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Abstract

In this article a generic fault detection and diagnosis (FDD) method for demand controlled
ventilation (DCV) systems is presented. By automated fault detection both indoor air quality
(IAQ) and energy performance are strongly increased. This method is derived from a reference
architecture based on a network with 3 generic types of faults (component, control and model
faults) and 4 generic types of symptoms (balance, energy performance, operational state and
additional symptoms). This 4S3F architecture, originally set up for energy performance
diagnosis of thermal energy plants is applied on the control of IAQ by variable air volume
(VAYV) systems. The proposed method, using diagnosis Bayesian networks (DBNs), overcomes
problems encountered in current FDD methods for VAV systems, problems which mnhibits n
practice their wide application. Unambiguous fault diagnosis stays difficult, most methods are
very system specific, and finally, methods are implemented ata very late stage, while an
implementation during the design of the HVAC system and its control is needed. The IAQ 4S3F
method, which solves these problems, is demonstrated for a common VAV system with demand
controlled ventilation in an office with the use of a whole year hourly historic Building
Management System (BMS) data and showed it applicability successfully. Next to this, the

influence of prior and conditional probabilities on the diagnosis is studied.
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Abbreviations

AHU Air handling unit

BMS Building management system

DBN Diagnostic Bayesian network

DCV Demand controlled ventilation

EP Energy performance

EWMA Exponential weighted moving averages
F Fault

FDD Fault detection and diagnosis

HVAC heating, ventilation and air conditioning
IAQ Indoor air quality

(0N Operational state

PCA Principle component analysis

PIR Passive infrared

P&ID Piping & Instrumentation Diagram

S Symptom

THUAS The Hague University of Applied Sciences
VAV Variable air volume

4S3F 4 faults and 3 symptoms

Symbols

CO2 CO; concentration [ppm]

qv Volume flow rate [m3/h]

PIR presence [0,1]

P Probability [0..100 %]



1. Introduction

Demand Controlled Ventilation (DCV)is claimed to be an effective method to achieve both high
indoor air quality (IAQ) and energy savings. It determines the air flowrate to rooms according to
the actual requirements in air-conditioned zones based on CO, concentration (see e.g. Fisk etal.
[1] who presented an overview of DCV systems and ASHRAE standard 62.1 2013[2]). Most of
the time the air flow rates are reduced significantly by DCV compared with conventional
ventilation methods. In this article we focus on DCV systems controlling CO, concentration in

workspaces.

The benefits of DCV in comparison with constant air-volume systems are the reduction in

heating and cooling load of the supply air and the decrease in power consumption of air handling
unit (AHU) fans. Studies showed up to 40 % energy savings for fans. Tukur etal. [3] noted 25 %
for an office building, Nielsen etal [4] 35 % for family houses and Schibuola etal. [5] 40 % for
a library. Zhang et al. [6] found energy savings for fans between 12 and 30 % for 15 locations in

the United States. Thermal energy savings up to 25 % are depicted in [6].

Despite these positive results, generally in practice, the expected energy savings are not always
realized. From a survey by Qin et al. [7] it followed that 20,9 % of the considered VAV

terminals were ineffective, leading to poor IAQ and energy performance (see Lee and Yik [8],
Wang [9], Guo et al. [10], who showed energy waste up to 30% for air systems, and Yu etal.
[11] with energy waste between 25 and 50%). Many causes were identified in design, realization
and operational stages, like faulty capacities of components, incorrect control of the DCV system
or faulty sensors, see for instance Okochi and Yao [12], who stated that VAV systems can still

be improved because faulty CO, and occupancy sensors are common due to aging and incorrect



sensor placement in rooms. Additionally, needed air ventilation capacities may have not been

nstalled because of poor design or implementation.

Moreover, CO; is used as proxy for indoor air quality and incorrect control of the indoor quality
leads to health and comfort problems. Thus, neither energy savings or indoor quality are

guaranteed.

Various types of DCV methods are available, such as occupancy presence control, relative
humidity control and CO, control, see e.g. [13 and 14] and temperature control in VAV systems.

CO;-based DCV controlled method is most commonly used and we focus on it in this article.

Although CO; sensors could be placed in the rooms or in the room return air ducts, they are often
mstalled in the main return air duct to limit costs. For instance, Shan et al. [9] proposed a multi-
zone demand-controlled ventilation strategy using a limited number of CO, sensors in the main
return air duct. However, nowadays the increased requirements for smart buildings, combined
with the decrease of CO, sensor prices result in buildings being equipped with CO; and
occupancy sensors in workspace. In these smart environments, DCV is controlled by both CO,
concentration and occupancy. Many control strategies are available. Okochi et al. [12] presented
an overview of controllers for VAV systems. Chenari et al. [14] presented also an overview of
ventilation strategies. Conventional controllers are encountered ( like P,PI PID) and predictive
and adaptive controllers. For mstance Lu et al. [15] presented a dynamic DCV strategy using
CO, balances equations, Goyal et al. [16] discussed the control of occupancy-based zone-

climate, See also control strategies by Chao and Hu [17] and Wang [18] .

More complex control systems lead to more chance of faults, meaning that the use of FDD (Fault

detection and diagnosis) methods has become mevitable. Correction of the diagnosed faults will



lead to better indoor air quality and lower energy consumption of fans and heating and cooling

coils in the air handling units.

Kim and Katipamula [19] have presented recently an overview of FDD methods for HVAC
systems including VAV systems. See for instance [7, 20 and 21] for VAV terminal units, Schein
et al. [22] presented a method called VPACC (VAYV box performance assessment control charts).
FDD for the whole VAV systems is also available, see e.g. [23]. Most of the methods for VAV
systems are based on expert rules [24] and can be combined with an approach with control charts
using e.g. cumulative sum [24] and exponential weighted moving averages (EWMAs) [22] to
elimmate transient influences and incidental outliers by measurements. In [7, 22 and 24] lists of
faults and symptoms in VAV end-terminal systems are presented. Unfortunately, they are

specific to the kind of considered system and generic FDD methods are still missing.

In the last decade data-driven methods were popular. Du and Jin [25] applied a principle
component analysis (PCA) method to determine sensor faults and to correct them. Qi and Dong
[26] proposed a FDD model for VAV systems based on neural networks. An issue here is that
data-driven FDD methods use energy data based on sensors that may be faulty, and on heating,
ventilation, air conditioning (HVAC) operation mode which is not always known. A novel
approach is the use of Bayesian statistics. Xiao et al. [27] presented a diagnostic Bayesian
network (DBN) for FDD of VAV terminals. Regnier et al. [28] proposes to apply it on AHU and
VAV while Zhao etal. [29 to 31] applied DBN on AHU and chiller faults. Verbert etal. [32]

also applied DBN on HVAC systems and Chen et al. [33] on whole building.

However, in all these FDD approaches the implementation does not occur simultaneously with

the design of the HVAC system and its control. In [34], it was shown that the fact that FDD



design does not take place concurrently with the design of HVAC and its control system, is a
reason for the lack of use of FDD. The implementation of available FDD methods is complicated
because it is time-consuming and their structures deviate from HVAC design or control engineer

practice.

In this article we apply the 4S3F framework which integrates these methods into an FDD
architecture that can be set up by HVAC and control engineers during the design process, and is

based on Piping & Instrumentation Diagrams (P&IDs).

In [34] we have proposed a generic architecture for Energy Performance (EP) FDD, the so-called
4S3F method based on DBNs which can be setup simultaneously with HVAC design and

implementation. This approach is based on HVAC P&IDs.

The advantages of the DBN approach as stated in [34] are:

- Itis congruent to HVAC design and implementation practices.

- Fault identification takes place simultaneously at different system levels which prevent a
complex top down or bottom up FDD approach.

- Outcomes are probabilities as an HVAC expert diagnoses.

- It delivers results even when information is missing or contradictory.

- Itallows the application of all kinds of FDD methods to estimate or exclude symptoms

and faults.

The examples in [34] are based on thermal energy plants in buildings. Here, we propose to apply

it to DCV systems.



Section 2 mtroduces the 4S3F method and i section 3 the DCV system is explained. In sections
4 to 8 the DCV 4S3F method is applied in a case study for a lecturer room of a school building.
Section 4 describes the 4S3F model in the case study. Then the results of the IAQ diagnosis are
discussed. First, in section 5 basis analysis with the help of performance graphs is addressed
from hourly available building management system (BMS) data. Then, in section 6 symptom
results are shown from automated detection and finally the estimated faults are derived by
applying diagnosis by a DBN model based on the 4S3F architecture in section 7. In section 8,
the results are evaluated and in section 9 sensitivity of prior and conditional probabilities with
regard to diagnosis results are discussed. Finally, conclusions are drawn from the case study and

recommendations for further research are proposed in section 10.

2. The 4S3F FDD method for indoor air quality.

The reference EP FDD architecture described in [34] consists of four generic types of symptoms
(4S): balance, energy performance (EP), operational state (OS) and additional symptoms. A
balance symptom is present when a deviation in an energy, mass or pressure balance for a system
is detected. When an energy performance metric, like a performance factor (e.g. coefficient of
performance COP) or energy use shows a too low value an EP symptom is found while when a
state value (e.g. temperature, flow rate, pressure, on-off state of a component) deviates
unexpectedly in time, an OS (Operational State) symptom is detected. These state values could
be measured by the BMS and are mostly depicted in an HVAC P&ID. Additional symptoms
based on for instance inspection or maintenance information, or from specific FDD methods of
HVAC components can be added if needed. We recall that a symptom must be observable (is

therefore the result of measurements) and symptoms can be identified by listing all measurement



points (sensors) in the P&ID while a fault is the system ‘disease’ that leads to symptoms.

Possible faults canbe listed on the same way by observing the P&ID.

Three generic types of faults (3F), model, component and control faults, are present. The first
ones are faults in assumptions in the models estimating values for missing data. The second
relates to HVAC components and systems which do not function properly. For instance too low
mnstalled capacity, or too low efficiency by aging, or because it is defect. The last type concerns
faults in the control of the HVAC components and system, for instance control of supply
temperatures and on-off strategy of components like the control of the sequence of energy
generators. Fig. 2.1 shows relations between fault and symptom types in this 4 symptom and 3
faults (4S3F) method. For instance, a component fault could lead to balance, EP, OS and
additional symptoms. In contrary, an EP symptom could be caused by a model, component or
control fault. As canbe seen there is no univocal relationship between faults and symptoms

because more faults canlead to a same symptom. See [34] where this is explained in more detail

Model fault
symptom .
" omponent Additional
’ fault ' symptom

Fig. 2.1 The 4S3F model: Relations between fault and symptom types.



With the help of a diagnostic Bayesian network (DBN) model, diagnosis takes place
simultaneously in all components and systems. The DBN model of the 4S3F consists of the fault
nodes which are linked to the symptoms nodes as shown in Fig. 2.1. The fault nodes are so-
called parent nodes with prior probabilities for their states and the symptom nodes are so-called
child nodes with conditional probabilities for their states depending on the state of the fault
nodes. The probabilities of the fault states, a value between 0 and 1, are calculated by the DBN

when the states of the symptoms are known.

In this paper the 4S3F model developed for energy performance diagnosis is extended to DCV.
This reference architecture supports all kind of DCV systems controlling CO, concentration at

room level and is demonstrated on a quite common DCV system, see Fig. 3.1.



3. Faults and symptoms of demand controlled air ventilation sys tems

In this section generic faults and symptoms for DCV systems are identified and analyzed. Fig.
3.1 shows a P&ID, as used during design, of a frequently applied DCV system in which the
supplied air flow rate is controlled by room dampers placed in end-terminals. The damper
position depends on the presence of people and CO, concentration in the room. The air flow to
the room is controlled by the CO, controller (CC) and the CO, concentration measured by the
concentration transmitter (CT).
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Fig. 3.1 P&ID of a VAV system
G=CO, production in the room [kg/s].
C=CO, concentration in the room [ppm].
Csp=setpoint of the maximum CO, concentration in the room [ppm].

psp=setpoint of static pressure of the supply air [Pa].
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Psupply= Static pressure of the supply air [Pa].

C,=CO; concentration of the supply air [ppm].

Cambient=CO7 concentration of ambient air [ppm].

Qv ambien=ambient air rate flow [m?/s].

Q,=supply air rate flow to the room [m?/s].

Qv re=tecirculated air flow rate [m3/s].

Udamper= damper position [0..100 %].

V=room air volume [m?].

The fresh air to the rooms 1s supplied by the supply fan which is located in the Air Handling
Unit. When room dampers are closed or partly opened, the supply and return fans in the AHU
have to deliver less air flow. Usually, this can be controlled by a pressure controller (PC) which
regulates the rotation speed of the fans. In the supply duct after the AHU the controlled supply
pressure is measured by a pressure transmitter (PT). Controller VC opens and closes the mlet,
recirculation and outlet dampers of the AHU and set the supply and return fans on and off by

timers and ventilation demand.

There are also adapted versions of these control strategy (like Fig. 3.1), at room level where also
the presence of people (measured by a sensor indicated as PRT) and opened windows (measured
by WT) are taken into account, as well as system level where the needed supply air flows are

calculated by occupancy and CO; levels in the rooms. In the specific case study (see section 4),
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the mechanical ventilation is shut down to avoid energy losses when the windows are open. It is
very easy, using the P&ID i Fig. 3.1, to list all possible symptoms and faults. This is done in

Appendix A and forms the basis for the 4S3F architecture.

12



4. 4S3F model for DCV systems in a case study

In this section the application of the 4S3F model to areal DCV system is shown. In the school
building of The Hague University of Applied Science (THUAS) in the Netherlands a demand
driven air ventilation system is present in which the air flow to the rooms is controlled by CO,

concentration and occupancy.

The case study has been conducted on historical data of a room of the THUAS building. Hourly
BMS data is available for the year 2015 and we will conduct diagnosis on hourly basis which can
also be done on actual BMS data. The location of this room 1.067, a lecturer room, is shown in
Fig. 4.1. In an occupied room, the air flow rate is increased when the CO, concentration exceeds
800 ppm and is decreased when it is below 600 ppm and the room is unoccupied. The designed

supply air flow rate is 200 m3/h based on presence of 4 persons.

Most rooms of THUAS are located to an outer wall and contain windows. In each room of the
building under consideration the CO, concentration is controlled by a damper which is present in
the supply air duct to the room. A very specific control feature is that when one of the windows
in the room is opened the mechanical air supply is stopped. This is to avoid energy losses. The
presence is measured by a (passive infrared) PIR sensor and at the windows magnetic contacts
are present which indicate an opened window. The supply air rate to a room is restricted by
design and implementation of specific dampers with fixed maximum air flow rate setting. The air

leaves the rooms by overflow to the corridors where return vents are present.
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Fig. 4.1 Considered building section

Too high measured CO; concentration in a room, one of the OS symptoms, could have, if
present, many causes: by a faulty CO; sensor (e.g. broken), a faulty CO, measurement (e.g.
biased value), missing connection to the BMS, a supply fan of the AHU which is not running, an
occupancy sensor which is stuck, an occupancy measurement value is frozen, the damper of the

VAV system which is broken or the control of it which is frozen. See Table 3.1. But also by
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occupancy behaviour: the room occupancy can be higher than intended and in case of THUAS,

one or more windows can be opened which leads to close the damper in order to save energy.

4.1 Considered faults in the case study

The faults in this case study are based on the generic faults presented n Appendix A in which
faults are coded from F1 to F19. As simplification we do not look at the cause inside a
component and cluster all faults concerning one component for the sake of demonstration. So a
broken or biased CO, sensor are clustered to one fault for the component CO; sensor, namely a
faulty CO; sensor (F8). In addition faults due to the AHU like damper (F4), filter (F5) and fan
(F3) faults, and faults to control the AHU (F14, F15 and F17) are clustered to one component
fault for the AHU because with the available BMS data in the case study it is not possible to
distinguish the faults inside the AHU. However, when control values of the fan and dampers are
present in the BMS, they could be separated. We have also clustered faults concerning the room
damper (F7). A correct measured mechanical flow is important to detect symptoms. That is why

we also take into account the air flow sensor qV as a fault (F11).

Table 4.1 presents the 9 faults which are considered in the case study. As can be seen 6
components and 3 control faults (CO2, window and occupancy control) are distinguished. Three
components are sensors: CO,, PIR and qV sensors. Except fault F19, window control, which is

specific for the THUAS building, all faults are generic for DCV systems with room control.

As can be seenmodel faults F1 to F2 are not taken into account in the case study because virtual

sensors were not applied. Furthermore, air leakage of ducts (F6) is ignored.
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FAULTS SYMPTOMS
Nr | Description | Type Explanation Nr | Description Type Rules and thresholds
1 Occupancy | Control The occupancy in the roomis higher h | High CO2 and highqV | OS CO2>840 ppmand qV>200 m3/h
than accordingto therequirements. PIR=1
2 CO2 sensor | Component | It canbe broken orbiased, oracableis a | CO2unrealistic OS C0O2<360 orCO2>3000 ppm
not connected or broken. b | CO2 missing (O] CO2=NaN
j ACO2 neighbours Balance | JACO2 otherrooms|/CO2 on Saturdays
from 0:00 to 6:00 am.
3 | AHU Component | It canbe broken orthe controlofitisnot | g¢ | gV AHU=0 OS qV_fan=0 and PIR=1
right. m | gV=0 OS q V=0, PIR=1and At=6hrs.
i High CO2 and qV=0 OS CO2>840 ppm, V=0 m3/h and PIR=0
4 | PIR sensor | Component | It canbebrokenorbiased,oracableis ¢ | 4CO2and PIR=0 Balance | ACO2>40 ppm. PIR=0 and At=1 hr.
not connected or broken. d | Presence outside (O] PIR=1 and 0:00<t<6:00 am
working hours
5 | Damper Component | The mechanicalpart ofthe damperor i High CO2 and qV=0 OS CO2>840 ppm,qV=0 m3/h and PIR=0
the electrical motoris stuck. k | HighCO2andlowqV | OS CO2>840 ppm, 0<qV<100 m3/h and
PIR=0
1 Low CO2and qV>0 oS CO2<500 ppm, qV>0 m3/h and At=5
hrs.
m | gV=0 (O] qV=0, PIR=1land At=6hrs.
6 | gVsensor Component | It canbe broken, oracableis not e | gVunrealistic OS qV>400 m3/h or qV<0 m3/h.
connected or broken. f | gVmissing qV=NaN
7 | BMS Component | A broken data-connectionorsoftware f | gVmissing OS qV=NaN
failure in the data loggingleads to b | CO2 missing
missing data.
8 Window Control The air supply to the roomis stopped i High CO2 and qV=0 OS CO2>840 ppm,qV=0 m3/h and PIR=0
control when a window is opened.
9 [ CO2control | Control The CO2 setpoints are notcorrect: too k | HighCO2andlowqV | OS CO2>840 ppm, 0<qV<100 m3/h and
high at occupancy ortoo highat un- PIR=0
occupancy. Ordelay times are too long.

Table 4.1 Overview of faults and corresponding symptoms in the case study (we have renumbered the faults and symptoms in Table A.1)
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4.2 Considered symptoms in the case study

Table 4.1 also presents the 13 symptoms (depicted as a to m and based on the symptoms S1 to
S13 presented n Appendix A,) that would be the observable result of the 9 faults identified in
section 4.1. Except for the balance symptoms, all symptoms are OS symptoms, meaning that the
operational performance is compared to preset values. These preset values can be control
setpoints and also expert rules. This approach is generic, but evidently, the setpoint values are

DCYV system specific.

Symptom COZ2 unrealistic (type S8 in Table A.1, type a in Table 4.1) is present when the
measured CO, value is lower than the outdoor value or higher than an extreme value which
indicates a non-realistic CO, measurement. When the BMS has not stored a CO, or a qV
measurement, the value is not-a-number (NaN) which leads to symptom COZ2 missing or gV
missing (both type S7, b and f). Symptom gV unrealistic ndicates a negative value or a much
higher value than should be possible on the basis of the design specifications (type S8, e). High
CO?2 and high qV (type S4, h) represents that CO, is higher than the desired value with
maximum air rate flow atroom occupancy. In the same way High CO2 and qV=0 and High CO2
and low gV (also both type S4, i and k) indicates too high CO, at absence or low value of the air
flow rate to the room. During the weekends, when the building is unoccupied, the CO, values in
rooms located close to each other should decrease to the same level. Symptom ACO2 neighbours
(type S1, j) is present when the CO2 concentration the room deviates 10 % from the mean value
of the adjacent rooms at the end of Sunday night. When the CO, level is acceptable while an air
flow rate is present, the symptom Low CO2 and qV>0 (type S5, 1) is present because ventilation

should not be needed. Symptom ¢V AHU=0 (type S6, g) is observable when the air handling
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unit does not supply air while the room is occupied. A room occupancy measured during night or
weekend time also indicates the symptom Presence outside working hours (type S9, d). It could
not be possible that the CO2 concentration increases in the room while the PIR sensor indicates
unoccupancy. Then symptom ACOZ2 and PIR=0 (type S1, ¢)is present. At last, when symptom

qV=0 (type S6, m) is observable when the room is occupied while ventilation is not present.

Notice that symptoms ¢, h, i, k and m are formed from combinations of measurements. To

eliminate transient influences sufficient time periods should be taken into account.

As depicted in Table 4.1, some symptoms are only detected when they are present during more
than one hour to avoid faulty detection by transient behaviour and incidental measurement
outliers.

The chosen values in the rules are building specific and depend on the outdoor condition, the
designed HVAC system and the HVAC control set points. The purpose of this article is not to
optimize them, we have chosen values which obviously could be different in other systems. They

are presented in the last column.

4.3 DBN model in the case study

In the 4S3F DBN method Bayesian statistics is applied which is based on relations between state
probabilities of events. When the probability that event B is true (P(B)=1), the conditional
probability P(A|B) that event A occurs while B is true, can be estimated using the DBN model.
See Appendix B in which this is explained. In the DCV DBN events are faults which are linked
to events for symptoms by arcs. When the true and false states of the symptoms are known, the

posterior state (true or false) probabilities can be estimated.
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Table 4.1 shows the links between the faults and symptoms in the DCV DBN model.

This table is implemented straight forward in a DBN model. See Fig. 4.2.

igh CO2 and
high gV
CO2 unrealistic
ACO2
CO2 missing

D

Symptom
node

neighbours

Fault node

High CO2 and
low gV

Fig. 4.2 DBN model of DCV system in the case study (faults in purple, symptoms in yellow).

Set probabilities n the DCV DBN model

The values of the prior and conditional probabilities in the DCV DBN are based on assumptions.
In the DCV DBN mode, the fault nodes (purple color) are parent nodes having prior probabilities

which are set between 90 and 99 % true value. Thus it is taken into account that some faults
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happen more often than others. For instance, a damper (1 % probability it is defect, see Appendix
B) is seldom stuck while an opened window (5 % probability, see Appendix B) is more common.
The symptom nodes (yellow color) have conditional probabilities which values indicates the
probabilities that the symptom is present or absent depending on the state of the parent nodes. As
example we take symptom high CO2 and no qV which can be caused by a disabled supply fan
(AHU fault), by a frozen closed damper (Damper fault) or by opened windows (wrong Window
control). The disabled supply fan leads with high probability (70 %, see Appendix B) to this
symptom. This value is lower than 100 % because an opened window could deliver enough
ventilation which does not lead to detection of the considered symptom. Another example is that
an incorrect damper can be closed or opened. Only a frozen closed damper does not lead to
mechanical ventilation. We assume that the probability of a frozen closed damper is as large as a
frozen opened damper which lead to a conditional symptom probability of 50 % (see Appendix
B) when the damper is faulty. And at last the example that windows are opened, thus
mechanical ventilation is stopped. However, this will not always lead to high CO, concentration
because the natural ventilation can be sufficient. So we have assumed a conditional probability

of 40 % that a opened window leads to too high CO, concentration.

Diagnosis can present fault probabilities in percentages. The absolute value is less important than
the relative value. For instance, a diagnosed fault probability between 30 and 100 % should lead
to analyze the fault. We propose to look at the highest fault probabilities, e.g. higher than 30 %

and start with the highest one for analysis purposes as an expert would do.
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5. Monitoring results and descriptive analysis of BMS data

As background information, we address in this section first the measurements as energy
signatures without using our 4S3F method for year 2015. Fig. 5.1 shows the measured CO,
concentration in the rooms 1.067, 1.069, 1.071 and 1.075 (the location was shown in Fig. 4.1)
during the year. Notice that weeks and days can be distinguished by peaks and valleys of the CO,
levels and that they are low during end July and begin August (around 400 ppm) corresponding
to an empty building during summertime. Furthermore, at the begin of the year the CO2
concentration is higher, more than 2000 ppm!) than in the rest of the year. In most cases the CO,

concentration stays below 1500 ppm.
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Fig. 5.1 CO, concentrations in room 1.067, 1.069, 1.071 and 1.075

Fig. 5.2 shows the time series plot for the mechanical air flow rate to room 1.067.
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We see that the maximum air flow rate stays under 250 m3/h most of the time, which is higher
than the designed value of 200 m’/h. Next we see that during summer ventilation was off.
Furthermore we see a week pattern. Fig. 5.3 depicts the CO, concentration of room 1067. The
CO; concentration is around 800 ppm during room occupancy which is the set point value.
Outliers are detected at the begin of the year and at the end of the autumn. The ambient

concentration (400 ppm) is an assumption based on outdoor values in the Netherlands.
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presence [hr/day]
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o

day
Fig. 5.4 Occupancy of room 1067

Fig. 5.4 depicts that the room is nearly unoccupied during summer time and at Christmas time.
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In Fig. 5.5 we see that the building is occupied from Monday to Friday (weekdays 2 to 6). Fig.
5.6 shows that no air and a little bit of air was supplied on Sundays and Saturdays. The mean

presence values are calculated by counting the hours that the room was occupied during a day.
The daily mean air flow rates were calculated by summarize the measured air flow rate for all

days and divide it by the daily period of 24 hour.

70 T T T

9 1=Sunday ... 7=Saturday 1=Sunday ... 7=Saturday

gl
=77 —
g 5
E°f £
g8/ 8
Bar =z
o i)
o 3r L

sl

gl

0

1 2 3 4 5 6 ¥
weekday weekday
Fig. 5.5 Presence during weekdays Fig. 5.6 Mean air flow rate during weekdays

From these signatures, the presence of symptoms, e.g. the high CO, values at the begin the year,
is observed but does not lead to fault identification. It is almost impossible, also for the HVAC
expert, to diagnose faults with these energy signatures or to optimize the system. Furthermore,
symptoms can only be detected by outliers for which many (normal) data is needed and

automation is not possible.
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6. Application of the 4S3F method: Detected symptoms

In this paper, we used historical BMS data on the year 2015. They were uploaded in Matlab, in
which the rules and setpoints of Table 4.1 were used to detect symptoms. In an automated
building energy management they would be directly programmed into the BMS or could be an
extension of the BMS. Fig. 6.1 (a) to (m) present the detection results for the 13 distinguished
symptoms. In these figures the value 0 indicates that the symptom is present and a value 1 it is

not.

Figs. 6.1 (a), 6.1 (b), 6.1 (e)and 6.1 (f) depict the detection results of symptoms a, b, e and f
concerning the CO, and qV measurements. We see from these figures that the qV values and the
CO; values are missing in some periods and that unrealistic values for these sensors are not

present.

Figs. 6.1 (c¢)and 6.1 (d) are about the occupancy sensor. This figures show that these symptoms

for the PIR sensor are missing.

Fig. 6.1 (h), 6.1 (1), 6.1 (k) and 6.1 (1) depict symptoms about CO; concentration and air
ventilation flow. Fig. 6.1 (h) shows that ‘high CO2 with high qV” is present. Notice that this

symptom is often present during June and September.

Symptoms 1, k and 1 are shown in Fig. 6.1 (i), 6.1(k) and 6.1 (I). Symptom 1 is not present
(ventilation while the CO; concentration is low) while the presence of symptoms i and k (thus
high CO, while the ventilation is not present or low at occupancy) canbe seen. Fig. 6.1 (j)
depicts that symptom j (A'O2 neighbours) happened once. In Fig. 6.1 (g) we see that the supply
fan is sometimes off while the room is occupied. Fig. 6.1 (m) shows that symptom m (g,=0) is

present only once.
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This automated symptom detection is an improvement compared to the application of energy
signatures as mentioned in section 5 in the sense that detection is automated and that a clear list
of symptoms is generated. However, it is still complicated to find out the faults leading to
symptoms. For example, one might estimate that sensor errors are absent from symptoms a to f,

but it is more difficult to interpret symptoms g to i and k.
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Fig. 4.1 1s built in Genie. Then the absent and present symptoms detected in Fig. 6.1 are fed to

the DBN. Diagnosis has taken place for each hour in 2015. The diagnosis results are presented in

Fig. 7.1. The value 0 indicates that the fault is present and the value 1 it is not.
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First we address sensor faults. Fig. 8.1 (4) shows that the PIR sensor is always correct. Figs. 7.1

(2) and (7) show that the CO, and air flow sensor seems to be correct. As well CO, and air flow
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sensor faults are present once or twice. We ignore these outliers. The damper is diagnosed true

because only one outlier was present, see Fig. 7.1(5).

The diagnosis results for the other faults shown in Figs. 7.1 (1), (3), (6), (8) and (9) indicate that

in 2015 the next faults were present:

- Occupancy
- AHU

- Window control
- BMS

- CO; control

In Fig. 7.1(1) we see that the occupancy of the room is too high. Fig. 7.1(3) shows AHU faults
and in Fig. 7.1(6) depicts that one or more of the windows are opened in some periods.
Sometimes the data connection to the BMS is missing (see Fig. 7.1 (8)). From Fig. 7.1(9) we see

that the CO, control is not working correctly sometimes.

In the next section the diagnosis results are discussed and validated with measured data and from

facility manager information.
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8. Evaluation of the diagnosis results

8.1 Findings from users and facility manage me nt

Occupancy information and information from the technical facility manager are used to analyze

the diagnosis results. Below the findings are presented.

Fault 1: Occupancy

Room 1.067 is an office room for lecturers which was designed for an occupancy of 4 persons
(800 ppm ata freshair ventilation rate of 200 m3/h with an outdoor CO, concentration of 400
ppm). However 6 workplaces are present in room 1.067 which, according to lecturers, are
regularly fully occupied sometimes, so the room can be fully occupied especially in the busy
education periods of June and September leading to higher occupancy than by design rules. Thus

signalized occupancy faults seem to be reasonably reliable.

Fault 3: AHU

AHU faults were estimated by diagnosis at the begin of January. It was known from the facility
manager of THUAS that the supply fan in the AHU was off by malfunction of the AHU control
from 6 till 12t January 2015 because this fan was set off automatically by a control rule to
protect freezing of the AHU heater. However, it was not reset just in time but a few days later.
Additionally, for some reasons, probably wrong signal connection with the BMS, the fan stayed
off while ventilation was needed during 49 hours in year 2015. But we saw that after some hours
the fan was set on and the fault was, probably automatically, restored. Thus, this fault was right

diagnosed all the time.
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Fault 6: Window control

The registered time that windows are opened and the CO, concentration is higher than 800 ppm,
is 58 hours. The BMS data contains also changes of the values of the contacts which registries
opened windows. We have ignored consciously this data for diagnosis purposes which makes it
possible to validate diagnosis outcomes concerning window control. Looking at this original
BMS data, showed that one or both windows were opened during that hours. Thus the diagnosis

delivered correct results.

Faults 8: BMS
From the log book at the facility manager is was known that sometimes the data connection

between the BMS and the data storage was broken.

Faults 9: CO2 control

There were complaints, but nothing was done about it, because facility management thought it
would come from the windows.

8.2 Conclusions from the case study

The case study shows the usefulness of the proposed 4S3F method for a DCV system. In almost
all cases the diagnosis is correct. Only 4 outliers, one for the CO; sensor, one for the room
damper and two for the qV sensor were present. However, most of these false diagnoses canbe
prevented by using actual BMS data instead of hourly data based on a snapshot during a hour.
Also, corresponding rules can be adapted. For instance by taken into account the diagnosis

results of the hours before or after the hour that the diagnosis takes place, or by changing the
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thresholds values in the rules. The faulty diagnosis could be corrected when another rule is

mtroduced to estimate symptom k, for instance considering a whole day.

We have not adapted rules and thresholds in the case study because it was not our intention to

optimize rules and thresholds in this article.
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9. Sensitivity analysis of the set probabilities

[34] states that the absolute values for as the prior and the conditional probabilities are not
important but their relative values. A sensitivity analysis has been conducted on the DBN model

presented in Fig. 4.2 to investigate this statement.

9.1 Change of set probabilities of faults at an isolated symptom

First, we consider the effect of variable set probabilities when a symptom and its linked faults are
isolated from the other DBN nodes. As example we have analysed symptom High CO2 and low
qV which DBN model is presented in Fig. B.1. In the case study the prior probabilities of
Damper and CO2 control are setto 99 and 95 %. In addition the conditional true probabilities in
the symptom node are setto 34 % and 90 % for a false damper and false CO2 control. When the
symptom High CO2 and low qV'is set to be true, The DBN calculated that the posterior false
probabilities of Damper and CO2 control are 8 and 93 %. Fig. 9.1 to 9.4 present the results of a
sensitivity analysis on prior and conditional probabilities. In Fig. 9.1 the diagnosed posterior
false probabilities of the faults are presented as function from the prior false probability of
Damper. As can be seen, the posterior false P(Damper)’s are still higher than those of Window

control when its prior value is changed from the assumed 1 % in Table B.2 to 10 %.
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In the same way, we see that adapting of the prior probability of the CO2 control from 0.5 to 5 %

does not lead to other trends in fault identification. Fig. 5.3 and 5.4 show the effects of changes

of conditional probabilities. In a wide range of conditional probabilities the outcome trends are

the same.
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9.2 Change of set probabilities of faults on the diagnosis results

Here, we present the diagnosis results of the case study when some of the set probabilities
concerning symptom high CO2 and no qV, see the isolated DBN model in Fig. 9.5, are changed

arbitrary in such way that the differences with the probabilities of other nodes decrease.
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Fig. 9.6 Diagnosis deviation by different set prior and conditional probabilities related to symptom High CO2 and qV=0.

As can be seen, one outlier is present for AHU. Furthermore Damper and Window control show
deviations. However, even when the posterior fault probabilities presented in section 8§ are
corrected for these deviations they stay higher than 30 % to take action for correction as noted in
section 4. This canbe seen from Fig. 9.7 in which for faults 3, 4 and 6 the posterior fault

probabilities are shown in blue and the deviations in red.
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Fig. 9.7 Effects on posterior probabilities at changed set probabilities to symptom High CO2 and

q V=0 (red: deviation after changed set, blue: diagnosis results)

The sensitivity analyses show that variation in set prior and conditional probabilities did not lead
to other diagnosis outcomes which confirms our statement that absolute values are of secondary
importance. Detailed historical data on probabilities of the states is therefore not necessary, thus

no detailed training data, but expertise about the relative frequency of errors occurring which is
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known by design and maintenance HVAC engineers. Also component knowledge can be taken

mto account.

36



10. Conclusions and recomme ndations

Conclusions

In this article the 4S3F FDD method for Energy Performance diagnosis has been applied on a
DCV system. A generic set of symptoms and faults has been proposed and a case study has been
conducted on the DCV system in a school building for the year 2015. This case study shows the
usefulness of the proposed FDD method. In most cases the diagnosis seems correct despite
arbitrary assumptions in symptom rules and for the probability values in de DBN model. Only 4

faulty diagnosis outliers were noted.

The DCV 4S3F method can be implemented simultaneously with the BMS system which are
both based on HVAC P&IDs, like showed in Fig. 3.1, as applied at HVAC design. Symptom
rules and their thresholds depend on the specific DCV system. However, they can be estimated
by the HVAC designer. Detection and diagnosis models could be obtained from libraries
because of the generic approach in the 4S3F method. In addition DCV faults are generic because

of the generic character of the components and controls.

The sensitivity analyses in section 9 show that even when the set prior and conditional
probabilities are varied in a wide range, this do not lead to other diagnosis outcomes as long as

their relative values show the same trends as in reality.

Recommendations

Below recommendations are presented for improvement of the DCV FDD method.
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Actual BMS data

In the case study hourly historical BMS data is used. The diagnosis can be proved applying real
time actual BMS data. There is no limitation in the 4S3F method to use shorter periods. However
some rules have to be adapted to transient behaviour of the HVAC system and measurements

outliers.

Extension with control signals from controllers

In practice, more actual BMS data is available like state and control values of actuators and
controllers. The presented end-terminal system canbe extended by these parameters to

distinguish control and component faults of the damper and the supply fan.

Extension with AHU components

In the case study all faults in AHU are combined to one fault. One could distinguish damper,

filter, fan and control faults to isolate the fault more precisely.

Recommendation to estimate and correct biased CO, sensors

Biased CO, sensors can be estimated faster and more accurately by implementing additional
fully mechanical ventilation of eachroom during night time. In this way a deviation in the CO,

measurement can be estimated with the help of a mass balance symptom.

Counting persons

A simple method to count or calculate the number of persons in a room is helpful to estimate too

high occupancy. This virtual sensor can be based on the increase of the CO, concentration and
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the supplied air flow. See e.g. Timilehin et al. [35] who presented an occupancy measurement

survey.

Extension with specific FDD methods for components

As stated for the EP FDD, the FDD method for DCV systems can be extended with existing and

new FDD methods for components as additional symptoms.

Extending the DCV FDD to VAV FDD

The proposed DCV FDD can be extended to VAV FDD by taking into account heat exchangers
in the end terminals and thermal comfort control. In this way, thermal comfort indicators like air

and wall temperatures and humidity can be integrated.

Optimizing the symptom rules

In the case study values in symptom rules are set up arbitrary and further studies are needed to

determine optimal setpoints.

Setup of model libraries

We propose to set up model libraries for standard components and symptom rules.

- Symptom rules with default thresholds.

- DBNmodels including default prior and conditional probabilities for the fault and

symptom nodes.

Automation of prior and conditional probabilities

Asnoted during the sensitivity analyses, the absolute values of the set probabilities are not very

sensitive for the diagnosis results but the relative values are. We propose to do research for
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automation of the set probabilities based on ranking of probabilities by HVAC expertise or by

applying machine learning.

Integrating the DCV FDD with energy performance (EP) FDD

Misfunction of DCV systems leads to poor indoor climate but also to energy waste. Coupling the
4S3F method for energy performance diagnosis and Energy and the DCV 4S3F method gives the

possibility for redundancy and therefore more accurate energy performance diagnosis.
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Appendix A Symptoms and faults of a DCV system

A symptom is an entity that can be observed directly and automatically from the sensors installed
in the system. Finding all possible symptoms is just a matter of looking at all measurement
points and analyzing what can be known from them. On the contrary, faults are anything that can
go wrong. Symptoms and faults are derived from the observation of the P&ID in Fig. 3.1 and

summarized in Table A.1.

SYMPTOMS

Code | Balance symptoms

S1 - Deviations in CO2 mass balances (e.g. the supplied CO2 mass must be
equal to the discharged CO2 mass plus the increase of the CO2 mass)

S2 - Deviations in air mass balances (e.g. by air flow rate sensor fault)

S3 - Deviations in pressure balances (e.g. by air leakage which effects the

supplied air rate.)
Operational state (OS) symptoms

S4 - The measured CO,-concentration by CT is higher than the setpoint Cp,.
S5 - Unexpected low or high CO, concentration.
S6 - Unexpected low or high air flows.
S7 - Missing BMS data
S8 - Unrealistic sensor data
S9 - Presence outside working hours
Additional symptoms
S10 - Mamtenance information
S11 - Information from inspection.
S12 - Sensor calibration information
S13 - Complaints from occupants.
FAULTS
Code | Model faults
F1 - Model faults for virtual sensors, a physical missing state value is

calculated by software from existing sensors, to estimate for instance
presence and occupancy. E.g. by CO; increase one could estimate the
F2 number of occupants in a room.

- Assumptions to setup CO,-and air balances in the rooms.
Component faults

F3 - Supply fan or return fan, including electromotor, in the Air Handling
Unit (AHU) is not working properly or broken.
F4 - One of the dampers (also including electromotor) at the AHU is not

working properly or broken.

F5
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- Inlet filter of the AHU is polluted which lead to low air flow to the

F6 building.

F7 - Leakage of ducts or clogged ducts.

F8 - Room damper (in which the motor is included) is broken.

F9 - CO, sensor is defective or biased.

F10 - Presence sensor is defective or biased.

F11 - Window contact sensor is defective or biased.

F12 - Flow rate sensor is defective or biased.

FI3 - Data connection from the room sensors to the BMS is missing.
Fl4 - Data connection to the BMS is missing.

- Data connection to the dampers of the AHU is broken.

Control faults

F15 - Control of the supply and return fan by controller PC is faulty
F16 - Control of the CO, concentration by controller CC is faulty.
F17 - Control of the AHU dampers by controller VC is faulty.

F18 - Room occupancy is higher than designed.

F19 - Windows are opened while mechanical ventilation is needed.

Table A.1 Faults and symptoms related to the DCV system of Fig. 3.1.

Faults F18 by over occupancy and F19 by window control are noted as control faults because
people are not using the room or controlling the system as it was intended. In the first case, may
be facility management allowed more persons in the room than allowed by design. The second
because the occupants in the room let the windows too long opened which results in missing
mechanical ventilation. A BMS fault could be a broken wiring or a software fault by failure of
the communication application which lead to missing data. So it is categorized as a component

fault.
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Appendix B The construction of the 4S3F DBN

We consider a small part from the DCV DBN model of Fig. 4.2 to show how the DBN calculates
fault probabilities. Symptom High COZ2 and low gV is taken into account. From Fig. 4.2 we see
that this symptom can be caused by a faulty CO2 control or faulty Damper. The faults linked to
this symptom (notice that arcs go from the fault node to the symptom node) are isolated from

other symptoms in this example which results in the DBN model shown in Fig. B.1.

" o2 control |

- B N
,/High €02 and
\_ lowaqV

\\-\_,

Fig. B.1 DBN model for symptom High CO2 and low qV'.

Faults are parent nodes with prior probabilities. We define the probability as the number of

presence per 100 observations divided by 100.

The prior true probability that the damper (P(Damper)) is correct, has an arbitrary value of 99 %
(see Table B.1) and the prior true probability P(CO2 control) is set lower to 95 % (see Table B.2)
because from experience it is known that control faults occurs often than component faults.
These values can be adapted by historical values from the BMS and inspection of the log book at

the facility manager or by complaints from occupants.

‘Damper’ state | Probability ‘CO2 control’ state Probability
False 0.01 False 0.05
True 0.99 True 0.95

Table B.1 Prior properties Damper. Table B.2 Prior properties CO2 control.
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In Genie [36], a DBN software tool, this can be implemented in tables for the node properties as
shown in Tables B.1 and B.2. Symptoms are child nodes with conditional probabilities
depending on the state of the fault node. Table B.3 presents possible node properties for
symptom High CO2 and low qV where a true value for the symptom indicates that the symptom
is present. For the sake of simplification it is assumed in this example that when one of the faults

is present, the symptom is also present.

Damper False (0.01) True (0.99)

False True False True

CO2 control (0.05) (0.95) | (0.05) | (0.95)

High CO2 and low qV:

True (symptom is present)

False 0 0 0 1

Table B.3 Conditional node properties High CO2 and low gV

(between parentheses: the prior probabilities).

As can be seen symptom High CO2 and low gV is present when Damper or CO2 control is
false, otherwise true because as well Damper and CO2 controlis true. In this example we can
easily calculate the probability that High CO2 and low qV'is false (P(High CO2 and low qV)=0),
thus no symptom is present, when both faults are not present because faults Damper and CO2

control are statically independent of each other:
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P(High CO2 and low qV)=P(Damper NCO2 control)=P(Damper).P(CO2 control)=

0.99*0.95=0.9405=94.05 %. In Table B.4 all calculated symptom probabilities are shown.

Damper | False (0.01) True (0.99)
COo2 False True False

True (0.95)
control | (0.05) (0.95) | (0.05)
True 0.05% | 0.95% | 4.95% 0
False 0 0 0 94.05%

Table B.4 Calculated probabilities High CO2 and low qV from the fault states.

Conversely, it is possible to calculate the fault probabilities P(Damper)and P(CO2 control)
when the state of symptom High CO2 and low qV'is known. For instance the posterior fault
probability of Damper canbe calculated from (0.05+0.95)/(0.05+0.95+4.95)=0.168=16.8 %
when symptom High CO2 and low qV'is detected. Note that the posterior fault probabilities are
estimated in the DBN from symptoms to faults while the DBN is set up from faults to symptoms.
In Figs. B.2 and B.3 two examples are presented for symptom High CO2 and low qV. Fig. B.2
shows the estimated symptom probabilities (94.1 % false) with the prior fault probabilities and
Fig. B.3 presents the estimated posterior fault probabilities when a symptom is detected (see that

the Damper posterior false probability is 16.8 % as mentioned earlier).

In Genie the type of the child nodes can be selected. In the general type, the child nodes have
probabilities for each combination of parent states. Most of the time it is impossible or time

consuming to define the fault probabilities of all these combinations.
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Prior state: False: 1 % Prior state: False: 5% State: False: 16.8% State: False:84.0%
True:99 % True: 95 % True:83.2 % True: 16.0 %

High CO2 and State: True
low gV

Fig.B.2 Estimation of symptomprobabilities (takes place during the setup ofthe DBN) Fig. B.3 Estimation of fault probabilities (takes place automatically

State: True: 59%

High CO2 and False: 94.1 %

low qV

place by DBN during FDD process

In the 4S3F method we apply so-called Noisy-Max nodes in which the false parent state

indicates the chances of the child states. Table B.5 presents this for our DBN example. High
CO2 and low qV can be 66 % false (symptom not present) when Damper is false or 10 % false
when CO2 controlis false. The conditional false probability by a false Damper is high because a
frozen damper canbe closed or largely opened which does not result in a small air flow rate.
LEAK shows here the chance of the state properties when Damper and CO2 control are both
true. Adjustment of the DBN example with the Noisy-Max node presented in Table B.3 leads
both to 1 % false values for Damper and CO2 control when High CO2 and low qV'is false, while

the false values are 7.7 and 93.3 % when High CO2 and low qV is true.

Damper | CO2 control

State symptom ‘High CO2 and low qV’ False False LEAK
True (symptom detected) 0.34 0.90 0
False (symptom not detected) 0.66 0.10 1

Table B.5 Noisy-Max type for node High CO2 and low gV in the DBN example
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Noisy-Max nodes were applied for all DCV symptom nodes. The fault nodes, see Tables B.1 and
B.2, have as first state the false state because it is difficult to estimate the probabilities of the
child node when one of the parent nodes is true independent of the state of the other parent
nodes. In this way the Noisy-Max probabilities canbe set up easily because the true state of
LEAK canbe set to 1 as we assume that the symptom is not detected when both faults are not
present. Only an inaccurate model to detect symptoms could lead to a detected symptom while

actually no faults are present. We have ignored this option.

As shown in Tables B.1, B.2 to B.5, only false and true states are proposed for the fault and

symptom nodes in the DCV DBN. However it can be extended with more states when necessary.
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	The proposed DCV FDD can be extended to VAV FDD by taking into account heat exchangers in the end terminals and thermal comfort control. In this way, thermal comfort indicators like air and wall temperatures and humidity can be integrated.
	In the case study values in symptom rules are set up arbitrary and further studies are needed to determine optimal setpoints.
	We propose to set up model libraries for standard components and symptom rules.
	- Symptom rules with default thresholds.
	- DBN models including default prior and conditional probabilities for the fault and symptom nodes.

