warm well of the ATES system. 

The header (1) in the cooling group delivers cold to the building sections and Air 

Handling Units located with a North (N) and South (S) orientation ((36) and (37)), and 

also to a server room (MER) (38). 

The sensors and actuators are the ones that were installed when the system was built in 

2009. Fig. 5.2 shows 42 temperature sensors and 13 flow meters. There is also thermal 

energy metering (not shown) in the hot and cold water groups, at systems (3), (27), (28), 

(17), (21) and (22). Pressure metering (also not shown) is provided for the control of 

pumps CP28-01, CP28-02, CP29-01 and CP29-02. The electricity consumption of the 
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heat pump compressor (40) is measured by meter ET04-01. These measurements are 

stored in the BMS at 16-minute intervals. The codes of the sensors and actuators 

(beginning with 02 to 48) as implemented in the BMS were supplied by the designer of 

the HVAC system.  

An entire year, 2013, was taken for the case study because of the availability of an almost 

complete dataset. 

System and subsystem selection will be outlined in Section 6 and symptom detection in 

Section 7. 

 
 

Fig. 5.2 Principal scheme (P&ID) of the heat and cold generation system of HHS 
(controllers are not depicted) 
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6. System and subsystem selection in the case study 
 
The whole HVAC system considered in the case study is shown in the P&ID of Fig. 5.2 

and represented by the system boundaries depicted by the dotted line in Fig. 6.1. 

Aggregated systems at level b), as described in Section 3.1, are arranged in Fig. 6.1 into 

generator (systems B, C and D), hydronic (systems G and H) and emitter systems 

(systems A, E and F). In this figure the work W02, W03, W04, W07 and W08 

corresponds to the work of pumps CP02_01 and CP02_02, CP03_01, CP04_01 and 

CP04_02, CP07_01 and CP08_01, shown in Fig. 5.2. The compressor work of the heat 

pump Whp is measured by electricity meter ET04_01. 

Generator systems Hydronic systems Emitter systems 

 

 

Fig. 6.1 The relevant aggregated systems at Level a) (red dotted line, whole system) and 

at Level b) consisting of systems A to H 

 

The subsystems (components) at level c) are shown by the numbers (1) to (40) in Fig. 5.2. 

This division into systems and subsystems follows directly from the HVAC P&ID and is 

therefore very easy to implement for designers of HVAC systems.  
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7. Symptom detection in the case study 

This section applies the principles developed in Section 4 to the case study and shows the 

main detection results. We refer to the tables in Appendix A, which provide more 

detailed information on the detection process. 

For the sake of simplicity, a detection period of one year has been taken. We consider 

shorter detection periods in Section 9. First, we address the balance symptoms (Section 

7.1), then the energy performance symptoms (Section 7.2), and finally the operational 

state symptoms (Section 7.3). Section 7.4 discusses the symptoms present and absent in 

the case study. 

 

7.1 Energy balance symptoms in the case study 

The energy balance indicators (efficiencies (η)) specific to the HVAC system of THUAS 

are presented below.  

For the once-in-the-time-interval implementation in the BEMS to calculate the 

efficiencies, the heat transfer ΔQ between systems was calculated using Eq. (7.1) for each 

16 minutes, based on the flow rates and temperatures at the start time of each 16-minute 

interval.  

∆𝑄𝑄 = 𝑞𝑞𝑉𝑉.𝜌𝜌. 𝑐𝑐.∆𝑇𝑇 .∆𝑡𝑡          (7.1) 

where: 

∆Q = exchanged heat [kJ] 

∆t = tend-tstart= 960 s. 

tend= end-time calculation stored in BMS [s] 

tstart= start-time calculation stored in BMS [s] 
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qV= water flow rate at start time [m3/s] 

ρ= water density = 1000 kg/m3 

c=specific heat of water = 4.18 kJ/kgK 

∆T= difference between supply and return temperatures at start time [K] 

Eq. (7.1) can easily be programmed once in the BMS or in a separate BEMS when setting 

up the diagnosis system based on the P&ID. The efficiencies of the systems during a 

certain period are then calculated based on these ∆Qs. For instance, the efficiency of 

system H (see Fig. 6.1 which shows the annual exchanged energy values) is calculated 

using:  

ηH= 𝑄𝑄ℎ𝑤𝑤+𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄_𝑚𝑚𝑚𝑚𝑚𝑚+𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄_𝑚𝑚𝑚𝑚𝑚𝑚+𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄_ℎ𝑤𝑤

       (7.2) 
 

We assume an expected efficiency of ηexp=98% (i.e. 2% heat losses) for all thermal 

energy balances, and a symptom when the arbitrary threshold εmin =-3% is exceeded. This 

means that when using Eq. (4.3), a symptom is detected when the efficiency is lower than 

95%. One exception is made for the ATES system. The expected efficiency ηexp is set to 

96% because of dissipation by the ATES pumps and higher thermal energy losses 

underground, which leads to symptom detection when the efficiency is lower than 93%. 

In addition to these efficiencies based on the application of system theory to the HVAC 

P&ID, efficiencies relating to heat exchange performance can be defined.  

Eq. (7.3) is the equation for the annual efficiency of the heat balance of the ATES system 

(depicted in Fig. 6.1) which under the Dutch regulations needs to be 100%. Please note 

that ηreg, which is discussed in [26], can only be used in the case of annual analysis. 

𝜂𝜂𝑟𝑟𝑟𝑟𝑟𝑟 = 1− 𝑎𝑎𝑎𝑎𝑎𝑎(𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄−𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄)
𝑚𝑚𝑚𝑚𝑚𝑚 (𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄,𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄)

     (7.3) 
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Eq. (7.4) shows the annual efficiency of the heat exchanger of the ATES system (see Fig. 

6.1 and system 8 in Fig. 5.2, which shows the heat exchanger (8) and sensors TT02-01, 

TT02-02 and TT03-03), based on temperature efficiency instead of the NTU method (this 

is an arbitrary choice). 

ηTSA = Qunload
Qunload,max

= ∑(TT02_01−TT02_02)
∑(TT02_01−TT03_03)

    (7.4) 

According to the design, this efficiency should be at least 87%. It is assumed that a 

deviation threshold of 5% is acceptable. 

 

7.2 Energy performance symptoms in the case study 

This section presents the equations used to estimate the EP factors for performance 

factors, capacities and energy outliers. 

 

7.2.1 Performance factors 

Eqs. (7.5) to (7.7) show the performance factors for the aggregated systems under 

consideration: the hot water system E, the cold water system A and the roof system F. 

SCOPhw is the seasonal COP for the heat supply to the hot water system E. SEERcw 

(Seasonal energy efficiency ratio cold water) defines the ratio between the cold supply to 

the cold water system A and the energy consumption of the heat pump and the pumps in 

cooling mode. SCOProof denotes the SCOP for the roof heating. See Fig. 6.1, which 

shows the energy amounts. 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑤𝑤 = 𝑄𝑄ℎ𝑤𝑤

𝑊𝑊ℎ𝑝𝑝+𝑊𝑊02+𝑊𝑊03+𝑊𝑊04+𝑊𝑊07+𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄
        (7.5) 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑄𝑄𝑄𝑄𝑄𝑄

𝑊𝑊ℎ𝑝𝑝+𝑊𝑊02+𝑊𝑊03+𝑊𝑊04
      (7.6) 
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄_𝑐𝑐𝑐𝑐
𝑊𝑊14+𝑊𝑊02+𝑊𝑊03

      (7.7) 
 

W14 is the work of the pumps in the roof collector group (not shown in Fig. 5.2 or Fig. 

6.1). It only includes Whp, W02, W03, W04, W07 and W14 by the heat pump and the 

pumps needed for the thermal energy Q under consideration. 

Eqs. (7.8) and (7.9) show the SCOP and SEER for the heat pump.  

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑝𝑝 = 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄_𝑚𝑚𝑚𝑚𝑚𝑚

𝑊𝑊ℎ𝑝𝑝
       (7.8) 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑝𝑝1 = 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄_𝑚𝑚𝑚𝑚𝑚𝑚

𝑊𝑊ℎ𝑝𝑝
      (7.9) 

 
Eq. (7.10) defines the SCOP for heat regeneration. SCOPreg can be considered as a 

generic energy performance factor for ATES systems. W14, W08 and W02 are the pump 

energy for heat regeneration purposes. 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄

𝑊𝑊14+𝑊𝑊08+𝑊𝑊02
      (7.10) 

 
When the heat pump is simultaneously generating cold and heat for the emitter systems 

A, E and F, the electricity is divided proportionally based on the thermal energy supplied 

to systems A, E and F.  

In this paper, we assume that a symptom is present when the measured SCOP or SEER is 

5% lower than the expected value. International references for performance factors are 

not available, as the ATES system in the THUAS building is typical for the Netherlands. 

For the expected value, such as PFexp in Eq. (4.4), we therefore use the Dutch guideline 

                                              
1 Here we define SEER as the seasonal quotient of heat supplied to the evaporator of the heat pump and the 
work supplied when the heat pump functions simultaneously in both heat and cold production mode. 
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ISSO 39 [27], which describes thermal energy generation plants with ATES systems. 

These expected values can be found in Table A.2. 

7.2.2 Capacities 

The actual capacities can be determined by identifying the maximum heat flows P 

occurring during the measurement period. These values are compared with the nominal 

power of the apparatus and the heat and cold demand (see Table A.2). A threshold of 

εmin=-10% is applied. Positive deviations would show that the system is working better 

than expected and are not therefore considered as symptoms. 

 

7.3 Operational state symptoms in the case study 

The approach using OS rules is also generic and can be set up once, for instance using a 

guideline. In most cases the thresholds are specific and need to be programmed only once 

in the particular BEMS, although default values can be used as well. Only design values 

of the temperature type are used in this paper. It goes without saying that far more rules 

than shown in this paper can be implemented: for instance, concerning pump flows and 

the heat shares delivered by the heat pump and boiler, or the cold delivered by the ATES 

system and the heat pump, or comparisons between design water flow values and 

measured values. We have omitted this from the present paper for the sake of simplicity.  

Control-based rules are described first with the results of the detection process, followed 

by design-based rules for the year considered. As an additional condition, the measured 

values are considered if the system under consideration is operating for at least 30 

minutes. 



 Page 31 of 61      

The detection period is a full year. For every day the mean weighted measured 

operational state value is calculated using the 16-minute values. If there are no measured 

values, that day is ignored. Thus we have at most ntot=365 in the detection period under 

consideration in Eq. (4.8). 

 

7.3.1 Control-based rules 

In the case study we consider the control set points of the systems’ inlet and outlet 

temperatures. The supply water temperature of the hot and cold water emitter systems E 

(Thw_supply) and A (Tcw_supply) is set by the control system. In addition, the outlet 

temperatures of the water to the evaporator (Tevap_out) and condenser (Tcond_out) from 

the heat pump have specific set-point values. The inlet water temperatures to the cold and 

warm wells of the ATES system (Tcold_well_in and Twarm_well_in) are also controlled.  

In the case study the average daily deviation ε=ΔT, as shown in Eq. (4.7), is calculated to 

estimate OS symptoms. When the additional conditions mentioned in Section 4.2.4 are 

met, the value 1 is added to the counter ntot in Eq. (4.8) for the whole year. In addition, a 

detected symptom is counted as 1, otherwise as 0, and added to the annual fault counter 

nfault in Eq. (4.8). 

For the supply temperatures in the hot water circuit the assumed threshold εmax is 3 K, 

due to control accuracy and transient behaviour. However, the control of the cold water 

has to be more accurate, as these values greatly affect the performance of the ATES 

system. Accurate cold water controls are therefore provided, with three-way valves as 

actuators. An arbitrary threshold of 1 K is thus taken into account.  
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The inlet temperatures to the warm and cold wells of the ATES are essential and 

therefore controlled strictly, yielding an assumed threshold of 1 K. 

Table A.3 shows the controlled values, which are derived from the design specification of 

the HVAC system of the THUAS building as shown in the HVAC P&ID.  

 

7.3.2 Design-based rules  

For the design-based rules we consider the water temperatures of systems A, B, C and E, 

for which either the inlet or outlet design temperatures are known. These temperatures are 

not controlled. We assume the same thresholds that have been applied to the control-

based temperatures, i.e. 3 K at the warm water side and 1 K at the cold water side. 

Table A.4 does not show the lower limit δLL and the upper limit δUL everywhere: where 

they are absent, the threshold can be ignored because negative and positive deviations 

have different meanings. For instance, if Thw_return is too low it will not decrease the 

COP of the heat pump, whereas it will if it is too high. In the same way a higher 

Twarm_well_out and Tevap_in are favourable. And a high Tcw_return helps to feed 

high-temperature heat into the warm well of the ATES system. Finally, a low 

Tcold_well_out is desirable to avoid additional cooling by the heat pump. These rules are 

generally known by HVAC designers. 

 

7.4 Symptoms detected in the case study 

Appendix A shows results from the symptom detection process, which are discussed 

below. 

Results from energy balances 
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Table A.1 shows the results for energy balance symptoms. Rules for the efficiencies η of 

the systems B to D and G and H do not generate symptoms, because all the annual 

deviations remain higher than εmin during the year under consideration. The heat 

exchanger TSA of the ATES system also shows no symptoms, but the efficiency ηreg is 

far below the expected value, showing that the ATES system is unbalanced.  

Results from energy performances  

The results and reference values for the detection of EP symptoms are shown for the year 

2013 in Table A.2. Most of the EP indicators are true, even better than the reference 

values, indicating high performance. For the SCOPs and SEERs, no symptoms are 

detected, except for SCOProof, which is more than 5% lower than the expected value. 

In terms of capacity, most of the measured values are almost the same as the designed 

values. However, the maximum heat transfer power produced by the heat exchanger of 

the ATES system is much lower than the designed value and a symptom is therefore 

found. The capacity of the cold water system A is also lower than designed and a 

symptom is detected here too. Symptoms of energy outliers were not found and are not 

therefore reported in Table A.2. 

Only three EP factors are false and should be considered as symptoms: SCOProof, Pcw 

and PTSA.  

Results from operational states 

The detection process (see Table A.3) reveals a symptom of malfunctioning for four 

operational states: for the supply temperatures of the hot water system E, the cold water 

system A and the inlet temperatures of the cold water well and warm water well. Table 
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A.4 summarises the design-based rules for detection purposes and the results of the 

detection process. One symptom is detected: the outlet temperature from the warm well. 

 

Overview of the symptoms detected 

Table 7.1 summarises the results of the annual detection process.  

 

Table 7.1 Overview of the detection results (P= symptom detected, A symptom absent) 

As can be seen, nine symptoms were automatically detected as present and 22 as absent.  

Energy balance 

symptoms 

Energy performance symptoms Operational state symptoms 

Efficiency A/
P 

Performance 
factor 

A/
P 

Capacity 
 

A/
P 

Control-based  A/ 
P 

Design-based A/
P 

ηsystB A SCOPhw A Phw A Thw_supply P Thw_return A 

ηsystC A SEERcw A Pcw P Tcw_supply P Tcw_return A 

ηsystD A SCOProof P Php A Tcond_out A Tevap_in A 

ηsystG A SCOPreg A Proof A Tevap_out A Tcold_well_out A 

ηsystH A SCOPhp A Preg A Tcold well_in P Twarm well_out P 

ηTSA A SEERhp A PTSA P Twarm_well_in P   

ηreg P   Pboiler A     
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8. Evaluation of the results of the automated symptom detection process 

For the analysis of the results on an annual basis, the 16-minute and daily data from the 

BMS were analysed using energy signature graphs for the whole year 2013, which are 

presented in Appendix B. Below we discuss the results from some of these energy 

signature graphs. In addition, interviews were conducted with the building manager and 

log books were consulted which did not lead to additional symptoms. 

 

8.1 Evaluation of energy balance symptoms 

In addition to the annual efficiencies as shown in Fig. A.1, the daily efficiencies of 

systems B, C, D, G and H are estimated (see Fig. B.1). Most deviations remain under the 

set thresholds, which supports the reliability of the annual detection results for the energy 

balance symptoms. 

 

8.2 Evaluation of EP symptoms 

8.2.1 Performance factors 

The daily COP and EER values of the heat pump fluctuate realistically (see Fig. B.2) 

around the set thresholds with some outliers. The main causes of these outliers are 

transient behaviour and the fact that the actual COPs and EERs depend on varying water 

temperatures.  

The SEERcw (60) (see Table A.2) was much higher than expected. Additional analysis of 

the energy data showed that cold was only provided by the cold well of the ATES system, 

whereas it was expected during design that the heat pump would deliver 10% of the cold, 

yielding a lower SEERcw of 40. 
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8.2.2 Capacities 

As for the capacities, 16-minute capacities were checked for the whole the year using 

graphs and symptoms were not missed. The inadequate capacity of the heat exchanger of 

the ATES system (PTSA) was correctly diagnosed (see Fig. B.3, which shows the 16-

minute graph): the actual capacity remains far below the design value (840 kW) 

throughout the year.  

 

8.3 Evaluation of OS symptoms 

Visual inspection of the energy signatures for the control-based and design-based 

operational states (see Figs. B.4 to B.16) shows that they are close to the set point where 

symptoms are absent.   
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9. Detection time span 

The detection process is described in Section 7 for a period of one year. However, where 

a symptom was found, it is quite clear, as the graphs in Appendix B show, that daily, 

weekly or monthly analysis could have enabled the symptoms to be found earlier. 

Conversely, a short period-level analysis can lead to the identification of a symptom that 

ultimately rarely occurs (for example, 3.1% of the days in Fig. B.7). It is conceivable that 

the BEMS would simply warn that there is a potential fault and would only report a real 

problem after successive days, e.g. by using moving average methods, taking previous 

results into account to exclude temporary sensor outliers and effects of transient 

behaviour. This section discusses the use of shorter detection periods. We present results 

from monthly and daily symptom detection using rules from Section 7.  

 

9.1 Monthly and daily detection of energy balance symptoms 

Monthly detection 

Table C.1 shows that outliers are not found for systems B, C, G and H using monthly 

detection based on Eq. (4.3). However, the boiler system D shows two outliers. We note 

that the exchanged energy of the boiler system was estimated using soft sensors for the 

flow rate and the return temperature at the boiler header (shown as (21) in Fig. 5.2), 

which introduces inaccuracies. The presence of hard sensors could lead to lower 

deviations. 

Daily detection 
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Daily detection for energy balance symptoms (see Fig. B.1) yields reasonable results. 

Only five false detection results were found, i.e. five outliers in 1825 detection results 

(<0.3%). 

 

9.2 Monthly and daily detection of energy performance symptoms 

Here we discuss the detection time span for EP symptoms. EP symptom detection is more 

complicated in monthly and daily detection due to the effects of operational conditions. 

 

9.2.1 Performance factors 

First, we address performance factors. As an example we discuss the COP of the heat 

pump because this is one of the most important KPIs of the thermal energy plant. As this 

COP is strongly dependent on outdoor temperature levels, it is not acceptable to use the 

annual expected value, such as SCOPhp=4 in Table A.2 (see Fig. B.2), which shows 

many outliers. The effects of the water temperatures at the heat pump’s evaporator and 

condenser, which are highly dependent on outdoor temperatures, must be considered. The 

thermodynamic efficiency ηtd for several conditions could be estimated using the 

documentation on the heat pump installed. In the range of operational water temperatures 

in the case study they are between 0.37 and 0.39. Multiplying an assumed value of 0.38 

by the COP of the Carnot process yields the expected performance COPexp: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜂𝜂𝑡𝑡𝑡𝑡 .𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝜂𝜂𝑡𝑡𝑡𝑡 . 𝑇𝑇ℎ𝑖𝑖𝑖𝑖ℎ
𝑇𝑇ℎ𝑖𝑖𝑖𝑖ℎ−𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙

      (9.1) 

where: 

Thigh=Tcond_out and Tlow=Tevap_out at which ηtd is calculated. 

Monthly detection 
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As can be seen from Table C.2, from June to August symptoms for the heat pump were 

incorrectly detected as present. However, in those months the heat pump was off most of 

the time. Transient behaviour strongly affected the results. To neglect this effect, we 

propose ignoring detection results from months in which a component is off most of the 

time. 

Daily detection 

Fig. 9.1 shows a part of the daily COP of the heat pump and the expected values, taking 

thresholds of 5% into account. Here again the upper and lower limits are calculated based 

on Eq. (9.2) for the thresholds. The measured values are showed in blue.  

 

Fig. 9.1 Daily COP of the heat pump system 

 

As can be seen, the actual daily COP follows the expected COP. The heat pump was on 

for 165 days, with the upper limit exceeded by 21 days and the lower limit by 37 days, 

caused by transient behaviour and variation in the heat pumps’ thermodynamic efficiency 

ηtd.  
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9.2.2 Capacities  

We take the boiler capacity as an example to show the monthly maximum heat flux in the 

gas boiler. There is no point in detecting capacity symptoms on a daily basis, because the 

nominal capacity is only achieved under full load conditions, which are not present every 

day. However, Table C.3 shows for example that the boiler capacity can be detected 

correctly for the winter months, when there is significant heat consumption by the boiler.  

 

9.3 Monthly and daily detection of operational state symptoms 

Monthly detection 

The number of hours is considered in monthly detection, as opposed to the number of 

days in annual detection. Only hours that meet the additional condition that the system is 

on for 30 minutes are considered. Table C.4 shows for example results for Tcond_out, 

Tcw_supply and Tcold_well_in. False detections are highlighted in yellow. 

Tcold_well_in shows no false detection results. However, Tcond_out and Tcw_supply 

are incorrectly detected as present or absent in some months, which may be due to 

assumed thresholds that are too low and transient behaviour.  

Daily detection 

Daily detection of operational state symptoms based on Eq. (4.7) makes no sense because 

we know from Fig. B.4 to B.14 that this yields many wrong detections.  

 
 
9.4 Conclusions and recommendations for daily and monthly detection time spans  
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Overall, we note that daily detection of energy efficiencies yields acceptable detection 

results. The outliers for the boiler system efficiencies show the need to avoid complex 

soft sensors as much as possible. In the case of new HVAC systems, the necessary 

measuring points must be present to avoid complex models for estimating exchanged 

energy quantities.  

Research into additional conditions as mentioned in 4.2.4 is needed: for instance, to take 

into account hours in which the exchanged energy is higher than a certain threshold. This 

would avoid incorrect monthly detections of the COP of the heat pump and the boiler 

capacity, as shown in Appendix C. However, it would also be possible to start up the 

energy plant, e.g. daily, weekly or monthly, at different full load modes to estimate 

symptoms earlier. 

To increase the reliability of the detection results, especially when using daily detection, 

we propose researching the use of smoothing techniques which calculate the average 

deviation based on two or more days, to compensate for daily outliers. In addition to a 

CUSUM (cumulative sum control chart), one could apply the EWMA (exponentially 

weighted moving average) chart method (see [28] for implementation).  

We also recommend researching the application of this to daily binary detection 

outcomes (e.g. -1: too low, 0: correct, 1: too high).  

Daily detection of the capacities of thermal energy systems makes no sense because full 

load does not occur every day and start-up every day requires a great deal of energy in 

full-load mode. However, this is a realistic solution for distribution systems (pump, fans 

and valves). 
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Another approach which is applicable to all KPIs is to give a warning that could not lead 

to direct action on the part of the technical manager or to an automated fault diagnosis. 

Diagnosis could take place after structural false detections.   
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10. Conclusion and recommendations  

Current symptom detection methods for energy diagnosis in HVAC systems are not 

standardised and there is still no classification of detection models with generic key 

performance indicators and associated detection rules. This paper presents a classification 

of symptoms into three categories: balance, energy performance and operational states, 

that covers a large part of encountered symptoms.. Detection models and KPIs are 

developed for these 3 categories. Generic detection rules for energy diagnosis in heating, 

ventilation and air conditioning (HVAC) systems are proposed which are consistent with 

HVAC process and instrumentation diagrams (P&IDs) as used by engineers to design and 

operate these systems. It has been applied successfully to the thermal energy plant of the 

THUAS school building. One whole year was taken as the detection period. However, 

monthly and daily detection also yielded adequate results. Section 10.1 summarises the 

results for the detection framework in more detail and Section 10.2 draws conclusions 

from the case study. Section 10.3 proposes recommendations for the standardisation of 

symptom detection. 

 

10.1 Results of the detection framework based on the 4S3F method 

The proposed framework for energy performance analysis falls into four phases: pre-

processing, detection, diagnosis and correction. This article focuses on the symptom 

detection phase based on the 4S3F architecture, which contains four types of symptoms 

and three types of faults. The three main types of symptoms are discussed, and rules and 

thresholds are developed: 

• Balance symptoms: efficiencies. 
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• Energy performance (EP) symptoms: performance factors such as COPs and EERs, 

capacities such as nominal heat and cold rates and flow rates, and energy outliers such 

as unexpected energy consumption. 

• Operational state (OS) symptoms: control-based symptoms such as controlled supply 

temperatures, and design-based symptoms such as expected return temperatures from 

energy users. 

The approach discussed is congruent with the way engineers design an HVAC system. 

The HVAC designer uses the P&IDs for detection purposes. In the pre-processing phase, 

systems and aggregated systems are determined once by the HVAC designer. For the 

detection process, the same HVAC designer must list all the possible symptoms (balance, 

EP and OS based) once that could be occurring in the system based on the measurement 

points in the P&ID. Each of the symptoms relates to the equations and models described 

in the present paper, which could easily be compiled into a standard guideline. 

The detection process can be fully automated by using generic detection models for 

aggregated systems such as generator, hydronic and emitter systems. These equations 

have to be programmed in the BEMS once, preferably producing symptoms at day, week, 

month, season and annual level.  

The next step is to use these symptoms to identify the faults causing them, using the 4S3F 

methods and DBNs: this will be discussed in detail in another paper. However, the simple 

fact of having an automated symptom detection system covering a wide range of 

parameters is already very helpful for energy performance diagnosis.  

 

10.2 Conclusions from the case study 
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The case study successfully demonstrated the symptom detection part of the 4S3F 

framework for a thermal energy plant with an ATES system. One whole year, with 16-

minute time interval, historical data was examined to show how symptoms leading to 

faults can be detected automatically.  

The evaluation has shown that no symptoms were overlooked or incorrectly detected. 

Section 9 discussed time spans shorter than one year, showing that the proposed symptom 

detection method can be used for daily and monthly detection, provided that the 

recommendations in Section 9.4 are followed.  

In our case study, an HVAC commissioning engineer would focus on the nine symptoms 

detected to optimise the system. In a subsequent paper, we will show that by redesigning 

the control rules a 25% annual primary energy saving could be achieved in the case 

study, which is a thermal heat plant with a reputation for working well. This indicates that 

far more energy savings would be possible if such symptom detection methods were used 

more widely. 

 

10.3 Recommendations for further research  

Although the results are promising, further research is needed. We have not considered 

developing the fault identification model with a DBN included in the 4S3F framework 

here. 

Further research is needed into the question of which threshold values should be used for 

the KPIs and that of which symptom detection period (hourly, daily or seasonable) is 

needed for which systems and subsystems. Given the question of KPI thresholds, 

research into dynamic KPIs for hourly and daily detection is recommended. It also needs 
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to be examined whether the HVAC can be started up automatically daily, weekly or 

monthly by the BMS in different HVAC modes to hasten the detection of symptoms.  

In addition, a guideline on the minimum BMS dataset needed to estimate energy amounts 

to and from systems would be helpful. It could be worthwhile to expand the list of 

symptoms: for instance, with OS symptoms concerning flow rates, valves and pumps. 

Additional symptoms from maintenance logbooks and commissioning reports were not 

taken into account but could offer additional possibilities. 

For automation purposes, a generic library of symptom detection models is needed from 

which EP models can be selected in a specific case. A start has been made in this paper. 
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Appendix A Threshold values and results from annual detection 

This appendix presents information on threshold values for the four types of symptoms in 

the 4S3F method in tables. Detection results from annual detection are also presented.  

As shown in Table A.1, a symptom is present (depicted as P) for ηreg. The other 

symptoms are absent (A). 

 

Table A.1 Annual detection results: energy balance symptoms 

(A: symptom absent; P: symptom present) 

System Efficiency Efficiency in 
accordance with 
guideline ISSO 39 [27] 
or design 

Measured 
efficiency 

Symptom 
detection 

ATES system (B) ηsystB 0.93 0.94 A 
Heat pump system (C) ηsystC 0.95 0.95 A 
Boiler system (D) ηsystD 0.95 0.95 A 
Hydronic cold water 
system (G) 

ηsystG 0.95 0.99 A 

Hydronic cold water 
system (H) 

ηsystH 0.95 0.98 A 

ATES system (B)  ηTSA 87% 97% A 
ATES system (B)  ηreg 1 0.63 P 

 

Table A.2 presents the results for the energy performance factors (EPFs). 

 

Table A.2 Measured annual EPFs and reference annual EPFs 

(A: indicates symptom absent; P: symptom present) 

System EP factor EP factor in accordance 
with guideline ISSO 39 
[27] or design 

Measured 
SPF 

Symptom 
detected 

Whole system  
(B to D, and H and 
G) 

SCOPhw 3  3 A 

Whole system  SEERcw 40  60 A 
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(B to D, and H and 
G) 
ATES system (B) SCOPreg 20 22.3 A 
Heat pump system 
(C) 

SCOPhp 4 4.5 A 

Heat pump system 
(C) 

SEERhp 3.2 3.6 A 

Roof system (F) SCOProof  20 16.7 P 
Hot water capacity 
(E) 

Phw 597 540 A 

Cold water 
capacity (A) 

Pcw 742 450 P 

Roof collector 
capacity (F) 

Proof 576 kW 531 kW A 

Heat pump 
capacity (C) 

Php 247 kW 270 kW A 

Gas boiler capacity 
(D) 

Pboiler 327 kW 400 kW A 

Capacity of heat 
exchanger TSA 
from ATES system 
(8) 

PTSA 840 kW 590 kW P 

Heat regeneration 
capacity of ATES 
system (B) 

Preg 237 kW 250 kW A 

 

Tables A.3 and A.4 present results for operational state symptoms. As can be seen, five 

operational state symptoms were detected. 

 

Table A.3 Thresholds for set-point values and symptoms of control-based indicators  

(A: symptom absent P: symptom present) 

 Controlled value Measured by 
sensor  
(see Fig. 3.6) 

Thresholds Symptom 
detected 

Hot water supply 
(E) (Thw_supply, 
Fig. 5.2.) 

Winter mode: varying 
linearly between 45 and 35oC 
at outdoor temperatures 
between -10 and 15oC. 
Summer mode: 30oC 

TT28-02 εmax= 3 K δ [%] 
δLL=10% 11.1 P 
δUL=10% 0.9 A 
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Cold water supply 
(A) 
(Tcw_supply, Fig. 
5.3.) 

Varying linearly between15 
to 11oC at outdoor 
temperatures between 15 and 
25oC 

TT29-02 εmax = 1 K δ [%] 
δLL=10% 0.5 A 
δUL=10% 
 

22.8 P 

Outlet of cold 
water heat pump 
(C) (Tcond_out, 
Fig. 5.4) 

8.5oC in winter mode  TT04-01 εmax = 3 K δ [%] 
δLL=10% 3.1 A 
δUL=10% 4.0 A 

Outlet of 
evaporator (C) 
(Tevap_out, Fig. 
5.5) 

7oC in winter mode TT04-04 εmax = 1 K δ [%] 
δLL=10% 0.9 A 
δUP=10% 3.1 A 

Inlet of cold water 
well (B) 
(Tcold_well_in, 
Fig. 5.6)  

7.5oC  TT02-01 εmax = 1 K δ [%] 
δLL=10% 0.0 P 
δUL=10% 68.5 A 

Inlet of warm water 
well (B) 
(Twarm_well_in, 
Fig. 5.7) 

17.5oC, 20oC in regeneration 
mode 

TT02-03 εmax = 1 K δ [%] 
δLL=10% 18.9 P 
δUL=10% 8.3 A 

 
Table A.4 Thresholds for design-based indicators and symptom detection  

(A: symptom absent P: symptom present) 

 Design value Measured by 
sensor (see 
Fig. 3.6) 

Thresholds No symptom 
detected 
δ [%] 

Hot water return (E) 
(Thw_return, Fig. 5.8) 

35oC in winter 
mode, 24oC in 
summer mode 

TT28-03 εmax = 3 K 
δUL=10% 

69.9 A 

Cold water return (A)  
(Tcw_return, Fig. 5.9) 

19oC TT29-04 εmax = 1 K 
δLL=10% 

9.2 A 

Input of evaporator (C)  
(Tevap_in Fig. 5.10) 

12oC in winter 
mode, 19oC in 
summer mode 

TT04-05 εmax = 1 K 
δUL=10% 

0.0 A 

Outlet of cold water well (B) 
(Tcold_well_out, Fig. 5.11) 

8.5oC in 
summer mode 

TT02-01 εmax = 1 K 
δUL=10% 

7.8 A 

Outlet of warm water well (B) 
(Twarm_well_out, Fig. 5.12) 

16.5oC in 
winter mode 

TT02-03 εmax = 1 K 
δLL=10% 

48.7 P 
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Appendix B Results from daily detection 

his appendix presents results from daily detection. Fig. B.1 shows the daily deviations of 

the systems B to D, G and H. As can be seen, they almost all remain under the threshold 

of 5%. 

 

 

 

 

 

 

 

Fig. B.1 Daily efficiencies of systems B, C, D, G and H 
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Fig. B.2 shows the daily COPs and EERs of the heat pump system.  

 

Fig. B.2 Daily energy performance factors of the heat pump 

 

The maximum heat flux of the heat exchanger TSA of the ATES system is shown in Fig. 

B.3 based on 16-minute time spans. Positive values are present when the warm well is 

used, negative when the cold well is used. 

 

 

 

 

 

 

 

 

Fig. B.3 Measured capacity of the heat exchanger (TSA) of the ATES system throughout 

the year 2013 (based on 16-minute measurements) 
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Figs. B.4 to B.14 show energy signatures for operational states. One year was taken as the 

detection period. Each point indicates the result of one day. A detected symptom is 

indicated as P and as A when absent. ntot represents the number of days for which the 

system that affects the operational state is active. 

As a reference, each figure shows the values expected from the control set points or the 

design values. The acceptable limits εmin and εmax for ∆T are shown as presented in 

Tables A.3 and A.4. In these graphs ‘no symptom detected’ is indicated by an A (absent) 

and ‘a symptom detected’ by a P (present), in line with Tables A.3 and A.4. A value in 

brackets indicates that a threshold was not set. 

 

Fig. B.4 Energy signature of Thw_supply  Fig. B.5 Energy signature of Tcw_supply  
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Fig. B.6 Energy signature of Tcond_out  Fig. B.7 Energy signature of Tevap_out 

 

 
Fig. B.8 Energy signature of Tcold_well_in  Fig. B.9 Energy signature of Twarm_well_in 
 

 
 

Fig. B.10 Energy signature of Thw_return     Fig. B.11 Energy signature of Tcw_return 
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Fig. B.12 Energy signature of Tevap_in      Fig. B.13 Energy signature of Tcold_well_out  

 

 

 

 

 

 

 

Fig. B.14 Energy signature of Twarm_well_out 
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Appendix C Results from monthly detection 
 
This appendix presents some detection results from monthly detection periods. False 

detection results, deviating from the annual outcomes, are shown highlighted in yellow. 

Table C.1 shows the outcomes for the boiler system D. 

 

Table C.1 Monthly energy balance symptoms of boiler system D  

(yellow: incorrect detection) 
Yellow: Symptom is present (δUL=above upper limit, δLL=under lower limit, NA=not available, nday=number of operational days) 

Symptom Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

ε [%] -2 -3 -7 -3 -1 0 -5 0 -1 -2 -3 -3 -0.4 

Qboiler_mod  [GJ] 60 35 66 12 3 0 3 0 0 0 1 13 198 

 

Table C.2 shows the monthly deviation ε of the SCOP of the heat pump based on the 

days in the month ndays for which the SCOP could be estimated. The heat produced 

monthly is divided by the work supplied by the heat pump monthly to estimate the 

measured monthly SCOPhp. The reference SCOPexp is calculated using Eq. (9.1). 

As can be seen from this table, a monthly detection period leads to symptoms for June to 

September despite the fact that the annual SCOP for the heat pump apparently indicates a 

correct COP.  

Table C.2 Monthly SCOP symptoms of the heat pump on a daily basis  

(yellow: incorrect detection) 
Yellow: Symptom is present, ε=deviation between SCOPhp and SCOPexp 

Symptom Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

SCOPhp 4.5 4.5 4.4 4.5 4.7 4.2 3.9 0.0 4.9 4.9 4.7 4.7 4.5 

SCOPexp 4.5 4.5 4.5 4.7 4.8 5.0 5.0 5.0 4.9 4.9 4.7 4.7 4 

ε [%] 1.1 0.0 -1.2 -3.3 -2.5 -16 -23 -101 -1.3 1.6 -0.9 0.0 12.5 

Qcond_mod [GJ] 316 282 166 102 33 21 7 0 8 33 115 192 1313 
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The maximum heat flux measured in each month is shown in Table C.3. As can be seen, 

capacity is low in the months May to November. 

 

Table C.3 Symptoms for the capacity of the boiler (yellow: false detection) 

Symptom Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

Pboiler T/F T T T T F F F - F F F T T 

Pmax [kW] 394 380 400 311 227 67 22 NaN 56 63 62 377 400 

 

Table C.4 presents the results for monthly symptoms for three OS variables considered in 

the case study: Tcond_out, Tcw_supply and Tcold_well_in. In this table δL and δH 

represent the monthly percentage by which the lower and upper limit thresholds are 

exceeded, calculated using Eq. (4.8). Those hours ntot are shown in Table B.4 for each 

month. For those hours an exceeded threshold is added to nfault as a counter. This table 

also shows the exchanged energy Emonth during those hours. 

 

Table C.4 Monthly OS symptoms (yellow: incorrect detection) 
(δUP=above upper limit, δLL=under lower limit, NA=not available, ntot=number of operational hours or days, Emonth=exchanged energy) 

 

Symptom  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

Tcond_out δUL [%] 0 0 0 11.1 9.1 20.0 75.0 NA 0 0 4 0 4 

 δLL [%] 6.9 0 4.2 3.7 4.5 0 0 NA 16.7 5.9 0 0 3.1 

 ntot [hr] 347 316 208 120 33 23 3 0 7 33 155 247 223 days 

 Emonth 

[GJ] 

65 58 36 21 6 4 0 0 1 5 23 38  

Tcw_supply δUL [%] 100 NA 0 17.6 4.5 4.2 8.0 20.0 53.3 17.4 0 0 22.8 

 δLL [%] 0 NA 0 0 0 0 0 0 0 0 0 100 0.5 

 ntot [hr] 0 0 7 42 96 225 241 256 619 87 6 0 184 days 
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 Emonth 

[GJ] 

0 0 3 18 53 157 213 140 297 37 2 0  

Tcold_well_in δUL [%] 17.9 10.7 16.0 70.4 94.7 88.9 100 NA 100 76.5 92 61.5 68.5 

 δLL [%] 0 0 0 0 0 0 0 NA 0 0 0 0 0 

 ntot [hr] 398 370 291 140 32 16 2 0 6 32 174 265 213 days 

 Emonth 

[GJ] 

441 346 229 76 8 2 0 0 1 10 81 181  
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