
Ticket to Category
text classification on technical support tickets

Niels van Benthem

Approved: .
R. Hoogstraten

Bachelor thesis· 30 credits
The Hague University of Applied Sciences, HHS
Technic, Innovation & Society
Atos
Delft, 2021

Colophon

Document : bachelor thesis
Version : 4
Date : December 21, 2021
Font : Computer Modern Roman, 10
Cover : image by belterz

Name student : Niels van Benthem
Number student : 14113899
Mail student : 14113899@student.hhs.nl

Company : Atos
Adress : Burgemeester Rijnderslaan 30, 1185 MC Amstelveen
Name supervisor 1 : Roeland Hoogstraten
Mail supervisor 1 : roeland.hoogstraten@atos.net
Name supervisor 2 : Urscha Fajdiga
Mail supervisor 2 : urscha.fajdiga@atos.net

University : The Hague University of Applied Sciences
Adress : Rotterdamseweg 137, 2628 AL Delft
Bachelor : mathematical applications
Name mentor : Jeroen B.P. Vuurens
Mail mentor : j.b.p.vuurens@hhs.nl

Preface

Focusing on the improvement of the end user experience is a new approach, in an
industry where reacting afterwards is the standard. This consequently results in the
opposite effect to what is desired, improving the employee experience of customers.
An idea is pitched to offset this behaviour and to be proactive in solving the end user’s
issue before it occurs. By analysing the existing technical support tickets, I attempt to
map the most common problems, creating the opportunity for Atos to give a solution,
preventing a ticket of the same issue to be made by a new end-user. An essential part in
analysing tickets is classifying the category correctly, since wrong categorisation could
lead to improper advice.

This paper encompasses a modern approach in the technical support branch and touches
upon the subject of natural language processing, specifically text classification. I study
the effect of categorising tickets with machine learning using the descriptive data of the
tickets. This is of interest for data scientists working in customer services.

Chapter 1 provides a short introduction in describing the context of the environment
and organisation, and who will use the created model. In case you are interested in
the business value, please read Chapter 2. Chapter 3 states the scientific ground on the
subject of text classification up to the publishing of this study. The readers who are
curious in the steps towards creating a model can read Chapter 4 and 5. In Chapter 6
and 7, you can examine the results including a description of the usability. Lastly, for
what this research yields and recommends, please read Chapter 8 and 9.

I would like to give my appreciation to my supervisors, Urscha Fajdiga and Roeland
Hoogstraten from Atos, the client Atos Prasenjit Bose, the Atos PXC Developments
team and The Hague University of applied sciences, especially, Dr. Jeroen B.P. Vu-
urens, for their guidance and unwavering support.

Delft, December 2021 Niels van Benthem

2

Abstract

The Proactive Experience Center is a practice within Atos, that focuses on proactive
workplace management to measure the employee experience of customers. They do
this for the following reasons:

• Improving the digital workplace;
• Creating digital inclusion;
• Caring for employee well-being;
• Enhancing customer satisfaction;
• Increasing business outcome.

To achieve this, employee experience needs to be measured. One data source for this, is
the technical support ticket of the employee from a customer. This provides insight into
which problems need to be addressed, to improve the employee experience. However,
currently, the analysis of the ticket data is done on a small portion of ticket data. This is
because the category, which is essential in providing the context, is lacking or otherwise
often inaccurate and it is impractical for an agent to correctly categorise every ticket
for analysis. That means that a solution is needed that can effectively categorise tickets
based on the written text. To solve this problem, the main question is formulated as
follows:

’How effective is a text classification model in classifying the category of
technical support tickets, based on descriptive data provided by tickets?’

First of all, to reduce the complexity and limit the number of models, the scope is on
English written tickets and three models, where at least one model is from the domain
machine learning.

Secondly, background information is gathered to get insight in why this is important
and how to approach this problem. At the same time, the possible data sets that Atos
has to offer are inspected. This provided the necessary information to keep the focus of
the research on predicting the category of tickets that were written by the end-user sent
to a support team.

Literature provided three models; (1) support vector machines, (2) deep neural network,
and (3) recurrent neural network.

The text preprocessing is identical for each model. Where it differs is the feature
engineering. To compare them, deep neural network uses both word representations.
Support vector machines and deep neural network use term frequency-inverse document
frequency. Recurrent neural network and another deep neural network use sequences

3

in combination with an embedding layer.

To validate the research, the hyperparameters are tuned with cross-validation, and the
effectiveness of the model is scored based on the weighted F1 score, which takes class
imbalance into account.

This concluded that recurrent neural networks are the best in classifying the category of
tickets. The model scored a weighted F1 score of 85%. However, the results indicated
that overlapping categories and/or class imbalance affect the model in predicting the
correct label. The comparison between the deep neural networks revealed that retaining
context and semantics is beneficial, indicating that word embedding is the way forward.

The research exposed problemswith the data and provided a solution for them. However,
certain topics are not addressed. The following tasks are recommended to address the
problems and topics:

• Improve the definition of the categories;
• Keep the non-English written tickets;
• Measure the individual steps to calculate the business value;
• Assess the effect of out-of-vocabulary words;
• Research models that are similar in complexity as recurrent neural networks.

4

Contents

Preface 2

Abstract 3

1 Introduction 10
1.1 Motive . 10
1.2 Objective . 11
1.3 Reading Guide . 11

2 Background 12
2.1 Move from Serve to Care . 12
2.2 Tickets . 12

3 Related Work 14
3.1 Data preparation . 14

3.1.1 Data imbalance . 14
3.1.2 Text preprocessing . 15

3.2 Feature engineering . 15
3.3 Text classification . 16
3.4 Overview . 16

4 Project Context 18
4.1 Dataset . 18
4.2 Problem Analysis . 20

5 Methodology 21
5.1 Dataset Preparation . 21

5.1.1 Label correction . 22
5.1.2 Natural language filter . 22
5.1.3 Remove characters . 24
5.1.4 Tokenization, lemmatisation & stop-word removal 25
5.1.5 Word count & missing data 25
5.1.6 Training and test set . 25
5.1.7 Outliers . 26

5.2 Empirical Study . 28
5.2.1 Feature engineering . 28
5.2.2 Architecture . 32
5.2.3 Validation . 34

5

6 Results 39
6.1 Cross-validation . 39
6.2 Validation on the test set . 41
6.3 Category demarcation . 42
6.4 Class imbalance . 43
6.5 Word representation . 45

7 Discussion 46
7.1 Text preprocessing . 46
7.2 Sentence structure . 47
7.3 Word representations . 47

8 Conclusion 48

9 Recommendations 50

References 52

Appendices 56

A Classification Report 57

B Model’s Architecture 59

Glossary 62

6

List of Figures

5.1 Distribution natural language among labels, 5.1a showing the absolute
difference and 5.1b the distribution per category 23

5.2 Word cloud displaying the most frequent words per class 26
5.3 Twelve histograms, showing the distribution of the number of words

per ticket. Y-axis is the frequency on the logarithmic scale and X-axis
the number of words in a ticket . 27

5.4 vector representation of a word embedding consisting of; king, queen,
man, woman and car . 30

5.5 Standard fully connected deep neural network (Kowsari et al., 2019) . 34
5.6 Architecture of a DNN . 34
5.7 Architecture of a BiLSTM with an embedding layer 35
5.8 Confusion matrix of a multi-class classification problem on the per-

spective of class b . 35
5.9 3-fold cross validation . 36

6.1 Cross-validation results of the best set of parameters 40
6.2 Neural Network training accuracy and loss development over 15 epochs 41
6.3 RNN Classification report of Word Embedding+BiLSTM showing pre-

cision, recall, f1-score and support for all 12 classes 42
6.4 Plot between weighted f1-score and vocabulary size per class with the

size of the bubble representing the class size 43
6.5 Normalised confusion matrix of RNN 43
6.6 Classification score of the different models for all 12 classes 44
6.7 Classification score of DNN with different word representations for all

12 classes . 44
6.8 Precision and recall score of DNN with different word representations

for all 12 classes . 45

A.1 Classification report of LinearSVC showing precision, recall f1-score
and support for all 12 classes . 57

A.2 Classification report of Multi Layer Perceptron (MLP) with TFIDF
showing precision, recall f1-score and support for all 12 classes 58

A.3 Classification report of Multi Layer Perceptron (MLP) with word em-
bedding showing precision, recall f1-score and support for all 12 classes 58

B.1 Summary of the RNN model, consisting of an embedding + BiLSTM
+ output layer . 59

B.2 Summary of the DNN model, consisting of an embedding + 2 hidden
+ output layer . 60

7

B.3 Summary of the DNN model, consisting of 2 hidden + output layer . . 60

8

List of Tables

3.1 Per subject is described what the reasoning behind the decision is . . . 17

4.1 Snapshot of the dataset . 19
4.2 An overview of how many fields per ticket are written in English . . . 19

5.1 Technical support ticket data . 22
5.2 Overview on the new labels, old categories and their ticket count . . . 23
5.3 Dataset statistics . 25
5.4 The four matrices for the example in singular value decomposition . . 31
5.5 The four matrices of SVD with a dimensionality reduction 31

6.1 Hyperparameters settings that resulted in the highest weighted F1 score 40
6.2 F1 scores of the four ticket classification models on the test set 41
6.3 Confusion matrix of RNN predictions on the test set 42

9

Chapter 1

Introduction

1.1 Motive
Atos is organised in so called practices. Every practice focuses on a specific part of
the IT-services Atos delivers to its customers. One of these practices is the Digital
Workplace practice focusing on end-user support and workplace services with a ma-
jor focus on Employee Experience (hereinafter EX). One of the services the Digital
Workplace practice delivers is the Proactive Experience Center (hereinafter PXC). The
PXC’s goal is to increase the capabilities for proactive workplace management instead
of the traditional reactive workplace management. As Atos believes being proactive
will increase the EX, which is the ultimate goal of the PXC. One of the inputs the PXC
uses to achieve the aforementioned, is to analyse customer’s ticket data. Atos believes
that providing feedback on how to resolve the most prevalent problems will increase its
capabilities to be more proactive in resolving issues, perhaps even before the employee
themselves is aware of the issue.

The analysis of the ticket data is done manually, thereby, the quality of the analysis
is highly dependent on the domain knowledge and expertise of the agent performing
the analysis. A guide for the agent is the category field, since it narrows the possible
subjects the ticket relates to, however, it is often wrongly assigned or ambiguous. Not
having a reliable indication results in classifying errors and longer process time per
ticket. Since the agent has no indication of the category, more time is spent on iden-
tifying the problem. The classifying error is due to the complexity of the ticket. The
more complex the ticket is, the more likely it is that an allocation error occurs, due to
the fact that a subject can be based on the wrong problem.

The ultimate goal of PXC is achieved better with higher quality data analysis, because
the data analysis leads to giving feedback to the customer about what needs to be
improved or changed. The quality of the data analysis is based on whether the most
prevalent problem has been found. If it is not found, the improvements that are reported
back to the customer are incomplete, resulting in the most prevalent problem continuing
to affect new end-users, negatively affecting the EX. Therefore, simplifying the data
analysis is important, which can be done by reducing the set of possible problems that
can be assigned to a ticket. This set is based on the category of the ticket e.g., hardware
issues cannot have a problem related to MS Outlook, making it easier to determine the

10

issue by the agent. Hence, it is essential to have reliable classification of the category.
In addition, the agent has the possibility to filter out categories that cannot be resolved
by the customer, as a result freeing up time for the agent to spend on other projects.

1.2 Objective
The intent of the graduation thesis is twofold:

(1) researching the best way to classify tickets, in the domain of natural language
processing (hereinafter NLP);

(2) determining if the chosen method can sufficiently assign categories.

After researching and designing a suitable model, the effectiveness of the model is
assessed using the predicted and actual categories, by means of the weighted F1 score.
To do that the next research question is drafted:

’How effective is a text classification model in classifying the category of
tickets, based on descriptive data provided by tickets?’

Answering this question is done with the aid of three sub-questions:

(1) ’Which models are used for classifying tickets?’
(2) ’What is the most suitable way to preprocess ticket data?’
(3) ’Which model should Atos use, in the given scenario, to classify tickets?’

The research is done on the basis of a literature review, knowledge transfer by domain
experts (e.g., thesis supervisors) and desk research.

The tickets are made up of different natural languages, adding the domain of neural
machine translation. Since Atos’ corporate language is English, only English tickets
are processed to avoid the need for translation. In addition, the effectiveness of the
model is tested on a portion of the ticket data. Lastly, a list of approved categories is
created, in consultation with domain experts, as some categories are customer-specific
or ambiguous.

We are only considering three models involving both deep learning and machine learn-
ing, where at least one model is from the domain machine learning.

1.3 Reading Guide
This report consists of nine chapters describing the issue at hand, providing an answer
to the research question, or providing insight in potential future endeavours. Chapter 2
and 3 describe the business value, problems and previous work in the text classification
field. Insight is procured in Chapter 4 by analysing the ticket data and the problem
context. The knowledge gained is applied in Chapter 5 for ticket data preparation
and empirical study. The results of the study are conveyed in Chapter 6. Chapter 7
interprets the choices that were made, the results, the implications it had and how to
overcome them. Conclusions on the best suited text classification model for classifying
technical support tickets are described in Chapter 8. In Chapter 9, the potential steps
are described for what can be done in future research.

11

Chapter 2

Background

2.1 Move from Serve to Care
Atos has a lot of IT-services they provide to their customers, as described in Chapter
1. Before PXC was established, four years ago, these services were entered into a
Service Level Agreement (hereinafter SLA). However, the problem with SLA is, that
on paper Atos is providing what was agreed to, but the EX of the customer can be
different, experiencing for example, connection errors, permission problems, bugs,
etc.. In the industry this is known as the ’watermelon effect’ (Ellis & Ellison, 2015),
where metrics appear ‘green’, suggesting that everything is under control, yet, digging
below the surface will readily reveal signs of ‘red’, indicating signs of ill-health. Atos,
is tackling this by focusing on EX, offering customers Experience Level Agreements
(hereinafter XLA). XLA differs from SLA in moving from only providing a service, to
additionally, caring for the employees. With the introduction of the PXC, Atos attempts
to come up with methods to measure and increase the EX. This project is focused on
one method to accomplish this. By creating a reliable categorisation for the tickets, the
PXC anticipates the following three effects:

(1) they can perform analysis of the category based on the entirety of the ticket data
instead of a sample. The sample would have been manually labelled by an agent;

(2) the findings on what the problems are in specific categories can be analysed. PXC
can designate agents to specific categories to assess the tickets more granular;

(3) continuing on the previous effect, less errors are made during this process since
the agent has a better understanding on what the ticket is about, considering the
category is provided.

2.2 Tickets
Atos collects ticket data from three sources:

(1) chatbot: descriptive data containing two participants, one is the end-user and the
other is a computer program that simulates human conversation;

(2) IT service management tooling: descriptive data with the description provided
by the end-user and the work notes by the support team;

(3) conversations: audio data of an end-user and support team conversation.

12

This project focuses on source 2, IT service management tooling, tickets that were
written and labelled. Labelled data reduces the complexity of the problem by providing
the correct answer, that can then be fed back to the model. With these tickets, the
PXC seeks to inform customers on improvements, e.g., give a seminar for Azure. These
improvements stem from the data analysis performed by an agent, whomanually assigns
the root cause of the ticket out of a predetermined list. There is a chance that the agent
assigns the wrong problem, this has a few causes:

(1) the ticket is extensive, and causes the agent to focus on the wrong topic;
(2) miss-clicking when assigning the type;
(3) overlooking a remediable ticket, caused by an abundance of useless tickets;
(4) wrong categorisation of the ticket resulting in an incorrect type.

These result in an incorrect analysis of the data, which in return lead to different im-
provements advised to the customer.

A method to minimise those incidents is to provide a reliable category. Often the cus-
tomers have their own set of labels, where the majority is grouped under a meaningless
category, or a portion is posted in the wrong class. As a consequence, the agent cannot
rely on the category, which provides essential information regarding the topic.

13

Chapter 3

Related Work

This report focuses on investigating the effectiveness of using text classification on pre-
dicting the category of tickets. This chapter gives an overview of the existing literature
studies on the problem of data preparation, feature engineering and text classification.
Afterwards, a summary is provided of the substantiations for the different subjects that
support the goal of measuring the effectiveness of text classification on ticket data.

3.1 Data preparation
This section is split into two problems; data imbalance and text preprocessing. These
two are chosen since, the exploratory data analysis showed the imbalanced nature of
tickets. This could have an effect on the effectiveness of the model, and the data consists
of written text. Research on these will show if it is necessary to balance and clean the
data, and the techniques to do it.

3.1.1 Data imbalance
Leevy, Khoshgoftaar, Bauder, and Seliya (2018) describe that there are four categories
and various techniques to deal with class imbalance:

(1) data-sampling:
(1)(1) over-sampling;
(1)(2) under-sampling;

(2) feature-selection;
(3) cost-sensitive;
(4) and hybrid/ensemble.

Liu (2004) researches, seventeen over- and under-sampling techniques, on imbalanced
descriptive data for text classification and states that it is dataset dependent. Wong,
Gatt, Stamatescu, and McDonnell (2016) reinforce the use of data-space augmentation
methods. They observe better performance compared to augmentation in feature-space.
They conclude that data-sampling approaches, such as over-sampling and data-space
compression like under-sampling, are more suitable. However, this does not guarantee
an improvement in classifying, seeing that sometimes it is reported to be ineffective

14

and may cause negative effect on multi-class tasks (Zhou & Liu, 2006; Poolsawad,
Kambhampati, & Cleland, 2014; Yanminsun, Wong, & Kamel, 2011). The impact
of class imbalance on machine learning and deep learning models is dependant on
the size of the training set. Yanminsun et al. (2011) states that when the training set
increases, the large error rate caused by the imbalanced class distribution decreases.
This indicates that the need for data resample is unnecessary as long as the number of
tickets is large enough. The large error rate is one of the effects of class imbalance,
however, another effect is the bias of classification models. Wang and Zhang (2018);
Akkaradamrongrat, Kachamas, and Sinthupinyo (2019) state that imbalanced data leads
to the bias of classification models. They used machine learning and neural networks
with oversampling, to resample the minority class to solve that bias. But, Padurariu
and Breaban (2019) show mixed results depending on the machine learning model and
oversampling technique. Another view is given by Poolsawad et al. (2014), they state
that a trade-off is made since imbalance is a factor of the data, and throwing away
valuable information is always possible when resampling the data.

3.1.2 Text preprocessing
Vijayarani, Ilamathi, and Nithya (2015); Kowsari et al. (2019); Revina, Buza, and
Meister (2020) provide an overview of common preprocessing techniques, such as stop-
word removal, slang and abbreviation correction, text cleaning and stemming. In deep
learning, Camacho-Collados and Pilevar (2017) conclude that common preprocessing
steps, lowercasing, lemmatising, and multi word grouping, work equally or worse
compared to simple tokenization. They observe domain-specific data as an exception. In
their study, text preprocessing showed to increase the deep learning’s performance. For
machine learning, Leopold and Kindermann (2002) investigate the different weighting
schemes for the representation of text in input space. They state that for Support Vector
Machines (hereinafter SVM) removing rare words and stop-words was unnecessary.

3.2 Feature engineering
Bansal (2018); Kowsari et al. (2019); Revina et al. (2020) show the different repre-
sentations of words for text analysis, such as bag-of-words, word embedding, and raw
corpus. Bag-of-words is a document representation where the structure of the sentence
is lost, only the number of words matter. The frequency of each word is used as a
feature (Zhang, Jin, & Zhou, 2010). A version that incorporates information on the
more important words and the less important ones is term frequency-inverse document
frequency (hereinafter TFIDF) (Revina et al., 2020). Word embedding maintains the
structure of the sentence and captures the semantic of words. Each word is represented
as a vector, such that the words that are closer in the vector space are expected to
be similar in meaning (Lai, Liu, He, & Zhao, 2016). Word embeddings need to be
trained, but pre-trained models exist, such as Google’s Word2Vec1, Stanford’s GloVe2,
Facebook’s fastText3 (Revina et al., 2020; Kowsari et al., 2019). However, Wahba,
Madhavji, and Steinbacher (2020) researched the effectiveness of different pretrained
word embeddings, including domain-specific word embedding on IT support tickets,
and concluded that IT support tickets do not benefit from pretrained word embeddings.

1Word2Vec
2GloVe
3fastText

15

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/

This is due to domain-specificwords considered to be out-of-vocabulary4 for pre-trained
embeddings. Training a domain-specific word embedding has two major disadvantages
according to Revina et al. (2020), (i) large quantity of data necessary, and (ii) only learns
the words that appear in the data. However, on the other hand it is able to consider
syntax, semantics and polysemy.

3.3 Text classification
Kowsari et al. (2019); Revina et al. (2020); Zemp (2021); Wahba et al. (2020) give
an overview on architectures that can be used in text classification, such as recurrent
neural networks (hereinafter RNN). Study of Lyubinets, Boiko, and Nicholas (2018)
on classifying data from customer service systems used RNN with word embedding
and outperformed the classic solutions for the task. While Han and Akbari (2018)
achieved the best outcome with convolutional neural network (hereinafter ConvNet)
for the task of classifying technical support tickets. The master thesis of Zemp (2021)
examines the effectiveness of ConvNet, bi-directional long short-term memory (here-
inafter BiLSTM), gated recurrent units and transformers on service desk tickets. All
of them outperform machine learning approaches, like logistic regression and random
forest. Minaee et al. (2021); Kowsari et al. (2017) state that deep neural networks
(hereinafter DNN) are the simplest deep learning model. However, it has achieved
high accuracy on many text classification benchmarks. Which does not mean that it
is better than other deep learning architectures, but it can contest them in some instances.

3.4 Overview
I note the lack of a clear method and model that should be used in classifying tickets.
This is something I expect, seeing that the majority of the articles address that it differs
per use case. However, it provided tools to apply the data preparation, feature engi-
neering and text classification. I note the current trend of using Bi-directional Encoder
Representation from Transformers (BERT) architecture for solving text classification
problems. Nonetheless, I have my doubts considering the average word count of the
tickets and the result after combining three fields, erasing the structure of the sentence,
which is explained in Chapter 4.

All of the aforementioned stages for establishing a model to classify tickets have a form
of uncertainty, primarily if it should be applied or not. Since this research focuses on
the effectiveness of text classification on tickets, certain variations that I expect to have
a minor impact on the effectiveness, are excluded. An overview of these decisions are
merged in Table 3.1.

4Out-of-vocabulary are terms that are not part of the normal lexicon found in a natural language processing
environment.

16

Table 3.1: Per subject is described what the reasoning behind the decision is

Subject Method Reason Literature
imbalance resampling Imbalanced classes can be a problem that

affect the effectiveness of the model. Yet,
its impact is decreased when the dataset
is large enough. Since oversampling has
some caveats of its own, such as over-
fitting, data-space or feature-space resam-
pling, and different methods (ADASYN,
SMOTE and synonym replacement), I de-
cided not to balance the data considering
the impact being solvable with more data.

(Yanminsun
et al., 2011;
Zhou & Liu,
2006; Wong
et al., 2016)

preprocessing lowercasing,
stop-words,
word-removal
and
lemmatisation

Text preprocessing, in some cases, is un-
necessary. However, in domain-specific
instances, deep learning benefits from it.
In addition, it reduces the dimensional-
ity which helps with the amount of allo-
cated RAM required. These arguments
convinced me to apply text preprocessing

(Camacho-
Collados &
Pilevar, 2017;
Zemp, 2021)

slang,
abbreviation
and spelling
correction

These are advanced preprocessing steps,
which require a combination of time and
domain knowledge. Seeing that I lack do-
main knowledge, I chose to ignore these
steps.

(Kowsari et
al., 2019)

word
representation

TFIDF and
word
embedding

A combination of these two is selected. The
possibility exists that there is not enough
data for word embedding. But, it can be
better then TFIDF since it considers se-
mantics. Pretrained word embeddings are
ignored seeing that IT support tickets do
not benefit from it. TFIDF applies a term
weighting scheme which can be helpful to
reflect how important a word is.

(Wahba et al.,
2020; Zemp,
2021; Revina
et al., 2020;
Kowsari et al.,
2019)

architecture SVM, DNN,
RNN

Three models are compared to keep it man-
ageable. Although, ConvNet performed
better than DNN and SVM, it is left out.
One machine learning solution is desired
to have a baseline for what a more complex
architecture should reach. For the machine
learning model, SVM is used, as it is less
effected by class imbalance. The simplest
feed forward network is chosen to measure
the difference in effectiveness, switching
to neural networks, specifically multilayer
perceptron (hereinafter MLP). Lastly, BiL-
STM is preferred above ConvNet, seeing it
outperforms in most used cases.

(Camacho-
Collados
& Pilevar,
2017; Han &
Akbari, 2018;
Poolsawad
et al., 2014;
Revina et
al., 2020;
Kowsari et al.,
2019, 2017)

17

Chapter 4

Project Context

This chapter describes the nature of the dataset I work with, Section 4.1. Followed by
an analysis of the problem context which is described in Section 4.2.

4.1 Dataset
The dataset consists of over 500.520 technical support tickets, classified into 114
different ticket categories. 71 categories contain less than 500 tickets and 7 others
are too broad e.g., "Inquire / Help", "Request for information", see Table 4.1. Together,
these account for 41% of the dataset. The ticket data has an additional caveat of being
multilingual. These problems are handled in the preprocessing stage by applying a
language detection model (Salcianu et al., 2020). During this process, three fields
are checked if they are written in English, "Short Description", "Description", and
"Resolution / Work Notes". Only the English written fields are combined. This form of
text representation is chosen, instead of providing three inputs to a model or only one
field. Combining the fields ensures that less tickets are discarded during the language
detection (as shown in Table 4.2).

The process that a ticket goes through before reaching the models is as follows:

(1) Atos customer’s employee (requestor) registers a ticket or contacts an Atos em-
ployee who registers the ticket;

(2) an Atos employee validates the ticket and completes the short description &
description;

(3) the ticket is solved and work notes are added;
(4) a comment is added inwhich the solution is described, subsequently, it is validated
by the requestor;

(5) the ticket is closed.

Furthermore, the written text, of both parties, is unstructured containing special char-
acters, dates, typos, consecutive email-addresses, and line-breaks.

18

Table 4.1: Snapshot of the dataset

Table 4.2: An overview of how many fields per ticket are written in English

number of fields frequency
0 39.931
1 70.922
2 186.489
3 203.178

19

4.2 Problem Analysis
A classic data analysis involves the data analytic team to perform an exploratory data
analysis of the categories to get an initial overview of the problem. Thereafter, a team
is designated to classify the tickets into predetermined types. They establish the type
based on the information the ticket provides, such as; (1) category, (2) subcategory, (3)
short description, (4) description, and (5) resolution / work notes. The potential set of
remediation types is dependent on the topic, which makes it beneficial to group tickets.
However, grouping is only possible when the category and subcategory are accurate.
Having the tickets clustered, directly improves the classification, since they have a better
demarcated set to choose from, resulting in a less error prone environment. But there
are some general problems relating to the classification by an agent:

(1) some fields are written in a language other than English, translation errors occur
and it is harder to classify;

(2) tickets are discarded as irremediable, caused by skipping the ticket;
(3) the description could be too extensive or too short, resulting in an incorrect
allocation.

These issues are considered errors since it could have been prevented by proper label-
ing of the tickets. Wrongly assigned remediation types, when large enough, have an
effect in the analysis. In turn, this can lead to advising a different improvement to the
customer, and letting the real issue continue.

Thus, artificial intelligence based methods for predicting categories is considered cru-
cial for the accuracy of analysis in the long-term and increasing the EX. For only a
fraction of the time a model needs to categorise tickets, the agent processes the tickets
faster with these categories, thus clearing the agents time to focus on other tasks. Con-
sequently, reducing the mistakes by the agent, which improves the output.

Summarising the problem would make it a document classification problem where the
ticket’s combined field is illustrated as a document and the ticket label as the document
label. Seeing that the problem can be expressed as a document classification problem,
it follows that the typical steps can be used for classifying technical support tickets.
However, there are three types of text classification based on what the predicted result
should be:

(1) multi-label classification, problem where multiple labels may be assigned to each
instance;

(2) multi-class classification, problem of classifying instances into one or more
classes;

(3) binary classification, the task of classifying the elements of a set into two groups,
any prediction can contain either one of those classes.

The task is to assign one category to each ticket which would make it a multi-class
classification task, where the technical support tickets are classified into 114 different
ticket categories (e.g. Hardware, Software, Applications, Event management, etc.).

20

Chapter 5

Methodology

In this chapter I highlight the dataset and the preprocessing steps applied to end up with
tokenized data, Section 5.1. Followed by Section 5.2, where the steps and models used
in this study are described.

5.1 Dataset Preparation
Before a text classification model can be applied, the first step for building a model is
data preprocessing. This step addresses the issue of vocabulary size and noise found in
the input documents by either reducing the vocabulary size or removing noise. This is
anticipated to help in maximising the classifier’s performance (Krouska, Troussas, &
Virvou, 2016; Barushka & Hájek, 2019).

Noise in natural language text can be one of the following; character repetitions, non-
standard words, spelling errors, missing punctuation, abbreviations, etc.. In this study,
I performed the commonly used techniques in text preprocessing, explained in Chapter
3, along with domain-specific operations that are based on the ticket descriptions and
exploratory data analysis, such as label remapping (Section 5.1.1) and language filtering
(Section 5.1.2), as explained in Chapter 4. Inspecting the structure of the ticket, Table
5.1, lets me reduce the size of the ticket by only maintaining the fields that hold valuable
information. These are ’short description’, ’description’, ’resolution/work notes’, and
their corresponding category. The other fields are removed for the following reasons:

(1) account, the model is intended to predict based on the written text. Information
regarding who it originates from is not desired, since the model could learn
different word representations based on customers;

(2) open/closed month, when the ticket got closed hold no information regarding the
topic of a ticket;

(3) subcategory, is more specific than category. However, it has the same problems
that category experiences. Elements of this field were researched by domain
experts to enrich the category field, yet, without any success.

An additional domain-specific step in preprocessing is generalising the category labels.
The dataset is from six customers, each with their own categories, some more useful
than others. Therefore, a domain expert and I applied category remapping to combine

21

Table 5.1: Technical support ticket data

Account Open / Closed Month Category Subcategory Short Description Description Resolution / Work Notes
Account 1 May-21 Inquiry / Help Unable to con... Unable to con... 2021-05-01 02:15:38...
Account 5 Jun-21 Software Configuration SD - Ras Token **See KB001538... User has no ..

similar topics, described in Section 5.1.1.

A summary of the preprocessing steps that are executed are below:

1. remapping labels and removing irrelevant ones;
2. language detection and filter out non-English fields;
3. remove characters with regular expressions; lowercase, numbers, line breaks,
punctuation;

4. tokenization;
5. lemmatisation;
6. remove stop-words;
7. threshold word count;
8. discard tickets with missing data;
9. training and test set.

5.1.1 Label correction
Chapter 4 described the preliminary findings of the dataset, such as class imbalance,
polylingual, and three written fields. Originally the dataset contained 114 classes. To
end up with a model that would be optimised for relevant categories, some classes had
to be excluded. The following steps are taken in consultation with two domain experts,
one being the client:

(1) the first step was to remove classes that were ambiguous (e.g., "Inquiry / Help"
and "Incident");

(2) thereafter, similar classes are combined, that were named differently by each
customer (e.g., "applications", "APPLICATION");

(3) lastly, some labels were customer-specific ("INTERGRATION_MONSANTO")
and seeing that the model is intended for categorising the majority of the tickets,
those were removed.

As a result 12 labels are left, to be classified by themodel, using the remapping illustrated
in Table 5.2. This step reduces the number of tickets from 500.520 to 271.723.

5.1.2 Natural language filter
The research is more focused on the applicability of text classification on technical
support tickets. I therefore carefully examined the list of discarded fields during the
step of removing non-English descriptions. To my disappointment a lot of language
detection models (CLD31, TextBlob2, Polyglot3, langdetect4, FastText5) classified short
text, primarily containing nouns, as other than English. Figure 5.1 gives an overview of
how 18.659 tickets are removed and were distributed over the labels. Not knowing the

1Compact Language Detection v3
2TextBlob: Simplified Text Processing
3Polyglot
4Nakatani Shuyo’s language-detection
5FastText

22

https://github.com/google/cld3
https://textblob.readthedocs.io/en/dev/
https://github.com/aboSamoor/polyglot
https://github.com/Mimino666/langdetect
https://fasttext.cc/

Table 5.2: Overview on the new labels, old categories and their ticket count

New category Original category no. Tickets
applications APPLICATIONS 39.462

Application 12.742
Applications 17.792

data Data 6.018
eventManagement EVENT_MANAGEMENT 18.765
hardware Hardware 11.972
hardwarePC Desktop / Laptop 7.640

PC_HARDWARE 7.483
network NETWORK 4.968

Network 1.803
outlookSkype OUTLOOK_SKYPE 5.033
passwordReset PASSWORD_RESET 14.339
print PRINT_FAX 3.460

Print 4.232
software SOFTWARE 22.021

Software 48.629
WORKPLACE_TOOLS 3.192

userManagement Access 27.219
USER_MANAGEMENT 6.625
User Management 173

voiceVideoMobility VOICE_VIDEO_MOBILITY 8.155

(a) number of tickets (b) % of total

Figure 5.1: Distribution natural language among labels, 5.1a showing the absolute
difference and 5.1b the distribution per category

23

exact contribution of non-English descriptions makes it difficult to measure the impact.
The label where it could have the largest impact is ’voiceVideoMobility’, reducing the
number of tickets by almost 26%. Further analysis on 50 randomly picked samples
of that label reveals that the language detection did filter out non-English descriptions,
making it even more difficult to assess the significance of removing wrong classified
descriptions. Therefore, I decided not to put effort into filtering wrongly classified
descriptions, since there are plenty of tickets left, 253.064 in total.

5.1.3 Remove characters
The next step in text preprocessing is to examine the text for peculiarities. After auditing
the ticket description with 100 random samples, and with 50 smallest and 50 largest
written tickets, nine findings are reported:

1 excel line breaks, "_x000d_", the data is loaded in using Excel files, which
generates these line breaks to indicate it needs to be placed in a new row. They
do not contain information on the subject of the ticket;

2 escape sequences, "\n\r\t", these three options represent new line, carriage return
and tab, respectively. They have the same importance as Excel line breaks;

3 web address, the URLs are different for each customer. Although, it does say
something about the problem or solution, it is something that changes overtime
which a model cannot compute;

4 single and consecutive mail addresses, the description inside a mail is important,
not who it was sent to or from. The model should be trained on what the problem
is, not for who it is intended;

5 special characters, such as bullet points and long dashes, these are not filtered
out during the removal of punctuation. Nevertheless, they are not significant
whatsoever;

6 timestamp, mm/dd/yyyy and hh:mm:ss, when a ticket is picked up does not
contribute to the description of the topic. Therefore, timestamps are filtered out;

7 text in brackets, <..>/[...]/{...}/(...), some of the things inside brackets are; date,
identifier, additional note, andHTMLcode. Considering, most of the occurrences
are unwanted and only a small part of additional notes are helpful, the decision
is made to remove brackets from text;

8 identifiers of employees, AB0123456, the model could in theory establish con-
nections between certain identifiers and categories. Often, a ticket ends up at a
particular division within the company. This is undesirable, as the model needs
to predict the category based on the problem description. A drawback is the
removal of IT4You and other nouns in that format;

9 lowercasing, although it is not strange for text to have capital letters, transforming
every letter to its lowercase component reduces the vocabulary size and helps the
model, since it does not see ’the’ and ’The’ as identical.

A drawback of removing identifiers and numbers is that some domain-specific words
were removed in the process. For example, Windows 10 and Windows 2018 are trun-
cated toWindows, but, one is a desktop and the other a server environment, respectively.
Instead of creating a list of words that should be kept, a decision was made against it.
The list would definitely be incomplete considering the diversity of the categories and
the sheer amount of tickets, which would make it unfair and biased.

24

Table 5.3: Dataset statistics

Class Tickets Words

frequency % of total mean median min max vocabulary top
applications 58.512 23.5 113 62 6 4.686 84.020 email
data 6.014 2.4 109 100 6 712 11.695 detail
eventManagement 18.747 7.5 64 64 6 1.179 3.364 event
hardware 11.950 4.8 218 184 6 1.148 16.621 device
hardwarePC 12.743 5.1 121 51 6 3.986 25.247 ticket
network 6.204 2.5 133 61 6 4.507 18.691 ticket
outlookSkype 4.630 1.9 73 53 6 2.669 13.644 email
passwordReset 13.073 5.3 40 30 6 1.243 15.792 password
print 6.902 2.8 133 155 6 874 13.726 printer
software 70.943 28.5 107 86 6 3.354 59.292 detail
userManagement 33.047 13.3 86 81 6 1.158 22.883 password
voiceVideoMobility 6.205 2.5 51 36 6 987 15.013 phone

5.1.4 Tokenization, lemmatisation & stop-word removal
A bigger concern is the removal of stop-words. During this process, words such as
password, access, device, reset and error were removed.

This could have two consequences. First, the Natural Language Toolkit’s (Garette et al.,
2021) corpus that is used consists of a delimited list of dictionary words, in other terms,
the words are stored in their lemma form. Second, this corpus is not a comprehensive
list of English words, therefore words might be absent. To resolve the first problem
of singular form words, lemmatisation is applied which ensures that words are kept in
their dictionary form, known as lemma. Because stop-words are checked on the base
form of the words, the step of lemmatisation is done prior to removing stop-words. To
combat the latter problem, a list is created containing the words that should be kept.

5.1.5 Word count & missing data
As the description field should clearly not be empty, these tickets are omitted. Remov-
ing those tickets leads to the minimum text length of one. However, looking at the
description of tickets with equal or less than five words leads to two observations:

(1) the text has little to no information, e.g., "various issues";
(2) the description contains only placeholders, such as "closed by caller";
(3) if the ticket contains information, it can hardly be placed in a specific category,
e.g., "kathleen noone login ad" labelled in "hardwarePC".

In the case of classifying tickets, these cannot be used for training. There is just too little
information to allow a classification based on those descriptions. The final size of the
dataset is 248.970 tickets, which is 49.7% of what was available and has the following
most common words shown in Figure 5.2, and characteristics displayed in Table 5.3.

5.1.6 Training and test set
The split between the sets, training and test, is the same for all used cases. The training
set contained 85% of the data and test set the remaining 15%. As pointed out in
Chapter 4 the categories are imbalanced. To ensure that the classes are represented

25

Figure 5.2: Word cloud displaying the most frequent words per class

evenly between the two sets, a stratified shuffle is used to split them. The test set is only
used at the final validation of the models, while the training set can be divided into a
validation set when necessary. The same ratio is applied in those cases, 85% training
and 15% validation. However, these correspond to;

(1) training/validation/test split;
(1)(1) training, 72.25% or 179.880 tickets;
(1)(2) validation, 12.75% or 31.744 tickets;
(1)(3) test, 15% or 37.346 tickets;

(2) training/test split;
(2)(1) training, 85% or 211.624 tickets;
(2)(2) test, 15% or 37.346 tickets.

5.1.7 Outliers
Analysing Table 5.3, shows a few interesting characteristics:

(1) the class ’eventManagement’ stands out in regard to vocabulary size, compared
to the second smallest it is 3.5 times smaller and 25 times smaller compared to
the class with the largest vocabulary; Considering the amount of tickets, it sits in
the middle, this could derive from a good defined problem, making it simpler to
model.

(2) the two largest classes ("applications" and "software"), have by far the largest
vocabulary, at least twice as big compared to the next successor. This could
indicate that the topic consists of a wide range of problems;

26

Figure 5.3: Twelve histograms, showing the distribution of the number of words per
ticket. Y-axis is the frequency on the logarithmic scale and X-axis the number of words
in a ticket

27

(3) some of the categories share their most common words, Figure 5.2, which could
signal a weak definition of the topic or that they overlap on a few of the issues;

(4) most classes have less words per ticket than their average, except "print". This is
reinforced in Figure 5.3, where it is one of the two classes with a second peak;

(5) lastly, all of the tickets are strongly represented up to the 150 word range, then
declining. Every class has a few outliers regarding the number of words in a
ticket.

5.2 Empirical Study
This section describes the empirical study. In particular, the feature engineering (Section
5.2.1), models and their used infrastructure (Section 5.2.2), and lastly, the validation
measures (Section 5.2.3).

5.2.1 Feature engineering
Feature engineering is essential in our use case, since two different tactics are used, (1)
TFIDF, and (2) word embedding.

Term frequency-inverse document frequency

TFIDF is a combination of two metrics, term frequency (tf) and inverse document
frequency (idf). The former is a measure of how frequently a term appears in a
document and the latter is a measure of how important a term is. It is computed
by dividing the total number of documents in the corpus by the document frequency
for each term and then applying logarithmic scaling to the result. The formula for
calculating the TFIDF is,

tf(t, d) =
ft,d∑

t′∈d ft′,d
(5.1)

idf(t,D) = log
1 +N

1 + |{d ∈ D : t ∈ d}|
+ 1 (5.2)

with:

• ft,d, number of times a term t occurs in a document d;

•
∑

t′∈d ft′,d, number of words in document d;

• N , total number of documents in the corpus, N = |D|;

• |{d ∈ D : t ∈ d}|, number of documents where the term t appears. If the term
is not in the corpus, this will lead to a division-by-zero. That is why scikit-learn
uses idf smoothing variant, which adds a ’1’ to the numerator and denominator,
which corresponds to having a document that contains all terms.6

For TFIDF, an existing function is used of scikit-learn, named TfidfVectorizer7. This
function has a few parameters that can be tuned:

6scikit-learn TFIDF implementation
7scikit-learn feature extraction for text, TFIDF

28

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

(1) ngram_range, the lower and upper boundary of the range of n-values for different
n-grams to be extracted. An n-gram is a sequence of n words and is a type of
probabilistic for predicting the next item in such a sequence in the form of a
(N − 1) order Markov model (Jurafsky &Martin, n.d.). However, the goal is not
to predict the next word. Nevertheless, applying n-grams could help the model
to establish connections between grouped words and categories, e.g., "microsoft
outlook" and "outlookSkype";

(2) max_df, when building the vocabulary, it ignores terms that have a document
frequency higher than the threshold;

(3) min_df, the opposite of max_df, when building the vocabulary, it ignores terms
that have a document frequency lower than the threshold;

(4) max_features, themaximumnumber of features to keep, based onword frequency.
Only the most common features will be kept.

This feature-space function is used in DNN and SVM, known as a document term
matrix (DTM), and it disregards grammar and even word order but keeps multiplicity.

Word embedding

The other word representation is word embedding. Considering that in the litera-
ture, Chapter 3, pretrained word embeddings did not perform well on domain-specific
tasks, word embedding is applied by adding an embedding layer in the neural network.
Nonetheless, two steps need to be performed to transform the data into an input format
the model can use; (1) tokenization and (2) sequence padding or truncating.

Text tokenization, the written text is tokenized, which is converting sentences to se-
quences where each word has a numeric representation, for example; "The quick brown
fox jumps over the lazy dog" and "The quick brown fox was jumping over the lazy dog"
are converted to [1, 2, 3, 4, 5, 6, 7, 8, 9] and [1, 2, 3, 4, 10, 5, 6, 7, 8, 9], respectively.
This is mandatory, as the model cannot process text and no information is lost when
each word has their own numeric representation.

The second step, sequence padding, is to pad or truncate each sequence to a fixed
length. Padding comes from the need to encode sequence data into contiguous batches,
to make all sequences in a batch fit a given standard length. These two steps have a few
parameters that can be tuned89:

(1) num_words, the maximum number of words to keep, based on word frequency.
Only the most common words will be kept;

(2) maxlen, maximum length of all sequences;
(3) truncating, removes values from sequences larger than ’maxlen’, either at the
beginning or at the end of the sequences.

Padding is a variable that can be set to either pad before or after each sequence. How-
ever, Dwarampudi and Reddy (2019) state that for LSTMs, pre-padding shows better
accuracy. Therefore, the variable is left out in the list, since the impact will not be
studied.

8The function Tokenizer is used to transform the text.
9The function pad_sequences from tensorflow is used to truncate or pad the sequence.

29

https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/text/Tokenizer
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/sequence/pad_sequences

Figure 5.4: vector representation of a word embedding consisting of; king, queen, man,
woman and car

Now, text is transformed to sequences that can be used by the model. However, se-
quences are not processed, but word embeddings. To create a word embedding, an
embedding layer is added in the neural network, which feeds the BiLSTM word em-
beddings.

On the side of the neural network, the parameters related to the embedding layer are;
(1) size of the embedding (embedding_size), (2) size of the vocabulary (max_words),
and (3) length of the sequence (input_length). As it is not the intention to restrict the
word embedding, the variable ’max_words’ is set to an arbitrarily high number. Word
embeddings are used in RNN and DNN. DNN will be used twice, since it is also used
in combination with TFIDF. This decision is made, in order to compare the impact of
using word embeddings, which in theory should maintain the structure of the sentence
and capture the semantics of words.

An embedding layer transforms each numeric value to a vector representation of n
dimensions. The idea is that words with similar definitions are put closer in vector
space, i.e., ’king’ and ’queen’ are closer to one another than ’car’ and ’king’, a common
analogy is King −Man +Woman = Queen. To make it more explainable, consider
an embedding of 2 dimensions, (x, y). Figure 5.4 shows that the distance between
related words are the same. The similar direction of the red and orange arrows indicates
similar relational meaning. In our case, words are most likely grouped based on the
category. Because we are not using methods as skip-gram, continuous bag-of-words
model, singular value decomposition (hereinafter SVD), or positive pointwise mutual
information (Lai et al., 2016) to learn semantics, morphological, context, or hierarchical
information.

Most of the aforementioned methods operate on the basis of matrix factorisation (Levy
& Goldberg, 2014). Matrix factorisation is a way to generate latent features when mul-
tiplying different kinds of entities. As an example, the problem is described using SVD,

30

using the matrices in Table 5.4 (Liang, Altosaar, Charlin, & Blei, 2016; Mikolov, Chen,
Corrado, &Dean, 2013). The SVD of a matrix is a factorisation of that matrix into three
matrices. It conveys geometrical and theoretical insights about linear transformations.

Table 5.4: The four matrices for the example in singular value decomposition

C d1 d2 d3 d4 d5 d6
settings 1 0 1 0 0 0
password 0 1 0 0 0 0
options 1 1 0 0 0 0
memory 1 0 0 1 1 0
disk 0 0 0 1 0 1

U 1 2 3 4 5
settings -0.44 -0.30 0.57 0.58 0.25
password -0.13 -0.33 -0.59 0.00 0.73
options -0.48 -0.51 -0.37 0.00 -0.61
memory -0.70 0.35 0.15 -0.58 0.16
disk -0.26 0.65 -0.41 0.58 -0.09

V 1 2 3 4 5
1 2.16 0.00 0.00 0.00 0.00
2 0.00 1.59 0.00 0.00 0.00
3 0.00 0.00 1.28 0.00 0.00
4 0.00 0.00 0.00 1.00 0.00
5 0.00 0.00 0.00 0.00 0.39

WT d1 d2 d3 d4 d5 d6
1 -0.75 -0.28 -0.20 -0.45 -0.33 -0.12
2 -0.29 -0.53 -0.19 0.63 0.22 0.41
3 0.28 -0.75 0.45 -0.20 0.12 -0.33
4 0.00 0.00 0.58 0.00 -0.58 0.58
5 -0.53 0.29 0.63 0.19 0.41 -0.22

Where:

(1) C: being the co-occurrence matrix. One row per word, one column per min(M,
N) where M is the number of words and N is the number of documents;

(2) U: think of the dimensions as "semantic" dimensions that capture distinct top-
ics like politcs, sport, economics. For example, dimension 2 being hard-
ware/software. Each number in uij in the matrix indicates how strongly related
word i is to the topic represented by semantic dimension j;

(3) V: this is a square, diagonal matrix of dimensionality min(M, N) × min(M, N).
The magnitude of the singular value measures the importance of the correspond-
ing semantic dimension;

(4) WT : one column per document, one row per min(M, N). These are the semantic
dimensions from matrices U and V that capture distinct topics. Each number wij

in the matrix indicates how strongly related document i is to the topic represented
by semantic dimension j;

SVD is the decomposition of C into a representation of thewords (U), a representation of
the documents (WT) and a representation of the importance of the semantic dimensions
(V).

C = UVWT (5.3)

Having these representations makes it possible to perform dimensionality reductions
and similarity checks betweenwords, semantic dimensions or documents, e.g., reducing
the dimensionality to two results in the following set of matrices, showed in Table 5.5.

Table 5.5: The four matrices of SVD with a dimensionality reduction

C2 d1 d2 d3 d4 d5 d6
settings 0.85 0.52 0.28 0.13 0.21 -0.08
password 0.36 0.36 0.16 -0.20 -0.02 -0.18
options 1.01 0.72 0.36 -0.04 0.16 -0.21
memory 0.97 0.12 0.20 1.03 0.62 0.41
disk 0.12 -0.39 -0.08 0.90 0.41 0.49

U 1 2 3 4 5
settings -0.44 -0.30 0.57 0.58 0.25
password -0.13 -0.33 -0.59 0.00 0.73
options -0.48 -0.51 -0.37 0.00 -0.61
memory -0.70 0.35 0.15 -0.58 0.16
disk -0.26 0.65 -0.41 0.58 -0.09

V2 1 2 3 4 5
1 2.16 0.00 0.00 0.00 0.00
2 0.00 1.59 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00

WT d1 d2 d3 d4 d5 d6
1 -0.75 -0.28 -0.20 -0.45 -0.33 -0.12
2 -0.29 -0.53 -0.19 0.63 0.22 0.41
3 0.28 -0.75 0.45 -0.20 0.12 -0.33
4 0.00 0.00 0.58 0.00 -0.58 0.58
5 -0.53 0.29 0.63 0.19 0.41 -0.22

31

When computing the similarity between d2 and d3 for the original matrix (C) and for
the reduced matrix (C2), a difference is noted, because the dimensionality is reduced:

• similarity of d2 and d3 in the original space is 0;

• similarity of d2 and d3 in the reduced space is 0.52 ∗ 0.28+ 0.36 ∗ 0.16+ 0.72 ∗
0.36 + 0.12 ∗ 0.20 +−0.39 ∗ −0.08 ≈ 0.52.

SVD is a matrix-based algorithm for word embedding, originating from latent semantic
analysis (Levy, Goldberg, & Dagan, 2015).

5.2.2 Architecture
The models used in this study are described below:

1. support vector machines (SVM) (Noble, 2006), this is a supervised machine
learning model based on the statistical learning framework proposed by Vapnik
and Chervonekis (Cherkassky&Mulier, 1999). It is a robust model often used for
text classification and less affected by the class imbalance problem (Yanminsun
et al., 2011; Joachims, 1998; Telnoni, Budiawan, & Qana’a, 2019). SVM is used
as a baseline for what can be achieved with a more complex model. The linear
algorithm of support vector classifier (SVC) was chosen, the reason is that the
computation time is much lower than the other kernels. Since the other kernels
are forced to apply a ’one-vs-one’ strategy in case of a multi-class strategy, instead
of the ’one-vs-rest’ of a linear strategy. LinearSVC10 of the scikit-learn package
is used, this function has a few parameters that can be optimised:

• penalty, specifies the norm used in the penalisation;
• loss, specifies the loss function;
• class_weight, adjusts the weights according to class frequencies.

2. deep neural network (DNN) (Kowsari et al., 2017), this is a MLP which is
designed to learn through multi-connection of layers where every single layer
only receives the connection from the previous layer and provides connections
only to the next layer in a hidden part, illustrated in Figure 5.5 (Kowsari et al.,
2019). Although a neural network is more computation heavy, it is flexible
with the preprocessing of the features which make it more robust (Revina et al.,
2020). The structure of MLP changes when word embedding is required. An
embedding layer is added at the beginning of the model, so a domain-specific
word embedding can be trained. Two variances of the model are constructed, an
example of both is shown in Figure 5.6. The design of the model is somewhat
flexible, as well as the number of hidden layers and how many nodes each layer
has. In total five hyperparameters are tested (Kowsari et al., 2019):

• batch_size, number of samples per gradient update;
• hidden_layers, number of dense layers within the model;
• dropout, fraction of the input units to drop;
• dense_nparams, dimensionality of the output space;
• optimiser, an algorithm that modifies the attributes, such as weights and
learning rate.

10svm, LinearSVC

32

https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html

Hyperparameters that are not examined:
• loss function (categorical cross-entropy), a function used to evaluate a
candidate solution, almost always one with the lowest score. Categorical
cross-entropy is a multi-class loss function, it needs a softmax activation
function on the last layer of the MLP, as long as the outputs are mutually
exclusive, otherwise sigmoid could be used instead;

• activation function (rectified linear unit), defines the output of a node using
a function. Another great function would be sigmoid, tanh or softmax.
Nevertheless, rectified linear unit is picked, since it is quick to calculate and
have better gradient propagation (Mhaskar & Micchelli, 1994).

3. recurrent neural network (RNN) (Sutskever, Martens, & Hinton, 2011), this
architecture assigns more weight to the previous data points of a sequence.
Therefore, this technique is a powerful method for text. A RNN considers the
information of previous nodes in a very sophisticated method which allows for
better semantic analysis. This study uses long short-term memory (hereinafter
LSTM) (Hochreiter & Schmidhuber, 1997) for text classification. LSTM is a
special type of RNN that preserves long term dependency in a more effective
way, solving the vanishing gradient and exploding gradient problem that RNN
typically has (Kowsari et al., 2019). LSTM trains left-to-right, but it is possible
to process the data from right-to-left which makes it a Bi-directional LSTM
(BiLSTM). This additional training capability is beneficial in providing better
predictions (Siami-Namini, Tavakoli, & Namin, 2019). The input of a RNN is a
sequence. An embedding layer is added at the beginning of the model, to train a
domain-specific word embedding which is preferred, instead of using a pretrained
word embedding (Wahba et al., 2020). BiLSTM could nullify the argument of
pre- or post-padding, seeing that BiLSTMprocesses sequences in both directions.
The structure of the BiLSTM is as pictured in Figure 5.7. After the BiLSTM
layer global max pooling is implemented, Zemp (2021) states that global max
pooling has a positive effect on the results, compared to global average pooling.
Lastly, the hyperparameters of BiLSTM are:

• spatial dropout, a type of dropout for embedding;
• layers, dimensionality of the output space;
• optimiser, an algorithm that modifies the attributes, such as weight and
learning rate;

• batch_size, number of samples per gradient update.
However, these are not all the hyperparameters, TensorFlow has an implemen-
tation to quicken the training by almost twenty times. It does require fixed
parameters, listed below:

• activation, tanh;
• recurrent_activation, sigmoid;
• recurrent_dropout, 0;
• unroll, false;
• use_bias, true.

Lastly, the loss function is not tested, categorical cross-entropy is used to evaluate
a candidate solution. Categorical cross-entropy is a multi-class loss function, it

33

Figure 5.5: Standard fully connected deep neural network (Kowsari et al., 2019)

(a) Embedding + MLP, word embedding and 2
hidden layers

(b) MLP, 2 hidden layers

Figure 5.6: Architecture of a DNN

needs a softmax activation function on the last dense layer, as long as the outputs
are mutually exclusive, otherwise sigmoid could be used instead.

5.2.3 Validation
To validate the performance of the previously mentioned models, the data classification
measures (Hossin & M.N, 2015), Precision, Recall, Accuracy, Support and two F1
scores are used. The F1 score is the harmonic mean of precision and recall. As
mentioned earlier in Section 4.2, the task encompasses a multi-classification problem,
and suffers from class imbalance. Therefore, the weighted F1 score metric is best suited
since it takes support into account, which is the number of samples in a class. Themacro
F1 score metric, which does not incorporate class size, only howmany classes there are,
is reported as well, as it provides information on the performance of the model regarding
the average F1 score. However, the weighted F1 score determines how effective a model
is in predicting the category of a ticket. The accuracy is provided to give information on

34

Figure 5.7: Architecture of a BiLSTM with an embedding layer

Predicted
Classes a b c d
a TN FP TN TN
b FN TP FN FN
c TN FP TN TNA

ct
ua
l

d TN FP TN TN

Figure 5.8: Confusion matrix of a multi-class classification problem on the perspective
of class b

how many tickets are correctly predicted. Accuracy does not consider the performance
per class. For multi-class classification, Accuracy can be calculated using the micro
F1 score, which corresponds to micro-Recall and micro-Precision (Grandini, Bagli,
& Visani, 2020). Both Precision and Recall are calculated using a confusion matrix.
Support is the number of occurrences of each class. A confusion matrix is a summary
of prediction results, for a multi-class classification problem it would have the following
portrayal as shown in Figure 5.8. The metrics are as followed computed:

Precision =
True Positive (TP)

True Positive (TP)+ False Positive (FP)
(5.4)

Recall =
True Positive (TP)

True Positive (TP)+ False Negative (FP)
(5.5)

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(5.6)

F1 = 2 ∗ Precision ∗ Recall
Precision+ Recall

(5.7)

10Micro looks at the confusion matrixs as a whole (not per class), resulting in equal values.

35

Figure 5.9: 3-fold cross validation

weighted F1,macro F1 =

∑
F1 ∗ Support∑
Support

,

∑
F1

#Classes
(5.8)

The validation of each model with the aforementioned metrics undergoes two stages;
(1) tuning of the hyperparameters, and (2) final validation of the model.

For tuning the hyperparameters, cross-validation is used which consists of averaging
the prediction estimates of K train-test splits, where each data point is only used in
a single test set (Moss, Leslie, & Rayson, 2018; Kohavi, 1995), shown in Figure 5.9.
The model is trained on the training set and scored on the validation set. The process
is repeated until each unique group has been used as the validation set. Stratified
cross-validation is used, which preserves the percentage of samples for each class.
Three splits are created that resembles about 67% of the earlier split is used for training
and 33% is used for validation. Where possible, the cross-validation is done through
grid search. Grid search is a tuning technique that attempts to compute the optimum
values of hyperparameters. In particular, GridSearchCV11 is used which has a built-in
cross-validation. Aside from averaging the prediction estimates, the standard deviation
of the prediction estimates provides crucial information on the stability of the model.
Each model has their own set of hyperparameters, tuning all of them would take forever.
Thus, the chosen hyperparameters have the biggest impact in the models’ performance,
resulting in the following list:

• support vector machines (SVM);
– ngram_range, ((1, 1) or (1, 2)), unigram or a combination of unigram and
bigram. As ngram is not used how it was originally intended, only unigrams
and bigrams are validated;

– min_df, (1, 2, 10), these have a significant impact on the vocabulary size,
ranging from 169.469 with 1 applied, to 16.414 using 10. The aim is to
conserve as much information as possible and be able to run the model.
However, we have limited GPU memory which makes it impossible to use
the entire vocabulary in combinationwith an n-gram range of (1, 2), creating
a vocabulary of 1.866.145 words;

– penalty, (’l1’ or ’l2’), these are all the options that LinearSVC provides;
– class_weight, (’None’ or ’balanced’), the same constraint as with ’penalty’,
’None’ indicates that the classes have the same weight, whereas, ’balanced’
calculates the class weights using the input data;

– loss, (’hinge’, ’squared_hinge’), both are ’hinge’ loss functions. Except, the
latter squares the ’hinge’ loss, as the name suggests.

11scikit-learn GridSearchCV

36

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

• deep neural network (DNN):
– using TFIDF:

∗ batch_size (16 or 256), a higher batch size can be beneficial considering
class imbalance. However, this needs to be tested so a relatively low
and high batch size is selected. A value lower of 16 is not desired since
the time to train drastically increases;

∗ hidden_layers (2, 4 or 8), the articles that are found did not report how
many hidden layers they used, therefore a random set is chosen;

∗ dropout (0.1 or 0.3), Zemp (2021) reported to use a dropout of 0.1 in
other models, so an additional value is tested to see if that is also the
case here;

∗ dense_nparams (64, 512 or 2048), the articles that are found did not
report the amount of nodes they used per layer, therefore a wide range
of values are tested;

∗ optimiser (stochastic gradient descent or Adam), most articles have
success usingAdam as their optimiser. Instead of tuning the parameters
of the optimiser, Adam will be compared with stochastic gradient
descent.

– using word embedding (Zemp, 2021);
∗ truncating, (’pre’ or ’post’), the effect could be negligible if the se-
quence length is equal to the max length that occurs in the corpus.
However, this is not the case, truncating the first or last part of a text
could remove information on the issue. The result will indicate where
the information is written in the description;

∗ maxlen, (64, 128 or 256), Zemp (2021) report that increasing the
number of words above 300 had no effect. However, truncating it below
50 had a negative impact. Thus, values between these boundaries are
tested;

∗ embedding_size (64 or 256), Zemp (2021) report that the size of the
embedding layer is key, as it improves the results significantly for
smaller classes. Increasing the embedding layer above 200 had no
effect, yet, an embedding size of 400 is used. Thus, a size above 200
and a smaller size is checked;

∗ batch_size (16 or 256), see DNN using TFIDF.
• recurrent neural network (RNN) (Zemp, 2021):

– truncating (’pre’ or ’post’), see DNN using word embedding;
– maxlen (64, 128 or 256), see DNN using word embedding;
– embedding_size (64 or 256), see DNN using word embedding;
– layers (64 or 256), Camacho-Collados and Pilevar (2017) used a size of
300, identical to Zemp (2021), but they do not substantiate that number. It
seems quite high, so it is compared against a lower value;

– spatial_dropout (0.1 or 0.3), see DNN using TFIDF;
– optimiser (stochastic gradient descent or Adam), see DNN using TFIDF;
– batch_size (16 or 256), see DNN using TFIDF.

37

The final validation is performed using the training and test set, this is the first time that
the test set, or unseen data, is used. Since over-fitting is an issue in neural networks, an
early stopper on the validation loss is implemented to avoid this phenomenon (Hawkins,
2004). As a result, the DNN and RNN training set is split into an extra validation set.

38

Chapter 6

Results

Chapter 5 described the methods of validation and the models. This chapter presents
the results of the cross-validation and validation on the test set. Considering, that the
vocabulary size fluctuates heavily per category, an overview of that effect is given, so
it can be analysed in the discussion. As well as, the effect class imbalance has on the
effectiveness of classifying the category.

6.1 Cross-validation
The top results obtained after experimenting with different hyperparameters are pre-
sented in the following Figure 6.1. The hyperparameters that resulted in the highest
weighted F1 score are displayed in Table 6.1, and the corresponding architecture in
Appendix B.

39

(a) models using TFIDF

SVM
Hyperparameter Setting
ngram_range (1, 2)
min_df 1
penalty l1
class_weight balanced
loss squared hinge

DNNa

Hyperparameter Setting
batch_size 128b

hidden_layers 2
dropout 0.1
dens_nparams 512
optimiser adam

aThe TFIDF parameters of SVM are also used in the feature engineering of DNN.
bthe original setting of 16 or 256, resulted in an ’out of memory’ error. even with a batch_size

of 1. Setting the min_df to 2 solved this issue. The options (16, 128) were tested
(b) models using word embedding

DNNa

Hyperparameter Setting
truncating pre
maxlen 256
embedding_size 256
batch_size 256

RNN
Hyperparameter Setting
truncating pre
maxlen 256
embedding_size 256
layers 256
spatial_dropout 0.3
optimiser adam
batch_size 256

aThe remaining hyperparameters, such as dropout, hidden_layers, etc. where taken from DNN
using TFIDF.

Table 6.1: Hyperparameters settings that resulted in the highest weighted F1 score

Figure 6.1: Cross-validation results of the best set of parameters

Figure 6.1 shows the different varieties of the F1 score of each model and their corre-
sponding standard deviations, calculated from the cross-validation results. Remarkably,
the word embedding DNN and RNN, achieved a competitive weighted F1 score of 85%
and 86%, respectively, both outperforming the models using TFIDF. While all models
achieved a low standard deviation, which is a stable performance across the cross-
validation, SVM is the most consistent one, closely followed by RNN. SVM has a

40

(a) DNN + embedding (b) DNN

(c) RNN + embedding

Figure 6.2: Neural Network training accuracy and loss development over 15 epochs

slightly higher accuracy (micro F1 score) than the weighted counterpart, which means
a lower bias towards majority classes.

6.2 Validation on the test set
After the cross-validation, each model is trained using the entire training set and their
effectiveness rated on the test set, or unseen data. All of the neural network based
models scored worse, DNN using TFIDF taking the biggest performance hit of 3.0%
followed by DNN using word embedding by 1.8% and RNN with 1.1%. SVM had a
small increase of 0.8%, which is expected, because the size of the dataset increased from
141.083 to 211.624 tickets. All models scored above 80% which was communicated
by the client to be achievable. Table 6.2 shows the final F1 scores of the four models.
RNN reached the best results in terms of validation loss and validation accuracy in the
second epoch, shown in Figure 6.2. After which, the model over-fits on the training set.

Table 6.2: F1 scores of the four ticket classification models on the test set

TFIDF Word embedding
Metric SVM DNN DNN RNN
Weighted F1 score 0.8359 0.8175 0.8311 0.8463
Macro F1 score 0.8021 0.7902 0.7939 0.8188
Accuracy 0.8362 0.8175 0.8319 0.8459

Since the dataset is imbalanced, there was an expectation that the classification al-
gorithm would be biased favouring the major classes, leading to a high classification
accuracy for the three major ticket categories; (i) software, (ii) applications, and (iii)
userManagement, while showing poor accuracy towards the minor classes. Although

41

Figure 6.3: RNN Classification report of Word Embedding+BiLSTM showing preci-
sion, recall, f1-score and support for all 12 classes

differences exist between the major and minor ones, shown in Figure 6.3 and Appendix
A, it does not show the complete situation.

6.3 Category demarcation
The vocabulary size difference between categories prompted an examination of the
relationship between vocabulary size, class size and performance, illustrated in Figure
6.4. The best predicted class is ’eventManagement’ which was brought up earlier for
its smaller sized vocabulary. Figure 6.4 shows no particular dependency between the
three distributions.

However, properly defined categories, can be an argument for a smaller sized vocabulary.
Analysing the confusion matrix of the predicted and actual class shows if categories
potentially overlap, Table 6.3

Table 6.3: Confusion matrix of RNN predictions on the test set

Predicted
Classes 1 2 3 4 5 6 7 8 9 10 11 12

A
ct
ua
l

1 7634 1 1 2 268 61 32 91 18 576 29 64
2 8 760 0 16 0 1 0 0 1 106 10 0
3 31 0 2758 0 1 2 0 12 0 5 2 1
4 4 13 0 1664 11 1 0 0 4 95 1 0
5 396 0 0 6 1223 35 6 28 27 179 3 8
6 196 0 0 2 48 588 1 8 4 69 5 10
7 59 0 0 0 4 0 458 1 0 163 3 6
8 108 0 1 0 12 6 1 1734 0 61 31 7
9 49 0 0 3 7 3 0 0 914 55 1 3
10 726 29 1 241 141 54 166 94 42 8979 34 135
11 167 16 2 28 13 10 14 290 3 280 4132 2
12 146 0 0 3 12 8 14 4 1 126 0 619

Legend
1 application
2 data
3 eventManagement
4 hardware
5 hardwarePC
6 network
7 outlookSkype
8 passwordReset
9 print
10 software
11 userManagement
12 voiceVideoMobility

In the confusion matrix of RNN, it is noticeable that classes ’applications’ and ’soft-
ware’ are large contributors in the misclassification of minor classes, it is even clearer

42

Figure 6.4: Plot between weighted f1-score and vocabulary size per class with the size
of the bubble representing the class size

Legend
1 application
2 data
3 eventManagement
4 hardware
5 hardwarePC
6 network
7 outlookSkype
8 passwordReset
9 print
10 software
11 userManagement
12 voiceVideoMobility

Figure 6.5: Normalised confusion matrix of RNN

illustrated in Figure 6.5. Either the problem description of the four worst scoring
classes overlap with that of ’application’ and ’software’, or the class imbalance affect
the classification of minor classes and predicts the majority class, when in doubt.

6.4 Class imbalance
As mentioned, the classes are not evenly distributed. The performance of the four
models to classify each class is shown in Figure 6.6 It is clear that four categories
(’voiceVideoMobility’, ’outlookSkype’, ’network’ and ’hardwarePC’) compared to the
rest are not well predicted. Three of those categories have less than seven thousand
tickets, making them the smallest classes. However, it is not clear if that is solely the
reason for classification errors.

43

Figure 6.6: Classification score of the different models for all 12 classes

Figure 6.7: Classification score of DNN with different word representations for all 12
classes

44

Legend
1 application
2 data
3 eventManagement
4 hardware
5 hardwarePC
6 network
7 outlookSkype
8 passwordReset
9 print
10 software
11 userManagement
12 voiceVideoMobility

Figure 6.8: Precision and recall score of DNN with different word representations for
all 12 classes

6.5 Word representation
Figure 6.7 shows a clear difference between the word representations when the weighted
F1 score is relatively low. Analysing Figure 6.8 shows that TFIDF has better precision
scores, but word embedding exceeds TFIDF in the recall measure. Comparing the
macro F1 score makes it apparent, TFIDF scores 3% better in the metric precision but
drops 6% in the metric recall, as shown in Figure A.3 and A.2. The performance of
the models with word embedding to classify the four minor classes outperformed the
models using TFIDF. The difference is smaller in classifying the major classes, but still
noticeable and RNN is surpassing the other models as well, except for the category
’hardware’ where SVM yields a better weighted F1 score than RNN.

45

Chapter 7

Discussion

This chapter interprets the results and discusses certain aspects of this research, such
as (1) the influence of preprocessing, (2) keeping the sentence structure by not merging
the fields, (3) the results of feature engineering.

7.1 Text preprocessing
Starting with the first topic, in the cited literature text preprocessing seemed to have
minor influence in the effectiveness of a model, except for domain-specific tasks. An
assumption is made that classifying technical support tickets falls under that definition.
Therefore this report incorporated certain text preprocessing steps that could have one
of three effects, (1) positive, (2) pointless, or (3) negative. This research leaves that
question open. However, it is important for Atos to know which steps to incorporate
since the duration of the script determines how much the operation costs will be.

The results show two particularities that have two possible origins relating to prepro-
cessing, where the particularities are lower F1 scores in the minor classes and an almost
perfect score for ’eventManagement’. The first suggests that the model would be bias
towards major classes. The bias results in the model predicting the major class when in
doubt. In the measurements this would be expressed as a high recall score but low pre-
cision score, since the model is predicting the major class even if it is actually the minor
class. However, Figure 6.3 shows that the recall score of ’applications’ and ’software’
are lower than five other categories, suggesting that the model struggles in dividing
certain problems among categories. This is also reflected in Figure 6.5, the prediction
error is higher in only a few classes, indicating that those categories could overlap.
Nonetheless, it cannot be ruled out that class imbalance did not affect the model in clas-
sifying categories. That ’eventManagement’ almost had a perfect score in both word
representations demonstrates that a proper defined category, results in a better predictor.

Class imbalance and overlapping categories are problems that are related to prepro-
cessing. First, a good demarcated category increases the effectiveness considerably, so
investing time into precise merging of customer-specific labels is advantageous. Lastly,
class imbalance could have impacted some classes. Thus, as long as the training set is
not large enough, future research should be done on data-space resampling techniques
and their effect. The topic of data balancing is touched upon in the report, under the

46

assumption that the training set is large enough that class imbalance does not effect the
performance. Therefore, data resampling yielded no benefit except potentially losing
information.

7.2 Sentence structure
The ticket data consists of three written fields, these fields are combined to keep as
much tickets as possible. However, this was on the premise that polylingual data would
have a negative effect in the classification. In the scope of the research, it is stated that
only English tickets will be processed. This forced the combining of these fields, to
preserve as much tickets as possible. However, the impact is not measured and Zemp
(2021) saw no effect in excluding other natural languages than English. Not removing
non-English fields opens up the possibility to provide the model with three inputs, as a
result, keeping the sentence structure of the fields, which could lead to a more effective
prediction model.

7.3 Word representations
An important step in feature engineering is choosing the word representations, two are
used in the research; (1) weighted word representation, term frequency-inverse docu-
ment frequency, and (2) embedding layer. Zemp (2021); Wahba et al. (2020) studied
tech classification on technical support tickets and used term frequency-inverse docu-
ment frequency. When they apply this method in a comparable study, it withholds the
use of categorical word representation i.e., one hot encoding and bag-of-words. How-
ever, it is noted that term frequency-inverse document frequency is not that meaningful
with short written text. A hypothesis after analysing the characteristics of ticket data,
was that the tickets contained enough words to justify the use of term frequency-inverse
document frequency. Regarding the word embedding, a large corpus is often used
to capture semantics. The neural network epoch graphs show why that is, as shown
in Figure 6.2. The model adjusts the weight based on the training set, which looks
normal. However, the metrics of the validation set, after the first or second epoch, is
slowly getting worse, with an accuracy decrease of ∼1%. That the model reaches a
near state-of-the-art result on the training set, an accuracy increase of +20%, indicating
that the model tunes ticket specific words to be able to classify tickets in a category.
Nevertheless, each used model was able to classify tickets based on the written data.

47

Chapter 8

Conclusion

The goal of this research is to find out if categories of technical support tickets can be
accurately predicted. The research question is formulated to answer that objective and
reads:

’How effective is a text classification model in classifying the category of
technical support tickets, based on descriptive data provided by tickets?’

The experiments show that classifying categories of technical support tickets are feasi-
ble. The written text provided by the ticket contains enough information for a model
to predict a category. The results show that the effectiveness of text classification is
affected by either, class imbalance or, overlapping categories. Six of the twelve cat-
egories are affected by this. These categories are; (1) applications, (2) hardwarePC,
(3) network, (4) outlookSkype, (5) software, and (6) voiceVideoMobility. The cate-
gory ’eventManagement’ showed that a good demarcation of the topic led to a high
weighted F1 score. Word embeddings outperforms the document term matrix. The
deep neural network with word embedding has a 1.4% higher weighted F1 score than the
one using the document term matrix. Recurrent neural network is the highest scoring
model with a weighted F1 score of 85%. It achieves this, by classifying the minority
classes better. The recurrent neural network model is better in predicting the category
than vector machine in all categories except ’hardware’. Atos should use word embed-
ding and bidirectional long short-termmemory for classifying technical support tickets.

The literature review provided various models that are used for text classification. Sup-
port vector machines was reported to outperform similar machine learningmodels when
class imbalance is present. This was less of an influence with neural networks. Two
neural networks, deep neural network and recurrent neural network, suited the goal of
this research. In total, three models with four architectures were compared, a support
vector machines, two deep neural networks and a recurrent neural network. The input of
those models were the different word representations. Two word representations were
distinguished, document term matrix and word embedding. Support vector machines
and deep neural network used the document term matrix, the other deep neural network
and recurrent neural network made use of word embedding.

The architectures used for the models were:

• Linear support vector classifier for support vector machines, this is the classifi-
cation model that uses the kernel linear for its algorithm.

48

• Multilayer perceptron for deep neural network, this architecture uses dense layers
to create hidden layers.

• Bidirectional long short-term memory for recurrent neural network, this archi-
tecture solves the vanishing and exploding gradient problem that recurrent neural
network has. The bidirectional part preserve information from both past and
future.

The word representations used in feature engineering were:

• Term frequency-inverse document frequency for the document term matrix.
• Embedding layer before the models architecture for word embedding. Pretrained
word embedding was reported to be insufficient in domain-specific tasks.

The text preprocessing was identical for eachmodel. Since the data contained customer-
specific and broad categories, relabeling of the categories was appropriate. As well
as removing natural languages other than English. In spite of an apparent imbalance
in the data, balancing the categories was not necessary. The literature described text
preprocessing steps that were best suited for the scenario of domain-specific text clas-
sification; (1) removing characters, (2) tokenization, (3) lemmatisation, (3) removing
stop-words, (4) thresholding word count, and (5) splitting data into training and test set.
The last step, included defining a training size. A split of 85% training set and 15% test
set was picked, to keep as much data for training.

Lastly, what is best for Atos, and therefore the steps that should be taken. There are
uncertainties, caused by assumptions or being out of scope for this research i.e., (1)
domain-specific problems, (2) written text long enough, (3) filtered out non-English
tickets, and (4) enough data to compensate class imbalance. Still, this research shows
that machine learning and neural networks models are very effective in classifying
the category of tickets using their descriptive information. Getting the ideal text
preprocessing, feature engineering and model take a lot of research and meanwhile
having access to aworking combination is valuable. Atos should implement the findings
of this study and improve the individual components along the way. Prioritisation of
the process is described in the next Chapter.

49

Chapter 9

Recommendations

As a follow-up to this research, several aspects were discussed that deserve attention.
These aspects are:

(1) Better demarcation of the categories
The results debated that class imbalance and/or overlapping categories are a re-
straint for the model to get better weighted F1 scores. If overlapping categories is
the problem, adding more data does not increase the effectiveness of the model in
classifying the categories of tickets. Hence, the overlap between categories needs
to be addressed. Overlapping categories is fixed by putting a team of domain
experts together to produce a set of labels that need to be predicted and map
the existing categories to those labels. This resolves the problem for existing
tickets. To prevent overlap of categories in future tickets, support agents need
to be better informed or educated. Resolving overlap between categories, yields
an effective prediction model with a weighted F1 score of at least 90%. This as-
sumption is made by looking at better defined categories i.e., ’eventManagement’,
’userManagement’, ’print’, ’data’ and ’hardware’.

(2) Keep the polylingual characteristic of ticket data
As described in the project context, just under 30% of the three available written
fields are filtered out for being in a language other than English. To keep as much
tickets as possible, the three fields are combined, so only ∼8% of the tickets are
removed. Research has shown that non-English words have little to no effect in
the effectiveness of the model. Incorporating the polylingual characteristic of the
ticket data is therefore advised. Although, an increase of the weighted F1 score
is not expected, it opens up the possibility to omit fields or to create a model
that processes the three fields separately to predict the category. These changes
have either a positive or negative effect on the effectiveness of classification. The
data scientists in PXC need to execute and measure the effect of this change.
After which, they report if the difference in operation time and effectiveness is
beneficial enough to change the process.

(3) Calculate the business value
This study aims to measure the effect of text classification on ticket data, not the
cost of running the model, which is imperative for Atos, since knowing which
steps are cost-effective needs to be justified. Atos benefits from not only an
effective model, but from a solution that has as little operation costs as possible.

50

If a step in the process takes thirty minutes and the effect on the model is nought
point one percent, then it is likely that the step is not cost-effective. Getting
this insight is achieved by logging the duration of each step and repetitively
withholding one step and measuring its effect. After which, Atos is able to
warrant each individual step. This process is best executed by a data engineer or
data scientist.

(4) Research the effect of out-of-vocabulary
The assumption that ticket data contains domain-specific quirks, resulted in avoid-
ing pretrained word embedding. However, the vocabulary is only 16.414 words,
if only words are considered that are in more than 9 tickets and 169.469 if no
limitations are set. It is likely that the word embedding comes across words that
are out-of-vocabulary, when ticket data is used from a customer that was not
present in the training process. The impact of using ticket data from an, for the
model, unknown customer on the effectiveness of the model in classifying tickets
needs to be measured. Anybody in the PXC team is qualified to perform this
analysis, but it is best performed by the data scientists. They share the results
with the team, so an appropriate decision is made. The result is either, that there
is enough data to predict outside the known customers or there is not enough
data for training an embedding which leads to switching to a pretrained word
embedding.

(5) Research transformers and convolutional neural network
Convolutional neural network and transformers are effective models in text clas-
sification, trading blows with recurrent neural network, depending on the article.
Considering that this study concludes that recurrent neural network is more ef-
fective in classifying the category of tickets, compared to less complex models
(non-probabilistic binary linear classifier and feed forward networks). Research
needs to be done on analysing those three architectures. Related works described
the trend of using BERT in text classification, but also the potential bottleneck
by combining the three fields. Implementing recommendation (2) clears that
impediment. Although, it is not guaranteed that it delivers a positive effect on
the classification, having a comparison between them leads to a more informative
decision on which to use. This research is best left to interns or graduates, as it
does not hinder Atos from implementing this research findings.

(6) Validation on a new customer
The validation is performed on a portion of the data of the same customers.
Ideally, this is done on a new customer, since more insight is provided on the
robustness of the models. Because, writing and slang could be different among
customers. However, each label needs to be present, so the effectiveness of the
model in categorising tickets can be measured among each class. Knowing that
the model is an effective predictor for unseen customers is extremely important.
Currently, it is unclear if the model can predict the category outside the scope of
the customers that are in the training set. The client needs to provide ticket data
with a correct category from a new customer, where the category contains all the
trained classes. This needs to be executed by the data scientists of PXC.

51

References

Akkaradamrongrat, S., Kachamas, P., & Sinthupinyo, S. (2019). Text generation for
imbalanced text classification. In 2019 16th international joint conference on
computer science and software engineering (jcsse) (p. 181-186). doi: 10.1109/
JCSSE.2019.8864181

Bansal, S. (2018). A comprehensive guide to understand and implement text classifi-
cation in python. Analytics Vidhya.

Barushka, A., & Hájek, P. (2019, 11). The effect of text preprocessing strategies on
detecting fake consumer reviews. In (p. 13-17). doi: 10.1145/3383902.3383908

Camacho-Collados, J., & Pilevar, M. T. (2017, 07). On the role of text preprocessing
in neural network architectures: An evaluation study on text categorization and
sentiment analysis..

Cherkassky, V., & Mulier, F. (1999). Vapnik-chervonenkis (vc) learning theory and
its applications. IEEE Transactions on Neural Networks and Learning Systems,
10(5), 985–987. doi: 10.1109/TNN.1999.788639

Dwarampudi, M., & Reddy, N. V. S. (2019). Effects of padding on lstms and cnns.
ArXiv, abs/1903.07288.

Ellis, G., & Ellison, C. (2015). Avoiding the ’watermelon’ ef-
fect. Retrieved from https://library.e.abb.com/public/
afb41a2d4e6d45d9a47e2f71fc58521a/avoiding-the-%27watermelon%
27-effect.pdf

Garette, D., Ljungörg, P., Nothman, J., Korobov, M., Bird, S., & Dimitriadis, A.
(2021). Natural language toolkit. NLTK Project. Retrieved from http://
www.nltk.org/nltk_data/

Grandini, M., Bagli, E., & Visani, G. (2020). Metrics for multi-class classification: an
overview. arXiv preprint arXiv:2008.05756.

Han, J., & Akbari, M. (2018, Apr.). Vertical domain text classification: Towards
understanding it tickets using deep neural networks. Proceedings of the AAAI
Conference on Artificial Intelligence, 32(1). Retrieved from https://ojs.aaai
.org/index.php/AAAI/article/view/11375

Hawkins, D. M. (2004). The problem of overfitting. Journal of Chemical Information
and Computer Sciences, 44(1), 1-12. Retrieved from https://doi.org/10
.1021/ci0342472 (PMID: 14741005) doi: 10.1021/ci0342472

Hochreiter, S., & Schmidhuber, J. (1997, 11). Long short-term memory. Neural
Computation, 9(8), 1735-1780. Retrieved from https://doi.org/10.1162/
neco.1997.9.8.1735 doi: 10.1162/neco.1997.9.8.1735

Hossin, M., &M.N, S. (2015, 03). A review on evaluation metrics for data classification
evaluations. International Journal of Data Mining & Knowledge Management
Process, 5, 01-11. doi: 10.5121/ijdkp.2015.5201

52

https://library.e.abb.com/public/afb41a2d4e6d45d9a47e2f71fc58521a/avoiding-the-%27watermelon%27-effect.pdf
https://library.e.abb.com/public/afb41a2d4e6d45d9a47e2f71fc58521a/avoiding-the-%27watermelon%27-effect.pdf
https://library.e.abb.com/public/afb41a2d4e6d45d9a47e2f71fc58521a/avoiding-the-%27watermelon%27-effect.pdf
http://www.nltk.org/nltk_data/
http://www.nltk.org/nltk_data/
https://ojs.aaai.org/index.php/AAAI/article/view/11375
https://ojs.aaai.org/index.php/AAAI/article/view/11375
https://doi.org/10.1021/ci0342472
https://doi.org/10.1021/ci0342472
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

Joachims, T. (1998, 01). Text categorization with support vector machines. Proc.
European Conf. Machine Learning (ECML’98). doi: 10.17877/DE290R-5097

Jurafsky, D., &Martin, J. H. (n.d.). Speech and language processing: An introduction to
natural language processing, computational linguistics, and speech recognition.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation
and model selection. In Proceedings of the 14th international joint conference
on artificial intelligence - volume 2 (p. 1137–1143). San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.

Kowsari, K., Brown, D. E., Heidarysafa, M., Meimandi, K. J., Gerber, M. S., & Barnes,
L. E. (2017). Hdltex: Hierarchical deep learning for text classification. CoRR,
abs/1709.08267. Retrieved from http://arxiv.org/abs/1709.08267

Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes, L., &
Brown, D. (2019). Text classification algorithms: A survey. Information,
10(4). Retrieved from https://www.mdpi.com/2078-2489/10/4/150 doi:
10.3390/info10040150

Krouska, A., Troussas, C., & Virvou, M. (2016). The effect of preprocessing
techniques on twitter sentiment analysis. In 2016 7th international confer-
ence on information, intelligence, systems applications (iisa) (p. 1-5). doi:
10.1109/IISA.2016.7785373

Lai, S., Liu, K., He, S., & Zhao, J. (2016). How to generate a good word embedding.
IEEE Intelligent Systems, 31(6), 5-14. doi: 10.1109/MIS.2016.45

Leevy, J. L., Khoshgoftaar, T. M., Bauder, R. A., & Seliya, N. (2018, Nov 01). A
survey on addressing high-class imbalance in big data. Journal of Big Data, 5(1),
42. Retrieved from https://doi.org/10.1186/s40537-018-0151-6 doi:
10.1186/s40537-018-0151-6

Leopold, E., & Kindermann, J. (2002, Jan 01). Text categorization with support vector
machines. how to represent texts in input space? Machine Learning, 46(1), 423-
444. Retrieved from https://doi.org/10.1023/A:1012491419635 doi:
10.1023/A:1012491419635

Levy, O., & Goldberg, Y. (2014). Neural word embedding as implicit matrix factoriza-
tion. In Z. Ghahramani, M.Welling, C. Cortes, N. Lawrence, &K. Q.Weinberger
(Eds.), Advances in neural information processing systems (Vol. 27). Curran As-
sociates, Inc. Retrieved from https://proceedings.neurips.cc/paper/
2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf

Levy, O., Goldberg, Y., & Dagan, I. (2015). Improving distributional similarity with
lessons learned from word embeddings. Transactions of the association for
computational linguistics, 3, 211–225.

Liang, D., Altosaar, J., Charlin, L., & Blei, D. M. (2016). Factorization
meets the item embedding: Regularizing matrix factorization with item co-
occurrence. In Proceedings of the 10th acm conference on recommender sys-
tems (p. 59–66). New York, NY, USA: Association for Computing Machin-
ery. Retrieved from https://doi.org/10.1145/2959100.2959182 doi:
10.1145/2959100.2959182

Liu, A. Y.-c. (2004). The effect of oversampling and undersampling on classifying
imbalanced text datasets (Unpublished doctoral dissertation). Citeseer.

Lyubinets, V., Boiko, T., & Nicholas, D. (2018). Automated labeling of bugs and
tickets using attention-based mechanisms in recurrent neural networks. In 2018
ieee second international conference on data stream mining processing (dsmp)
(p. 271-275). doi: 10.1109/DSMP.2018.8478511

53

http://arxiv.org/abs/1709.08267
https://www.mdpi.com/2078-2489/10/4/150
https://doi.org/10.1186/s40537-018-0151-6
https://doi.org/10.1023/A:1012491419635
https://proceedings.neurips.cc/paper/2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf
https://doi.org/10.1145/2959100.2959182

Mhaskar, H. N., & Micchelli, C. A. (1994). How to choose an activa-
tion function. In J. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances
in neural information processing systems (Vol. 6). Morgan-Kaufmann.
Retrieved from https://proceedings.neurips.cc/paper/1993/file/
51ef186e18dc00c2d31982567235c559-Paper.pdf

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013, 01). Efficient estimation of word
representations in vector space. Proceedings of Workshop at ICLR, 2013.

Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu,M.,&Gao, J. (2021,
apr). Deep learning–based text classification: A comprehensive review. ACM
Comput. Surv., 54(3). Retrieved from https://doi.org/10.1145/3439726
doi: 10.1145/3439726

Moss, H. B., Leslie, D. S., & Rayson, P. (2018). Using j-k fold cross validation to
reduce variance when tuning nlp models.

Noble, W. S. (2006, Dec 01). What is a support vector machine? Nature Biotech-
nology, 24(12), 1565-1567. Retrieved from https://doi.org/10.1038/
nbt1206-1565 doi: 10.1038/nbt1206-1565

Padurariu, C., & Breaban, M. E. (2019). Dealing with data imbalance
in text classification. Procedia Computer Science, 159, 736-745. Re-
trieved from https://www.sciencedirect.com/science/article/pii/
S1877050919314152 (Knowledge-Based and Intelligent Information & En-
gineering Systems: Proceedings of the 23rd International Conference KES2019)
doi: https://doi.org/10.1016/j.procs.2019.09.229

Poolsawad, N., Kambhampati, C., & Cleland, J. (2014, 07). Balancing class for
performance of classificationwith a clinical dataset. Lecture Notes in Engineering
and Computer Science, 1, 237-242.

Revina, A., Buza, K., & Meister, V. (2020, 01). It ticket classification: The simpler, the
better. IEEE Access, 8, 193380-193395. doi: 10.1109/ACCESS.2020.3032840

Salcianu, A., Golding, A., Bakalov, A., Alberti, C., Andor, D., Weiss, D., . . . Koo, T.
(2020). Compact language detector v3. Google Inc. Retrieved from https://
github.com/google/cld3

Siami-Namini, S., Tavakoli, N., & Namin, A. S. (2019). The performance of lstm and
bilstm in forecasting time series. In 2019 ieee international conference on big
data (big data) (p. 3285-3292). doi: 10.1109/BigData47090.2019.9005997

Sutskever, I., Martens, J., & Hinton, G. (2011, 01). Generating text with recurrent
neural networks. In (p. 1017-1024).

Telnoni, P., Budiawan, R., & Qana’a, M. (2019, 11). Comparison of machine learning
classification method on text-based case in twitter. In (p. 1-5). doi: 10.1109/
ICISS48059.2019.8969850

Vijayarani, S., Ilamathi, J., & Nithya, S. (2015). Preprocessing techniques for text
mining-an overview. International Journal of Computer Science & Communica-
tion Networks, 5(1), 7–16.

Wahba, Y., Madhavji, N. H., & Steinbacher, J. (2020). Evaluating the effectiveness of
static word embeddings on the classification of it support tickets. In (p. 198–206).

Wang, J., & Zhang, M.-L. (2018). Towards mitigating the class-imbalance problem
for partial label learning. In Proceedings of the 24th acm sigkdd international
conference on knowledge discovery & data mining (p. 2427–2436). New York,
NY, USA: Association for Computing Machinery. Retrieved from https://
doi.org/10.1145/3219819.3220008 doi: 10.1145/3219819.3220008

Wong, S. C., Gatt, A., Stamatescu, V., &McDonnell, M. D. (2016). Understanding data
augmentation for classification: When towarp? In 2016 international conference

54

https://proceedings.neurips.cc/paper/1993/file/51ef186e18dc00c2d31982567235c559-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/51ef186e18dc00c2d31982567235c559-Paper.pdf
https://doi.org/10.1145/3439726
https://doi.org/10.1038/nbt1206-1565
https://doi.org/10.1038/nbt1206-1565
https://www.sciencedirect.com/science/article/pii/S1877050919314152
https://www.sciencedirect.com/science/article/pii/S1877050919314152
https://github.com/google/cld3
https://github.com/google/cld3
https://doi.org/10.1145/3219819.3220008
https://doi.org/10.1145/3219819.3220008

on digital image computing: Techniques and applications (dicta) (p. 1-6). doi:
10.1109/DICTA.2016.7797091

Yanminsun, Wong, A., & Kamel, M. S. (2011, 11). Classification of imbalanced data:
a review. International Journal of Pattern Recognition and Artificial Intelligence,
23. doi: 10.1142/S0218001409007326

Zemp, M. (2021, 01). Text classification of service desk tickets.
Zhang, Y., Jin, R., & Zhou, Z.-H. (2010, Dec 01). Understanding bag-of-words

model: a statistical framework. International Journal of Machine Learning
and Cybernetics, 1(1), 43-52. Retrieved from https://doi.org/10.1007/
s13042-010-0001-0 doi: 10.1007/s13042-010-0001-0

Zhou, Z.-H., & Liu, X.-Y. (2006). Training cost-sensitive neural networks with methods
addressing the class imbalance problem. IEEE Transactions on Knowledge and
Data Engineering, 18(1), 63-77. doi: 10.1109/TKDE.2006.17

55

https://doi.org/10.1007/s13042-010-0001-0
https://doi.org/10.1007/s13042-010-0001-0

Appendices

56

Appendix A

Classification Report

Figure A.1: Classification report of LinearSVC showing precision, recall f1-score and
support for all 12 classes

57

FigureA.2: Classification report ofMulti Layer Perceptron (MLP)with TFIDF showing
precision, recall f1-score and support for all 12 classes

Figure A.3: Classification report of Multi Layer Perceptron (MLP) with word embed-
ding showing precision, recall f1-score and support for all 12 classes

58

Appendix B

Model’s Architecture

Figure B.1: Summary of the RNN model, consisting of an embedding + BiLSTM +
output layer

59

Figure B.2: Summary of the DNN model, consisting of an embedding + 2 hidden +
output layer

Figure B.3: Summary of the DNN model, consisting of 2 hidden + output layer

60

61

Glossary

B
BERT bi-directional encoder representation from transformers
BiLSTM bi-directional long short-term memory

C
ConvNet convolutional neural network

D
DNN deep neural network
DTM document term matrix

E
EX employee experience

H
Hyperparameter parameter to control the learning process

L
LSTM long short-term memory

M
MLP multilayer perceptron

N
NLP natural language processing

P
PXC proactive experience center
PMI pointwise mutual information

R
RNN recurrent neural network

S
SVM support vector machines
SVC support vector classifier
SLA service level agreement
SVD singular value decomposition

T
TFIDF term frequency-inverse document frequency

X
XLA experience level agreement62

	Preface
	Abstract
	Introduction
	Motive
	Objective
	Reading Guide

	Background
	Move from Serve to Care
	Tickets

	Related Work
	Data preparation
	Data imbalance
	Text preprocessing

	Feature engineering
	Text classification
	Overview

	Project Context
	Dataset
	Problem Analysis

	Methodology
	Dataset Preparation
	Label correction
	Natural language filter
	Remove characters
	Tokenization, lemmatisation & stop-word removal
	Word count & missing data
	Training and test set
	Outliers

	Empirical Study
	Feature engineering
	Architecture
	Validation

	Results
	Cross-validation
	Validation on the test set
	Category demarcation
	Class imbalance
	Word representation

	Discussion
	Text preprocessing
	Sentence structure
	Word representations

	Conclusion
	Recommendations
	References
	Appendices
	Classification Report
	Model's Architecture
	Glossary

