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Abstract 

In this article a generic fault detection and diagnosis (FDD) method for demand controlled 

ventilation (DCV) systems is presented. By automated fault detection both indoor air quality 

(IAQ) and energy performance are strongly increased.  This method is derived from a reference 

architecture based on a network with 3 generic types of faults (component, control and model 

faults) and 4 generic types of symptoms (balance, energy performance, operational state and 

additional symptoms). This 4S3F architecture, originally set up for energy performance 

diagnosis of thermal energy plants is applied on the control of IAQ by variable air volume 

(VAV) systems. The proposed method, using diagnosis Bayesian networks (DBNs), overcomes 

problems encountered in current FDD methods for VAV systems, problems which inhibits in 

practice their wide application. Unambiguous fault diagnosis stays difficult,  most methods are 

very system specific, and finally, methods are implemented at a very late stage, while an 

implementation during the design of the HVAC system and its control is needed. The IAQ 4S3F 

method, which solves these problems,  is demonstrated for a common VAV system with demand 

controlled ventilation in an office with the use of a whole year hourly historic Building 

Management System (BMS) data and showed it applicability successfully. Next to this, the 

influence of prior and conditional probabilities on the diagnosis is studied. 
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Abbreviations 
AHU  Air handling unit 
BMS  Building management system 
DBN  Diagnostic Bayesian network 
DCV   Demand controlled ventilation 
EP  Energy performance 
EWMA  Exponential weighted moving averages 
F  Fault  
FDD   Fault detection and diagnosis 
HVAC  heating, ventilation and air conditioning 
IAQ   Indoor air quality  
OS  Operational state 
PCA  Principle component analysis 
PIR  Passive infrared 
P&ID  Piping & Instrumentation Diagram 
S  Symptom 
THUAS The Hague University of Applied Sciences 
VAV  Variable air volume 
4S3F  4 faults and 3 symptoms 
 
Symbols 
CO2  CO2 concentration [ppm] 
qV  Volume flow rate [m3/h] 
PIR  presence [0,1] 
P  Probability [0..100 %] 
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1. Introduction 

Demand Controlled Ventilation (DCV) is claimed to be an effective method to achieve both high 

indoor air quality (IAQ) and energy savings. It determines the air flowrate to rooms according to 

the actual requirements in air-conditioned zones based on CO2 concentration (see e.g. Fisk et al. 

[1] who presented an overview of DCV systems and ASHRAE standard 62.1 2013[2]). Most of 

the time the air flow rates are reduced significantly by DCV compared with conventional 

ventilation methods. In this article we focus on DCV systems controlling CO2 concentration in 

workspaces. 

The benefits of DCV in comparison with constant air-volume systems are the reduction in 

heating and cooling load of the supply air and the decrease in power consumption of air handling 

unit (AHU) fans. Studies showed up to 40 % energy savings for fans. Tukur et al. [3] noted 25 % 

for an office building,  Nielsen et al. [4] 35 % for family houses and Schibuola et al. [5] 40 % for 

a library. Zhang et al. [6] found energy savings for fans between 12 and 30 % for 15 locations in 

the United States. Thermal energy savings up to 25 % are depicted in [6]. 

Despite these positive results, generally in practice, the expected energy savings are not always 

realized. From a survey by Qin et al. [7] it followed that 20,9 % of the considered VAV 

terminals were ineffective, leading to poor IAQ and energy performance (see Lee and Yik [8], 

Wang [9], Guo et al. [10], who showed energy waste up to 30% for air systems, and Yu et al. 

[11] with energy waste between 25 and 50%). Many causes were identified in design, realization 

and operational stages, like faulty capacities of components, incorrect control of the DCV system 

or faulty sensors, see for instance Okochi and Yao [12], who stated that VAV systems can still 

be improved because faulty CO2 and occupancy sensors are common due to aging and incorrect 
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sensor placement in  rooms. Additionally, needed air ventilation capacities may have not been 

installed because of poor design or implementation. 

Moreover, CO2 is used as proxy for indoor air quality and incorrect control of the indoor quality 

leads to health and comfort problems. Thus, neither energy savings or indoor quality are 

guaranteed.   

Various types of DCV methods are available, such as occupancy presence control, relative 

humidity control and CO2 control, see e.g. [13 and 14] and temperature control in VAV systems. 

CO2-based DCV controlled method is most commonly used and we focus on it in this article. 

Although CO2 sensors could be placed in the rooms or in the room return air ducts, they are often 

installed in the main return air duct to limit costs. For instance, Shan et al. [9] proposed a multi-

zone demand-controlled ventilation strategy using a limited number of CO2 sensors in the main 

return air duct. However, nowadays the increased requirements for smart buildings, combined 

with the decrease of  CO2 sensor prices result in buildings being equipped with CO2 and 

occupancy sensors in workspace. In these smart environments, DCV is controlled by both CO2 

concentration and occupancy. Many control strategies are available. Okochi et al. [12] presented 

an overview of  controllers for VAV systems. Chenari et al. [14] presented also an overview of 

ventilation strategies. Conventional controllers are encountered ( like P, PI PID)  and predictive 

and adaptive controllers.  For instance Lu et al. [15] presented a dynamic DCV strategy using 

CO2 balances equations, Goyal et al. [16] discussed the control of occupancy-based zone-

climate, See also control strategies by Chao and Hu [17] and Wang [18] . 

More complex control systems lead to more chance of faults, meaning that the use of FDD (Fault 

detection and diagnosis) methods has become inevitable. Correction of the diagnosed faults will  
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lead to better indoor air quality and lower energy consumption of fans and heating and cooling 

coils in the air handling units. 

Kim and Katipamula [19] have presented recently an overview of FDD methods for HVAC 

systems including VAV systems. See for instance [7, 20 and 21] for VAV terminal units, Schein 

et al. [22] presented a method called VPACC (VAV box performance assessment control charts). 

FDD for the whole VAV systems is also available, see e.g. [23]. Most of the methods for VAV 

systems are based on expert rules [24] and can be combined with an approach with control charts 

using e.g. cumulative sum [24] and exponential weighted moving averages (EWMAs) [22] to 

eliminate transient influences and incidental outliers by measurements. In [7, 22 and 24] lists of 

faults and symptoms in VAV end-terminal systems are presented. Unfortunately, they are 

specific to the kind of considered system and generic FDD methods are still missing. 

In the last decade data-driven methods were popular. Du and Jin [25] applied a principle 

component analysis (PCA) method to determine sensor faults and to correct them.  Qi and Dong 

[26] proposed a FDD model for VAV systems based on neural networks. An issue here is that 

data-driven FDD methods use energy data based on sensors that may be faulty, and on heating, 

ventilation, air conditioning (HVAC) operation mode which is not always known. A novel 

approach is the use of Bayesian statistics. Xiao et al. [27] presented a diagnostic Bayesian 

network (DBN) for FDD of VAV terminals. Regnier et al. [28] proposes to apply it on AHU and 

VAV while Zhao et al. [29 to 31] applied DBN on AHU and chiller faults. Verbert et al. [32] 

also applied DBN on HVAC systems and Chen et al. [33] on whole building. 

However, in all these FDD approaches the implementation does not occur simultaneously with 

the design of the HVAC system and its control. In [34], it was shown that the fact that FDD 
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design does not take place concurrently with the design of HVAC and its control system, is a 

reason for the lack of use of FDD. The implementation of available FDD methods is complicated 

because it is time-consuming and their structures deviate from HVAC design or control engineer 

practice. 

In this article we apply the 4S3F framework which integrates these methods into an FDD 

architecture that can be set up by HVAC and control engineers during the design process, and is 

based on Piping & Instrumentation Diagrams (P&IDs).  

In [34] we have proposed a generic architecture for Energy Performance (EP) FDD, the so-called 

4S3F method based on DBNs which can be setup simultaneously with HVAC design and 

implementation. This approach is based on HVAC P&IDs.   

The advantages of the DBN approach as stated in [34] are: 

- It is congruent to HVAC design and implementation practices. 

- Fault identification takes place simultaneously at different system levels which prevent a 

complex top down or bottom up FDD approach. 

- Outcomes are probabilities as an HVAC expert diagnoses. 

- It delivers results even when information is missing or contradictory. 

- It allows the application of all kinds of FDD methods to estimate or exclude symptoms 

and faults. 

The examples in [34] are based on thermal energy plants in buildings. Here, we propose to apply 

it to DCV systems.  
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Section 2 introduces the 4S3F method and in section 3 the DCV system is explained. In sections 

4 to 8 the DCV 4S3F method is applied in a case study for a lecturer room of a school building. 

Section 4 describes the 4S3F model in the case study. Then the results of the IAQ diagnosis are 

discussed. First, in section 5 basis analysis with the help of performance graphs is addressed 

from hourly available building management system (BMS) data. Then, in section 6 symptom 

results are shown from automated detection and finally the estimated faults are derived by 

applying diagnosis by a DBN model based on the 4S3F architecture in section 7. In section 8,  

the results are evaluated and in section 9 sensitivity of prior and conditional probabilities with 

regard to diagnosis results are discussed. Finally, conclusions are drawn from the case study and 

recommendations for further research are proposed in section 10.  

 

2. The 4S3F FDD method for indoor air quality.  

The reference EP FDD architecture described in [34] consists of four generic types of symptoms 

(4S): balance, energy performance (EP), operational state (OS) and additional symptoms. A 

balance symptom is present when a deviation in an energy, mass or pressure balance for a system 

is detected. When an energy performance metric, like a performance factor (e.g. coefficient of 

performance COP) or energy use shows a too low value an EP symptom is found while when a 

state value (e.g. temperature, flow rate, pressure, on-off state of a component) deviates 

unexpectedly in time, an OS (Operational State) symptom is detected. These state values could 

be measured by the BMS and are mostly depicted in an HVAC P&ID. Additional symptoms 

based on for instance inspection or maintenance information, or from specific FDD methods of 

HVAC components can be added if needed. We recall that a symptom must be observable (is 

therefore the result of measurements) and symptoms can be identified by listing all measurement 
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points (sensors) in the P&ID while a fault is the system ‘disease’ that leads to symptoms. 

Possible faults can be listed on the same way by observing the P&ID. 

Three generic types of faults (3F), model, component and control faults, are present. The first 

ones are faults in assumptions in the models estimating values for missing data. The second 

relates to HVAC components and systems which do not function properly. For instance too low 

installed capacity, or too low efficiency by aging, or because it is defect. The last type concerns 

faults in the control of the HVAC components and system, for instance control of supply 

temperatures and on-off strategy of components like the control of the sequence of energy 

generators. Fig. 2.1 shows relations between fault and symptom types in this 4 symptom and 3 

faults  (4S3F) method. For instance, a component fault could lead to balance, EP, OS and 

additional symptoms. In contrary, an EP symptom could be caused by a model, component or 

control fault. As can be seen there is no univocal relationship between faults and symptoms 

because more faults can lead to a same symptom. See [34] where this is explained in more detail. 

 

 

 

 

 

Fig. 2.1 The 4S3F model: Relations between fault and symptom types.  
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With the help of a diagnostic Bayesian network (DBN) model, diagnosis takes place 

simultaneously in all components and systems. The DBN model of the 4S3F consists of the fault 

nodes which are linked to the symptoms nodes as shown in Fig. 2.1. The fault nodes are so-

called parent nodes with prior probabilities for their states and the symptom nodes are so-called 

child nodes with conditional probabilities for their states depending on the state of the fault 

nodes. The probabilities of the fault states, a value between 0 and 1, are calculated by the DBN 

when the states of the symptoms are known. 

In this paper the 4S3F model developed for energy performance diagnosis is extended to DCV. 

This reference architecture supports all kind of DCV systems controlling CO2 concentration at 

room level and is demonstrated on a quite common DCV system, see Fig. 3.1.  
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3. Faults and symptoms of demand controlled air ventilation systems 

In this section generic faults and symptoms for DCV systems are identified and analyzed. Fig. 

3.1 shows a P&ID, as used during design, of a frequently applied DCV system in which the 

supplied air flow rate is controlled by room dampers placed in end-terminals. The damper 

position depends on the presence of people and CO2 concentration in the room. The air flow to 

the room is controlled by the CO2 controller (CC)  and the CO2  concentration measured by the 

concentration transmitter (CT). 

Fig. 3.1  P&ID of a VAV system 

G=CO2  production in the room [kg/s]. 

C=CO2 concentration in the room [ppm]. 

Csp=setpoint of the maximum CO2 concentration in the room [ppm]. 

psp=setpoint of static pressure of the supply air [Pa]. 
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psupply= Static pressure of the supply air [Pa]. 

Cv=CO2 concentration of the supply air [ppm]. 

Cambient=CO2 concentration of ambient air [ppm]. 

Qv,ambient=ambient air rate flow [m3/s]. 

Qv=supply air rate flow to the room [m3/s]. 

Qv,rec=recirculated air flow rate [m3/s]. 

udamper= damper position [0..100 %]. 

V=room air volume [m3]. 

 

The fresh air to the rooms is supplied by the supply fan which is located in the Air Handling 

Unit. When room dampers are closed or partly opened, the supply and return fans in the AHU 

have to deliver less air flow. Usually, this can be controlled by a pressure controller (PC) which 

regulates the rotation speed of the fans. In the supply duct after the AHU the controlled supply 

pressure is measured by a pressure transmitter (PT).  Controller VC opens and closes the inlet, 

recirculation and outlet dampers of the AHU and set the supply and return fans on and off by 

timers and ventilation demand. 

There are also adapted versions of these control strategy (like Fig. 3.1), at room level where also 

the presence of people (measured by a sensor indicated as PRT) and opened windows (measured 

by WT) are taken into account, as well as system level where the needed supply air flows are 

calculated by occupancy and CO2 levels in the rooms. In the specific case study (see section 4), 
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the mechanical ventilation is shut down to avoid energy losses when the windows are open. It is 

very easy, using the P&ID in Fig. 3.1, to list all possible symptoms and faults. This is done in 

Appendix A and forms the basis for the 4S3F architecture.   
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4. 4S3F model for DCV systems in a case study 

In this section the application of the 4S3F model to a real DCV system is shown. In the school 

building of The Hague University of Applied Science (THUAS) in the Netherlands a demand 

driven air ventilation system is present in which the air flow to the rooms is controlled by CO2 

concentration and occupancy.  

The case study has been conducted on historical data of a room of the THUAS building. Hourly 

BMS data is available for the year 2015 and we will conduct diagnosis on hourly basis which can 

also be done on actual BMS data. The location of this room 1.067, a lecturer room, is shown in 

Fig. 4.1. In an occupied room, the air flow rate is increased when the CO2 concentration exceeds 

800 ppm and is decreased when it is below 600 ppm and the room is unoccupied. The designed 

supply air flow rate is 200 m3/h based on presence of 4 persons.  

Most rooms of THUAS are located to an outer wall and contain windows. In each room of the 

building under consideration the CO2 concentration is controlled by a damper which is present in 

the supply air duct to the room.  A very specific control  feature is that when one of the windows 

in the room is opened the mechanical air supply is stopped. This is to avoid energy losses. The 

presence is measured by a (passive infrared) PIR sensor and at the windows magnetic contacts 

are present which indicate an opened window. The supply air rate to a room is restricted by 

design and implementation of specific dampers with fixed maximum air flow rate setting. The air 

leaves the rooms by overflow to the corridors where return vents are present. 
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Room 1.067 

 

 

Fig. 4.1 Considered building section 

 

Too high measured CO2 concentration in a room, one of the OS symptoms, could have, if 

present, many causes: by a faulty CO2 sensor (e.g. broken), a faulty CO2 measurement (e.g. 

biased value), missing connection to the BMS,  a supply fan of the AHU which is not running, an 

occupancy sensor which is stuck, an occupancy measurement value is frozen, the damper of the 

VAV system which is broken or the control of it which is frozen. See Table 3.1. But also by 

outdoor 

outdoor 
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occupancy behaviour:  the room occupancy can be higher than intended and in case of THUAS, 

one or more windows can be opened which leads to close the damper in order to save energy.  

 

4.1 Considered faults in the case study 

The faults in this case study are based on the generic faults presented in Appendix A in which 

faults are coded from F1 to F19. As simplification we do not look at the cause inside a 

component and cluster all faults concerning one component for the sake of demonstration. So a 

broken or biased CO2 sensor are clustered to one fault for the component CO2 sensor, namely a 

faulty CO2 sensor (F8). In addition faults due to the AHU like damper (F4), filter (F5) and fan 

(F3) faults, and faults to control the AHU (F14, F15 and F17) are clustered to one component 

fault for the AHU because with the available BMS data in the case study it is not possible to 

distinguish the faults inside the AHU. However, when control values of the fan and dampers are 

present in the BMS, they could be separated. We have also clustered faults concerning the room 

damper (F7). A correct measured mechanical flow is important to detect symptoms. That is why 

we also take into account the air flow sensor qV as a fault (F11). 

Table 4.1 presents the 9 faults which are considered in the case study.  As can be seen 6 

components and 3 control faults (CO2, window and occupancy control) are distinguished. Three 

components are sensors: CO2, PIR and qV sensors. Except fault F19, window control, which is 

specific for the THUAS building, all faults are generic for DCV systems with room control.  

As can be seen model faults F1 to F2 are not taken into account in the case study because virtual 

sensors were not applied. Furthermore, air leakage of ducts (F6) is ignored. 
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Table 4.1 Overview of faults and corresponding symptoms in the case study (we have renumbered the faults and symptoms in Table A.1)

FAULTS SYMPTOMS 
Nr Description Type Explanation Nr Description Type Rules and thresholds 
1 Occupancy Control The occupancy in the room is higher 

than according to the requirements. 
h High CO2 and high qV OS CO2>840 ppm and qV>200 m3/h    

PIR=1 
2 CO2 sensor  Component It can be broken or biased, or a cable is 

not connected or broken. 
a 
b 
j 

CO2 unrealistic 
CO2 missing 
ΔCO2 neighbours 

OS 
OS 
Balance 

CO2<360 or CO2>3000 ppm 
CO2=NaN 
|ΔCO2 other rooms|/CO2 on Saturdays 
from 0:00 to 6:00 am. 

3 AHU  Component  It can be broken or the control of it is not 
right. 

g
m 
i 

qV_AHU=0 
qV=0 
High CO2 and qV=0 

OS 
OS 
OS 

qV_fan=0  and PIR=1 
qV=0, PIR=1and ∆t=6 hrs. 
CO2>840 ppm, qV=0 m3/h and  PIR=0 

4 PIR sensor  Component It can be broken or biased, or a cable is 
not connected or broken. 

c 
d 

ΔCO2 and PIR=0 
Presence outside 
working hours 

Balance 
OS 

ΔCO2>40 ppm. PIR=0 and ∆t=1 hr. 
PIR=1 and 0:00<t<6:00  am 

5 Damper  Component  The mechanical part of the damper or 
the electrical motor is stuck. 

i 
k 
 
l 
 
m 

High CO2 and qV=0 
High CO2 and low qV 
 
Low CO2 and qV>0 
 
qV=0 

OS 
OS 
 
OS 
 
OS 

CO2>840 ppm, qV=0 m3/h  and PIR=0 
CO2>840 ppm , 0<qV<100 m3/h and 
PIR=0 
CO2<500 ppm, qV>0 m3/h  and ∆t=5 
hrs. 
qV=0, PIR=1and ∆t=6 hrs. 

6 qV sensor  Component It can be broken, or a cable is not 
connected or broken. 

e 
f 

qV unrealistic 
qV missing 

OS qV>400 m3/h or qV<0 m3/h. 
qV=NaN 

7 BMS  Component  A broken data-connection or software 
failure in the data logging leads to 
missing data. 

f 
b 
 

qV missing 
CO2 missing 
 

OS qV=NaN 

8 Window 
control 

Control The air supply to the room is stopped 
when a window is opened. 

i High CO2 and qV=0 OS CO2>840 ppm, qV=0 m3/h and  PIR=0 

9 CO2 control  Control The CO2 setpoints are not correct: too 
high at occupancy or too high at un-
occupancy. Or delay times are too long. 

k High CO2 and low qV 
 

OS CO2>840 ppm, 0<qV<100 m3/h and 
PIR=0 
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4.2 Considered symptoms in the case study 

Table 4.1 also presents the 13 symptoms (depicted as a to m and based on the symptoms S1 to 

S13 presented in Appendix A,) that would be the observable result of the 9 faults identified in 

section 4.1. Except for the balance symptoms, all symptoms are OS symptoms, meaning that the 

operational performance is compared to preset values. These preset values can be control 

setpoints and also expert rules. This approach is generic, but evidently, the setpoint values are 

DCV system specific. 

Symptom CO2 unrealistic (type S8 in Table A.1, type a in Table 4.1) is present when the 

measured CO2 value is lower than the outdoor value or higher than an extreme value which 

indicates a non-realistic CO2 measurement. When the BMS has not stored a CO2 or a qV 

measurement, the value is not-a-number (NaN) which leads to symptom CO2 missing or qV 

missing (both type S7, b and f).  Symptom qV unrealistic indicates a negative value or a much 

higher value than should be possible on the basis of the design specifications (type S8, e).  High 

CO2 and high qV (type S4, h) represents that CO2 is higher than the desired value with 

maximum air rate flow at room occupancy. In the same way High CO2 and qV=0 and High CO2 

and low qV (also both type S4, i and k) indicates too high CO2 at absence or low value of the air 

flow rate to the room. During the weekends, when the building is unoccupied,  the CO2 values in 

rooms located close to each other should decrease to the same level. Symptom ∆CO2 neighbours 

(type S1, j) is present when the CO2 concentration the room  deviates 10 % from the mean value 

of the adjacent rooms at the end of Sunday night. When the CO2 level is acceptable while an air 

flow rate is present, the symptom Low CO2 and qV>0 (type S5, l) is present because ventilation 

should not be needed. Symptom qV_AHU=0 (type S6, g) is observable when the air handling 
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unit does not supply air while the room is occupied. A room occupancy measured during night or 

weekend time also indicates the symptom Presence outside working hours (type S9, d). It could 

not be possible that the CO2 concentration increases in the room while the PIR sensor indicates 

unoccupancy. Then symptom ∆CO2 and PIR=0 (type S1, c) is present.  At last, when symptom 

qV=0  (type S6, m) is observable when the room is occupied while ventilation is not present. 

Notice that symptoms c, h, i, k and m are formed from combinations of measurements. To 

eliminate transient influences sufficient time periods should be taken into account.  

As depicted in Table 4.1, some symptoms are only detected when they are present during more 

than one hour to avoid faulty detection by transient behaviour and incidental measurement 

outliers.  

The chosen values in the rules are building specific and depend on the outdoor condition, the 

designed HVAC system and the HVAC control set points. The purpose of this article is not to 

optimize them, we have chosen values which obviously could be different in other systems. They 

are presented in the last column.  

 

4.3 DBN model in the case study 

In the 4S3F DBN method Bayesian statistics is applied which is based on relations between state 

probabilities of events. When the probability that event B is true (P(B)=1), the conditional 

probability P(A|B) that event A occurs while B is true, can be estimated using the DBN model. 

See Appendix B in which this is explained. In the DCV DBN events are faults which are linked 

to events for symptoms by arcs. When the true and false states of the symptoms are known, the  

posterior state (true or false) probabilities can be estimated.  
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Table 4.1 shows the links between the faults and symptoms in the DCV DBN model. 

This table is implemented straight forward in a DBN model. See Fig. 4.2.  

 

 

 

 

 

 

 

 

 

Fig. 4.2 DBN model of DCV system in the case study (faults in purple, symptoms in yellow). 

 

Set probabilities in the DCV DBN model 

The values of the prior and conditional probabilities in the DCV DBN are based on assumptions. 

In the DCV DBN mode, the fault nodes (purple color) are parent nodes having prior probabilities 

which are set between 90 and 99 % true value. Thus it is taken into account that some faults 
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happen more often than others. For instance, a damper (1 % probability it is defect, see Appendix 

B) is seldom stuck while an opened window (5 % probability, see Appendix B) is more common. 

The symptom nodes (yellow color) have conditional probabilities which values indicates the 

probabilities that the symptom is present or absent depending on the state of the parent nodes. As 

example we take symptom high CO2 and no qV which can be caused by a disabled supply fan 

(AHU fault), by a frozen closed damper (Damper fault) or by opened windows (wrong Window 

control).  The disabled supply fan leads with high probability (70 %, see Appendix B) to this 

symptom. This value is lower than 100 % because an opened window could deliver enough 

ventilation which does not lead to detection of the considered symptom. Another example is that 

an incorrect damper can be closed or opened. Only a frozen closed damper does not lead to 

mechanical ventilation. We assume that the probability of a frozen closed damper is as large as a 

frozen opened damper which lead to a conditional symptom probability of 50 % (see Appendix 

B) when the damper is faulty.  And at last the example that windows are opened, thus 

mechanical ventilation is stopped. However, this will not always lead to high CO2 concentration 

because the natural ventilation can be sufficient. So we have assumed a conditional probability 

of 40 % that a opened window leads to too high CO2 concentration. 

Diagnosis can present fault probabilities in percentages. The absolute value is less important than 

the relative value. For instance, a diagnosed fault probability between 30 and 100 % should lead 

to analyze the fault. We propose to look at the highest fault probabilities, e.g. higher than 30 % 

and start with the highest one for analysis purposes as an expert would do. 
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5.   Monitoring results and descriptive analysis of BMS data 

As background information, we address in this section first the measurements as energy 

signatures without using our 4S3F method for year 2015. Fig. 5.1 shows the measured CO2 

concentration in the rooms 1.067, 1.069, 1.071 and 1.075 (the location was shown in Fig. 4.1) 

during the year. Notice that weeks and days can be distinguished by peaks and valleys of the CO2 

levels and that they are low during end July and begin August (around 400 ppm) corresponding 

to an empty building during summertime. Furthermore, at the begin of the year the CO2 

concentration is higher, more than 2000 ppm!) than in the rest of the year. In most cases the CO2 

concentration stays below 1500 ppm. 

 

 

 

 

 

Fig. 5.1 CO2 concentrations in room 1.067, 1.069, 1.071 and 1.075 

Fig. 5.2 shows the time series plot for the mechanical air flow rate to room 1.067. 

 

 

 

 

1 January 31 December 
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Fig. 5.2 Air flow rate to room 1067          Fig. 5.3 CO2 concentration in room 1067 

We see that the maximum air flow rate stays under 250 m3/h most of the time, which is higher 

than the designed value of 200 m3/h. Next we see that during summer ventilation was off. 

Furthermore we see a week pattern. Fig. 5.3 depicts the CO2 concentration of room 1067. The 

CO2 concentration is around 800 ppm during room occupancy which is the set point value. 

Outliers are detected at the begin of the year and at the end of the autumn. The ambient 

concentration (400 ppm) is an assumption based on outdoor values in the Netherlands. 

 

 

 

 

 

Fig. 5.4 Occupancy of  room 1067   

Fig. 5.4 depicts that the room is nearly unoccupied during summer time and at Christmas time. 
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In Fig. 5.5 we see that the building is occupied from Monday to Friday (weekdays 2 to 6). Fig. 

5.6 shows that no air and a little bit of air was supplied on Sundays and Saturdays. The mean 

presence values are calculated by counting the hours that the room was occupied during a day. 

The daily mean air flow rates were calculated by summarize the measured air flow rate for all 

days and divide it by the daily period of 24 hour.  

 

 

 

 

 

Fig. 5.5 Presence during weekdays                    Fig. 5.6 Mean air flow rate during weekdays                      

From these signatures, the presence of symptoms, e.g. the high CO2 values at the begin the year, 

is observed but does not lead to fault identification. It is almost impossible, also for the HVAC 

expert, to diagnose faults with these energy signatures or to optimize the system. Furthermore, 

symptoms can only be detected by outliers for which many (normal) data is needed and 

automation is not possible.   
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6.  Application of the 4S3F method: Detected symptoms  

In this paper, we used historical BMS data on the year 2015. They were uploaded in Matlab, in 

which the rules and setpoints of Table 4.1 were used to detect symptoms.  In an automated 

building energy management they would be directly programmed into the BMS or could be an 

extension of the BMS. Fig. 6.1 (a) to (m) present the detection results for the 13 distinguished 

symptoms. In these figures the value 0 indicates that the symptom is present and a value 1 it is 

not.  

Figs. 6.1 (a), 6.1 (b),  6.1 (e) and 6.1 (f) depict the detection results of symptoms a, b, e  and f 

concerning the CO2 and qV measurements. We see from these figures that the qV values and the 

CO2 values are missing in some periods and that unrealistic values for these sensors are not 

present. 

Figs. 6.1 (c) and 6.1 (d) are about the occupancy sensor. This figures show that these symptoms 

for the PIR sensor are missing.   

Fig. 6.1 (h), 6.1 (i), 6.1 (k) and 6.1 (l) depict symptoms about CO2 concentration and air 

ventilation flow. Fig. 6.1 (h) shows that ‘high CO2 with high qV’ is present. Notice that this 

symptom is often present during June and September.  

Symptoms  i, k and l are shown in Fig. 6.1 (i), 6.1(k) and 6.1 (l). Symptom l is not present 

(ventilation while the CO2 concentration is low) while the presence of symptoms i and k (thus 

high CO2 while the ventilation is not present or low at occupancy) can be seen.  Fig. 6.1 (j) 

depicts that symptom j (∆CO2 neighbours) happened once. In Fig. 6.1 (g) we see that the supply 

fan is sometimes off while the room is occupied. Fig. 6.1 (m) shows that symptom m (qV=0) is 

present only once. 
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Fig. 6.1 Detected symptoms a to m 

(0=present, 1 = absent; hour 1=1 January, hour 8760=31 December) 
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This automated symptom detection is an improvement compared to the application of energy 

signatures as mentioned in section 5 in the sense that detection is automated and that a clear list 

of symptoms is generated. However, it is still complicated to find out the faults leading to 

symptoms. For example, one might estimate that sensor errors are absent from symptoms a to f, 

but it is more difficult to interpret symptoms g to i and k.  
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7. Application of the 4S3F method: Diagnosis results 

In this section faults are isolated automatically from detected symptoms. The scheme depicted in 

Fig. 4.1 is built in Genie. Then the absent and present symptoms detected in Fig. 6.1 are fed to 

the DBN. Diagnosis has taken place for each hour in 2015. The diagnosis results are presented in 

Fig. 7.1.  The value 0 indicates that the fault is present and the value 1 it is not.  

 

 

 

Fig. 7.1  Faults 1 to 9 (0=present, hour 1=1 January, hour 8760=31 December) 

 

First we address sensor faults. Fig. 8.1 (4) shows that the PIR sensor is always correct. Figs. 7.1 

(2) and (7) show that the CO2 and air flow sensor seems to be correct. As well CO2 and air flow 
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sensor faults are present once or twice. We ignore these outliers.  The damper is diagnosed true 

because only one outlier was present, see Fig. 7.1(5).  

The diagnosis results for the other faults shown in Figs. 7.1 (1), (3), (6), (8) and (9) indicate that 

in 2015 the next faults were present: 

- Occupancy  

- AHU  

- Window control  

- BMS  

- CO2 control  

In Fig. 7.1(1) we see that the occupancy of the room is too high. Fig. 7.1(3) shows AHU faults 

and in Fig. 7.1(6) depicts that one or more of the windows are opened in some periods. 

Sometimes the data connection to the BMS is missing (see Fig. 7.1 (8)). From Fig. 7.1(9) we see 

that the CO2 control is not working correctly sometimes.  

In the next section the diagnosis results are discussed and validated with measured data and from 

facility manager information. 
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8. Evaluation of the diagnosis results 

 

8.1 Findings from users and facility management 

Occupancy information and information from the technical facility manager are used to analyze 

the diagnosis results. Below the findings are presented. 

Fault 1: Occupancy 

Room 1.067 is an office room for lecturers which was designed for an occupancy of 4 persons 

(800 ppm at a fresh air ventilation rate of 200 m3/h with an outdoor CO2 concentration of 400 

ppm). However 6 workplaces are present in room 1.067 which, according to lecturers, are 

regularly fully occupied sometimes, so the room can be fully occupied especially in the busy 

education periods of June and September leading to higher occupancy than by design rules. Thus 

signalized occupancy faults seem to be reasonably reliable. 

Fault 3: AHU  

AHU faults were estimated by diagnosis at the begin of January. It was known from the facility 

manager of THUAS that the supply fan in the AHU was off by malfunction of the AHU control 

from 6th  till 12th  January 2015 because this fan was set off automatically by a control rule to  

protect  freezing of the AHU heater. However, it was not reset just in time but a few days later. 

Additionally, for some reasons, probably wrong signal connection with the BMS, the fan stayed 

off while ventilation was needed during 49 hours in year 2015. But we saw that after some hours 

the fan was set on and the fault was, probably automatically, restored. Thus, this fault was right 

diagnosed all the time. 
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Fault 6: Window control 

The registered time that windows are opened and the CO2 concentration is higher than 800 ppm, 

is 58 hours. The BMS data contains also changes of the values of the contacts which registries 

opened windows. We have ignored consciously this data for diagnosis purposes which makes it 

possible to validate diagnosis outcomes concerning window control. Looking at this original 

BMS data, showed that one or both windows were opened during that hours. Thus the diagnosis 

delivered correct results. 

Faults 8:  BMS 

From the log book at the facility manager is was known that sometimes the data connection 

between the BMS and the data storage was broken. 

Faults 9: CO2 control 

There were complaints, but nothing was done about it, because facility management thought it 
would come from the windows. 

 

8.2 Conclusions from the case study 

The case study shows the usefulness of the proposed 4S3F method for a DCV system.  In almost 

all cases the diagnosis is correct. Only 4 outliers, one for the CO2 sensor, one for the room 

damper and two for the qV sensor were present. However, most of these false diagnoses can be 

prevented by using actual BMS data instead of hourly data based on a snapshot during a hour. 

Also, corresponding rules can be adapted. For instance by taken into account the diagnosis 

results of the hours before or after the hour that the diagnosis takes place, or by changing the 
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thresholds values in the rules. The faulty diagnosis could be corrected when another rule is 

introduced to estimate symptom k, for instance considering a whole day.   

We have not adapted rules and thresholds in the case study because it was not our intention to 

optimize rules and thresholds in this article.  
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9. Sensitivity analysis of the set probabilities  

[34] states that the absolute values for as the prior and the conditional probabilities are not 

important but their relative values. A sensitivity analysis has been conducted on the DBN model 

presented in Fig. 4.2 to investigate this statement. 

 

9.1 Change of set probabilities of faults at an isolated symptom 

First, we consider the effect of variable set probabilities when a symptom and its linked faults are 

isolated from the other DBN nodes. As example we have analysed symptom High CO2 and low 

qV which DBN model is presented in Fig. B.1. In the case study the prior probabilities of 

Damper and CO2 control are set to 99 and 95 %. In addition the conditional true probabilities in 

the symptom node are set to 34 % and 90 % for a false damper and false CO2 control. When the 

symptom High CO2 and low qV is set to be true, The DBN calculated that the posterior false 

probabilities of Damper and CO2 control are 8 and 93 %. Fig. 9.1 to 9.4 present the results of a 

sensitivity analysis on prior and conditional probabilities. In Fig. 9.1 the diagnosed posterior 

false probabilities of the faults are presented as function from the prior false probability of 

Damper. As can be seen, the posterior false P(Damper)’s are still higher than those of Window 

control when its prior value is changed from the assumed 1 % in Table B.2 to 10 %.  
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Fig. 9.1 Effects prior probability Damper      Fig. 9.2 Effects prior probabilities CO2 control  

In the same way, we see that adapting of the prior probability of the CO2 control from 0.5 to 5 % 

does not lead to other trends in fault identification. Fig. 5.3 and 5.4 show the effects of changes 

of conditional probabilities. In a wide range of conditional probabilities the outcome trends are 

the same.  

Fig. 9.3 Effects conditional probability Damper        Fig. 9.4 Effects conditional probabilities CO2 control 

9.2 Change of set probabilities of faults on the diagnosis results 

Here, we present the diagnosis results of the case study when some of the set probabilities 

concerning symptom high CO2 and no qV, see the isolated DBN model in Fig. 9.5,  are changed 

arbitrary in such way that the differences with the probabilities of other nodes decrease. 
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Fig. 9.5 DBN model for symptom high CO2 and no qV. 

The next changes are made: 

- Prior false probability of AHU is set to 2 instead of 1 %. 

- Prior false probability of Window control is set to 2 instead of 5 %. 

- Conditional false probability of AHU in High CO2 and qV=0 is set to 90 instead of 70 %.  

- Conditional false probability of Window control in High CO2 and qV=0 is set to 20 

instead of 40 % . 

Fig. 9.6 shows the differences between the estimated posterior fault probabilities and the results 

shown in Fig. 8.1. 
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Fig. 9.6 Diagnosis deviation by different set prior and conditional probabilit ies related to symptom High CO2 and qV=0. 

As can be seen, one outlier is present for AHU. Furthermore Damper and Window control show 

deviations. However, even when the posterior fault probabilities presented in section 8 are 

corrected for these deviations they stay higher than 30 % to take action for correction as noted in 

section 4. This can be seen from Fig. 9.7 in which for faults 3, 4 and 6 the posterior fault 

probabilities are shown in blue and the deviations in red. 

 

Fig. 9.7 Effects on posterior probabilities at changed set probabilities to symptom High CO2 and 

qV=0 (red: deviation after changed set, blue: diagnosis results) 

 

The sensitivity analyses show that variation in set prior and conditional probabilities did not lead 

to other diagnosis outcomes which confirms our statement that absolute values are of secondary 

importance. Detailed historical data on probabilities of the states is therefore not necessary, thus 

no detailed training data, but expertise about the relative frequency of errors occurring which is 
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known by design and maintenance HVAC engineers. Also component knowledge can be taken 

into account.  
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10. Conclusions and recommendations 

 

Conclusions 

In this article the 4S3F FDD method for Energy Performance diagnosis has been applied on a 

DCV system. A generic set of symptoms and faults has been proposed and a case study has been 

conducted on the DCV system in a school building for the year 2015. This case study shows the 

usefulness of the proposed FDD method.  In most cases the diagnosis seems correct despite 

arbitrary assumptions in symptom rules and for the probability values in de DBN model. Only 4 

faulty diagnosis outliers were noted.  

The DCV 4S3F method can be implemented simultaneously with the BMS system which are 

both based on HVAC P&IDs, like showed in Fig. 3.1, as applied at HVAC design. Symptom 

rules and their thresholds depend on the specific DCV system. However, they can be estimated 

by the HVAC designer. Detection and diagnosis models  could be obtained from libraries 

because of the generic approach in the 4S3F method. In addition DCV faults are generic because 

of the generic character of the components and controls.  

The sensitivity analyses in section 9 show that even when the set prior and conditional 

probabilities are varied in a wide range, this do not lead to other diagnosis outcomes as long as 

their relative values show the same trends as in reality. 

 

Recommendations 

Below recommendations are presented for improvement of the DCV FDD method.  



38 
 

Actual BMS data 

In the case study hourly historical BMS data is used. The diagnosis can be proved applying real 

time actual BMS data. There is no limitation in the 4S3F method to use shorter periods. However 

some rules have to be adapted to transient behaviour of the HVAC system and measurements 

outliers.  

Extension with control signals from controllers 

In practice, more actual BMS data is available like state and control values of actuators and 

controllers. The presented end-terminal system can be extended by these parameters to 

distinguish control and component faults of the damper and the supply fan.  

Extension with AHU components 

In the case study all faults in AHU are combined to one fault. One could distinguish damper, 

filter, fan and control faults to isolate the fault more precisely. 

Recommendation to estimate and correct biased CO2 sensors 

Biased CO2 sensors can be estimated faster and more accurately by implementing additional 

fully mechanical ventilation of each room during night time. In this way a deviation in the CO2 

measurement can be estimated with the help of a mass balance symptom.   

Counting persons 

A simple method to count or calculate the number of persons in a room is helpful to estimate too 

high occupancy. This virtual sensor can be based on the increase of the CO2 concentration and 
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the supplied air flow. See e.g. Timilehin et al. [35] who presented an occupancy measurement 

survey. 

Extension with specific FDD methods for components 

As stated for the EP FDD, the FDD method for DCV systems can be extended with existing and 

new FDD methods for components as additional symptoms. 

Extending the DCV FDD to VAV FDD 

The proposed DCV FDD can be extended to VAV FDD by taking into account heat exchangers 

in the end terminals and thermal comfort control. In this way, thermal comfort indicators like air 

and wall temperatures and humidity can be integrated. 

Optimizing the symptom rules 

In the case study values in symptom rules are set up arbitrary and further studies are needed to 

determine optimal setpoints.  

Setup of model libraries 

We propose to set up model libraries for standard components and symptom rules. 

- Symptom rules with default thresholds. 

- DBN models including default prior and conditional probabilities for the fault and 

symptom nodes. 

Automation of prior and conditional probabilities 

As noted during the sensitivity analyses, the absolute values of the set probabilities are not very 

sensitive for the diagnosis results but the relative values are. We propose to do research for 
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automation of the set probabilities based on ranking of probabilities by HVAC expertise or by 

applying machine learning. 

Integrating the DCV FDD with energy performance (EP) FDD 

Misfunction of DCV systems leads to poor indoor climate but also to energy waste. Coupling the 

4S3F method for energy performance diagnosis and Energy and the DCV 4S3F method gives the 

possibility for redundancy and therefore more accurate energy performance diagnosis. 
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Appendix A Symptoms and faults of a DCV system 

A symptom is an entity that can be observed directly and automatically from the sensors installed 

in the system. Finding all possible symptoms is just a matter of looking at all measurement 

points and analyzing what can be known from them. On the contrary, faults are anything that can 

go wrong. Symptoms and faults are derived from the observation of the P&ID in Fig. 3.1 and 

summarized in Table A.1.  

SYMPTOMS 
Code Balance symptoms 
S1 
 
S2 
S3 

- Deviations in CO2 mass balances (e.g. the supplied CO2 mass must be 
equal to the discharged CO2 mass plus the increase of the CO2 mass) 

- Deviations in air mass balances (e.g. by air flow rate sensor fault) 
- Deviations in pressure balances (e.g. by air leakage which effects the 

supplied air rate.) 
 Operational state (OS) symptoms 
S4 
S5 
S6 
S7 
S8 
S9 

- The measured CO2-concentration by CT is higher than the setpoint Csp. 
- Unexpected low or high CO2 concentration. 
- Unexpected low or high air flows. 
- Missing BMS data 
- Unrealistic sensor data 
- Presence outside working hours 

 Additional symptoms 
S10 
S11 
S12 
S13 

- Maintenance information 
- Information from inspection. 
- Sensor calibration information 
- Complaints from occupants. 

FAULTS 
Code Model faults 
F1 
 
 
F2 

- Model faults for virtual sensors, a physical missing state value is 
calculated by software from existing sensors, to estimate for instance 
presence and occupancy. E.g. by CO2 increase one could estimate the 
number of occupants in a room. 

- Assumptions to set up CO2- and air balances in the rooms.  
 Component faults 
F3 
 
F4 
 
F5 

- Supply fan or return fan, including electromotor, in the Air Handling 
Unit (AHU) is not working properly or broken. 

- One of the dampers (also including electromotor) at the AHU is not 
working properly or broken. 
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F6 
F7 
F8 
F9 
F10 
F11 
F12 
F13 
F14 

- Inlet filter of the AHU is polluted which lead to low air flow to the 
building. 

- Leakage of ducts or clogged ducts. 
- Room damper (in which the motor is included) is broken. 
- CO2 sensor is defective or biased. 
- Presence sensor is defective or biased. 
- Window contact sensor is defective or biased. 
- Flow rate sensor is defective or biased. 
- Data connection from the room sensors to the BMS is missing. 
- Data connection to the BMS is missing. 
- Data connection to the dampers of the AHU is broken. 

 Control faults 
F15 
F16 
F17 
F18 
F19 

- Control of the supply and return fan by controller PC is faulty  
- Control of the CO2 concentration by controller CC is faulty. 
- Control of the AHU dampers  by controller VC  is faulty.  
- Room occupancy is higher than designed. 
- Windows are opened while mechanical ventilation is needed. 

 

Table A.1    Faults and symptoms related to the DCV system of Fig. 3.1. 

 

Faults F18 by over occupancy and F19 by window control are noted as control faults because 

people are not using the room or controlling the system as it was intended. In the first case, may 

be facility management allowed more persons in the room than allowed by design. The second 

because the occupants in the room let the windows too long opened which results in missing 

mechanical ventilation. A BMS fault could be a broken wiring or a software fault by failure of 

the communication application which lead to missing data. So it is categorized as a component 

fault. 
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Appendix B The construction of the 4S3F DBN 

We consider a small part from the DCV DBN model of Fig. 4.2 to show how the DBN calculates 

fault probabilities. Symptom High CO2 and low qV  is taken into account.  From Fig. 4.2 we see 

that this symptom can be caused by a faulty  CO2 control or faulty Damper. The faults linked to 

this symptom (notice that arcs go from the fault node to the symptom node) are isolated from 

other symptoms in this example which results in the DBN model shown in Fig. B.1.  

 

 

Fig. B.1 DBN model for symptom High CO2 and low qV. 

Faults are parent nodes with prior probabilities. We define the probability as the number of 

presence per 100 observations divided by 100. 

The prior true probability that the damper (P(Damper)) is correct, has an arbitrary value of 99 % 

(see Table B.1) and the prior true probability P(CO2 control) is set lower to 95 % (see Table B.2) 

because from experience it is known that control faults occurs often than component faults. 

These values can be adapted by historical values from the BMS and inspection of the log book at 

the facility manager or by complaints from occupants.  

 

 

 

      Table B.1 Prior properties Damper.         Table B.2 Prior properties CO2 control. 

‘CO2 control’ state Probability 

False 0.05 

True 0.95 

‘Damper’ state Probability 

False 0.01 

True 0.99 
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In Genie [36], a DBN software tool, this can be implemented in tables for the node properties as 

shown in Tables B.1 and B.2. Symptoms are child nodes with conditional probabilities 

depending on the state of the fault node. Table B.3 presents possible node properties for 

symptom High CO2 and low qV where a true value for the symptom indicates that the symptom 

is present. For the sake of simplification it is assumed in this example that when one of the faults 

is present, the symptom is also present.  

 

 

 

 

 

Table B.3 Conditional node properties High CO2 and low qV 

 (between parentheses: the prior probabilities). 

As can be seen symptom High CO2 and low qV  is present when Damper or CO2 control is 

false, otherwise true because as well Damper and CO2 control is true. In this example we can 

easily calculate the probability that High CO2 and low qV is false (P(High CO2 and low qV)=0), 

thus no symptom is present, when both faults are not present because faults Damper and CO2 

control are statically independent of each other:  

Damper False (0.01) True (0.99) 

CO2 control 
False 
(0.05) 

True 
(0.95) 

False        
(0.05) 

True 
(0.95) 

High CO2 and low qV:    

True (symptom is present) 
1 1 1 0 

False 0 0 0 1 
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P(High CO2 and low qV)= P(Damper ˄ CO2 control)=P(Damper).P(CO2 control)= 

0.99*0.95=0.9405=94.05 %.  In Table B.4 all calculated symptom probabilities are shown. 

 

 

 

 

Table B.4 Calculated probabilities  High CO2 and low qV from the fault states. 

 

Conversely, it is possible to calculate the fault probabilities P(Damper) and P(CO2 control) 

when the state of symptom High CO2 and low qV is known. For instance the posterior fault 

probability of Damper can be calculated from (0.05+0.95)/(0.05+0.95+4.95)=0.168=16.8 % 

when symptom High CO2 and low qV is detected. Note that the posterior fault probabilities are 

estimated in the DBN from symptoms to faults while the DBN is set up from faults to symptoms. 

In Figs. B.2 and B.3 two examples are presented for symptom High CO2 and low qV. Fig. B.2 

shows the estimated symptom probabilities (94.1 % false) with the prior fault probabilities and 

Fig. B.3 presents the estimated posterior fault probabilities when a symptom is detected (see that 

the Damper posterior false probability is 16.8 % as mentioned earlier). 

In Genie the type of the child nodes can be selected. In the general type, the child nodes have 

probabilities for each combination of parent states. Most of the time it is impossible or time 

consuming to define the fault probabilities of all these combinations. 

Damper False (0.01) True (0.99) 

CO2 
control 

False 
(0.05) 

True 
(0.95) 

False        
(0.05) 

True (0.95) 

True 0.05 % 0.95 % 4.95 % 0 

False 0 0 0 94.05 % 
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Fig. B.2  Estimation of symptom probabilities (takes place during the setup of the DBN)          Fig. B.3 Estimation of fault probabilities (takes place automatically    

                                                                                                                                                        place  by DBN during FDD process 

 

In the 4S3F method we apply so-called Noisy-Max nodes in which the false parent state 

indicates the chances of the child states. Table B.5 presents this for our DBN example. High 

CO2 and low qV can be 66 % false (symptom not present) when Damper is false or 10 % false 

when CO2 control is false.  The conditional false probability by a false Damper is high because a 

frozen damper can be closed or largely opened which does not result in a small air flow rate. 

LEAK shows here the chance of the state properties when Damper and CO2 control are both 

true. Adjustment of the DBN example with the Noisy-Max node presented in Table B.3 leads 

both to 1 % false values for Damper and CO2 control when High CO2 and low qV is false, while 

the false values are 7.7 and 93.3 % when High CO2 and low qV is true. 

 

State symptom ‘High CO2 and low qV’               

Damper 

False 

CO2 control 

False 

 

LEAK 

True (symptom detected) 0.34 0.90 0 

False (symptom not detected) 0.66 0.10 1 

Table B.5 Noisy-Max type for node High CO2 and low qV in the DBN example 
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Noisy-Max nodes were applied for all DCV symptom nodes. The fault nodes, see Tables B.1 and 

B.2, have as first state the false state because it is difficult to estimate the probabilities of the 

child node when one of the parent nodes is true independent of the state of the other parent 

nodes. In this way the Noisy-Max probabilities can be set up easily because the true state of 

LEAK can be set to 1 as we assume that the symptom is not detected when both faults are not 

present. Only an inaccurate model to detect symptoms could lead to a detected symptom while 

actually no faults are present. We have ignored this option.  

As shown in Tables B.1, B.2 to B.5, only false and true states are proposed for the fault and 

symptom nodes in the DCV DBN. However it can be extended with more states when necessary.  
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	The proposed DCV FDD can be extended to VAV FDD by taking into account heat exchangers in the end terminals and thermal comfort control. In this way, thermal comfort indicators like air and wall temperatures and humidity can be integrated.
	In the case study values in symptom rules are set up arbitrary and further studies are needed to determine optimal setpoints.
	We propose to set up model libraries for standard components and symptom rules.
	- Symptom rules with default thresholds.
	- DBN models including default prior and conditional probabilities for the fault and symptom nodes.

