Simplifying development for FPGAs

By means of The MathWorks' HDL coder and
by creating a Cameralink Interface IP

Company: TNO
Department: Intelligent Imaging
Company supervisor: Ing. C. van den Berg
Student: P.P. van der Star

Student number: 11043806
Institution: The Hague University

Education: Electrical engineering

Faculty supervisor: Ir. B. Kuiper
Date: 15 December 2015

Version: 1.0

Written by Pieter van der Star during his graduation internship at TNO.
Prinfed on Tuesday, the 15" of December in the year 2015 CE.
Correspondence to: info@pietervanderstar.nl and kees.vandenberg@tno.nl.

olifying development for FPGAs 15 December 2015

Preface

Well, after | have written this report | get to write something a little less formal. As these are the
first sentences of this document you'll probably be reading them first, so | will give a short
introduction on how | ended up writing this report. To start at my birth (or nine months prior for
that matter) is a little too early | think. So | am skipping the first 21st years of my life. Not that
those years do not matter, they do, they made me who | am now, but | think I'll start with the
start of my carrier as an electrical engineer.

Once upon a time... No that's no good. The time could be defined better than that. After my
previous study | wanted to learn more and thought a study at bachelor level would be a

good opftion. But which study to choose?2 With my background in theatre-technics a

bachelor in the same area would be an option but it did not really feel right. | would re-learn

a lot and | thought | could make better use of those four years. What the other options where?2
| had no idea. It was during the London frip in the final year of my previous study, walking

back to the hostel after a Jack the ripper walk, | spoke with a teacher, Jan Brouwer, about

this. After | told him | fixed equipment without really knowing how | did it, he suggested
electrical engineering. | had never considered that option. So, skipping forward a bit, half a
year later | started my first courses at the The Hague University in Delft.

Within a few days | got my first introduction to digital hardware from Jesse op den Brouw and
| remember thinking "This is what | would like to do." One of the last things | did before starting
my graduation internship was the minor embedded systems, organised by Harry Broeders. This
minor gave me more knowledge of the interaction between custom designed hardware and
software as well as providing tools to choose either a hardware or a software solution. (Or of
course a combination of both.)

But | am skipping over some stuff. Let's go back to the summer of 2013. It was then that |
bought myself an FPGA. | have been tinkering with it ever since. | really enjoy doing this and |
wanted to see if | would sfill like digital design when | was doing that full-time. So when it was
time to start looking for a graduation internship | started looking for companies where | could
work with FPGA:s.

| got that chance at TNO. This document, supplemented with a number of appendices, will
tell you all about this. | will confess there were times | thought | would throw the (insert bad
words here) FPGA board out of the window, which does not open so I'd have to throw it
frough, but overall | enjoyed it.

During my internship | was working in the Intelligent Imaging group. | would like to thank them
all for the way they took me in and | want to thank Kees van der Berg especially. He has been
supervising my efforts and without his guidance | might have gone along a wrong frack
somewhere while solving some problems. | also want to thank my faculty supervisor Ben
Kuiper for the advice he has given me and the way he has struggled trough the concept
versions of this report to give me advice on how to improve the document. But before this
furns into half an Oscar speech I'll stop. To you, the reader; | hope you will learn something
when you read this document and | thank you for the time you take reading it.

Pieter van der Star

Pieter van der Star Page 1 of 67
During internship at TNO

%@%i@fying development for FPGAs 15 December 2015
'Jé &

Pieter van der Star Page 2 of 67
During internship at TNO

lifying development for FPGAs 15 December 2015

Summary

When designing for FPGAs a lot of knowledge about hardware design and FPGA technology
is required. In order to try and reduce the required knowledge, TNO researches two manners
of simplifying that design process. One of which is OpenCL, the other is the HDL Coder from
The MathWorks. A graduation project was set up to look info the HDL Coder. This software
package was to be used to create hardware for a control system. After the control system
was developed the hardware would have been tested on a demonstrator system.

The demonstrator system uses data from an image sensor (a camera) as input and from that
it controls various actuators. To connect this camera to the system two protocols could be
used. These are CoaXPress and Cameralink. Both need a way to connect to an FPGA. In
order to achieve this, an electrical camera interface had to be ordered and the logical
interface either ordered or developed. There are no companies that can deliver an interface
for the CoaXPress that complies with the requirements of TNO. For the Cameralink interface
this was no problem. Thus a Cameralink interface was developed.

The interface was created by ordering a card that converts logic levels and connectors. The
logical interface was created in-house. The resulting hardware can now be used to connect
a camera to the FPGA. The description has been made as generic as possible. This is done so
it can be used with a lot of chips. The Cameralink protocol knows a lot of different
configurations. Accommodating all the configurations requires a generic description.

For some parts of the logical interface using chip-specific components is the best option. This
forced the HDL (hardware description language) code to be less generic. The chip-specific
components are selected when needed. The same goes for the parts that are not used in
some Cameralink configurations. This option is chosen over the creation of different files
because of maintainability. When something should need to be changed, only one file needs
editing and than mostly in one place.

The HDL Coder will be used to create the control system. This however is not done in this
project as The MathWorks did not think they could provide sufficient support and thus refused
to grant a license for the software. This means no system was created and only the
development of the camera interface remained. Some research into the capabilities of the
HDL Coder was done by means of documentation and questions sent to a user of the HDL
Coder. It was found the HDL Coder, at this point in time, is not good enough for simplifying the
development. This is mostly due to the fact that timing issues are not easily solved and the
documentation of the HDL Coder is not good enough.

The hardware description for the Cameralink however was finished. It was proved to work
with a camera transmitting a 2048 by 2048 image over Cameralink in mode base, two ten-bit
pixels at a fime.

Pieter van der Star Page 3 of 67
During internship at TNO

%@%@ing development for FPGAs 15 December 2015

,L{j\

Table of contents

1 SYMBOLS AND ABBREVIATIONS
2 INTRODUCTION

BACKGROUND INFORMATION
3.1 ABOUT THE COMPANY
3.1.1 RESEARCH GROUPS
3.2 ABOUT THE PROJECT
3.3 ABOUT THE DEMONSTRATOR SYSTEM

4 RESEARCH QUESTION
PROJECT STAGES & FURTHER INTRODUCTION

SIMULINK AND FPGAS

6.1 EXPANDING THE USE OF SIMULINK'S HDL GENERATION
6.2 LICENSE

6.3 NOT USING THE HDL CODER

6.4 (INJCAPABILITIES OF THE HDL CODER

6.5 NEEDED KNOWLEDGE

7 CAMERA-INTERFACE FOR AN FPGA
7.1 COAXPRESS
7.2 CRITERIA
7.3 COMPARISON
7.4 AVAILABILITY OF IP
7.5 CAMERALINK

8 HARDWARE CAMERA-INTERFACE
8.1 OVERVIEW OF THE PROTOCOL
8.2 OVERVIEW OF THE HIERARCHY OF THE CAMERALINK INTERFACE
8.2.1 ONE-SHOT HOLD
8.2.2 CAMERALINK_LINK

823 PLL
8.2.4 DESERIALIZER
8.2.5 RESET
8.3 CAMERALINK CONFIGURATION
8.3.1 DELAYS

8.4 GENERALIZING THE DESIGN
8.4.1 VHDL STANDARD
8.42 CONDITIONAL IMPLEMENTATION OF CHIP-SPECIFIC HARDWARE
8.43 GENERICS OR GLOBAL CONSTANTS
8.4.4 C-PREPROCESSOR
8.5 CAMERALINK LIBRARY
8.6 DESIGN CONSTRAINTS
8.7 CROSSING CLOCK DOMAINS
8.7.1 CLOCK DOMAIN SITUATION
8.7.2 DATA SYNCHRONIZATION AND DEGLITCHING
8.7.3 OVERCOMING DATA LOSS
8.8 RESET
8.9 TESTING - SIMULATION
8.9.1 SIMULATOR SOFTWARE
8.9.2 SIMULATION PARAMETERS
8.9.3 FIFO SYNCHRONIZER FOR THE TESTBENCH
8.9.4 TESTBENCH PROCESSES
8.9.5 DIFFERENCES BETWEEN SIMULATION AND REALITY
8.9.6 SIMULATION LIBRARIES

Pieter van der Star
During internship at TNO

O N0 000000 N o

12
13

15
15
15
16
16
18

20
20
20
20
21
21

22
22
23
25
25
25
25
26
26
27
27
27
28
29
30
30
31
31
31
32
33
36
36
36
37
38
38
42
42

Page 4 of 67

lifying development for FPGAs

8.9.7 CUSTOM STRING FUNCTION
8.10 TESTING - REAL WORLD

8.10.1 TESTIMAGE

8.10.2 MONITORING EQUIPMENT

8.10.3 IMAGE STORAGE AND OUTPUT

8.10.4 IMAGE SIZE

8.10.5 TEST RESULTS

9 CONCLUSION
9.1 ANSWERS TO THE RESEARCH QUESTIONS
9.2 ANSWER TO THE MAIN QUESTION
9.3 REGARDING THE CAMERALINK DESCRIPTION
10 RECOMMENDATIONS
10.1 RECOMMENDATIONS FOR THE HDL
10.2 RECOMMENDATIONS FOR THE CONTINUITY
10.3 LESSONS LEARNED
11 GLOSSARY
12 REFERENCES
12.1 TEXTUAL DOCUMENTS
12.2 WEBSITES
12.3 OTHER DOCUMENTS
13 LIST OF FIGURES
14 LIST OF CODE FRAGMENTS
15 LIST OF TABLES
16 LIST OF FORMULAS
Appendices

APPENDIX I. EXPANDING THE USE OF SIMULINK
APPENDIX II. SELECTING A COAXPRESS CARD

APPENDIX Ill. DESCRIPTION OF THE CAMERALINK PROTOCOL
APPENDIX IV. DESCRIPTION OF THE HDL IMPLEMENTATION FOR CAMERALINK

APPENDIX V. CLOCK DOMAIN ANALOGY
APPENDIX VI. LIST OF TEST EQUIPMENT
APPENDIX VII. SEQUENCE OF TEST IMAGES

Pieter van der Star
During internship at TNO

15 December 2015

42
44
44
44
46
47
48

53
53
53
54

55
55
56
57

58

59
59
61
65

66
66
67
67

Page 5 of 67

1

A4

%@%@ing development for FPGAs

Symbols and abbreviations

dut
Design Under Test

FIFO
First-In-First-Out

FMC
FPGA Mezzanine Card

FPGA
Field Programmable Gate Array

GPU
Graphics Processing Unit

HDL
Hardware Description Language

HSMC
High Speed Mezzanine Card

IEC
International Electrotechnical
Commission

IP
Intellectual Property

LUT
Look-Up Table

Pieter van der Star
During internship at TNO

15 December 2015

LVDS
Low Voltage Differential Signalling

MTBF
Mean Time Between Faults

PCle
Peripheral Component
Interconnect Express

PLL
Phase-Locked Loop

PoCL
Power over Cameralink

SERDES
SERializer and DESerializer

VCO
Voltage Controlled Oscillator

VHDL
VHSIC HDL

VHSIC
Very High Speed Integrated Circuit

Page 6 of 67

olifying development for FPGAs 15 December 2015

2 Introduction

This report contains the result of a subproject of the project "High Performance Real-time
Processing developments". This project is set up to find ways to make development for
FPGAs easier. This document describes the results that are part of this project. You can
read more about this project and subproject in paragraph 3.2. That whole chapter (3)
will give background information about the project. Then the research question is posed
and elaborated upon (in chapter 4), followed by an elaboration of the multiple stages of
the project (chapter 5). That chapteris also the introduction to the chapters é through to
8 as the infroduction of those chapters requires a little background information. After
chapter 9 the research questions will be answered (in chapter 9) followed by a chapter
with recommendations on how to continue the project and the way to implement the
results (10). At the end of this document follow a few lists. Like the list of figures, the list of
code fragments, the references etc.

Some things written in this document are not completely unambiguous. To make these
things clearer the reader should keep a few points in the back of his mind.

— When quantifying information this document uses powers of two with Sl prefixes.
The Bureau International des Poids et Mesures! however says to use the IEC
(international electrotechnical commission) units, which are base-2, while they
use base-10 numbers [21]. This standard is not followed because the usage of
the base-2 with Sl prefixes is more commonly used in the computer/information
industry. This means 1024 bits go info 1 kilobit (kb). Using the IEC units this would
be 1 kibibit (Kib2).

— The numbers mentioned in this document are written using the decimal-point
notation. So one thousand and a half would be written down as 1,000.5.

— In this document some persons are indicated with male pronouns to increase
the readability of the document. The writer did not intend to discriminate
anyone. The reader may read the corresponding pronoun as he, she or it
wishes.

— The products this document describes are developed using VHDL as the
descriptive language. This does not imply other languages such as Verilog do
not have that functionality nor does it mean vendors do not have IP
(intellectual property) or software support in other languages; those possibilities
are just not looked into.

— One of the protocols discussed is the Cameralink protocol. A number of
documents refer to the protocol by Camera Link, with a space in the middle.
Since the official documentation of the protocol use Cameralink, this
document uses that spelling as well.

— Whenever a computer is mentioned in this document a desktop computer or
portable computer is meant.

1 International bureau of weights and measures.
2 The IEC uses capitals for all prefixes.

Pieter van der Star Page 7 of 67
During internship at TNO

%@%@ying development for FPGAs

3

,L{j\

Background information

Before going into the specifics of this project, some background information on TNO, the

company where the project is being held, and the research groups involved in the

project is given. This background information is given before infroducing the project itself.

The project infroduction will be followed by an explanation of the system which the
project will use as a demonstrator.

3.1 About the company

15 December 2015

TNO (Toegepast-Natuurwetenschappelik Onderzoek3) is a Dutch company
founded in 1932 by the Dutch government to create knowledge and to make it
applicable for the government and businesses. The company has about 3000
employees which are conducting research in the fields of:

— Industry
Healthy living
Defence, Safety & Security
Urbanization
Energy
TNO has 28 locations of which 22 are in the Netherlands. Although the company is
founded, and partially funded by the Dutch government, the company is
independent from any government, company or university [22].

The company has two expertise centres. One of which is Technical Sciences, the
otheris Earth, Life and Social Sciences. Those are then again divided into research
groups, each with their own specialty. From these groups three are shown in the
simplified organisation chart in figure 1. These three are working together on the
project, which is described in paragraph 3.2.

TNO

v

Earth, Life
and Social

v

Technical
Sciences

Sciences

Opto-
mechatronics

Intelligent

g Optics
Imaging

Figure 1. Simplified organisation chart of TNO.

3.1.1 Research groups

From the three research groups involved in the project two are located in
Delft. The other, Inteligent Imaging, is located in The Hague. Intelligent
Imaging creates systems that analyze images. Such as systems to track
people frough images from multiple cameras, image processing for the
inspection of train-tracks and a tool to make a 3D-scan of a crime scene.
Optomechatronics creates mechanical systems with a high precision for,
among other things, space and astronomy and medical equipment. Opftics
works in the same areas as Optomechatronics, but they work on the optic
system such as the lenses and sensors.

3 Dutch for applied research into the natural sciences.

Pieter van der Star

Page 8 of 67

During internship at TNO

olifying development for FPGAs 15 December 2015

3.2 About the project

A lot of the technical solutions TNO creates require fast data processing. GPU and
FPGA technology is often used4 in order to achieve this speed. At this point in fime
usage of the latter requires a lot of knowledge about FPGAs. This knowledge is not
always present with the engineers who have to design the system:s.

To look into the possibilities of simplifying the design process, the project "High
Performance Real-time Processing developments' has been launched. This project
will look at two options; (Altera) OpenCL and The MathWorks' HDL Coder (further in
this document this is called "HDL Coder").

A part of the project has been assigned to a student who has made that part his
thesis project. This subproject will look info the possibility of using the HDL Coder to
simplify the development for FPGAs. This option is explored because one of the
departments involved uses Simulink in a lot of their solutions. Simulink is a software
package with which (conftrol)systems can be designed and simulated using block
diagrams [27]. In the rest of this document, whenever "project" is mentioned, this
sub project is meant. This project only looks at the HDL coder. OpenCL will be
looked into at a later fime. By that time this report will already have been finished.
This report will look at the possibilities and limitations of HDL Coder. The system on
which these methods will be tested is discussed in paragraph 3.3.

As stated in paragraph 3.1 the "High Performance Real-time Processing
developments" project is carried out by a collaboration of three different research
groups. Those groups are:

— Intelligent Imaging

— Optomechatronics

— Optfics
Apart from these three research groups another companys is indirectly involved.
This company became involved at a later stage of the project and TNO and this
company will share experiences with both OpenCL and the HDL coder.

3.3 About the demonstrator system

To test the HDL Coder a conftrol system needs to be designed and implemented.
The control system needs a system to conftrol. This system is a (planar) pick-and-
place machine (please see figure 2 on page 10). This machine is chosen because
the machine was used as a demonstrator for a vision-in-the-loop project in the past
and part of the processing is done on an FPGA. To reduce the project costs this
demonstrator would have been reused. Due to unforeseen circumstancesé the
methods have not been tested on a system. But, if there would have been time
enough, the tests would have been carried out on the system described here.

4 Among others, by the research group Intelligent Imaging.
5 This company will not be named.
¢ These will be discussed later on.

Pieter van der Star Page 9 of 67
During internship at TNO

§%%i@f;ying development for FPGAs 15 December 2015

Camera

Figure 2. Design sketch of the demonstrator system.

This demonstrator system comprises of four basic elements:

- A camera

- AN FPGA

- A computer

— Some actuators
These elements are part of the control loop as can be seen on the left in figure 3.
The computer generates some jitter. This is caused by interrupts on the (non-real-
time) operating system. This jitter makes delays unpredictable. The minimum and
the maximum fime could be calculated when working with a real-time operating
system?, but for confrol systems a larger delay is preferred over an inconsistent
delay. If the computer could be removed from this system the jitter would be also
removed, or af least greatly reduced. This means the FPGA, which now only does a
bit of pre-processing to reduce the time it takes to write the image to the
computers memory, will have to take over from the computer completely, resulting
in the control loop on the right of figure 3.

Camera > FPGA Camera > FPGA

Movemgnf l«—| Computer Movemepf <
of machine of machine

Figure 3. Simplified block diagram of the control loops for the demonstrator system.

7 In practise the jitter will not be completely removed.

Pieter van der Star Page 10 of 67
During internship at TNO

olifying development for FPGAs 15 December 2015

The conftrol loop is formed by the four, or possibly three, elements as mentioned
before. The camera has been mounted on the machine in a place where it moves
with the machines moving parts. The position of the machine is calculated from
images the camera provides. By comparing the current image with the previous
one the distance moved can be calculated, and by moving to a position which
gives a known image the image acquired in that position can be compared to the
expected image. Thus the positional offset can be calculated and corrected for.

Pieter van der Star Page 11 of 67
During internship at TNO

4

%@%i@fying development for FPGAs 15 December 2015
'JA &

Research question

The project looks into the possibility of using The MathWorks' HDL Coder to simplify the
development for FPGAs. Thus the main question to be answered is the question whether
or not The MathWorks' HDL Coder is a good tool for this purpose. In order to find an
answer to that question a number of other questions arise and will need to be answered
as well.

The HDL Coder is a software tool, but not the only one on the market. As stated before
TNO will also be looking into the OpenCL environment, so ease of use of the software will
be a factor in the comparison of those two.

Also it could be some designs use off-the-shelf code. To incorporate this code into the
design, whilst keeping the design process simple, requires the ability fo insert custom-
made HDL-code into the design.

As the main goal of this project is to fry and limit the required knowledge about FPGAs,
the question about the extent of knowledge required arises. What does someone
working with the HDL Coder need to know about things as register timing and chip-
specific components (e.g. multipliers)2

Another big problem might be the manufacturers' support. If only a handful of boards
can be used it severely limits the possible applications and, depending on the devices,
could require designs to run on chips that are not quite suited for that design. Meaning
either a too slow or a way to big chip. The latter is no problem on the design front, but
financially it is something that would rather be avoided.

So in order to determine if The MathWorks' HDL Coder is a good option for simplifying the
development for FPGAs the following questions will have to be answered:

— Whatis the ease of use of the software?

— lIsit possible to insert custom-made HDL-code into the design?2

— To what extent does the user need to know about digital hardware/FPGA

design?

— Which FPGA boards are supported?
These questions will be answered in this document. The next chapter will discuss the steps
taken to find the answers to these questions.

Pieter van der Star Page 12 of 67
During internship at TNO

olifying development for FPGAs 15 December 2015

5 Project stages & further infroduction

The project has multiple stages. These stages could be divided into two categories. One
category would be the research intfo the HDL coder, the other the development of a
hardware description for the camera interface. Figure 4 shows the initial planning of
these stages. Below figure 4 the steps are explained.

Week 17

Activity

Week 2
. Week3
. Week4
. Week5
. Weeké

Week 7
Week 8

Week 1

Research framegrabbers/cameradata

Research into Simulink expansion

Connecting Simulink and FPGA
Create camera interface

Figure 4. Stages of the project as planned.

As stated in paragraph 3.3 the system has both a camera and an FPGA. These will have
to exchange data in one way or another. To do this an interface must be developed.
Before doing that however, the capabilities of the HDL coder were superficially looked
into. It would be a waste of time to make an interface only to find out at the end the HDL
coder does not know what to do with that. Also it may that what the "High Performance
Real-fime Processing developments" project wants to achieve cannot be done with the
HDL coder. So first the capabilities of the HDL coder were looked into. After that an
interface for the camera was developed.

The camera interface is created as a bridge between the camera and the control
system in the Simulink environment (please see figure 5). The interface is used to control
the camera and manipulate the signals from the camera in such a way that the control
system only gefts pixels as an input.

Camera < Camera | Model of the
7 interface [T T control
system

Figure 5. "Position" of the camera interface.

Once the interface was built the connection with the Simulink environment could be
made. This stage however was not started. Chapter é will discuss why it was that no
connection with the Simulink environment was made. Although no connection with
Simulink was made, the abilities of the Simulink environment, when designing for FPGAs
and the performance? of the HDL Coder will be discussed in chapter 6 as well. Chapter 7
will discuss the way the camera will be physically connected to the FPGA and the next
chapter (8) will provide more information about the development of the logical
interface.

8 Only second-hand experience is used here.

Pieter van der Star Page 13 of 67
During internship at TNO

§$%i@§ying development for FPGAs 15 December 2015
'Jé &

The order in which the stages are described is not the chronological order. This order is
used to create a more coherent structure for this document. The chronological order is
given in figure 6. Note the research into the Simulink expansion is split. A part of this is also
done at the end of the development of the camera-interface. This was planned as an

infroduction info connecting the FPGA and Simulink and to implement the designed
interface as a Simulink block.

Activity

Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8
Week 9
Week 10
Week 11
Week 12

Week 13
Week 14
Week 15
Week 16
Week 17

Research framegrabbers/cameradata
Connecting Simulink and FPGA
Create camera interface

Figure 6. Stages of the project with the time they took.

Pieter van der Star Page 14 of 67
During internship at TNO

olifying development for FPGAs 15 December 2015

6 Simulink and FPGAs

The purpose of this project is to look into the possibility of simplifying development for
FPGAs. One way to do this is to use the HDL Coder from The MathWorks. First the
capabilities of the soffware were looked into as well as the limitations. The latter was
done by searching web forums for problems users of the soffware encountered. The
results of this research can be found in appendix I. Paragraph 6.1 will discus the results of
this research.

This research alone is not enough to say anything about the HDL Coder. Practical trials
often make things much clearer and to do this a license is needed. In paragraph 6.2 the
process of acquiring a license is described. Getting a license was not as straight-forward
as first thought; this had some consequences for the project. These consequences are
described in paragraph 6.3. The next paragraph (6.4) discusses the capabilities of the
HDL coder. What it can and cannot do as well as, to some extent, the user-friendliness.
The knowledge needed to work with the HDL Coder is discussed in paragraph 6.5.

6.1 Expanding the use of Simulink's HDL generation

Simulink is mostly used to design control systems. A control system has at least one
input and one output. For this project that input is a camera. To connect this
camera something must enable the system to read from the camera. Leaving the
physical part (ports and protocols) aside there is a couple of options to realise this.
A block that handles all the signals can be created within the Simulink environment
and the same thing can be done by writing HDL, which will be inserted in the
correct place during the HDL generation. Within the Simulink environment multiple
options exists to generate the module. This could be done with a system function,
but it can also be done using vendor-specific blocks. Because the system will not
be simulated with the camera-interface as a part of the simulation?, the interface
will be developed by writing HDL and later adding this to the Simulink environment.

6.2 license

When using the HDL Coder or when reading the documentation® a license is
needed. TNO already has an HDL Coder licence which is used in another project.
That license is in use and is only for one specific computer. Late intfo the project The
MathWorks was contacted to inquire about the licence structure and the possible
acquisition of a licence for the remaining duration of the projecti. The
experiences with The MathWorks in acquiring licences were good, so no problems
were foreseen.

The MathWorks thought about issuing a trial license. They did not however,
because they want to give support and it is not financially viable to give support
while it is not being paid for. As the project will partially determine if TNO will use
the HDL Coder, The MathWorks want to make a good impression and they are
reluctant to let TNO make that decision based on the work of a student who has
little experience with Simulink and will work with limited support.

Another reason might be the HDL Coder may not quite do as advertised and they
want fo manage the expectations. This theory is supported by the fact they initially
only wanted to grant the license when the project had specific targets and they
could cooperate in reaching those targets. These reasons are all understandable.

? The images are the input on the simulation, not the camera signals.

10 Without a license only parts of the online help pages from The MathWorks can be read. The
documentation is available on third-party websites.

At the moment of first contact this was five weeks from the end.

Pieter van der Star Page 15 of 67
During internship at TNO

A4

6.3

6.4

%@%@ing development for FPGAs 15 December 2015

After TNO explained they do not make decisions like this just on the work of a
student and that support can also be given by the person within TNO already
working with the software they said they would reconsider and be in contact. After
a week they had not yet replied. The MathWorks has not been contacted about
this again.12

Not using the HDL Coder

Since time did not allow for the project to start using the HDL Coder as planned
another option was discussed. This would see the use of the HDL Coder to
implement a simple calculation on the image acquired and would not require the
control system to be developed. One TNO employee has some experience with
the HDL Coder. He was contacted to get insight in the time it might take to
implement this idea. He said to have no time to give good support and did not
think this solution could be created in the time allotted. Taking all this into
consideration the use of the HDL Coder was dropped and the only product to be
delivered is now the Cameralink interface.

(in)Capabilities of the HDL Coder

To see if the HDL Coder is able to simplify the design process for FPGAs the
capabilities are looked info. This was done earlier as well (see paragraph 6.1) but
to make a better judgment on the simplification more thorough research was
done.

The HDL Coder has not been used, but some second hand experience is available
in the form of questions on webfora and the documentation provided by The
MathWorks itself. A lot of questions on the MATLAB forum are about the usage of
mathematical functions e.g. exp(). The manual states these functions must be
replaced by a lookup table (LUT). The user will have to generate these LUTs. The
manual uses 19 steps to describe how to do this. The user first creates the function
he wants. Then creates a wrapper function that calls that function, followed by the
creation of a test file in which an array with the values is generated (the LUT). Then
a new project is created to where the fixed-point conversion is done. If all this is
good then the function must be added to a list with functions that will be replaced
by a LUT. When the user becomes more proficient in the conversion it may be a
few of these steps can be skipped, but it seems a complicated process.

According to The MathWorks' HDL Coder website, the HDL Coder is target-
independent. This means it generates either generic HDL or has ways to use chip-
specific features. The workflow can be automated, where the steps of the
workflow are as described in figure 7 on page 17. This shows the synthesis and
analysis is done with Xilinx' ISE'® and Altera's Quartus Il.

Some years ago Xilinx stopped with the development of ISE and Altera has recently
replaced Quartus Il with Quartus Prime. This could mean new chips cannot use the
description generated by the HDL Coder. Although, if HDL is generated any
synthesis tool should be able to process the files.

12 The MathWorks has not been asked for a reaction to this text, and it is the view of the writer
of this document only.

13 On another part of their website The MathWorks mentions this can be done with Xilinx'
Vivado as well [56].

Pieter van der Star Page 16 of 67
During internship at TNO

olifying development for FPGAs 15 December 2015

Checking the Simulink model for
HDL code generation compatibility

v

Generating HDL code, an HDL test
bench, and a cosimulation model

v

Performing synthesis and timing
analysis through integration with
Xilinx ISE and Altera Quartus Il

v

Estimating resources used in the
design

v

Back annotating the Simulink
model with critical path timing

Figure 7. HDL Coder workflow [42].

Apart from the HDL for synthesis the HDL Coder also generates testbenches. These
testbenches are generated from the MATLAB or Simulink model. If the entire model
is the design under test (dut), then no testbench will be generated [42][51]. Earlier
(in paragraph 6.1) is mentioned that the HDL Coder was found to support the
insertion of custom-made HDL.

Users of MATLAB use floating-point calculations without ever needing to know they
do. In digital hardware floating-point arithmetic is seldom used as it greatly
increases the size of the design, and also may reduce the speed. Thus the HDL
Coder requires the user to create a model with only fixed-point numbers. Apart
from the questions about the mathematical functions most questions on the fora
regard to the use of floating point numbers. A lot of the questioners do not know
about having to convert the floating point numbers to fixed-point. As one person
demonstrates by asking how the conversion works because he has an error after
running the checks. The answer states that he needs to convert the floating-point
numbers to fixed-point. In the answer an example of how to do this is given with
the first line of his code. The questioner then goes on to ask why, after changing
that line, the error still persists [48]. So having a little knowledge about digital
hardware is required to create code for the HDL Coder.

As stated before TNO already has one license for the HDL Coder!4. One of the
persons who works with the HDL Coder has been asked a few questions. He is good
with the Simulink environment and the HDL Coder did not need much getting used
to, the software points you in the right directions, but some things are not easily
found. Support is definitely needed there. The hardest part is making a black-box.
His team was unable to do this without support. With everything up and running it is
a good tool. For his design an FPGA communicates with a CPU. There are some
timing issues in the communication between the two. They have not yet come to
solve these issues, so how easy this is cannot yet be said. He would like to see
better documentation, meaning tutorials and more insight into the inner workings
of the system. Not just a click-here-than-there description of how to use the
software. He thinks the HDL Coder is a powerful tool but the documentation will

14 Release R2015a.

Pieter van der Star Page 17 of 67
During internship at TNO

A4

6.5

%@%@ing development for FPGAs 15 December 2015

have to get better. Like the documentation they are used to from other toolboxes
from The MathWorks.

The hardware will run on multiple clock sources (more on this in paragraph 8.7). The
HDL Coder can be used to create designs with multiple clock sources [44]. If this is
possible it should be able to incorporate HDL code that has multiple clocks.

Needed knowledge

Taking the previous paragraphs of chapter 6 into consideration something can be
said about the extent of knowledge a user of the HDL Coder needs. Quantifying
knowledge is a difficult thing to do. When using the HDL Coder the user of the
software has a lot of things he must either be aware of, or must know about. These
things (subjects) are listed in table 1. For each subject is determined whether the
user must be aware of, know about or needs detailed knowledge about the
subject. Per subject an indication of the extent of knowledge is given. Since the
HDL Coder is not used this list is only an indication and may not be complete or the
extent of knowledge may have been wrongly estimated. For each subject is
described why and when this knowledge is required.

Detailed
Subject Aware of |Know about| knowledge |
Fixed point/discrete mathematics v
Parallelism v
Using LUTs for functions (e.g. exp, sin, log) v
Using an approximation formula for v
functions (e.g. exp. sin, log)
Hardware multipliers and dividers v
Trade-offs between area and speed v
Solving timing issues v
FPGA Synthesis tools v
Delta delays in hardware simulation v
HDL (e.g. VHDL) v

Table 1. Knowledge required when using the HDL Coder.

Fixed point/discrete mathematics

An FPGA is a digital device and thus definition performs discrete calculations. To
decrease the size the design takes on the FPGA as well as to increase the speed
floating point calculations should be avoided. If decimals are needed a fixed point
notation should be used. Floating point can be done, but reduces speed and
increases area. Knowing the details is not really necessary as the HDL Coder can
help with the conversion. On the other hand having heard about the existence of
fixed-point arithmetic is not quite good enough. The user must be able to make the
conversion from floating-point to fixed-point and must understand why this is
needed.

Parallelism

An FPGA can perform multiple calculations at the same time. Having heard about
this should be enough, but when the generated HDL is viewed$ it is important to
know that the statements in the code are all done at the same time. If the code is
not looked at, it is something to be aware of.

15 Viewing the HDL is not required.

Pieter van der Star Page 18 of 67
During internship at TNO

olifying development for FPGAs 15 December 2015

Using LUTs for functions (e.g. exp, sin, log)
As discussed before in paragraph 6.4, a number of functions must be implemented
with a LUT. Knowledge about how to perform this conversion is required.

Using an approximation formula for functions (e.g. exp, sin, log)

Being aware of the option to not use a LUT, but a formula that approximates the
value is a good thing. Using such a formula may result in a slower speed (or longer
pipeline), but this may be an option if the area becomes a problem.

Hardware multipliers and dividers

Using hardware multipliers is not really a problem, but hardware dividers can pose
some problems. Dividers are usually slow and big. Knowing that a multiplication or
division by a power of two is equal to a shift operation can come in handy when
the design does not fit or is not fast enough.

Trade-offs between area and speed

With most designs there is a trade-off between the speed of the design!é¢ and the
area it takes. Knowing the consequences of the design choices regarding the
speed and area is required as it is easier fo adapt the design in the earlier stages.

Solving timing issues

The HDL Coder does nothing to help the design meet the timing requirements. The
MathWorks even mentions this in the design flow: "Performing synthesis and fiming
analysis through integration with Xilinx ISE and Altera Quartus II" [42]. The fiming
analysis is done in the synthesis tools. Thus the designer needs to be able to adapt
the design to meet these requirements. This requires detailed knowledge about
timing. A part of the HDL Coder workflow is "Back annotating the Simulink model
with critical path timing". This may help in solving the timing issues, but they sfill will
have to be resolved by the user.

FPGA Synthesis tools

As the synthesis of the HDL is done using third-party tools, it is important to know
how to use these tools. But not all features are needed as the HDL is "written" at
another point. Knowing how to set constraints and pin locations however is
required. Performing timing analysis usually requires a better understanding of the
tool than just knowing where to click to get the information, but only knowing that
should be enough on non-demanding designs.

Delta delays in hardware simulation

When performing hardware (co)simulation in software such as Mentor Graphics'
Modelsim or Xilinx' ISim, delta delays are used to simulate the parallelism. The
simulator runs on a CPU which performs only sequential statements and thus a
workaround must be created to simulate the parallelism. This may cause the
simulation to not match the real behaviour. The designer must know about these.

HDL (e.g. VHDL)

Knowing an HDL is not really necessary, but it might be useful when debugging or
when solving timing issues. Knowing about this inftermediate step is required
because the synthesis tools expect these, and a number of synthesis tools cannot
use multiple languages at oncel'?, so the language must be known.

16 This is not the speed of the design process, but the physical design.
17 Most can, but depending on a licence the capabilities are limited.

Pieter van der Star Page 19 of 67
During internship at TNO

7

%@%i@fying development for FPGAs 15 December 2015
'Jé &

Camera-interface for an FPGA

In order fo connect a camera to a control system running on an FPGA, the FPGA needs
to have a camera-input. This can be realized by connecting an expansion card to the
FPGA board, or by using an FPGA board with the necessary connectors already on it. A
number of these boards and cards have an IP core available as well. This means the
hardware-implementation does not need to be developed in-house. The selection of
these cards is based upon research results that can be found in appendix Il. The
selection process and the final results are elaborated here.

7.1

7.2

7.3

CoaXPress

The images can be fransferred from a camera onto the FPGA using a number of
protocols. The preferred protocol is the CoaXPress protocol. This protocol has been
chosen because it allows for long cable lengths, high speeds and can power the
camera via the data cables. Another reason to choose this protocol was the
preferred camera for the system. This camera is preferred because it is already at
hand and might be used for similar systems. This camera uses the CoaXPress
protocol.

Criteria

An analysis has been done in order to determine which board to use. This has been
done based on a number of criteria. These criteria are primarily determined by the
camera and the control system. Secondary to this are the costs and the delivery
time. The comparison was done by placing the specifications of each card in a
table and checking if each spec met the requirements. The table can be found in
appendix ll. The criteria are listed below.

— The system requires a PCle (peripheral component inferconnect express)
connection in order to perform part of the processing on a computer. Cards
that did not meet this specification were dropped from the comparison. The
expansion cards were kept as an option as they can be connected to a board
with a PCle connectorls,

— The camera's outputs form an important restriction. The target camera has four
outputs. The card must therefore have at least four inputs.

— Animportant point for the expansion cards is the connector they use to
connect to the FPGA board. If this is an HSMC (high speed mezzanine
connector) connector it will be almost impossible to connect this to a Xilinx
board, while an FMC (FPGA Mezzanine Card) connector fits almost only Xilinx1?.
For Altera boards this is just the other way round. One company (KAYA)
produces connector converters which convert both to and from HSMC and
FMC. By using one of these, the connector is no longer a restriction.

Comparison

During the selection of the boards the main concerns were the criteria as given in
paragraph 7.2. After the first selection rounds2 it became apparent that only one
company can deliver the devices at the required level, namely KAYA instruments.
One other company, Techway can deliver to the required specs as well, but they
use a card that is being made by KAYA, or at least that is how it looks from the

18 E g. The Xilinx Spartan-6 FPGA Industrial Video Processing Kit which is already at hand.
19 For the OpenCL part of the "High Performance Real-tfime Processing developments' project

a board was purchased with an Altera Chip and a FMC connector.

20 |n each round one or two criteria are looked at and based upon those the boards pass or

fail.

Pieter van der Star Page 20 of 67
During internship at TNO

olifying development for FPGAs 15 December 2015

images available. It is difficult to get that information from the datasheet. The
complete comparison and actions taken afterwards can be found in appendix Il

After the initial comparison the most promising companies were contacted. This
contact suggested they all are unable to deliver the products they say they sell
and no board or card has been ordered.

7.4 Availability of IP

Some companies indicated they sell IP with the board. When asked about delivery
dates they gave little to no information and when further questions were asked
they could not provide a satisfactory answer. Sensor to image indicated they
could deliver the IP and the board needed, but the pricing they provided, was
complicated and ended up being way outside the planned price range with the
costs starting at €40,000.00 with additional costs for support and hardware. So
although they have the IP it is foo pricy.

7.5 Cameralink

Because the delivery times of the CoaXPress options are relatively long or could
not be given nothing was ordered. The project needed to work around this
limitation?1. This situation had been foreseen and before the internship started a
Cameralink card was bought22, This served as a back-up to prevent the project
from stalling. All further actions have been based upon this board. For those who
are unfamiliar with the protocol an explanation of the Cameralink protocol can
be found in appendix lll. Paragraph 8.1 gives a short description of the protocol.

21 Having no hardware to work with.
22 No Cameralink IP was bought.

Pieter van der Star Page 21 of 67
During internship at TNO

8

%@%i@fying development for FPGAs 15 December 2015
'JA &

Hardware camera-interface

The Cameralink module is designed for, and developed on, a Xilinx Spartan é LX150T
development board. Connected to this board is an Alpha Data expansion card23? with
the Cameralink electronics. This board connects to a camera which gives the inputs on
the design. The outputs of the camera-interface are the pixels and indicators from the
camera. Depending on the calculations this can be separate pixels or it can be one
image. As the pixels can be accumulated to form the image the module will only output
the pixels. Another module may be written to make the image.

A manual for the digital hardware for the interface and its instantiation can be found in
appendix IV. This manual gives a quick explanation of the interface and the way the
module works. This chapter also gives an infroduction, but explains a couple of those
items in more detail as well. The idea behind the design is also discussed.

The HDL language used is VHDL as the designer is already sufficiently proficient in that
language. The other persons directly involved are also able to read that language.

8.1 Overview of the protocol

This paragraph will give a short overview of the protocol. A more elaborate
overview is given in appendix lll. The Cameralink protocol sends data over at least
one of three links (or lanes) to the receiver. Per link four bits are fransmitted in
parallel. The data is sent in "packets" of 28 serialized bits. Per link a clock is sent as
well. This clock is used to deserialize the packets. The frequency of this clock is
equal to the frequency at which the packets are sent. Per packet three bits are
used for image synchronization, one bit is a spare bit and the other 24 bits are used
to fransfer the image. The bits are permutated before fransmission. The reasons for
these permutations are unclear, although some speculate it has something to do
with lowering crosstalk or fransmission power [35].

Figure 8 on page 23 shows the relation between the clock and the bits as well as
the position of the bits after the permutations have been undone. A shift register is
used?4 to read the bits. So the third bit in the shift register is the first bit received on
wire pairs three and the 239 bit in the data when the permutations have been
undone. That bit is the spare bit. Depending on which of the three links they arrive
on the data bits map to different ports. All ports are listed in the bit position and are
separated with a '/'. Thus the eleventh reordered bit maps to the seventh bit of
either port B, E or H. To which port it maps depend on the link it is received on.

The speed of the packet fransmission ranges from 40 to 85 MHz. Not all data-bits
are always used. When sending one pixel per packet the maximum bit-depth is 24
bits2¢. There are cameras that send pixels just eight bits deep. This means a few bits
remain unused. The protocol also describes how to send multiple pixels over one
lane. This means, with a pixel depth of eight bits three pixels can be sent. The
standard does not specify where these pixels should come from. The pixels can
come from the same vertical line, the same horizontal line or any other way the
camera designers can think of?7,

23 The FMC-CAMERALINK card.

24 |In the deserializer.

25 The protocol uses LVDS (low voltage differential signalling).

26 The protocol specifies this as one pixel with 8-bit deep RGB values.
27 Most manuals list the way the manufacturer reads the pixels.

Pieter van der Star Page 22 of 67
During internship at TNO

lifying development for FPGAs

8.2

15 December 2015

CLK Ve
Tx3 3 7 11 15 19 23 27
™>2 2 6 10 14 8 22 26
=1 1 5 9 13 17 21 25
Tx0 0 4 8 12 16 20 24
Shift register
Tx3 23 17 16 11 10 5 27
T2 26 25 24 22 21 20 19
Tx1 18 15 14 13 12 ? 8
>0 7 6 4 3 2 1 0
Reordered (numbered)
T3 SPARE C7/F7 C6/F6 B7/E7/H7 B6/E6/HE AT /D7/G7 A6/DE/GE
Tx2 DVAL FVAL LVAL C5/F5 C4/F4 C3/F3 C2/F2
=1 C1/F1 CO/FO BS/E5/HS B4/E4/H4 B3/E3/H3 B2/E2/H2 B1/E1/HI1
0 BO/EO/H/O AS/D5/GS Ad4/D4/G4 A3/D3/G3 A2/D2/G2 Al/D1/G] AO0/DO/GO
Reordered (purpose)

Figure 8. Bit reception and reordering [2].

Overview of the hierarchy of the Cameralink interface

The module is build from a number of submodules. Each link has its own
Cameralink_link submodule. This submodule handles the reception of one link and
outputs the pixel and the flags of that link. In order to output the flags in a higher
hierarchy some glue logic is needed as the status flags must be merged into one

value. This is done by "ANDIng" the flags so all the flags must be active in order for
the output flag to become active.

Figure 9 shows an abstract block diagram of the Cameralink module. Figure 10 on
page 24 shows the hierarchy of the top-level module down to the lower levels. For
clarity, the system clock and resets are not displayed. The bus widths indicated
with nx depend on the chosen Cameralink configuration. There are twelve?8
configurations possible. To accommodate all these variations with a single design
the description must be able to adapt to the configuration in use. This means the

bus sizes are not always the same. The number of implemented Cameralink_link
modules is also dependant on the configuration. This paragraph will also give a

description of the components of the module.

Camera I
control

Cameralink J
in

Cameralink
out

Indicators >
v :>

Figure 9. An absiract overview of the Cameralink module.

28 These are the configurations specified in the standard. Some common used, non-standard

configurations are not implemented.

Pieter van der Star
During internship at TNO

Page 23 of 67

;@%ﬁ@ging development for FPGAS 15 December 2015

.
Cameralink
camera_control 4 4 camera_control
one_shot_hold
1 . trigger _indicator
in out
PoCL_enabled
one_shot_hold -—
. new_pixel_indicator
in out
] data_valid
Cameralink_link [mode base, medium & full]
Jock PLL 8 PORTO| !
x_cloc
dataclock clock fast f oot Lo
x_data 4 data 4 slow—|
— locked 8 orto |1
Deserializer 28 data valid
dclock_fas data] | |
dclock_slow new_data frame valid
data |
line valid
Synchronizer 28 RQre
data data
new_data new_data new datg
connected
Cameralink_link [mode medium & full]
clock PLL g PORTO| 2+
Y- taclock
osace cock oo g PORTI| 1 ne pixelstream
y,d‘rmo o ldata 2 \ocslgg_‘ 8 n
PORT2
Deserializer 28 data valid -|_|& N
dclock_fas data . frame_valid
dclock_slow new_data r frame valid -|?|)
— | line_valid
line valid -|?| B
T spare . L spare
Synchronizer 28 &
data data new_data
new_data new_data new datg q 2
connected .|—|& connected
Cameralink_link [mode full]
lock L g PORTO|
z_cloc
dataclock clock fast s e | o
z_data 4 4 slow
il locked [8 PORT2
Deserializer 28 data valid
dclock_fas data X
dclock_slow new_data frame valid
data |))
line valid
Synchronizer 28 pare
data data
new_data new_data new datg
connected

Figure 10. A hierarchical overview of the Cameralink module. (Clocks and resets are left out.)

Pieter van der Star Page 24 of 67
During internship at TNO

olifying development for FPGAs 15 December 2015

8.2.1 One-shot hold

Some of the status signals are kept high for a longer period so they can be
made visible to the user??. This is realized by one-shot hold modules. They
trigger on arising edge of a signal and become inactive after a preset
amount of time after the falling edge of that signal has occurred. This can be
seen in the timing diagram in figure 11 below.

Input / \

Output / | |\

[Preset fime |

Figure 11. Timing diagram of the one_shot_hold module.

8.2.2 Cameralink_link

This module handles the reception of one link. Using a phased locked loop
(PLL), which will be discussed in paragraph 8.2.3, the slow data clock is
multiplied to generate a clock seven times faster. This clock is used to read
the data from the data lines. (Please see figure 8 on page 23). This readout is
done by the deserializer in the module. The data and status signals from the
deserializer are then synchronized to the system clock. Paragraph 8.7 goes
infto more detail on how and why this is done.

8.2.3 PLL

The frequency of the data clock is seven times slower than the data rate. To
read the data this clock is multiplied by means of a PLL. The Xilinx PLL IP is
used for tests and on compilation an error was given regarding the VCO
(voltage controlled oscillator). The VCO can only handle frequencies
between 400 MHz and 1080 MHZz30. So another PLL was created that allowed
for slower speed downto 280 MHz (a 40 MHz data clock results in a PLL-ed
speed of 280 MHz). This PLL however was unable to drive the deserializer
because it had no locked flag3' and missed a few other signals. Xilinx did not
provide good documentation and on the Xilinx forum the solution to the
problem was recreating the components [40]. This solution did not work. And
another deserializer will have to be used on those lower frequencies.

The used Xilinx PLLs have buffers on their outputs while the components they
drive do not need buffers. For that reason these buffers have been removed.

8.2.4 Deserializer

The deserializer used is either a Xilinx IP using the on-board deserializer or a
HDL description created during this project. The latter has been created to
better understand how the Cameralink protocol works and became useful
when dealing with the lower frequencies. As stated before, the slower PLL
lacks some of the signals needed by the deserializer from Xilinx. Thus the
custom made one had to be used. Later it was found that the Xilinx
deserializer worked fine when "lied to" (please see footnote 30).

29 The visualisation is done via LEDs on the Cameralink card, those LEDs are not a part of the
protocol.

30 |n practise however the Xilinx deserializer combined with the first PLL works fine as long as it
is set up for 60 MHz.
31 A signal indicating the PLL is locked to the input clock.

Pieter van der Star Page 25 of 67
During internship at TNO

Sf ||£§{I g developn ent for FPGAs 15 December 2015
B .LA: j

In order to assure correct behaviour after the reset a reset synchronizer
should be used. Paragraph 8.8 will discuss this further. The reset should be
connected to the clock domain it is used in. In the current version of the
design this is not the case. Developing a good reset synchronizer takes some
fime and is partially dependant on the compiler and synthesizer. During the
development of the modules a quickly build reset synchronizer was created,
but it was not thoroughly tested and verified. Such a reset module will have
to be built in intfo the Cameralink module. By taking the input from the
Cameralink reset synchronizer that module always gets valid32 data when its
reset is de-asserted because the reset is released later in the Cameralink_link
modules.

8.3 Cameralink configuration

The Cameralink protocol has various configurations. In order to keep the size of the
Cameralink module down, thereby making more room for the control and image
processing systems it is not possible to change the configuration during run-time. In
practise only one configuration will be chosen and this will not be changed, so
such functionality was deemed unnecessary. Which configuration fo choose
depends on the application, the camera, efc. The configuration will be set by
means of generics. These generics are used to choose the mode, the number of
channels and the number of bits per channel. It is possible to set an invalid
configuration. The HDL is written to find these incompatibilities and report them
back to the developer. The valid code in code fragment 1 describes such an
invalid configuration and will tfrigger the error: "When using Cameralink in mode
base with two channels, the number of bits must be either 8, 10, 12, 14, 16 or 24.
Now used: 20." and the compilation will stop.

CL_0 : Cameralink generic map (
System_clock_frequency => 10000000,
speed_Cameralink => 80,
Cameralink_mode => BASE,

CameralLink_numchannels => 2,

CameralLink_numbits => 20,

enable_PoCL => false,
camera_framerate => 25,

trigger_index => 0,

chip_family => "Xilinx_Spartan_o6"

)

Code fragment 1. Invalid configuration of the Cameralink module.

These different configurations can cause some ports to be left unconnected. These
unused ports give a small problem. They trigger warnings in the compilers telling
the developer the inputs of a component are not connected to any logic in that
component or that the outputs are not driven by any logic. These warnings can be
ignored because these ports are not needed in the chosen configuration.

The Cameralink protocol knows eight ports (A-H), two of the links have three ports
one has two. To be able to reuse the Cameralink_link module, the Cameralink
module has nine ports (A frough to). The last one is never used. As it will not be
connected to any logic, the compiler will optimize the design and will not

32Non-meta-stable, the valid flags from the Cameralink protocol have nothing to do with this.

Pieter van der Star Page 26 of 67
During internship at TNO

olifying development for FPGAs 15 December 2015

synthesise the logic for this port. As with the other unused ports this triggers warnings
that can be ignored.

8.3.1 Delays

The delays of the module (in clock cycles) depend on the configuration used.
The clock cycle delay must be entered when using a black-box in the HDL
Coder. When changing the configuration, the delays in the HDL Coder also
need to be changed. The difference in delays is caused by different buffer
sizes.

8.4 Generadlizing the design

The design of the Cameralink interface has been kept as generic as possible to
accommodate a wide range of chips and tools as well as to accommodate all
twelve3 Cameralink configurations. This is done by using a widely used VHDL
standard and selecting hardware descriptions depending on the chip in use. This
paragraph describes why and how this is done as well as some other options to do
it and why those methods were not used.

8.4.1 VHDL standard

To be able to use as many tools as possible an older version of the VHDL
standard is used. While VHDL-2008 will give a lot more flexibility in the code,
the number of compilers that comply with this standard is quite low. Older
chips are not always supported in the new tools34, so the choice for the older
VHDL-1993 standard was logical3s.

Some of the flexibility of the VHDL-2008 standard can be achieved by using
libraries. The ieee.std_logic_misc is such a library. It is an expansion of the
ieee.std_logic_1164, providing, among others, logic operators for
std_logic_vectors. For the testbenches such steps are not always possible
and for that reason the testbench has a constant where the designer will
have to enter the VHDL standard. If the standard3é is VHDL-2008 more
graceful functions are available. To stop the simulation in VHDL-1993 a failure
is passed to the simulator, which is basically like crashing a car into a wall in
order for it to stop. VHDL-2008 on the other hand has "breaks"7. It has a
function to stop the simulation after which the simulation can sfill be
continued if needs be. There is a frade-off here between supporting a lot of
fools and using a language that enables more flexibility and readability.
(Figure 12 illustrates this.)

33 Only the mode, number of pixels and number of bits per pixel are meant.

34 The newer tools have VHDL-2008 support.

35 The development environment only supports VHDL standards up to VHDL 1993.

36 This is the standard supported by the simulator.

37 Not to be confused with the break statement some other languages have. This is a function
called stop.

Pieter van der Star Page 27 of 67
During internship at TNO

%@%@ing development for FPGAs 15 December 2015

4
8-

Flexibility

Tool support

Figure 12. To bring up the tool support the flexibility has to come down and v.v.

8.4.2 Conditional implementation of chip-specific hardware

For a few elements of the design the best option is fo use chip-specific
hardware. A hardware multiplier for example. FPGA manufacturers supply a
VHDL component of this multiplier to the developers. The interface to the
multiplier varies per manufacturer, and also per chip. The Cameralink
module utilizes a SERDES (serializer/deserializer) and some (IO)buffers. The
latter are sometimes inserted by the synthesizer and therefore not always
described in the code.

To keep the source code maintainable and reusable it would be a good
thing if the code did not have to change too much when using different
chips. To prevent the creation of multiple source-code files, and all the
version-management troubles that come with it38, the module has a generic
input named "chip_family". By means of this generic the developer can,
without having to know the details, select the required instantiation. This
generic is used by a number of parts of the module. In this way modules,
such as the PLL, can be conditionally implemented (see code fragment 2).

if_spartan_6 : if (chip_family = "Xilinx_Spartan_6")
generate
——component instantiation specific for the

——Spartan 6 chip from Xilinx

end generate;

Code fragment 2. Example of chip-specific hardware selection.

The component declaration still needs to be done, and cannot be done
conditionally. This means all possible component declarations are listed, but
because they will not be instantiated this will not give problems3?. The libraries
in which some of those components are defined however cannot be
included. Doing so will give problems as those libraries are not always

38 E.g. changes that are made to one file that not made in other versions.
3% Tested with Xilinx ISET14.7, Altera Quartus 15.0, Xilinx ISim 14.7 & Mentor Graphics Modelsim
Altera Starter Edition 10.3d.

Pieter van der Star Page 28 of 67
During internship at TNO

olifying development for FPGAs 15 December 2015

available. Therefore the Cameralink library has a workaround. The way this
has been done is to create aliases in the Cameralink library, which will be
discussed further in paragraph 8.5, and using these aliases in all other source
files.

Selecting hardware depending on the chip poses problems to the continuity
of the behaviour. Not all SERDES' have identical delays which might change
the fiming of the module. One way to deal with this is to choose a ridiculously
long delay so all SERDES' will comply. This is however not good when the
whole purpose of using an FPGA is fast processing. Another way is to define a
minimum and a maximum. But what if a chip will exceed the maximum given
value? There is a trade-off between being generic and being constant. (This
is illustrated in figure 13.) Meaning the more generic the behaviour, the more
chips can be supported, but this comes at the cost of the fiming not being
constant throughout all chip families. This is greaftly simplified because some
SERDES' take the same time to deserialize while others may even be faster.
And since the choice for the chip is made during the design process the
system engineer can account for those differences. The behaviour of the
Cameralink module does not change when data is delayed, as long as alll
SERDES' replicate the behaviour of the SERDES in the way the
Cameralink_link module sees it i.e. 10 timing, signal relations and data width.

constantness

Genericness

Figure 13. To bring up the "genericness" the "constantness" has to come down and v.v.

8.4.3 Generics or global constants

Based on the constants described earlier in this chapter the hardware is
generated. Those constants are passed fo the entities as generics. The opfion
of using generics has been chosen over global constants to prevent possible
duplicate names and to have traceability on the origin as well as having
different values in simulation and in synthesis.

One of the generics is the frequency of the system clock. This is named
system_clock_frequency. It could be another module in a larger design uses
this name as well. When using global constants it is rather difficult to keep
frack of which one is in scope at which point. If the values differ it can cause
problems the designer does not expect. Also, when using generics, it is easier
tfo keep frack of the values passed to a specific entity.

Pieter van der Star Page 29 of 67
During internship at TNO

%@%@ing development for FPGAs 15 December 2015
'Jéj

8.4.4 C-Preprocessor

Since parts of the code are selected depending on some of the constants,
the code has a lot of conditional statements. VHDL-1993 has an if-generate
statement but no elsif-generate or else-generate?, The language also does
not have a #if as in C-type languages. The if-generate comes close, but is
not quite the same as it can only apply fo design units, not to declarations
and library inclusions. One way to work around this is fo use a C-preprocessor
in the toolchain. Before the first tool in the toolchain does anything with the
VHDL code the code is run through the preprocessor. In this way the #if can
be used, or better said borrowed. The preprocessor will take out all parts that
do not satisfy the conditions, but it requires a preprocessor and knowledge
on how to integrate the tool into the used toolchain. This can be complex
and is therefore not used.

8.5 Cameralink library

The Cameralink module and its submodules have a few settings which require a
number of special types. These types are gathered in a library. Most of the types
are not so special and are not discussed. One of these types however is and is
discussed here. Also some of the chip-specific components require a library. Which
library this is depends on the chip. How this is handled is also discussed here.

The Cameralink module uses a buffer to enable the use of a low clock speed
(more on that later in paragraph 8.7). The selection of the number of buffers is
done by means of generics. This generic is a custom type. This type is a bounded
integer supplemented with an auto value. VHDL does not allow for such a mixed
type. To create a workaround a constant is created (code fragment 3). This
constant has a value which cannot be used and each time the type value has to
be evaluated. To enable this evaluation a function to do that has also been
created(code fragment 4). Other types are used for ease of reading. These types
are multidimensional arrays which are mostly used for synchronization on clock
domain crossings.

subtype CameralLinkNumberOfBuffers is integer range 0 to 2;

constant AUTO : integer := 0;

Code fragment 3. Declaration of the custom type CameralinkNumberOfBuffers.

number_of_buffers (value,data clock speed, system clock speed);

Code fragment 4. Example of the evaluation function for the CameralinkNumberOfBuffers type.

Another custom type is the CameralinkMode. This type is used to select the
Cameralink mode. The type is a rather straight-forward type declaration with the
values being BASE, MEDIUM and FULL. The values can be compared where
BASE<MEDIUM<FULL. This allows for easy selection of the required Cameralink_link
modules.

Some chip-specific components have their declarations etc. defined in a library.
For the Xilinx Spartan 641 this is the UNISIM library. For Altera Cyclone V41 this is the
altera_mf library. VHDL itself does not allow for conditional inclusion of libraries.
Therefore the Cameralink library has aliases for these libraries hard-coded in the
package declaration. All the design units use the alias and if another library is

40 VHDL-2008 does have those as well as a case-generate.
41 |t is possible that other chips use this one as well.

Pieter van der Star Page 30 of 67
During internship at TNO

lifying development for FPGAs 15 December 2015

8.6

8.7

needed the designer will have to change these by hand, but only in one file not in
all. How this is done can be seen in code fragments 5 and 6 below.

——Comment next line if not using Xilinx Spartan 6 or compatible
hardware

——and include the correct libraries

library UNIMACRO;

library UNISIM;

package Cameralink_1lib is

——Comment next lines if not using Xilinx Spartan 6 or compatible
hardware and make new aliases for the ones needed.

alias chip_specific_components is UNISIM.vcomponents;

alias chip_specific_components_sim is UNIMACRO.vcomponents;

Code fragment 5. Definition of the aliases for the libraries.

library work

use Cameralink_lib.all;

use Cameralink_lib.chip_specific_components.all;

Code fragment 6. Usage of the aliases for the libraries.

Design constraints

Some of the design constrains are given in the format of the used tools42. Some of
those also depend on the chip used. The designer is expected to set these
constraints in the used toolchain. The constraints are given in the list below.
— System clock frequency and duty-cycle
— Data clock frequencies and duty-cycles (is 4:3)
— Synchronizer registers have asynchronous input so prevent inferring shift
registers [31].

Crossing clock domains

The Cameralink_link submodules have hardware running on two clocks. Meaning
different components running on different clock sources. Because of the different
clocks® the data can become metastable and data might be missed. This
chapter will discuss the steps taken to prevent this. Also a short explanation of the
problems on clock domain crossing is given in appendix V.

8.7.1 Clock domain situation

The data for each link is read using the multiplied data clock. This frequency
ranges anywhere from 280 MHz to 595 MHz. The system processes this data
on the system clock, which has another frequency and/or phase. The
frequency range for the system clock is wide, as this is not standardized. The
minimum system clock frequency is given by the design and is the same as
the slowest Cameralink clock speed: 40 MHz (please see formula 4 in
paragraph 8.7.3). The clock domains are crossed in the Cameralink_link

42 Altera uses QSF files, while Xilinx uses UCF. Both have different keywords and a different

syntax.

43 They differ in speed and phase.

Pieter van der Star Page 31 of 67
During internship at TNO

§ﬁ%®4ing development for FPGAs 15 December 2015
'Jéj

module. Figure 14 below shows that module with the domain of the data
clock marked in grey44.

Cameralink_link [node base, medium & full]

PORTO

PLL

data clock
clock fast

slow
data 4
|

PORT1

locked

PORT2

Deserializer - 28 data_valid
| -
dclock_fast ad 7 data

frame_valid

L

-
dclock_slow o new_data
-

data _od
-

line_valid

spare
Synchronizer 28

data data

it
new_data new_data new_dafa

connected

Figure 14. Clock domains, grey runs on the (multiplied) data clock, the white parts run on the
system clock.

8.7.2 Data synchronization and deglitching

The data read in the Cameralink_link module is output all at the same time.
So the flags, indicators and data are all grouped together. The availability of
the new data is signalled by a level change, on which later more. This
change is detected in the domain of the system clock and a pulse indicating
the availability of new data is created. All the data is synchronised trough a
couple of registers to prevent metastability issues. Thus the data is stable, but
might not be correct. It could have been recovered to an incorrect value.

To prevent this, a "deglitcher" has been designed. A glitch is assumed o be
only caused by reading a metastable value at the input of the synchroniser.
From this can be deduced that that data is incorrect only during one clock
cycle, assuming the ratio between the rise fime and the fall time of the data
and the period of the system clock is less then one4s (please see formula 1).
That means to be sure about the correctness of the data the first data has to
be dropped and the second-cycle of that data needs to be sent on.
Detecting an edge on the new data indicator takes this extra cycle.

max {frise 'ffoll } <]
—T

system clock

Formula 1. Statement that need:s to be true in order for the deglitcher to work.

The data is synchronized through three registers because af least two are
needed to prevent metastability. The third is added to reduce the mean
fime between faults (MTBF). This could be calculated by calculating the MTBF
per flip-flop (please see formula 2) and than multiplying those with each
other to get the MTBF for the synchronizer, but neither Xilinx nor Altera has
these numbers freely available. Calculating the MTBF for the chip on which
the design was developed does not say anything about the MTBF on other

44 Only after the PLL is the clock multiplied.
45 |gnoring the setup-and-hold times for simplicity, these cannot be ignored in reality. They are
too significant to allow that.

Pieter van der Star Page 32 of 67
During internship at TNO

lifying development for FPGAs 15 December 2015

chips. So the availability does not really matter. Just to be on the safe side
three flip-flops are used.
1 fip
MIBF=——.e T [sec]
fclk . fdofo . TO

Formula 2. Formula for the MTBF [57].

Shift registers generally have an MTBF that is not good for synchronizing. After
compilation it was checked whether the compiler had inferred shift registers
for the synchronizer and it was found this was not the case. UDC primitives (D-
flip-flops) were used [31][6]4¢.

8.7.3 Overcoming data loss

To verify the correct steps have been taken to ensure correct "clock-crossing"
the flowchart from figure 15 (on page 34) is used. Now that the data is stable
and valid, it still might be some data is lost. If the system clock is faster than
the data clock, data loss will not occur. When the situation is reversed data
loss is an issue. Solutions using a first-in-first-out (FIFO) register, handshaking etc.
cannof be used because there is no guarantee of a break in the fransmission,
or at least a break that is big enough to catch up. So the design requires a
system clock with a frequency of at least a frequency equal to the data
clock, but it is advised to choose a faster clock to overcome data loss due to
jitter in the clocks. The minimum system frequency can be calculated using
formula 3. Where the constant factor of two is derived from the data rate
dividing property of the "deglitcher" and the number of cycles needed to
detect an edge on the new data signal. They both take two cycles.

fsysfem clock 2 fdoTo clock * 2

Formula 3. Formula for the minimum system clock.

This means the system clock frequency for a 40 MHz data clock must be at
least 80 MHz. To bring this factor down the data from the deserializer is
buffered using the multiplied data clock. This creates the possibility to
synchronise two sets of data together (please see figure 16). This results in a
lower system clock frequency requirement. Formula 4 shows the formula to
calculate the system clock frequency with this improved architecture. This
means that if the system clock is fixed at 100 MHz and the data clock is again
40 MHz, one buffer is needed. This can be calculated with the adaptation of
the formula, which is given in formula 5 with:

fsysfem clock € Q/\ fsysfem clock > O
fdata clock € Q/\ fdata clock > 0

Number of buffers € Ny A number of buffers < 2

The number of buffers cannot exceed two since there is no need. The buffers
are only needed to overcome the cycles lost in the deglitcher and edge
detector, nothing more. Although the system clock speed could be lowered
in that case, the data would again be lost because the data is not output in
groups.

f fdofo clock ° 2
systemelock = b ffer width

Formula 4. New formula for the minimum system clock.

46 The compiler used ignores the constraint on these registers.

Pieter van der Star Page 33 of 67
During internship at TNO

s
S

Sﬁ%@ying development for FPGAs 15 December 2015

Number of buffers = {MW

system clock

Formula 5. Formula to calculate the number of buffers.

After reading all this, the idea still might be a little vague. To clarify this all the
signals are displayed in the timing diagram in figure 16.

It could also be thought of as mining carts arriving with the frequency of the
data clock. They must go through a tunnel (the synchronizer and deglitcher)
before ending up af the place to unload. Instead of sending each on their
own, two carts are coupled together before entering the tunnel and
uncoupled when exiting. Each of them then making its own way to the
unloading site.

Another way of preventing data loss is fo use the edge to signal data. This is
done with the new data signal. A single pulse could be missed, a level
change cannot, provided the value keeps its value for long enough. For the
new data signal this is the case. The downside of this solution is a delay on
the receiving end as the edge will have to be detected.

Synchronous
Clocks

Is
Clock edges
can be close

No

Yes

Step 1
A

Add a synchronizer

Y

Step 2
A

Gray Encoded Gray encode the signals

Gray encoding
possible Yes

Clock edges close for
contfinuous cycles

=T
o3
o
[
& Data loss /
unctional issug
C E — Q Functional check
’ structural check I:I Desian Correction

Figure 15. Verification methodology for the clock crossing [28].

Pieter van der Star Page 34 of 67
During internship at TNO

15 December 2015

(%]
<
O
o
[N

0
§S)
=

C

)

S

o}
9o

0]

>

0
LS

o)
£

data clk \ / \ / \ / \
system clk \ \ / \ / \ /
data clk

mutieiea)/ _/_ /A A\ T

n+1 n+1 n+1 n+2 n+2 n+2 n+2 n+2 n+2 n+2 n+3 n+3 n+3 n+3 n+3
[16 to 19120 to 23]\[24 to 27) [0to 3] A [4 to 7] A [8to 1112 to 15]\[16 to 1920 to 23[24 to 27]} [0 1o 3] | [4to 7] |8 to 111712 to 15716 to 19

Dat n n n n n n n n+1 n+1 n+1
AR 10103] | [4107] 1810 1112 to 1516 to 194120 to 23\[24 to 27 [0to 3] | (410 7] A8 1o 1

New data /

Buffer[0]

n-2

n-1

n+1

Buffer[1]

n-3

n-2

n-1

n+1

New data

New data
scynchronizer [1]

scynchronizer [0] \

— ===

~ =R

New data

scynchronizer [2]
New data
scynchronizer [3]

e o
>
3
N

Data synchronizer [0]

n-3 & n-4

X

n-1&n-2

n&n+l

Data synchronizer [1]

n-3 & n-4

n-1&n-2

Data synchronizer [2]

n-5&n-6

n-3 & n-4

n-1&n-2

Data synchronizer [3]

n-7 & n-8

n-5&n-6

n-3 & n-4

Output buffer

n-2 & n-10

n-7 & n-8

n-5 & n-6

Output

n-9

D e e

n-8 X

n-7

D]

n-6

Clock domain crossing

Figure 16. Timing diagram for the synchronizer and deglitcher for the clock domain crossing.

Page 35 of 67

Pieter van der Star

During internship at TNO

§ﬁ%®4ing development for FPGAs 15 December 2015
'Jéj

8.8 Reset

The reset on all the components is asynchronous, both in asserting and in clearing.
During tests a reset synchronization module was used to assert the reset
asynchronously and clear the reset synchronously on the system clock. This module
is not implemented in the Cameralink module as the module will be part of a
larger design. The designer of the larger design is responsible for correct assertion
and clearing of the reset. The reset for the part of the design that runs on the data
clocks from the Cameralink module is not synchronized either. This will have to be
done in a future version of the code as the asynchronous reset is unsafe [7].
Paragraph 8.2.5 describes how to do this.

8.9 Testing - simulation

In order to test the module a testbench has been written. To be able to test all
possible (valid) Cameralink configurations this is a very elaborate testbench. Test
parameters can be given using constants. These constants are discussed in
paragraph 8.9.1. The testbench has multiple processes. Some of these processes
control the Cameralink module, while others provide data and some more check
the outputs for correct behaviour. A short description of all these processes and
their tasks will be given in paragraph 8.9.4. Automatic testing of the different
configurations is not possible as the configuration is done on compilation, not
during runtime or simulation. It may be done using scripts for the simulator, but
those scripts will be tool-specific.

The testbench is designed to encapsulate the Cameralink module (please see
figure 17). The testbench has some parts that simulate the behaviour of a camera,
while others provide input signals such as a clock and reset. The module outputs
data and status. These are read by the testbench and analyzed for their correct
behaviour. The testbench notifies the designer if an incorrect value has been
detected.

Testbench

[TTTT
Simulated data from camera

dut

Con:‘rlollsil_qlnols
L AL4A
vy

status siinols to check

[TTTI
data to check

Figure 17. Testbench encapsulating the Cameralink module.

8.9.1 Simulator software

The simulation has been run on Xilinx' ISIM 14.7 . Since it was part of the
tfoolchain with ISE 14.7. Mentor Graphics' Modelsim is more capable in the
sense that the user can view the time deltas and the documentation is
slightly easier to understand and find. The Modelsim version available is the
Altera Starter Edition 10.4b. This means there is no default support for the Xilinx

Pieter van der Star Page 36 of 67
During internship at TNO

lifying development for FPGAs 15 December 2015

libraries. For this reason the ISIM simulator has been used for almost all
simulations.

One of the modules required a simulation that caused ISIM to stop simulating
because the tracing limit was reached. This is a limit build info ISIM to prevent
it from using foo much memory. In this case it meant the simulation had to be
done without logging the signals up to the point of interest, then adding the
signals of interest and then continuing the simulation again. Since the
window of interest was bigger than the limit allowed Modelsim was used to
run this simulation. The dut was slightly changed by removing the Xilinx
components as they did not influence the behaviour of the part of the
design that needed to be tested. This simulation was run o test the
image_storage module. This module will be discussed in paragraph 8.10.3.
The testbench for the Cameralink module does not reach the frace limit.

The Xilinx libraries could be added to Modelsim but the documentation on
that is vague and requires knowledge about the tools to compile those
libraries. Therefore the workaround of removing the Xilinx components was
used until a tutorial was found [19]. This tutorial has been followed but the
software used to compile the libraries does not work with the Modelsim-
Altera starter edition. Which means that version of Modelsim cannot be used
to simulate Xilinx components. Which was not unexpected as it is supplied by
Altera.

8.9.2 Simulation parameters

To give the testbench the ability to test all possible Cameralink
configurations the testbench has several constants to set the simulation
parameters. The simulation parameters are listed below:

— The VHDL standard

— Should the simulation fail in order to stop upon completion?

— The Cameralink mode

— The number of channels of the Cameralink

— The number of bits per Cameralink channel

— The frequency of the system clock

— The chip on which the hardware will run

— The speed of the Cameralink connection

— Additional delay on top of the delay for the synchronizer

— Should the testbench use differential signalling

— The index of the trigger signal in the camera control signals

— The time the trigger should be high

— The frame rate of the camera

— Should power over Cameralink (PoCL) be used?

— The number of buffers to use during synchronization

— The skew between data of link x and link y

— The skew between data of link x and link z

— The time between the change in the connected indicator and

actually being connected

Some of these parameters have bounded values, others do not. The skew for
example can be set to more than a minute, but the module will never be
able to get the correct data. The tester has been given the freedom to test
what he wants. The manual for the Cameralink module (in appendix V)
explains each of the constants.

Pieter van der Star Page 37 of 67
During internship at TNO

Sfﬁ%i@f%ing development for FPGAS 15 December 2015
8.9.3 FIFO synchronizer for the testbench

The testbench generates data in the domains of the data clocks. This data
has to be synchronized to the system clock as that is the clock the
Cameralink module runs on. The synchronizer for this part is only for
simulation and not synthesizable. The synchronizer comprises of three
elements:

— Asshiff register

- A multiplexer

- A counter
The FIFO-synchronizer has two "operations”, reading from the FIFO and writing
to the FIFO. Apart from the shift register, a counter is also edited. This counter
is used to determine the position to read from. On a write action, given by a
rising edge on the rd input, the data on the input is shifted into the shift
register and the counter is incremented. On a read action the data on a
position, indicated by the counter, is output. Then the counter is
decremented and an acknowledgment is given by means of an event on
the rdack (read-acknowledge) port. A schematic view of the dataflow is
given in figure 18. The module also provides indicators that can be used to
block processes on a read request on an empty FIFO or on a write request on
a full. These are not used in the testbench of the Cameralink module. The
module can overflow when writing data to a full FIFO. The oldest data is then
shifted out. This results in the possibility to start shifting in data without the PLL
having a lock. This ensures the data can be checked as soon as the PLL is
locked and the Cameralink module indicates a connection has been
established.

<«— Data in

Data out

Figure 18. Schematic view of the dataflow in the FIFO synchronizer.

8.9.4 Testbench processes

The testbench has multiple processes. Some of those control the Cameralink
module while other processes check the behaviour. A number of these
processes need to wait on each other and need to exchange information.
Figure 19 (on page 41) shows the tasks these processes perform and the
communication between the processes. The sequence diagram has been
adapted slightly to allow the communication to be also displayed. The
communication is indicated with arrows and an annotation and, in the case
of the data generators for the links and the data checker a synchronization
bar. This bar indicates a synchronization between all four processes. This
chapter will also give a short description of these processes.

If an erroneous value has been detected by any of the processes the
process which found the error will report the problem and cause the
simulation fo fail. Sometimes false errors are given. This is because two
processes communicating via the FIFO do not work together properly. They
do not block yeft, but it may be that implementing the block will solve the
problem.

Pieter van der Star Page 38 of 67
During internship at TNO

olifying development for FPGAs 15 December 2015

clock generator and constants checker

This process generates a clock with a given period. Before starting with the
clock generation this process generates a series of reports4? that list the
simulation parameters. This is done to be able to frace the configuration
under test in the simulator log files. This process also tests the PoCL output. I
does this at every clock edge. This process does not communicate with the
other testbench processes other than that the other processes in the
testbench can read the generated clock signal. The process confinues
until simulation is halted.

system

This process waits on the first rising edge of the system clock and then
activates the reset signal and shortly afterward deactivates the reset. Then
the process stops.

camera control controller
This process generates frigger pulses with a duty cycle of and frequency
determined by the camera_framerate and trigger_high constants.

camera control checker

This process checks if the trigger indicator is correct. The process waits for
the first trigger pulse and then starts checking if the indicator stays active.
The process continues until the data_checker stops. Then it checks if the
trigger indicator keeps high for a long enough, but also not too short, time.
Afterwards, if set to do so, this process signals the simulator to stop.

connected checker

This process checks, depending on the Cameralink mode, if one or more
links are active. This is done by checking the data clock inputs of the
Cameralink module. This process does not communicate with other
processes and confinues to run until the simulation is stopped. This module
does not communicate with other processes.

link X data

Depending on the given skew48 this process waits for none, one or both of
the data generators for link Y and Z. First empty data is fransmitted so the
PLL can acquire a lock. Then predefined data is fransmitted, followed by a
short break in the data. After this break empty data is sent in order to give
the PLL time to reacquire a lock. Then all possibilities of the valid flags and
the spare flag are sent. After this test data is sent but inferrupted mid-
fransmission. Afterward follows a fest on sending less links than expected.
E.g. sending data over one link while mode full was specified. Then this
process stops. This process communicates heavily with the data checker.

47 With the report or assert keyword to the simulator, this is not a report file.
48 This skew is given by the constants.

Pieter van der Star Page 39 of 67
During internship at TNO

A4

Pieter van der Star
During internship a

%@%@ing development for FPGAs 15 December 2015

link Y data

Depending on the given skew this process waits for none, one or both of
the data generators for link X and Z. First empty data is fransmitted so the
PLL can acquire a lock. Then predefined data is fransmitted, followed by a
short break in the data. After this break empty data is sent in order fo give
the PLL fime to reacquire a lock. Then all possibilities of the valid flags and
the spare flag are sent. After this test data is sent but interrupted mid-
fransmission. Afterward follows a fest on sending less links than expected.
E.g. sending data over one link while mode full was specified. Then this
process stops. This process communicates heavily with the data checker.

link Z data

Depending on the given skew this process waits for none, one or both of
the data generators for link X and Y. First empty data is transmitted so the
PLL can acquire a lock. Then predefined data is fransmitted, followed by a
short break in the data. After this break empty data is sent in order to give
the PLL fime to reacquire a lock. Then all possibilities of the valid flags and
the spare flag are sent. After this test data is sent but interrupted mid-
fransmission. Afterward follows a fest on sending less links than expected.
E.g. sending data over one link while mode full was specified. Then this
process stops. This process communicates heavily with the data checker.

data checker

This process checks if the data transfer has been done successfully. This is
done by getting the data the data generators send, and then comparing
this to the data the Cameralink module has received. Not only the datais
checked, the flags are checked as well. This process stops after all the tests
in the link processes have run. This process communicates with the link
data generators and the camera control checker.

It also reports test progress to the developer.

Page 40 of 67
t TNO

Yp] Qno%ﬂﬂmuﬂ_ﬁmm_‘nﬂwwmhﬂa System (generator) Camera control controller Camera control checker Connected checker Link X data generator Link Y data generator Link Z data Data checker
—
[}
o o
N Report simulation
n_r.v constants reset —
0

m Test shuffle functions Check connected

flag high too early

[}

[0) Check constant-driven Check connected
a) outputs flag high too long
L
— Check connected

flag low oo long
Bring clock low
o Check connected H
flag low too early
Check constants Wait to create skew Wait to create skew Wait to create skew Check the
connected flag
o Send dummy data for Send dummy data for Send dummy data for
i i clock="1
Bring clock high /_\ PLL lock ﬁ PLL lock PLL lock
- reset="T' Send dummy data E:_,_/ Send dummy data with Send dummy data 2:5/ Check data
Check constants Activate reset correct behaviour of correct behaviour of correct behaviour of fransmission with flags
(asynchronously) the flags the flags the flags according to the
protocol
- / - /
Bring all control
Sanis o L gnEees
- 1= 0 Transmit some Transmit some Transmit some Check transmission of
Deactivate reset reset= predefined data predefined data predefined data predefined data and
(synchronously) flags
A A Transmit all possible Transmit all possible Transmit all possible Check all possible
combinations of the combinations of the combinations of the combinations of the
Bring trigger="1" flags flags flags flags
Check frigger signal
high too late - Transmit data but Transmit data but Check handling of

n _ Transmit data but interrupt transmission interrupt transmission interrupted
< Bring " interrupt transmission halfway through the bits halfway through the bits fransmission
G ring frigger low halfway through the bits r ~
[0
[N

— Check frigger signal - -

o low too early Transmit one link short Trasmit one link short Start checking the
Y— correct handling of
— o

C Check frigger signal - - :aMﬁMW:::NP:Q

o low too early Transmit one link short Transmit one link short

(o} Check frigger signal

Ie) low too late Transmit one link short
I3

> Stop/halt simulati

[op/halt simulation
©

[®)]

C

Page 41 of 67

Figure 19. Processes of the testbench and the communication between the processes.

Pieter van der Star
During internship at TNO

%@@I@'ﬁying development for FPGAs 15 December 2015
'Jé &

8.9.5 Differences between simulation and reality

The behaviour of some of the IP's from Xilinx in implementation differs from
their behaviour in simulation4?. The design was first created and tested with
the ISIM simulator and found to be working. Later, when the design was
loaded onto the FPGA it was found to be not working and some data had to
be delayed for one clock cycle. This could be down to delta delays, which
cannot be shown in the simulator used. Another cause may be the
description for simulation. If this is not created to simulate the behaviour of
the real component there is a difference. This difference in behaviour was
found to be at least in the PLL. This problem has been solved by adding a
condition on the behaviour of the Cameralink_link module. That module
displays different behaviour in simulation, but only when the chip_family is set
to "Xilinx_Spartan_é".

At some point the simulation did not work. l.e. The values were not
calculated or updated. People on the Xilinx forum suggested initializing the
signals [41]. This was only needed for a few signals. Those signals are initialized
to '2'%0. This value is chosen because the signals are non-tri-state signals. Thus it
is easy to see if any signals remain unused, or at least unwritten.

8.9.6 Simulation libraries

Some checks and conversions have to be executed multiple times. In order
fo maintain readability and improve ease of writing a simulation library has
been created. This library consists of functions that are used to wait on
certain values and check the data. The checks on the data are separated
from the Cameralink library to prevent the checks not detecting errors
because the same erroneous piece of code is used.

As stated in paragraph 8.9.5 the behaviour of some of the Xilinx IP
components is different in simulation. To correct this, the destination of the
compilation had to be determined. To do this each module was given a
generic input with a default value of false. This default value of "false"
prevents the necessity to have the value coming from the higher levels. For
the same reasons as given for the configuration constants in paragraph 8.3,
global constants are not used.

8.9.7 Custom string function

In order to give convenient error messages a function has been made that
converts a std_logic_vector to a string®!. This function converts to the string by
converting each element in the vector by means of the image attribute of
the std_logic type. Read from right to left, after each fourth element a period
is inserted to increase readability. After executing the semi-code from code
fragment 7 (on page 43) the value of stris: "'11.0000.0000.0000.0000™. (The
inner quotation marks are part of the string.) The function does not work in
Modelsim due to an assignment with strings of unequal length.

49 Tested only in ISIM.

50 |nitializing to 'U' or 'X' did not solve the problem.

51 VHDL 2008 has these functions implemented in the standard. The simulation however can
be done on software that does not support VHDL 2008.

Pieter van der Star Page 42 of 67
During internship at TNO

olifying development for FPGAs 15 December 2015

variable vect : std_logic_vector (17 downto 0);
variable str : string (0 to 100);
vect := "110000000000000000";

str := std_logic_vector_to_string(vect);

Code fragment 7. Example of a conversion from a std_logic_vector into a string.

Pieter van der Star Page 43 of 67
During internship at TNO

Q@%Igying development for FPGAs 15 December 2015

2
Ix

8.10Testing - real world

At a certain point in the development of the module, simulation alone was not
enough to determine the correct operation of the design. Therefore the design
was loaded onfo the FPGA and connected to some test equipment. Details of alll
the test equipment can be found in appendix VI. The design was tested by
manually verifying the output. If one image looks like it is supposed to, than | is likely
they all are. When a good image was acquired, multiple readouts were done to
assure the image stays good. This chapter will discuss the steps taken to get a
good image.

8.10.1 Testimage

A test image was first provided by the Baumer HXC 13 camera but was not
specified in the documentation of the camera, so to be sure what to expect
another camera, an Adimec 4000m/D, was used since the test image that
camera provides is, in pixel-detail, described in the manual [12]. To ensure
the test image was output as described it was connected to a system known
to be working. Thus the fest image below (figure 20) was acquired i.e. saved
to both an image file and an ASCIl-text file with the decimal values in a table.
The image itself is a 2048 by 2028 pixel image with a bit-depth of 10 bits. This
image is a static image.

Figure 20. Test image from the Adimec 4000m/D camera.5? Left: full frame, right: top left corner.

8.10.2 Monitoring equipment

This chapter will discuss the testing equipment used. A complete list of the
equipment with model numbers etc. can be found in appendix VI. For the
first fast checks LEDs were used. But LEDs alone were not enough to see what
was happening. An oscilloscope was used to look af the some of the signals.
This was sufficient to test the flags and other indicators. But to check the data
output, a faster and bigger (more than four channels) way of analysing the
data was needed. To do this a logic analyzer was set up. To view all the
required bits twenty-eight pins were needed to perform the tests without
having to reassign and multiplex signals, although 12 would be sufficient with
the multiplexings3. The board however did not have any GPIO pins, therefore
the SD-card slot was used to provide the extra connections to the logic

52 Note the black border of the image is not a part of the test image. This image has also
been compressed with JPEG compression and is compressed again by the text editor.
Please see the Adimec 4000M user manual for the exact test image.

53 The camera does not use all 28 bits. Please see paragraph 8.1 for more information on this.

Pieter van der Star Page 44 of 67
During internship at TNO

Si%@ﬁ?ﬂng development for FPGAs 15 December 2015

ej\g/g@, D

analyser (see figure 21). This was possible because there are no exira
components between the FPGA and the SD-card slot and the SD-card slot
has no obstructions preventing access to the relatively big pins connecting it
fo the board.

Figure 21. Probes on the SD card slot.

However there were more bits to look at. The board also has an ALI%4
connector. The other signals were connected to that connector. Not all pins
of the 50-pin connector are connected to the FPGA so only a few could be
used, some of which happened to have an offset which made some of the
pins unusable for testing purposes. After being connected the logic analyzer
gave strange values that could have been due to meta-stability or
differences in clock speeds causing sampling to occur on incorrect data.
Figure 22 shows this problem. There are spikes on Xdata 2 (indicated with an
arrow) while it is expected to be "flat".

Current Semple Per i
Nex! Semple Period »

Figure 22. Screenshot from the logic analyzer with Xdata 2 showing spikes while it is expected to
be all zero.

To overcome the possible difference in clock speeds another logic analyzer
has been used. This logic analyzer is an HDL IP core generated by software
provided by Xilinx. The IP core runs on the same clock as the hardware. That
is, it runs on a clock that is twice as fast, but the two clocks are in phase with
one another. Using this logic analyzer proved to be more reliable. But still

54 Avnet LCD Interface [3].

Pieter van der Star Page 45 of 67
During internship at TNO

a

o
S

%Igying development for FPGAs 15 December 2015

some strange spikes occurred. The number of spikes were reduced, but not
completely removed after inserting ferminating resistors across the LVDS pairs.
These terminators had been added early on in the design process, but were
removed in an effort fo get some data. Removing those resistors gave more
level changes and thus made it look like it worked better. Also it was unclear
whether or not those resistors were already on the FMC card. The
documentation does not say anything about this, but not having them was
deemed more logical%s. After adding the resistors the spikes that were sfill
there were put down to a clock skew between the system clock and the
analyzer clock. Therefore other means of viewing the output were needed.

As mentioned before strange spikes occurred during the tests. In an effort to
fry and find the cause of this one of the inputs from the ChipScope was
connected to logic '1'. The image in figure 23 below shows the value of that
input under the name Constant high. The signal appears to have dips at
regular intervals. With those dips all other signals also change their value.
When this was found the time allotted for the development of the HDL was
already over but a working module was required. Using the custom designed
RS-232 testing component (please see paragraph 8.10.3) proved to be the
most reliable way of testing with only a few fallen bits per image-line. And the

module seemed to be working with a few small errors.

1] 5 10 15 20 25 30 35 40 45 50 55
B el e S S I e e e el)

iy ipy i T il 0 L
sia i g s TR in i i il nin i n U n URUn R nhp A AU Rl
A 8 s e T N o e L e e R n [e

Bus/Signal x 0

PLL slow

PLL fast
dataclock

Constant high

= B = T - -]
o B o F oo

Conscant low

Figure 23. ChipScope screenshot with strange dips in the constant high signal.

8.10.3 Image storage and output

In order to see the image that has been received the entire image is sent to
a computer and further processed by the computer to create an image file.
To do this an RS-232 transmitter was created together with a RAM block. This
module is named image_storage. The image is stored in the (on-chip) RAM
and later read from there to be fransmitted over the RS-232 line. The test
image is, as stated in paragraph 8.10.1, a 2048 by 2048 pixel image. To store
one image, for these tests multiple frames are not needed, 5 MB of storage is
needed (for the calculations please see figure 24).

20482 = 4,194,304 pixels in one image
4194304-10 = 41,943,040 bits for one image

%3'040 - 5,242,880 bytes for oneimage
%;{8280 = 5megabytes(MB)for oneimage

Figure 24. Calculations for the image size.

This can come into conflict with the amount of RAM used by the on-board
logic analyzer. To ensure both could be placed on the chip the memory of
the logic analyzer has been reduced. The image was not completely stored

55 |f they had been on the card, the card would have to generate "new" signals to the board
since the board cannot measure after the resistors and get a valid value.

Pieter van der Star Page 46 of 67
During internship at TNO

olifying development for FPGAs 15 December 2015

to allow a smaller memory size. At a later moment the logic analyzer was
removed to free up enough memory space to store the image. This was sfill
not enough space. The maximumss size is 320 kB. This means a data width of
20 bits (two ten-bits pixels) and a data depth of 131,072. With this size 262,144
pixels can be stored. This results in the image having to be split up in 16 parts.
The image is split vertically in groups of 128 lines. A counter is used to count
the pixels and to stop if the memory is full. Then the image is sent. Another
counter counts the groups of 128 lines that have been sent. If not all lines
have yet been sent a new group of lines is read. The pixels are transmitted
with a baudrate of 115200. Figure 25 shows an extremely simplified version of
the image_storage module. The module has more counters than shown in
the diagram also not shown is the state machine. This state machine controls
when to read from the camera and when to write to the computer.

image_storage

Memory

N M

A A
Counter UART UART TX
transmitter

Data

A 4

A 4

Flags

A\ A 4

Figure 25. Simplified block diagram of the image storage with RS-232 transmitter.

8.10.4 Image size

The image size for a full-size frame of the Adimec 4000m was calculated to
be 5 MB. This does not fit in the available memory, as shown in paragraph
8.10.2. This may not be a problem as de demonstrator currently uses a 2562
image (256 by 256 pixels) and the most real-time applications work with a
5122image in order to run at a high frame-rate. Using the same steps as in
figure 24 the size of the 5122 image has been calculated to be 320 kB. In the
same manner the memory size for the 2562 image has been calculated at 80
kB. Both fit in the internal memory (which is 320 kB). The maximum image size
with this memory size is 512 by 512 pixels. For calculations, please see figure
26 on page 48. Some processing can be done on a pixel-by-pixel basis so
there may not be a need to store the image, enabling faster processing and
processing of bigger images. If bigger images do need to be stored, external
memory is needed?’.

56 This may not be truly the maximum size, but to keep the design and calculations simple a
size is chosen such that a multiplication by a power of 2 results in the image.
57 When working with the Spartan é at least.

Pieter van der Star Page 47 of 67
During internship at TNO

2
Ix

S@.ﬁ%lgying development for FPGAs 15 December 2015
=Ry

AN

A

320-1024 = 327,680 bytes memory size
327,680 -8 = 2,621,440 bits memory size
220 = 262,144 pixels

V262,144 = 512 so theimage is 512 by 512 pixels

Figure 26. Calculations for the image size of a 512 by 512 image.

8.10.5 Testresults

As stated in paragraph 8.10.2 the module had a few small errors. The
Cameralink module has been tested using the image_storage module with
the RS-232 transmitter. The image that was acquired in that way was not
correct. When comparing that image (please see figure 27 below) with the
image the camera transmits as seen in figure 20 on page 44, you can clearly
see there are a number of differences. The image in figure 27 has the same
size but contains the image four fimes and the lines are not in sync. The lines
are shifted, but not with a constant number of pixels and the lines are not
always shifted in equal groups. The transmission of the test image was 3,414
pixels short of the number of pixels needed to create the image. The same
number of (black)pixels was added at the end of the image fill the image to
the correct size.

Figure 27. First test image, clearly not quite correct.

The reason for these errors could be a wrong transmission between the FPGA
and the computer or the Cameralink module does not behave correctly.
Another reason for the errors may be found in the way the image is stored
and retrieved from the memory. The compilation warnings were checked to
see if there were any missed in previous checks. Also the fiming requirements
were checked. This showed a failure in the receiver. The path delay from the
SERDES was about three and a half fimes too late.

A solution for this might be changing the fiming constraints. These were set for
a Cameralink frequency of 85 MHz. This timing constraint could not be met
by the synthesizer. The test image is provided with a speed of 40 MHz. This big
difference in speed could help meet the timing constraints. This helped but it
was not enough 1o solve the problem. The Cameralink_link module was
checked and it was found it only signalled the arrival of half the bits, with that
fixed new tests were run. This resulted in the image in figure 28. This was
already seen when transmitting the image. Some lines were sent with the

Pieter van der Star Page 48 of 67
During internship at TNO

lifying development for FPGAs 15 December 2015

correct number of pixels, but others were a number of pixels short. The pixels
lost per tfransmission part are given in table 2. The table shows that some
groups of lines are fransmitted correctly, but others were not.

Figure 28. Second test image, still not correct.

Image Pixels Difference
part Lines |Expected |Read Absolute | Relative
1 128 262144 262144 0 0

2 256 524288 524288 0 0

3 384 786432 786418 -14 -14
4 512 1048576 1048523 |-53 -39
5 640 1310720 1310666 |-54 -1

6 768 1572864 1572808 |-56 -2
7 896 1835008 1834916 |-92 -36
8 1024 12097152 2097060 |-92 0

9 1152]2359296 2359204 |-92 0
10 1280 2621440 2621308 |-132 -40
11 1408]2883584 2883428 |-156 -24
12 1536 |3145728 3145572 |-156 0
13 1664 3407872 3407716 |-156 0
14 1792 13670016 3669860 |-156 0
15 1920]3932160 3932004 |-156 0
16 2048 4194304 4194148 |-156 0

Table 2. List with number of pixels per transmission.

In an effort to reduce the lost pixels the number of stopbits was increased
from one to five. This effectively gives a bigger break between the pixels
reducing the risk of data loss. This in combination with a lower baudrate (2600)
should at least cause a loss of fewer pixels. While it did indeed reduce the lost
pixels, it did not solve the problem. No image was produced because during
fransmission the bits were counted and it was found some pixels were lost.
The analogue D-sub-9 connector is used for the pixel fransmission. The data
lines running from the FPGA to the computer lay next to the power supply for
the FPGA, a laptop and the power supply for that laptop. This could mean
some bits may fall. Also the receiving computer is running windows, which is
known for losing data from the serial port. To overcome these problems the
USB-RS232 converter on the development board is used instead. This, in
combination with giving the software reading the serial port the highest

Pieter van der Star Page 49 of 67
During internship at TNO

IS

L

&Y 74

3

%Igying development for FPGAs

15 December 2015

priority, resulted in no lost pixels. The image now looks more like the one the
camera is sending (please see figure 29). The way the image is stored is not
quite right. The top of the image is stored twice. Once at the correct position,
once in the lower parts of the image. The number of pixels is correct, but the
pixel values are noft.

Figure 29. Test image, almost like expected.

The most visible error is the one where the last block of 64 lines shows the first
64 lines. This is clearly an error in the image_storage module. While this was
corrected the tfransmitting speed was changed to the fastest option on the
pc (256000 baud). This changed the transmission time of an image from
almost 22 hours to a much more practical 4458 minutes. The settings on the
camera were also changed to frigger free-running. Thus the fime it takes to
see the fransmission stop and then push a button are removed as well. From
just the transmission data it showed the first pixels having the wrong value
(Please see figure 30). These pixels are not written to the memory. Some pixels
at the side edges of the image are incorrect as well. Still an image was
produced to see how far wrong, or correct, the image is. When taken a
closer look at the image it appears as if every second pair of pixels is
repeated (please see figure 32).

i3 2 3 4] & i) Z &

BN T |kt A D |

aaa
255
233
255
235
255
253
233
255
255
255

000
255
255
255
255
255
255
255
255
255
255

255
255
255
255
255
255
255
255
255
255
755

b LT T = T =1 =

255
255
2393
255
233
255
235
255
255
2550

255
25n

a8
255
233
255
293
255
2535
255
255
255

255
a6g

255
255
255
255
255
255
255
255
255
255

255
265

255
255
255
255
255
255
255
2935
255
235
255

255
255
253
255
2335
FLi
255
2535
255
255
255

255
255
233
255
£33
255
233
2353
255
£55
255

T Hc oog

255
255

AT

255
233

2aa

255
255
255
255

255
25g

255
255
255
255
255
255
255
255
255
255

255
255

255
255
=00
255
255
255
235
235
255
255

255
255

255
255
200
255
293
255
253
255
255
255

255
a6g

255
255
255
255
235
255
233
235
255
235

255
255

255
255
255
255
255
255
255
255
255
255
255
255

255
255
253
255
2o
255
255
253
255
255

255
acg

B3 By B RS RS B RS RS RS RS R R

Figure 30. Screenshot of the received pixel values.

58 Actually varies slightly. The first one after reset takes 04:16 the ones after that take about

04:24.

Pieter van der Star

During internship at TNO

Page 50 of 67

Slg%@gyylng development for FPGAs 15 December 2015

To get a better view on this a real image was used instead of the test image.
Pixel duplication is better seen in a real image as the values per pixel differ
much more than in the test image. The pixel duplication was found to be
frue, and this was corrected for. The resulting image can be seen in figure 31.
This image shows some strange interleaving effect. This was caused by wrong
counter limits.

iy |
ey | am ™ “
i 1N Wi TR
| 0 A TI
LT N _m \
I | o | }'Hl"‘l
L T [11

Figure 31. Real image, not completely correct.

With the counter limits adjusted the image looked much better, but not quite
as it should have been. Figure 32 shows the problems on that image. The
number of pixels per block are one pixel short of what it should be. This
means the image wraps around. The other problem is duplicate pixels. This is
showed on the right side of the image. For every line, each group of ftwo
pixels is duplicated.

The problems are now only in the test modules. Some signals are not delayed
long enough, or become active too late. All these problems will be
systematically taken care of.

Figure 32. Real image, with an error causing a wrap and pixels being repeated.

The first thing to be corrected were the counter limits. Now the image looked
good, with the exception of the first two pixels being duplicated. Also some
extra pixels were sent. Figure 33 on page 52 shows this image. The duplicate
first pixels cannot be seen at this scale and the extra pixels are cropped so it
looks like a good image. The problem of the first pixel was solved by delaying

Pieter van der Star Page 51 of 67
During internship at TNO

%@@%I lifying development for FPGASs 15 December 2015

L

the moment a counter was incremented. The extra pixels were solved by,
again, chcngmg the counter limits.

Figure 33. Correct image, slightly oversize and incorrect first pixel.

The image was now received as it should, with the exception of each last
pixel from the image parts. (16 fimes a wrong pixel at the end of a line).
These pixels had the value the previous end of the image part should have
had. Since this is not visible no image of this is given. This was caused by the
writer. it stopped too early, thus it did not write that last pixel.

After that was done a correct image was received (please see figure 34).
And this was done multiple times. Sometimes the received image was missing
some pixels, but this was caused by the computer also performing other tasks.

By viewing all the test images next to one another the progress described
here can be easily seen. Appendix VIl shows this.

Figure 34. Correct image.

Pieter van der Star Page 52 of 67
During internship at TNO

ing development for FPGAs 15 December 2015

9 Conclusion

This project was set up to look into the possible use of The MathWorks' HDL Coder as a
way to simplify the development for FPGAs. To answer the question if it is a good option
research questions have been posed. These questions, listed in chapter 4 would help to
answer this question. In paragraph 6.3 can be read that the practical trials with the HDL
Coder were not conducted. This makes answering these questions difficult, nonetheless
they will be answered. Mostly from documentation. Some of this documentation is
supplied by The MathWorks. This must be considered biased as they want fo sell the
software. Thus a little less weight is given to the documents from The MathWorks. On the
other hand the questions on the MATLAB forum are not representative of the HDL Coder
user base either. Apart from these sources a user of the HDL Coder has answered some
questions regarding the HDL Coder. These sub-questions will be answered first, then the
answer to the main question is answered. At the end of this chapter the HDL for the
Cameralink interface is discussed.

9.1 Answers to the research questions

To answer the main question sub-questions have been posed. These will be
answered here.

What is the ease of use of the software?

The ease of use is hard to tell when the software itself has not been tested. Thus an
answer to this question relies on second-hand experience. This is, for the most part,
posifive.

Is it possible to insert custom-made HDL-code into the design?

Adding custom-made HDL into the design should be easy according to the
documentation available. Paragraph 6.1 touches the subject and that chapter
refers to appendix | where this subject is also discussed. This question can be
answered with a simple yes. It is possible, but it is not an easy thing to do.

To what extent does the user need to know about digital hardware/FPGA design?
This is discussed in paragraph 6.5. As stated in that paragraph quantifying
knowledge is difficult. So to what extent is not really answerable but a list of the
required knowledge and skills is listed in table 1. The user has only one subject that
he needs to know a lot about. This is the subject of timing. This is also the most
critical part of designing digital hardware. So a hardware designer may find the
tool easier to use than someone with a Simulink backgrounds?.

Which FPGA boards are supported?

This is discussed in paragraph 6.5 as well. All boards are supported as it generates
HDL. Just as with manually written HDL, it works on all platforms as long as it is kept
generic as discussed in paragraph 8.4.

9.2 Answer to the main question

So is the HDL Coder a good option to simplify development for FPGAs?g No it is not.
As long as specific knowledge about the FPGA timing is required it does not
simplify the design. It might be used to generate an HDL framework which then
can be optimized. This depends on the quality of the HDL generated by the HDL
Coder.

57 These are not mutual exclusive. Someone with a background in designing digital circuits
may also know how to use Simulink and v.v.

Pieter van der Star Page 53 of 67
During internship at TNO

%@@Igying development for FPGAs 15 December 2015
'Jé &

Does this mean it is not a good toolg No it does not. Although still some specific
knowledge is needed the whole translation from a model in one "language"
(Simulink) intfo another (HDL) is no longer a process that needs to be done by hand.
The HDL Coder is a good tool, but not quite there yet. If The MathWorks is able to
create better documentation and if the HDL Coder can help solving the timing
issues this will make design for FPFGAs much easier.

9.3 Regarding the Cameralink description

The hardware description for the Cameralink does work. The module has been
made as generic as possible fo accommodate all kinds of chips and all the
Cameralink configurations. Not all these configurations have been so it is not
finished. The module has been proven to work in mode base, sending two ten-bits
pixels at a frequency of 40 MHz.

Pieter van der Star Page 54 of 67
During internship at TNO

ing development for FPGAs 15 December 2015

10 Recommendations

The recommendations are split infto multiple paragraphs. The first paragraph will list and
discuss the recommendations for the Cameralink HDL and the second discusses the
recommendations for the continuing line of the project. The third paragraph will list some
lessons learned and can be applied outside the project.

The recommendations are prioritized using the MoSCoW method. All the consonants (in
MoSCoW) stand for the modal verbs:

- Must

— Should

- Could

- Would
For readability those modal verbs are abbreviated to their first letter. Recommendations
indicated with must (M) have the highest priority and must be implemented or executed
to finish the product. A bit less urgent, but still a good idea to implement are the
recommendations indicated with should(S). Should means it is a good idea to realize this
recommendation but the design will function without it or the project does not depend
on this action. Could(C) indicates the recommendations that could be implemented as
long as it does not affect the other requirements or aversely affect the functionality. The
lowest priority is would (W). Would indicates ideas that may be implemented in future
versions, or tasks that might be done if all other recommendations are implemented or
done and fime allows.

10.1Recommendations for the HDL

Before the HDL can be used in production some things need to be either removed,
adapted or added. This paragraph will discuss these changes.

M Test all configurations.
At this moment only the two channel, ten bit configuration is tested. This was
done at a frequency of 40 MHz. To ensure correct behaviour at all
configurations these will have to be tested.

M Repair the testbench.
Some parts of the testbench start running out of sync after a few fransmissions.
This triggers errors while the behaviour is sfill correct. In order to simulate alll
configurations this will have to be fixed.

M Build a reset synchronizer into the Cameralink_link module. This way the
hardware in the data clock domain can be reset safely. The reset source
should be the reset signal from the Cameralink module.

M Use areset synchronizer in the design where the Cameralink module will be a
part of. The reset is not synchronized in the Cameralink module, so this must
be done in one of the higher hierarchy levels.

S Remove logic analyzer IP from the design.
During the development of the hardware a logic analyzer IP was used to look
at the signals inside the FPGA. This IP is used depending on a constant defined
in the Cameralink module. After testing the analyzer is no longer needed and
can be removed from the design. When removing the analyzer all the
corresponding signals, constants and if-statements should be removed as well.

Pieter van der Star Page 55 of 67
During internship at TNO

%@@Igying development for FPGAs 15 December 2015
'Jé &

S Cleanup the design.
Remove all unused constants, variables and pieces of commented code, as
long as they are not needed. Watch out for the conditional implementation of
the libraries in the source code of the Cameralink library. Some pieces of
code there are commented but should not be removed.

S Rewrite std_logic_vector_to_string
The function std_logic_vector_to_string does not work in Modelsim. While ISim
has no problems with the assignment of strings of unequal lengths, Modelsim
does. Adapt or rewrite this function fo make it work in Modelsim too.

S Create a list of delay times.
When using a black box in the HDL Coder delay fimes need to be entered. It
would be convenient to be able to look up the delays in a table instead of
having to be either measured or deduced from HDL. So for each chip the
delay times for all significant signals should be given. The delays of the signals
in table 3 must be known.

From To
First data clock PLL locked
Data input Data output

camera_control | cc_data
camera_control | frigger_indicator
Data input new_data

Data input New_pixel_indicator

Table 3. Signals to determine the delay of.

10.2Recommendations for the continuity

The project is not quite finished. In order to ensure the continuity of the project the
following recommendations are made.

M Acquire a license for the HDL Coder.
In order to give a better answer as to the user friendliness and to integrate the
Cameralink interface into a system the HDL Coder is needed.

M Add the Cameralink module to the Simulink environment
Create the interface for the camera in the
Check the HDL output of the HDL Coder.
In order to say something about the HDL Coder capabilities the generated
HDL should be looked af to see the readability and coding style.

M Compare with the OpenCL environment.
As the "High Performance Real-time Processing developments” project looks
info OpenCL as well as the HDL Coder the two will have to be compared. As
soon as something can be said about both they should be compared.

Pieter van der Star Page 56 of 67
During internship at TNO

ing development for FPGAs 15 December 2015

10.3Lessons learned

Apart from the recommendations that are specific to this project other
recommendations can be made. These are listed here.

M Start with acquiring a license.
When a license is needed, acquiring one must be one of the first things done
in the project. If a fime-limited license is used, let the activation take place
when the license is needed, but then the project can continue when the
license is needed. So when developing for Xilinx it would be helpful to be able
to use Modelsim. But before doing his the capabilities of the Vivado simulatorée
should be looked into.

C Acquire alicense for Modelsim.
The ISim simulator cannot display the delta delays and this makes the
development a little more difficult and thus a little more time consuming.

60 The successor of ISim.

Pieter van der Star Page 57 of 67
During internship at TNO

%@@Igying development for FPGAs 15 December 2015

A4

11 Glossary

(Design)Area
The size of (a part of) the design;
how big a space the design takes
on the chip.

Bit-depth
The number of bits used to hold a
value. A bit-depth of 10 bits means

the value can range from 0 to 1023.

CoaXPress
A standard for video-tfransmission
and camera control with power
being supplied over the data
cables [26].

Component
A "virtual chip" in a hardware
description when used in an entity.

Deserialization
The inverse operation of
serialization. l.e. get serial input and
output it parallel.

Entity
A "virtual chip" in a hardware
description.

Generic
A VHDL keyword that is used to
generate hardware under given
conditions. Similar to #define in C-
languages.

Instantiation
"Virtual placement and soldering"
of components in a hardware
description.

PCle
A high-speed computer bus to
expand the capabilities of the
computer

Pieter van der Star
During internship at TNO

Port
"Virtual pins" of entities in the
hardware description.

Phase-Locked Loop
A circuit used to change the phase
and/or frequency of a periodic
signal.

Pipeline
A row of signal manipulations or
calculations.

Pixel depth
The number of bits used to hold the
value of the pixel. A pixel depth of
10 bits means the pixel can have a
(greyscale) value ranging from 0 to
1023.

Planar movement
Movement parallel to a plane with
only two degrees of freedom, not
counting rotations, to reach alll
positions on that plane.

PLL
Please see Phase-Locked Loop

Spec
Specification

Toolchain
A series of software applications
that work in series fo complete a
certain task. In this case the
compilation and synthesis and/or
simulation of the hardware is
meant.

Tri-state
(A signal) that can be both input
and output. (Output '0', Output 'T'
and input (three options)

Page 58 of 67

implifying development for FPGAs

12 References

15 December 2015

This list of references contains all sources used fo create the Cameralink interface and
all documentation regarding the interface, including this report. So some references are
listed here, but not referenced in this document. For the webfora the original poster is
mentioned as author. This is in most cases not the only "author". The order of the
references is arbitrary and does not say anything about the chronological order nor does
it say anything about the importance or extent of use.

12.1Textual documents

(1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Author:
Title:
Created in:
Viewed on:

Author:
Title:

Created in:
Revised in:

Author:
Title:

Created on:

Revised on:

Author:
Title:

Created in:

Author:
Title:

Created on:

Author:
Title:

Created on:

Authors:
Title:

Created in:
Author:
Title:
Created:
Authors:

Title:

Created on:

Photon focus

Application note ANO21 V1.0
July 2004

28 September 2015

Texas Instruments

Texas Instruments DSYOCR287/DS90CR288A +3.3V Rising
Edge Data Strobe LVDS 28-Bit Channel Link - 856MHz)
October 1999

March 2013

Avnet

Avnet LCD Interface Specification (ALl) Revision 1.00
Unknown

? May 201081

Cameralink

Specifications of the Cameralink Interface Standard for
Digital Cameras and Frame Grabbers

October 2000

Adimec
Adimec-4000M Operating and Technical Manual
6 May 2003

Xilinx
Spartan-6 Libraries Guide for Schematic Designs (v 11.4)
2 December 2009

C. E. Cummings, D. Mills

Synchronous Resetse Asynchronous Resets? | am so
confused! How will | ever know which to use? Revision 1.1
2002

Alpha Data
FMC-Cameralink User Manual v2.3
Unknown

Active Silicon Ltd ; Chris Beynon, Adimec Advanced
Image Systems BV; Jochem Hermann

Coaxpress the next generation digital interface Rev. 1.0
27 November 2009

61 |t could also be 3 September as the date notation was numerical in the source document.

Pieter van der Star
During internship at TNO

Page 59 of 67

A
[10]

[11]
[12]

[13]

[14]

[15]
[16]

[17]
[18]

[19]

[20]

%@%@ying development for FPGAs

Author:
Title:

Created on:

Author:
Title:
Created in:

Author:
Title:

Created on:

Author:
Title:

Created in:

Author:
Title:

Created on:

Authors:
Title:

Created on:

Author:
Title:

Created in:

Authors:
Title:
Created in:

Author:
Title:

Created on:

Author:
Title:

Created on:

Author:
Title:
Createdin:
Revised in:

Pieter van der Star
During internship at TNO

15 December 2015

National Instruments
PCI Express - An Overview of the PCI Express Standard
5 November 2015

Baumer
Baumer HXC 13 v14 users guide
September 2012

Adimec
Manual ADIMEC 4000 M/D
6 May 2003

Photon focus

User Manual MV 1-D1024E Cameralink Series CMOS Area
Scan Cameras September 2014 V1.0

September 2014

Xilinx
Spartan-6 FPGA SelectlO Resources User Guide v.1.7
21 October 2015

Xilinx; Nick Sawyer
Source-Synchronous Serialization and Deserialization (up
to 1050 Mb/s) v1.2
19 November 2013

Basler AG

Easier than ever - What to Consider in Modern (Po)CL
Camera Systems (Setup, Advantages, and Costs)
September 2012

Texas instruments; National Semiconductor
Channel Link Il Design Guide
2011

Basler Vision Technologies
Camera Link Technology Brief
28 March 2001

Gandhi Puvvada

Steps to run compxlib fo compile Xilinx libraries in
Modelsim SE10.1 for EET101/EE201L/EES60 students as well
as USC ITS

26 January 2012

The MathWorks Inc.
HDL Coder User's Guide
March 2012

March 2015

Page 60 of 67

lifying development for FPGAs

12.2Websites

[21] Avuthor:
Title:

Created on:
Available at:
Viewed on:

[22] Author:
Title:
Created on:
Available at:
Viewed between:

[23] Author:
Title:
Created on:
Available at:

Viewed between:

[24] Author:
Title:
Created on:
Available at:

Visited on:

[25] Author:
Title:
Created on:
Available at:

Visited on:

[26] Author:
Title:
Created on:
Available at:
Viewed between:

[27] Author:
Title:
Created on:
Available at:
Viewed between:

[28] Authors:
Title:

Created on:
Available at:
Viewed on:
Note:

Pieter van der Star
During internship at TNO

15 December 2015

Bureau International des Poids et Mesures

Sl Brochure: The International System of Units (SI)[8th
edition, 2006; updated in 2014] Chapter 3

unknown
http://www.bipm.org/en/publications/si-brochure
13 November 2015

TNO

About TNO

unknown
https://www.tho.nl/en/about-tno/
25 August and 13 October 2015

TNO

Intelligent Imaging

unknown
https://www.tho.nl/nl/samenwerken/expertise/technical-
sciences/intelligent-imaging/

25 August and 17 November 2015

TNO

Optics

unknown
https://www.tno.nl/en/collaboration/expertise/technical-
sciences/optics/

23 November 2015

TNO

Optomechatronics

unknown
https://www.tho.nl/nl/samenwerken/expertise/technical-
sciences/optomechatronics/

23 November 2015

CoaXPress

What is CoaXPress?

unknown
http://www.coaxpress.com/coaxpress.php
24 August and 28 August 2015

The MathWorks Inc.

MathWorks, Simulink - Simulation and Model-Based Design
unknown

http://nl.mathworks.com/products/simulink/

26 August and 27 August 2015

EE Times; Saurabh Verma, Ashima S. Dabare, Atrenta:
Design How-To, Understanding clock domain crossing
issues

17 July 2012

http://www.eetimes.com

26 October 2015

Image has been redrawn.

Page 61 of 67

%@@Igying development for FPGAs
'Jé &

15 December 2015

[29] Authors: EDN Network; Tejas Dave , Amit Jain & Divyanshu Jain:
Title: Synchronizer techniques for multi-clock domain SoCs &
FPGAs
Created on: 30 September 2014
Available aft: http://www.edn.com
Viewed on: 26 October 2015
[30] Author: Mikrocontroller.net forum; Andreas N.
Title: Problem mit Xilinx SERDES bei EMV Stérung
Created on: 22 May 2013
Available aft: http://www.mikrocontroller.net
Viewed on: 8 September 2015
[31] Author: NoOASIC; Guy Eschemann
Title: How (not) to design a 2DFF Synchronizer
Created on: 10 December 2012

Available at:

Viewed between:

http://noasic.com/blog/how-not-to-design-a-2dff-
synchronizer/
16 November and 17 November 2015

[32] Author: The MathWorks Inc.
Title: Simulink Simulation and Model-Based Design
Created on: unknown
Available at: http://nl.mathworks.com/products/simulink/
Viewed on: 25 August 2015

[33] Author: CoaXPress
Title: CoaXPress
Created on: unknown

Available at:
Viewed between:

http://www.coaxpress.com/
24 August and 28 August 2015

[34] Author: Quality magazine; John Egri
Title: Consider CoaXPress
Created on: 1 February 2013

Available at:

http://www.qualitymag.com/articles/?0956-consider-
coaxpress

Viewed on: 31 August 2015
[35] Author: VolkerSchatz; Volker Schatz
Title: The Camera Link camera interface
Created: unknown
Available at:

Viewed between:

http://www.volkerschatz.com/hardware/clink.ntml
2 September and 8 October

[36] Author: National Instruments
Title: What Are The Differences Between Base, Medium, and
Full Camera Link Configurations?
Created on: 27 February 2013
Updated on: 24 April 2015

Available at:

http://digital.ni.com/public.nsf/allkb/
2EE80B8C381D61D286257B1F005674A5

Viewed between: 3 September and 1 October 2015

Pieter van der Star
During internship at TNO

Page 62 of 67

lifying development for FPGAs 15 December 2015

[37] Author: Xilinx Forum; patric.lewis
Title: Spartan 6 Camera Link Receiver
Created on: 3 August 2012
Available aft: https://forums.xilinx.com/t5/General-Technical-
Discussion/Spartan-6-Camera-Link-Receiver/td-p/252640
Viewed on: 7 September 2015
[38] Author: StackExchange.com - Electrical Engineering; sj755
Title: How to Add the Xilinx Library to Modelsim
Created on: 9 March 2013
Available aft: electronics.stackexchange.com/questions/60319/

Viewed between: 20 October and 19 November 2015

[39] Author: Xilinx
Title: ISE - Simulation libraries
Created on: unknown
Available aft: http://www xilinx.com/support/documentation/

sw_manuals/xilinx11/ise_c_simulation_libraries.ntm
Viewed between: 20 October and 19 November 2015

[40] Author: Xilinx Forum; Pawel
Title: BUFPLL problems (driving SERDES)
Created on: 14 June 2014
Available at: https://forums.xilinx.com/t5/Spartan-Family-FPGAs/
BUFPLL-problems-driving-SERDES/td-p/4898602db=5
Viewed on: 23 November 2015
[41] Author: Xilinx Forum; PietervanderStar
Title: ISIM loop unroliment gives multiple drivers2
Created on: 27 October 2015
Available at: https://forums.xilinx.com/t5/Simulation-and-Verification/
ISIM-loop-unrollment-gives-multiple-drivers/m-p /662007
Viewed on: 27 October 2015
[42] Author: The MathWorks Inc.
Title: HDL Coder
Created on: unknown
Available at: http://nl.mathworks.com/products/hdl-coder/
Viewed between: 27 August and 2 December 2015
[43] Author: The MathWorks Inc.
Title: Vision HDL Toolbox
Created on: unknown
Available at: http://www.mathworks.com/products/vision-hdl/
Viewed on: 27 August 2015
[44] Author: The MathWorks Inc.
Title: Using Multiple Clocks in HDL Coder
Created on: unknown
Available at: http://nl.mathworks.com/help/hdicoder/examples/using-
multiple-clocks-in-hdl-coder.ntml
Viewed on: 14 December 2015
Pieter van der Star Page 63 of 67

During internship at TNO

A
[45]

[46]

[47]

[48]

[49]

[50]

[51]

%@ﬂé’g@/ing development for FPGAs

Author:
Title:

Created on:

Available at:

Viewed on:

Author:
Title:

Created on:

Available at:

Viewed on:

Author:
Title:

Created on:

Available at:

Viewed on:

Author:
Title:

Created on:

Available at:

Viewed on:

Author:
Title:
Created on:

Available aft:

Viewed on:

Author:
Title:

Created on:

Available at:

Viewed on:

Author:
Title:

Created on:

Available at:

Viewed on:

Pieter van der Star
During internship at TNO

15 December 2015

MATLAB Central; Liclin

A question about model-based design for video/image
processing

14 August 2015
http://nl.mathworks.com/matlabcentral/answers/233837
27 August 2015

MATLAB Central; Tom

HDL Coder "Requested CP number exceeds total number
of register-to-register CPs"

16 April 2015
http://www.mathworks.com/matlabcentral/answers/
203913

27 august 2015

MATLAB Central; Tamer

Found unsupported division expression for HDL ode
generation; signed input data type is not supported for
division with Floor RoundMode

6 July 2015
http://www.mathworks.com/matlabcentral/answers/
228493

27 August 2015

MATLAB Central; Tamer

Error: Cast between fixpt and floating point type is not
supported

19 June 2015
http://www.mathworks.com/matlabcentral/answers/
224524

27 August 2015

MATLAB Central; Shubham Kapoor

how to use exp funnction in hdl coder?

22 April 2015
http://www.mathworks.com/matlabcentral/answers/
212861

27 August 2015

MATLAB Central; Tom

Integrating HDL Coder, System Generator and
VHDL/Verilog projects

12 May 2015
http://www.mathworks.com/matlabcentral/answers/
216394

27 August 2015

MATLAB Central: fl

Does HDL Coder support testbench generation for FFT
block in Simulink?

21 February 2013
http://www.mathworks.com/matlabcentral/newsreader/
view_thread/326951

2 December 2015

Page 64 of 67

implifying development for FPGAs

[52]

[53]

[54]

[55]

[56]

12.30ther documents

[57]

[58]

Authors:

Title:

Created on:
Available at:

Viewed on:

Author:
Title:

Created on:
Available at:
Viewed on:

Authors:
Title:
Created on:

Available até2:

Viewed on:

Author:

Title:
Created on:
Available at:

Viewed on:
Author:

Title:
Created on:

Available at:

Viewed on:

Author:
Title:

Document type:

Created on:

Author:
Title:

Version:

Document Type:

Created on:

15 December 2015

Electronic Engineering Journal; Stephan van Beek and
Sudir Sharma, MathWorks

Best Practises for FPGA Prototyping of MATLAB and
Simulink Algorithms

25 August 2011
http://www.eejournal.com/archives/articles/
20110825-mathworks/

27 August 2015

BDTI, InsideDSP

MathWorks' HDL Coder and Verifier: High-Level Synthesis
Expands to MATLAB Users

4 September 2012
http://www.bdti.com/InsideDSP/2012/09/05/MathWorks
27 August 2015

LinkedIn; Rexa Ameli, Nutaq

What is your way of writing DSP HDL codes?

4 May 2012

https://www linkedin.com/grp/post/1817484-112741367
27 august 2015

The MathWorks Inc.

Create a Custom Block

unknown
http://nl.mathworks.com/help/simulink/ug/tutorial-
creating-a-custom-block.html

27 August 2015

The MathWorks Inc.

FPGA Design and Codesign

unknown
http://nl.mathworks.com/solutions/fpga-design/simulink-
with-xilinx-system-generator-for-dsp.html

2 December 2015

J.E.J. op den Brouw

Digitale Systeem Engineering 1 2013/2014
Slides used in lessons

unknown

IEEE
Standard VHDL Synthesis Packages (IEEE Std 1076.3,
NUMERIC_STD)

2.4
VHDL Library
12 April 1995

62 This is only available for group members, but when using Google's cache it can be read by
non-members as well.

Pieter van der Star
During internship at TNO

Page 65 of 67

A

L

13

14

%@@Igying development for FPGAs 15 December 2015

List of figures

Figure 0. Design blocks 1o put in the FPGA. ...t Title page
Figure 1. Simplified organisation chart Of TNO.c..ociiiiiiiiceeeceee et 8
Figure 2. Design sketch of the demonstrator SyStem. ... 10
Figure 3. Simplified block diagram of the control loops for the demonstrator system........ 10
Figure 4. Stages of the project as PIANNEd. ... 13
Figure 5. "Position" of the camera iNterfaCe. ... 13
Figure 6. Stages of the project with the time they tOOK. ... 14
Figure 7. HDL COAEr WOIKFIOW [42]...ccvieiieieeiieieeieeieeie ettt ettt ve e eve e ve e be e se e be e e e e 17
Figure 8. Bif reception and reordering [2]. ..cceeceeceecieeeeieeceeeie ettt be v eis 23
Figure 9. An abstract overview of the CameraLlink module.ccocovvvervieninincenneneneeene 23
Figure 10. A hierarchical overview of the Cameralink module. (Clocks and resets are left
DU ettt et ettt e et e et e et e et e et e et e eabeetbeeabeeateeateetaeetaeetaeeabeetaeeateeateeaaeeateeareans 24
Figure 11. Timing diagram of the one_shot_hold module..........ccecevivieiecenecceeeeeeee 25
Figure 12. To bring up the tool support the flexibility has to come down and v.v. 28

Figure 13. To bring up the "genericness" the "constantness" has fo come down and v.v..29
Figure 14. Clock domains, grey runs on the (multiplied) data clock, the white parts run on

THE SYSTEIMN CIOCK. ..ottt ettt et e st e e tesaa e esaeesaessaeesaesssassnenns 32
Figure 15. Verification methodology for the clock crossing [28]. ...ccveeveeeecieneecieeeeeeeveee 34
Figure 16. Timing diagram for the synchronizer and deglitcher for the clock domain

CTOSSING . cuvtetteeereeteeteeteeeteeeteeteeseeeaeeteessseesseasseesseasssasseasssasssassessseasseassesssesssesssesssesssesssesssesssessseans 35
Figure 17. Testbench encapsulating the Cameralink module...........ccveoieeieiieceeciecieennenee. 36
Figure 18. Schematic view of the dataflow in the FIFO synchronizer.cccoceeveevevieenenenne. 38

Figure 19. Processes of the testbench and the communication between the processes.41
Figure 20. Test image from the Adimec 4000m/D camera. Left: full frame, right: top left

COMMNET . citieeiteeete e ettt ettt et e s bt e s ttesabeesabeessateesabeesabaesa bt e e st eesaseesasaeensteesste e sbeesaseesabaessneesaseesnseennns 44
Figure 21. Probes on the SD CArd SIOt......oiiiiiieiieeeteeetetee ettt 45
Figure 22. Screenshot from the logic analyzer with Xdata 2 showing spikes while it is

EXPECTEA TO € QI ZETO. oottt et a e e e e e seeesnne e 45
Figure 23. ChipScope screenshot with strange dips in the constant high signai. 46
Figure 24. Calculations for the iMAQE SIZE.......cuiiiieeeeeeeeeeeeeeee e 46
Figure 25. Simplified block diagram of the image storage with RS-232 transmitter............. 47
Figure 26. Calculations for the image size of a 512 by 512imMaAge.coveeveeveeciecieeceeieeee. 48
Figure 27. First test image, clearly not qQuite COIMECT. ... 48
Figure 28. Second test image, still NOT COIMECT. .. 49
Figure 29. Test image, almost like eXPECTE. ..o 50
Figure 30. Screenshot of the received pixel VAIUES.c.ocveieiieiieieieececeee e 50
Figure 31. Real image, not completely COMECT. ... 51
Figure 32. Real image, with an error causing a wrap and pixels being repeated. 51
Figure 33. Correct image, slightly oversize and incorrect first piXel.......ccoveeeeeieeieeieceeenenne. 52
FIGUIE 34, COIMECT IMUOGE. ..ottt ettt et ettt et e be e be e be e be e beesbe e beanseenseennes 52

List of code fragments

Code fragment 1. Invalid configuration of the Cameralink module.cccccceevveveeiennnns 26
Code fragment 2. Example of chip-specific hardware selection.........ccccceeeeecieciicieecieenen, 28
Code fragment 3. Declaration of the custom type CameralLinkNumberOfBuffers. 30
Code fragment 4. Example of the evaluation function for the
CameralinkNUMBberOfBUTfErs 1YPE. ..ottt 30
Code fragment 5. Definition of the aliases for the librari€s.coeveeeecieviineeeeeeeeeeens 31
Code fragment 6. Usage of the aliases for the lioraries.ooeeeeeveveeeeeecieceeeeeeeeeeens 31
Code fragment 7. Example of a conversion from a std_logic_vector into a string............. 43
Pieter van der Star Page 66 of 67

During internship at TNO

ing development for FPGAs 15 December 2015

15 List of tables

Table 1. Knowledge required when using the HDL COdET.cuvviieiieiieiieieeieeieeeeeeveeee 18
Table 2. List with number of pixels per fransSmMISSION.c.occuiceieiieieeeeee e 49
Table 3. Signals to determine the delay Of. ... 56

16 List of formulas

Formula 1. Statement that needs to be frue in order for the deglitcher to work................. 32
Formula 2. FOrmula for the MTBF [S57]. .ottt ettt ettt ettt 33
Formula 3. Formula for the minimum system ClOCK.ccuvecuieiieiieeeeeeeeeee e 33
Formula 4. New formula for the minimum system CIOCK.coovvieerieeiiieiiiceeeceecee e, 33
Formula 5. Formula to calculate the number of BUFFErs. ..., 34
Pieter van der Star Page 67 of 67

During internship at TNO

Appendix |. Expanding the use of Simulink's HDL
generation

Number of pages: 4

Description: This document describes the things to keep in mind when designing HDL
that is to be used with The MathWorks' HDL coder and the things to think
of when designing in Simulink for HDL generation. This document is written
with the design of a system with a camera as input in mind.

Expanding the use of Simulink's HDL
generation

In order to use a camera as an input on an FPGA implementation made with Simulink, the
camera-interface will have to be a Simulink block as well. According to The MathWorks it is
possible to define custom Simulink blocks. These blocks are S-functions [1]. These are system
functions and are written in MATLAB, C, C++ or FORTRAN [2]. If a function is described as HDL
a black-box will need to be used [4]. This black box is described in MATLAB. There the ports
are created and the entity and architecture names are connected?, the delay in clock
pulses is mentioned etc. [5]. The behaviour can be described in both VHDL and Verilog. The
help-pages from The MathWorks are behind a license check and cannot be viewed [§].
There is a Wiki page that explains how this works for Xilinx [7]. It is possible to do this for Altera
as well, but there are no good examples available [8]. Via third-party websites manuals of the
HDL coder can be downloaded [9]. The black-box is not used for simulation, only for HDL
generation. This means the developer has to create a simulation model [10]. When using the
Altera DSP Builder the HDL Import block can be used. This way HDL or a Quartus Il project can
be imported2. The imported description is used to generate a simulation model [11]. It is also
possible to use the EDA Simulator Link to connect the Simulink simulation to for example
Modelsim [10][12]. It depends on the application whether or not a simulation model is
required. If the entire system needs to be simulated some form of a simulation model is
needed. But how good must this model be. If the inputs on the model are the CoaXPress
signals a full model is required. If images are the input only a correct delay supplemented
with some control signals would be sufficient. Another option is to create the interface in
Simulink itself. This can be done specific to the manufacturer with the DSP builder from Altera
or the System Generator from Xilinx. It is not clear however to what extend these are usable
for things other than DSP's. Both Simulink libraries require the purchase of a license
[13][14][15][16].

The problems that might occur are also looked into, but these are mostly limited to not
reading the instructions or errors in the written code [17][18].

The information The MathWorks provides is only enough to know if it is possible to expand the
use of the Simulink environment. The question about feasibility remains yet unanswered. The
company BitFlow makes framegrabbers and has created a MATLAB and Simulink adaptor for
their framegrabbers. This adaptor enables their products to function as input for both MATLAB
and Simulink. This adaptor is a piece of software that creates a connection between the
drivers of the framegrabber and the Image Acquisition Toolbox framework (please see figure
1) [19]. This would mean that the interface that is to be developed must use the drivers of the
FPGA board. This in turn means the drivers become a major criterion in the selection process
for boards. Not only must the current operating systems be supported, but the support must
be confinued for future versions as well. To what extend that is needed is determined by the
planned economic and technical lifespan of the board. In other words for how long does the
board work and for how long can this board remain profitable and does it not obstruct the
development process of the system.

Using an adaptor means part of the expansion of Simulink must be done with separate
software and cannot be done using MATLAB or Simulink. However the adaptor is only needed

1 This is only the case for VHDL, when using Verilog the modulename must be entered [3].
2 After this research was done Altera released the next generation of Quartus. It is unknown if
this capability still exists.

Pieter van der Star Page 1 of 5
During internship at TNO

Expanding the use of Simulink's HDL generation 14 december 2015
st Appendix to Simplifying development for FPGAs

if calculations will be done in either MATLAB or Simulink with input from the card or if the results
are written to that card.

If an adaptoris needed the Image Acquisition Toolbox Adaptor Kit is needed. This is a C++
framework. The adaptoris a DLL (Windows) or a shared library (Linux). The functions of the
framework will have to be written by the programmer, possibly extended with custom classes
to pass on the data internally. All required functions are explained in the Image Acquisition
Toolbox Adaptor Kit - User's Guide. That user guide gives an example algorithm for some of
the functions [19].

The HDL Coder manual contains a list with the supported floating-point operations. These
operations are partially dependant of the FPGA manufacturer. For some of the unsupported
functions HDL Coder can generate a lookup-table to replace the function. The lookup-table
functionality of Simulink cannot be used. This applies to Simulink counters as well [3]. Given
these limitations and other hints in the manual it looks like a lot of knowledge about FPGAs
and hardware design is still required in order to generate good HDL. An important upside of
the HDL Coder is the conversion from floating to fixed point numbers. This can be done within
Simulink which makes the process of determining the size of the fixed point number easier.

From all this can be concluded that expanding the use of the Simulink environment is possible.
The feasibility is something this first exploration cannot answer. More in-depth research, and
referably first-hand usage may provide an answer to this question.

MATLAB code files (MATLAB commands)

A

y

Image Acquisition Toolkit engine

A

y

Adaptor DLL

A

y

Vendor Interface

A

y

Hardware

Figure 1. Connection between the adaptor and the Toolkit [20].

Pieter van der Star Page 2 of 5
During internship at TNO

Expanding the use of Simulink's HDL generation

14 december 2015

st Appendix to Simplifying development for FPGAs

(1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Author:
Title:
Created on:

Available at:

Viewed on:

Author:
Title:
Created on:

available at:

Viewed on:

Author:
Title:
Created in:
Revised in:

Author:
Title:

Created on:

Available at:

Viewed on:

Author:
Title:
Created on:

Available at:

Viewed between:

Author:
Title:
Created on:

Available at:

Viewed on:
Author:

Title:
Created on:
Available at:
Viewed on:
Author:

Title:
Created in:

Available at:

Viewed on:

Pieter van der Star
During internship at TNO

The MathWorks Inc.

"Create a Custom Block"

unknown
http://nl.mathworks.com/help/simulink/ug/tutorial-
creating-a-custom-block.html

27 August 2015

The MathWorks Inc.

"What Is an S-Function?"

unknown
http://nl.mathworks.com/help/simulink/sfg/what-is-an-s-
function.html

27 August 2015

The MathWorks Inc. (2012)

HDL Coder User's Guide, version 3.6 release 2015a
March 2012

March 2015

Matlab Central; Tom

"Integrating HDL Coder, System Generator and
VHDL/Verilog projects"

12 May 2015
http://nl.mathworks.com/matlabcentral/answers/216394-
integrating-hdl-coder-system-generator-and-vhdl-verilog-
projects

27 August 2015

The MathWorks Inc.

"Black box for including custom HDL code"

unknown
http://nl.mathworks.com/help/hdicoder/ref/hdl.blackbox-
class.ntml

27 August 2015 en 28 August 2015

The MathWorks Inc.

"MathWorks Account Login"

unknown
http://nl.mathworks.com/help/hdicoder/ug/include-
custom-hdl-code.html

28 August 2015

CASPER; Jack Hickish

" Tutorial HDL Black Box "

4 September 2013
https://casper.berkeley.edu/wiki/Tutorial_HDL_Black_Box
28 August 2015

Altera Forum BMX

"MOving from Vhdl code to simulink black box"

April 2010
http://www.alteraforum.com/forum/showthread.php2t=2
2790

28 August 2015

Page 3 of 5

Expanding the use of Simulink's HDL generation

14 december 2015

st Appendix to Simplifying development for FPGAs

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Author:

Title:
Created on:
Available at:

Viewed on:

Author:
Title:

Created on:
Available at:

Viewed between:

Author:

Title:
Created in:
Author:

Title:
Created on:
Available at:
Viewed on:
Author:

Title:
Created in:
Available at:
Viewed on:
Author:

Title:
Created on:

Available at:

Viewed on:

Author:

Title:
Created on:
Available at:

Viewed on:
Author:
Title:
Created in:

Available at:

Viewed on:

Pieter van der Star
During internship at TNO

Matlabsite

"HDL coder documentation download"
unknown
http://www.matlabsite.com/4516/hdl-coder-
documentation-download.html

2 September 2015

MATLAB answers; Sam

" Simulink Library from my own Block created using my
hand-written HDL code "

24 January 2012
http://www.mathworks.com/matlabcentral/answers/
26950-simulink-library-from-my-own-block-created-using-
my-hand-written-hdl-code

27 August 2015 and 28 August 2015

Altera
Black-Boxing in DSP Builder, version 1.0
October 2005

The MathWorks Inc.

"HDL Verifier"

unknown
http://nl.mathworks.com/products/hdl-verifier/
28 August 2015

YouTube; DSPMinion

"FPGA: Altera Advanced DSP Builder 8.0 Demo Section 1
of 3"

May 2008
https://www.youtube.com/watchev=dSxgM7S2upA

28 August 2015

The MathWorks Inc.

" Using Altera DSP Builder Advanced Blockset with HDL
Coder"

unknown
http://nl.mathworks.com/help/hdicoder/examples/using-
altera-dsp-builder-advanced-blockset-with-hdl-
coder.html

28 August 2015

The MathWorks Inc.

"Create Xilinx FPGAs and Zyng SoCs "

unknown
http://nl.mathworks.com/solutions/fpga-design/simulink-
with-xilinx-system-generator-for-dsp.html

28 August 2015

Altera Forum; Toks

"Information needed: Altera DSP library"

May 2012
http://www.alteraforum.com/forum/showthread.php?
t=34524

28 August 2015

Page 4 of 5

Expanding the use of Simulink's HDL generation

14 december 2015

st Appendix to Simplifying development for FPGAs

[17]

[18]

[19]

[20]

Author:
Title:
Created on:

Available at:

Viewed on:

Author:
Title:
Created on:

Available at:

Viewed on:

Author:
Title:

Created on:

Available at:

Viewed on:

Author:
Title:

Created in:
Revised in:

Pieter van der Star
During internship at TNO

Xilinx User Community Forum;schmitt.maximilian1@web.de
"Matlab Simulink black box sub module”

17 December 2013
http://forums.xilinx.com/t5/New-Users-Forum/Matlab-
Simulink-black-box-sub-module/td-p/393317

27 August 2015

StackOverflow; skaffman

"s-function in simulink MATLAB"

21 January 2012
http://stackoverflow.com/questions/8953759/s-function-in-
simulink-matlab

27 August 2015

Opli

"New Adapter Connects BitFlow Frame Grabbers with
Mathworks Image Acquisition Toolbox Software"

16 August 2012
http://www.opli.net/magazine/imaging/2012/
bit_flow_matlab.aspx

31 August 2015

The MathWorks Inc. (March 2015)

Image Acquisition Toolbox Adaptor Kit - User's Guide,
version 1 release 2015a

September 2005

September 2015

Page 5 of 5

Appendix Il. Selecting a CoaXPress card

Number of Pages: 5

Description: This document describes the process of selecting a CoaXPress card and
CoaXPress IP.
Note: This document was written in the last full week of August 2015. The

delivery times and product specs may now be different.

Selecting a CoaXPress card

In order to connect the camera's currently in use on the demonstrator system, two different
interfaces are needed. One camera, the Baumer HXC 13, uses Cameralink. The other
camera, the Optronis CP80-3-M/C-540 uses CoaXPress. A Cameralink card has already been
ordered but for the CoaXPress there is still some research to be done. The intfernet has been
searched for interface cards that have or support CoaXPress. At the end of the search nine
cards were found. For a list of these cards, please see table 1 on page 4. The items on this list
have been compared against one another depending on the specifications below:

- Interface support

- Speed of the images

— Power-over-CoaXPress

— Number of inputs

- Image sizes

— Memory size

— User-programmable FPGA on print

— Availability of manufacturers HDL code (IP)

— Qutput protocol

After this comparison the Matrox Radient eV-CXP and the Euresys COAXLINK Quad G3 could
be eliminated. Both those cards have no FPGA and their output is PCle, which means that
they cannot be easily connected to an FPGA. Both cards were added to the comparison to
see how the "FPGA-boards" compare to the "non-FPGA-boards". The first one of the two does
have a small plus: it is available in both a Cameralink and a CoaXPress version, meaning
code written for that specific card does not need to be rewritten when switching between
the two protocols.

Because an on-card FPGA is desired the availability of HDL source code of the IP's and their
language have been looked at. In the datasheets and product overviews this is only
mentioned for the Techway Highs speed video treatment CXP. To get this information for the
other cards a bit more research was needed. For the Gidel Proce V has no HDL code
examples could be found. Aside from the product brief nowhere is it mentioned this board
can be used with OpenCL. Also there are no HDL examples available nor is there a detailed
description of its hardware! available. The only advantage this card has is that it has room for
both CoaXPress and Cameralink expansion cards.

For both KAYA instruments Open FPGA Platform cards, no hardware is available. However
there is correspondence with a KAY A representative about this.

For the Gidel CoaXPress PCle Frame Grabbers is also no hardware available though they sell
a Proc Dev Kit with which they also sell an IP licence for one year.

Apart from the cards with a PCle output there are also two cards with an FMC connector.
These cards are the FMC CXP 4110 from Sensor to image and the FPGA Mezzanine Card for
CoaXPress from KAYA instruments.

The card from Sensor to image has IP available, but for a limited number of FPGAs and they
use a softcore. They sell the card via E-bay which causes some doubts about the reliability.
The other card, FPGA Mezzanine Card for CoaXPress (KAYA), has a hardware manual
available as well as an IP. The manual cannot be downloaded freely but will be supplied with
the card.

1 Here the non-configurable parts of the card are meant.

Pieter van der Star Page 1 of 5
During internship at TNO

Selecting a CoaXPress card 15 december 2015
2nd Appendix to Simplifying development for FPGAs

The last card is the High Speed Mezzanine Card (HSMC) for CoaXPress(KAYA). This card has,
as well as the FPGA Mezzanine Card for CoaXPress(KAYA), a hardware manual and an IP
available.

Because of the less then optimal experience with Gidel in the past all their products are
dropped. Taking this all info consideration, only the Techway High speed video treatment
CXP card and the four KAYA cards remain. A good thing to note is the inconsistency in the
documentation of the High Speed Mezzanine Card(KAYA). It has four inputs according to the
product brief, but ordering of this configuration not possible. In practice this causes four of the
inputs to remain unused. The advantage of the FPGA Mezzanine Card for CoaXPress is that
the card is future proof because the connectors on the card already comply with the vision
on the connectors and cables as defined in the CoaXPress Roadmap.

To further reduce the selection the specifications of the camera are compared against the
remaining cards. The camera has a speed of up to 25 Gbps with four channels in use. With
one channel this is 6.25 Gbps. This means the cards must have at least four inputs, each with
a speed of 6.25 Gbps, to be able to make the most of the camera. All remaining cards
comply and the camera poses no further limitations.

Looking at pictures of all of the cards, those pictures that are available at least, it seems the
FPGA Mezzanine Card for CoaXPress(KAYA) is used in the solution from Techway (please see
figure 1). It is hard to say for sure with just the information from the datasheets because the
FPGA itself also determines some of the characteristics. If this is the KAYA product, this means
KAYA is, at the moment, the only manufacturer supplying products at the required quality
level.

Figure 1. The board from Techway (left) with the KAYA FMC card (right)?

The camera's specifications have not led to a decisive answer. This means the pricing and
delivery times start to play arole. It has been decided to contact Techway for pricing and
delivery times? of the cards. For KAYA this contact has already been made and the delivery
fime of the Komodo CoaXPress Open FPGA Platform card is a week, and six weeks for the
FPGA Mezzanine Card for CoaXPress.

For the FMC en HSMC cards KAYA sells adapters from HSMC to FMC and vice versa. This
enables connecting the cards to both Xilinx and Altera boards.

2 |n September of 2015.

Pieter van der Star Page 2 of 5
During internship at TNO

Selecting a CoaXPress card 15 december 2015
2nd Appendix to Simplifying development for FPGAs

Addendum 28 August 2015:
The representative of KAYA stated KAYA needs more time to work on the documentation. This
is not good for the confidence in the company.

Techway has not yet reacted to inquiries in the pricing and delivery times. At the next
moment of contact the support and availability of IP needs to be asked after.

Addendum 31 August 2015:

During the research into the expansion options of Simulink it was found the drivers of the card
are an important factor in the connection between the board and Simulink3. This connection
is put between the drivers and Simulink. For some framegrabbers and cameras these
connections are already made. It might be a good idea to ask if this is also the case for the
selected cards.

Contact with Techway hinted they did not have their solution marked-ready. There is still
some e-mail contact with Techway about the delivery time.

Addendum 1 September 2015:

Because the delivery times of both KAYA and Techway are very vague sensor to image has
become an option again. They sell an expansion card, but there is no documentation
available. They also sell IP. This IP has been prepared for speeds up to 6.25 Gbps, but in the
accompanying text they mention speeds of 6.125 Gbps. The correct number must be asked.
Apart from the card a third-party FPGA board needs to be bought. Usage of the, already
available, Spartan-6 board might be possible4, but only one lane will be supported.

Addendum 18 November 2015:

Kaya won't give any details about their IP. They have provided a QSF file and they say that
ought to be enough to tell if it is does meet expectations. This is not sufficient. The information
needed is not written in the file and it looks like KAYA won't be an option much longer.

Sensor-to-image has provided pricing and the price they ask is way out of the budget, so that
option is dropped.

Techway does not reply to queries and does not ring back despite promises to do so. This
does not suggest they are serious about the card and thus this option is dropped.

3 Only when using Simulink on a PC with part of the calculations and/or 10 on the external
board.

4 The accompanying text specifies the SP605 development board. The available resources
need to be looked at.

Pieter van der Star Page 3 of 5
During internship at TNO

Selecting a CoaXPress card
2nd Appendix to Simplifying development for FPGAs

15 december 2015

KAYA

KAYA

KAYA

KAYA

Manufacturer . . Techway | . . Gidel Gidel Matrox Euresys |Sensor to image
instruments | instruments instruments | instruments
High Speed Procev
Komodo Gecko High speed FPGA Mgezzopnine CoaXPress (CoaXPress
Tvoe CoaXPress CoaXPress video Mezzanine Card (HSMC)| PCle Frame and Radient eV- | COAXLink FMC CXP 4110
yP Open FPGA | Open FPGA | tfreatment Card for Cameralink CXP Quad G3
for Grabbers | . .
Platform Platform CXP CoaXPress via expansion
CoaXPress
card)
Inputs 8 4 4 5 4 12 4 4 4
POCE 13 W/link 13 W/link Yes Yes Yes Yes
Bayer, RGB, Z?/é?é(Qg
RGBA, YUV,) 9
Image format interpolar, |Bayer, RGB
Mono,
colorspace
Planer, efc. .
conversion
Speed 6,25 6,25 6,25 6,25 6,25 70 or 758 6,25 25
P Gbps/link Gbps/link Gbps/link Gbps/link Gbps/link Gbps Gbps/link Gbps
/link calculated 5.83 or 6,25 6,25
Gbps Gbps
Memory 144 Gb max 4 GB 128 MB - - 16 GB 1 GB 1 GB
. Windows,
OS drivers Linux 328.64
FPGA intern Yes Yes Yes No No Yes No No No
Manufacturer ..
FPGA Altera Altera Xilinx Altera
. Kintex-7 .
. Arria V Stratix
FPGA Arria V GZ (KX325 or 0
2
(GXMAZ) KX410) LIV, V)
HDL code No, via
available Yes, VHDL OpenCL
Output profocol | PCle PC'eO‘l’Or rfg’”d' PCle FMC HSMC PCle FMC
Table 1. Criteria for comparison.
5 Both values are mentioned in datasheet, 75Gbps is most likely.
Pieter van der Star Page 4 of 5

During internship at TNO

Selecting a CoaXPress card 15 december 2015
2nd Appendix to Simplifying development for FPGAs

KAYA instruments Komodo CoaXPress Open FPGA Platform
http://www kayainstruments.com/komodo-coaxpress-open-fpga-platform/

KAYA instruments Gecko CoaXPress Open FPGA Platform
http://www kayainstruments.com/gecko-coaxpress-open-fpga-platform/

KAYA instruments FPGA Mezzanine Card for CoaXPress
http://www kayainstruments.com/fmc-coaxpress/

KAYA instruments High Speed Mezzanine Card (HSMC) for CoaXPress
http://www kayainstruments.com/hsmc-coaxpress/

PLDA and KAYA Instruments announce a high performance CoaXPress system
http://www kayainstruments.com/plda-and-kaya-instruments-announce-a-tested-high-
performance-coaxpress-system/

Gidel CoaXPress PCle Frame Grabbers
http://www.gidel.com/image-processing/CoaXPress-Frame-Grabber.asp

Techway High speed video treatment CXP
http://www.techway.eu/files/techway/produits/tw-
PFC_CXP_datasheet_UK.pdf2PHPSESSID=0262c831956735430af2ee57002164e4

Gidel ProceV (CoaXPress and Cameralink via expansion card)
http://www.gidel.com/image-processing/CoaXPress-Frame-Grabber.asp

MatroxRadient eV-CXP
http://www.matrox.com/imaging/en/products/frame_grabbers/radient_ev/radient_ev_cxp/E
uresys

Coaxlink Quad G3
http://www.euresys.com/Products/CoaXPress/CoaxlinkSeries.asp

Sensor to image FMC CXP 4110
http://www.s2i.org/index.php/s2i-online-shop/fmc-development/fmc-coaxpress-4il o

CoaXPress Roadmap
http://www.coaxpress.com/coaxpress-download.php2file=./coaxpress-
documents/CoaXPress-WP-4-CoaXPressRoadmapV10.pdf

CoaXPress Multi-way Connector Proposal
http://www.coaxpress.com/coaxpress-download.php2file=./coaxpress-
documents/CoaXPress-Multiway-Connector-Proposal-May2012.pdf

Pieter van der Star Page 5 of 5
During internship at TNO

Appendix lll. Description of the Cameralink Protocol

Number of pages: 4
Description: This document describes the way the Cameralink protocol works.

Description of the CameraLink protocol

The Cameralink protocol is used to transfer information from image sensors to frame grabbers.
The protocol is based on the Channel Link protocol. The protocol fransmits 28-bit wide data
over one link. The data is serialized with a ratio of 7:1 with the four resulting data streams
fransmitted in parallel. Apart from these four data lines a clock is also tfransmitted with the
same reduction ratio of 7:1. The Cameralink protocol specifies one, two or three links, four
lines for camera control and two lines for a serial protocol which is RS-232 compatible [1].

1 Data transmission

The image is transmitted using a protocol that can be visualised as layers! as can be
seen in figure 1, where the pixels of an image are the topmost layer. The pixels are then
divided over ports and flags are added to signal the state of the data. These are then
assigned to links which are then transmitted over the wires. By reversing all the operations
the pixels can then be recovered. The actions taken to change into the next layer are
given in figure 2.

Pixels Pixels

Ports and flags Ports and flags
Links Links

Physical » Physical

Figure 1. Layer model of the Cameralink protocol.

: Pixels T Ports and flags —Ir Links : Physical |
| | | | l
: Pixel | Assign to : : |
| | ports | | I

|
| | | | N
I Reorder »| Serialize Ly Transmif .
I I link i
| ' |
| | |
| ' |
| ' |
| |

—— e e e

T
|

| |

| "Read" '

: . from ports |

| |

by »| Deserialize > reorder

I
I
|
|
I
Receive l Undo
|
|
|
|
|
|

Figure 2. Actions to transfer to the next layer, mapped to the layer model of the Cameralink protocol.

1 There is no documentation that uses a layer model, but it helps in explaining what
happens. One document ([1]) uses "physical layer" as an alternative name for the wires.

Pieter van der Star Page 1 of 4
During internship at TNO

Description of the Cameralink protocol 15 december 2015
3rd Appendix to Simplifying development for FPGAs

2 Layers explained

As stated in footnote 1 (on page 1), the layers are not used in any documentation, but it
helps greatly in explaining what happens on the protocol. Next follows a short
explanation per layer, with the exception of the physical layer.

1.1 Pixels
This layer is rather straightforward, it has the pixels of the image.

1.2 Ports and flags

The ports, or taps as they are called in other protocols, have the information of one

or more pixels mapped to one-byte wide ports. The mapping depends on the

configuration. The flags are added to indicate the position and status of the pixel.

The standard does not specify the correct behaviour. Some cameras do not use all

flags. Others use them, depending on the camera settings, only in some

configurations [5][6][7].

The flags are:

— Dval; The data valid flag. This flag is high if the data is valid.

— Fval; The frame valid flag. This flag is high if the line is valid.

— Lval; The line valid flag. This flag is high when the pixels are valid.

— Spare; The spare flag. This flag currently has no purpose, but it might be given
one in future versions.

When sending four frames of a 4x4 picture the flags will behave as shown in figure

3 below. The data valid flag is not always used. Some cameras don't use it at all,

with others the flag is always high to indicate the camera is active. How the pixels

are mapped to the ports depends on the configuration. The manual? gives a good

description on this point thus they are not listed here.

Dval/

\
Fval [/ / f A

vaf S S S S Y Y

Figure 3. Behaviour of the flags.

1.3 Links

The ports are mapped to 28-bit wide links, each with a minimum of one and a
maximum of three links. How the ports are mapped to the link is listed in table 1.
The reason for the permutating of the bits is unclear. Although some speculate it
has something to do with lowering crosstalk or transmission power [2]. When the
bits are transmitted they are permutated even further. Figure 4 shows this
permutation and how they map to the bits of the ports and flags.

Input Signal Name 28-bit Solution Pin Name
Strobe TxClk Out/TxClk In

LVAL TX/RX 24

FVAL TX/RX 25

DVAL TX/RX 26

Spare TX/RX 23

Port AQ, Port DO, Port GO | TX/RX O

Port Al, Port D1, Port G1 | TX/RX 1

2 Specifications of the Cameralink Interface Standard for Digital Cameras and Frame
Grabbers [1].

Pieter van der Star Page 2 of 4
During internship at TNO

Description of the Cameralink protocol 15 december 2015
3rd Appendix to Simplifying development for FPGAs

Input Signal Name 28-bit Solution Pin Name
Port A2, Port D2, Port G2 | TX/RX 2
Port A3, Port D3, Port G3 | TX/RX 3
Port A4, Port D4, Port G4 | TX/RX 4
Port A5, Port D5, Port G5 | TX/RX 6
Port Aé, Port D6, Port G6 | TX/RX 27
Port A7, Port D7, Port G7 | TX/RX 5
Port BO, Port EO, Port HO TX/RX 7
Port B1, Port E1, Port H1 TX/RX 8
Port B2, Port E2, Port H2 TX/RX 9
Port B3, Port E3, Port H3 TX/RX 12
Port B4, Port E4, Port H4 TX/RX 13
Port B5, Port ES, Port H5 TX/RX 14
Port B6, Port E6, Port Hé TX/RX 10
Port B7, Port E7, Port H7 TX/RX 11

Port CO, Port FO TX/RX 15
Port C1, Port F1 TX/RX 18
Port C2, Port F2 TX/RX 19
Port C3, Port F3 TX/RX 20
Port C4, Port F4 TX/RX 21
Port C5, Port F5 TX/RX 22
Port Cé, Port F6 TX/RX 16
Port C7, Port F7 TX/RX 17

Table 1. Cameralink bit assignment [1].

CLK N Ve
Tx3 3 7 11 15 19 23 27
™>2 2 6 10 14 8 22 26
=1 1 5 9 13 17 21 25
Tx0 0 4 8 12 16 20 24
Shift register
Tx3 23 17 16 11 10 5 27
T2 26 25 24 22 21 20 19
Tx1 18 15 14 13 12 ? 8
>0 7 6 4 3 2 1 0
Reordered (numbered)
T3 SPARE C7/F7 C6/F6 B7/E7/H7 B6/E6/HE AT /D7/G7 A6/DE/GE
Tx2 DVAL FVAL LVAL C5/F5 C4/F4 C3/F3 C2/F2
=1 C1/F1 CO/FO BS/E5/HS B4/E4/H4 B3/E3/H3 B2/E2/H2 B1/E1/HI1
0 BO/EQ/H/O AS/D5/GS Ad4/D4/G4 A3/D3/G3 A2/D2/G2 Al/D1/G1 AO0/DO/GO
Reordered (purpose)

Figure 4. Bit reception and reordering [3].

3 Cameralink modes

The protocol can transmit the data using one of three modes:

— Base; which uses one cable and can transmit one link.

— Medium; which uses two cables and transmits two links.

— Full; which uses two cables and transmits three links.
Some manufacturers use an extended mode as well using some unused bits and
repurposing some flags. Thus a few extra bits can be transmitted [1][2] [4].

Pieter van der Star Page 3 of 4
During internship at TNO

Description of the Cameralink protocol 15 december 2015
3rd Appendix to Simplifying development for FPGAs

4 Sources

[1] Author: Cameralink

Title: Specifications of the Cameralink Interface Standard for
Digital Cameras and Frame Grabbers

Createdin: October 2000

[2] Author: Volker Schatz
Title: The Camera Link camera interface
Created on: Unknown
Available at: http://www.volkerschatz.com/hardware/clink.html

Viewed between: 2 September and 8 October

[3] Author: Texas Instruments
Title: Texas Instruments DSY0CR287/DS90CR288A +3.3V Rising
Edge Data Strobe LVDS 28-Bit Channel Link - 85MHz)
Created in: October 1999
Revised in: March 2013
[4] Author: Naftfional Instruments
Title: What Are The Differences Between Base, Medium, and
Full Camera Link Configurationse
Created on: 27 February 2013
Revised on: 24 April 2015
Available at: http://digital.ni.com/public.nsf/allkb/

2EE80B8C381D61D286257B1F005674A5
Viewed between: 3 September and 1 October 2015

[5] Author: Baumer
Title: Manual Baumer HXC 13 v14 users guide
Created on: 18 February 2014

[6] Author: Adimec
Title: Manual ADIMEC 4000 M/D
Created on: 6 May 2003

[7] Author: Photon focus
Title: User Manual MV 1-D1024E Cameralink Series CMOS Area

Scan Cameras September 2014 V1.0
Createdin: September 2014
Pieter van der Star Page 4 of 4

During internship at TNO

Appendix IV. Description of the HDL implementation for
Cameralink
Number of pages: 13

Description: This document is a manual for the Cameralink module and tells how to
instantiate the module and gives a description of the parameters.

Description of the HDL implementation
for Cameralink.

1 Global description

A Cameralink camera sends pixels in pieces. These parts will have to be reconstructed.
The described hardware receives the parts and rearranges the bits info the correct order.
The communication links to the camera are directly connected; there is no logic in
between other than the conversion from a single-ended to a differential signal (LVDS).
These signals are also used to conftrol the trigger indicator. This indicator becomes high if
a trigger signal is present. The serial (RS232) signals are not routed tfrough the module. A
simplified block diagram is given in figure 1. An explanation of the hierarchy can be
found in chapter 8. Before continuing reading it is recommended to read the Description

of the Cameralink profocol [1].

Cameralink
out

Camera
confrol

Indicators
Cameralink J—'
in > Pixels
’ . ’ '
al) Al "
S T \\ S \\
¢ Serial S T p< Serial Y

Figure 1. Simplified block diagram.

2 Cameralink card

The Cameralink module has been written with tests run on an Alpha Data FMC-
CAMERALINK card which is connected to a Xilinx Spartan 6 development board. The
code should port to any other Cameralink card or board, but that board may differ in
functionality and/or IO standard. Before implementation one should at least check:

— The voltage levels

— The signalling type (Single-ended or differential)

— The signal polarity

— The frequency of the system clock (at least the speed of the Cameralink data

clock, preferably faster)

Pieter van der Star Page 1 of 14
during internship at TNO

Description of the HDL implementation for Cameralink.
4 Appendix to Simplifying development for FPGAs

3 Interface

To be able to connect the Cameralink module with the other hardware the module has
some inputs and outputs, as well as some constants. A description of the ports and
generics of this interface is given in table 1 below. The allowed values for the signals are,
unless otherwise specified, the values according to the VHDL standard and active-high.

15 december 2015

Name Type Meaning

Constant |system_clock_frequency |natural The speed of the
system clock in Hz

Constant | Cameralink_frequency natural The speed of the
Cameralink data clock
in Hz

Constant | Cameralink_mode CameralinkMode The mode of the

(BASE,MEDIUM,FULL) |Cameralink
Constant | Cameralink_numchannels | natural The number of
(110 8) channels(pixels) per link
Constant | Cameralink_numbits natural The number of bits per
(8 to 36) channel

Constant |enable_PoCL boolean Activate power over
Cameralink?

Constant | camera_framerate natural The frame rate of the
camera in frames per
second

Constant | differential_signalling boolean Are the inputs to the
module LVDS signals?

Constant | trigger_index natural The position of the

(0to 3) trigger signal in the
camera conftrol bits
Constant |trigger_high time The time during which
the frigger is high
Constant |num_buffers CameralinkNumber |The number of buffers
OfBuffers used for each link
(Auto,1,2) synchronizer

Constant | chip_family string The name of the chip
(Xilinx_Spartan_6) family

Constant |is_simulation boolean Is the module compiled
[default: false] for simulation?

Input clock std_logic The input for the system
clock

Input reset std_logic The input for the
asynchronous reset

Input x_clock_p std_logic The data clock of link X
(positive line)

Input x_clock_n std_logic The data clock of link X
(negative line)

Input x_data_p std_logic_vector The data of link X

(3 downto 0) (positive line)

Input x_data_n std_logic_vector The data of link X

(3 downto 0) (negative line)

1 Only if the card supports PoCL.

Pieter van der Star

during internship at TNO

Page 2 of 14

Description of the HDL implementation for Cameralink. 15 december 2015
4 Appendix to Simplifying development for FPGAs

Name Type Meaning
Input y_clock_p std_logic The data clock of link Y
(positive line)
Input y_clock_n std_logic The data clock of link Y
(negative line)
Input y_data_p std_logic_vector The data of link Y
(3 downto 0) (positive line)
Input y_data_n std_logic_vector The data of link Y
(3 downto 0) (negative line)
Input Z_clock_p std_logic The data clock of link Z
(positive line)
Input Z_clock_n std_logic The data clock of link Z
(negative line)
Input z_data_p std_logic_vector The data of link Z
(3 downto 0) (positive line)
Input z_data_n std_logic_vector The data of link Z
(3 downto 0) (negative line)
Input camera confrol std_logic_vector Camera confrol signals
(3 downto 0)
Output cc_data_p std_logic_vector Camera control
(3 downto 0) (positive line)
Output cc_data_n std_logic_vector Camera control
(3 downto 0) (negative line)
Output data_valid std_logic Data flag from the
camera
Output frame_valid std_logic Frame valid flag from
the camera
Output line_valid std_logic Line valid flag from the
camera
Output spare std_logic Spare flag from the
camera
Output pixelstream std_logic_vector Output of the pixel
(Max: 63 downto 0 | values (Size depends
Min: 7 downto 0) on the number of
channels and bits)
Output new_data std_logic Indicator new data
available, strobe
Output new_pixel_indicator std_logic Indicator new pixel
available, longer pulse
Output connected std_logic Indicator camera
connected
Output Enable_PoCL std_logic Indicator power active
Output frigger_indicator std_logic Indicator camera
conftrol frigger
command

Table 1. Table with the Cameralink interface.

It is possible to assign the constants in such a manner that the resulting configuration is
not recognised in the standard. If this is the case the hardware cannot be generated. An
error message will be shown during both HDL simulation and synthesis and the process
will stop.

Pieter van der Star Page 3 of 14
during internship at TNO

Description of the HDL implementation for Cameralink. 15 december 2015
4 Appendix to Simplifying development for FPGAs

3.1 The constants explained

The interface has multiple constants. Using these constants the hardware can be
configured to handle the mode and the number of bits per channel. This
paragraph will give a short explanation for each constant.

system_clock_frequency
This constant is used to set up the timer range for the trigger indicator.

Cameralink_frequency
This constant is used to set up the timer range for the new pixel indicator.

Cameralink_mode
This constant is used to set the mode of the Cameralink.

Cameralink_numchannels
This constant is used to determine the number of bits per pixel and map the ports
to the pixel.

Cameralink_numbits
This constant is used to determine the number of bits per pixel and map the ports
to the pixel.

enable_PoCL

This constant activates power over Cameralink, this only works if the card supports
this. Elsewise this does nothing, but it is incorporated in the design and will be
synthesized.

camera_framerate
This constant is used to set up the timer range for the frigger indicator.

differential_signalling
This constant is used to determine if buffers are needed to convert the differential
signals into single-ended signals.

trigger_index
This constant sets the position of the trigger indicator in the camera control bits. This
ins only used for reading the signal, not to drive it.

num_buffers
This constant determines the number of buffers that are to be used to enable a
lower system clock frequency.

chip_family
This constant is used to determine which HDL description is needed for the PLL and
the SERDES. These descriptions are either board or vendor specific. Changing only
this generic may not be enough. Some selection is also made in the Cameralink
library.
The chip families below are supported:

— Xilinx Spartan 6

is_simulation
This constant is used to change the behaviour of some components so that the
simulation matfches the reality.

Pieter van der Star Page 4 of 14
during internship at TNO

Description of the HDL implementation for Cameralink. 15 december 2015
4 Appendix to Simplifying development for FPGAs

3.2 The inputs explained

The interface has multiple inputs. Per input a short description is given.

clock
This is the input for the system clock.

reset
This is the input for the reset. The reset is handled asynchronously. The upper layer(s)
of the hierarchy are responsible for the correct implementation of a reset circuit.

x_clock_p & x_clock_n
The clock input of link X, coming from the Cameralink connector. It expects an
LVDS signal, unless the differential_signalling constant is set to false.

x_data_p & x_data_n
The four data inputs of link X, coming from the Cameralink connector. It expects
an LVDS signal, unless the differential_signalling constant is set to false.

y_clock_p & y_clock_n
The clock of link Y, coming from the Cameralink connector. It expects an LVDS
signal, unless the differential_signalling constant is set to false.

y_data_p & y_data_n
The four data inputs of link Y, coming from the Cameralink connector. It expects
an LVDS signal, unless the differential_signalling constant is set to false.

z_clock_p & z_clock_n
The clock input of link Z, coming from the Cameralink connector. It expects an
LVDS signal, unless the differential_signalling constant is set to false.

z_data_p & z_data_n
The four data inputs of link Z, link coming from the Cameralink connector. It
expects an LVDS signal, unless the differential_signalling constant is set to false.

camera_control
The four bits that control the camera. The module converts these signals to LVDS
signals.

Pieter van der Star Page 5 of 14
during internship at TNO

Description of the HDL implementation for Cameralink. 15 december 2015
4 Appendix to Simplifying development for FPGAs

3.3 The outputs explained

The interface has multiple outputs. Per output a short description is given.

cc_data_p & cc_data_n
The four output bits for the camera control signals, four LVDS pairs. This is does not
depend on the differential_signalling constant.

data_valid
The data valid flag from the last transmitted data. If multiple channels are used this
is the result of the multiplication (AND) of the data valid flags of all channels in use.

frame_valid

The frame valid flag from the last transmitted data. If multiple channels are used
this is the result of the multiplication (AND) of the frame valid flags of all channels in
use.

line_valid
The line valid flag from the last fransmitted data. If multiple channels are used this is
the result of the multiplication (AND) of the line valid flags of all channels in use.

spare
The spare flag from the last fransmitted data. If multiple channels are used this is
the result of the multiplication (AND) of the spare flags of all channels in use.

pixelstream

Depending on the configuration this outputs the value of one or more pixels, with
the first pixel on the first bits. The data changes on the rising edge of the new_data
output.

new_data
This output is strobed for one pulse of the system clock, and indicates the arrival of
new data.

new_pixel_indicator

This output indicates the availability of a new pixel. This signal keeps active until the
next frame should arrive. This time is calculated using the system_clock_frequency
constant, the trigger_high constant and the camera_framerate constant.

connected
This output indicates a camera is recognised by the module. This is done by looking
at the availability of the input clock(s).

Enable_PoCL
This output is a constant-driven output, with enable_PoCL being that constant. It
can be used to drive the power over Cameralink some boards provide.

trigger_indicator

This output becomes active high if a trigger pulse is given and keeps high until the
next trigger pulse should arrive. This time is calculated using the camera_framerate
and trigger_high constants.

Pieter van der Star Page 6 of 14
during internship at TNO

Description of the HDL implementation for Cameralink. 15 december 2015
4 Appendix to Simplifying development for FPGAs

4 Instantiation

When the Cameralink module is used in designs the designer will have to instantiate the
module with the interface as given described in chapter 3. Also the Cameralink_lib
liorary will have to be edited. This library is used to include libraries that very per
manufacturer. These libraries are selected by commenting and uncommenting the
inclusion and aliases depending on the chip family.

5 Synchronization

The reception of the data is done using the data clock. This clock is multiplied using a PLL,
which makes the clock have the same frequency as the data changes. The data is read
on this generated clock and then, once a complete "package" has been received, it is
clocked trough three registers to synchronise it fo the system clock.

5.1 Skew between links

Due to a variation in cable lengths between the two connectors the data will
become skewed. In simulation a skew has been simulated between the links x and
y as well as between the links x and z. All varying between minus eight and positive
eight data clock cycles. In simulation the module was able to recover the data
when a skew of 32 bit-times is given. Outside this limit the module cannot deliver
the correct data. The delayed data will be put into the next pixel.

6 Testbench

The testbench has been designed to use a number of constants fo easily test different
scenarios. The testing of these scenarios can be handled automatically. This can be
done because the testbench encloses the module. The testbench generates data and
control signals and feeds these to the module. The outputs of the module are read by
the testbench and checked on their correct value. Using asserts and reports the
testbench will tell the developer what happens when a fault has been found and the
entire simulation will stop with a failure on that error. The parameters of the testbench are
givenin table 2.

Note: The parameters are put in two locations, a number of lines apart, in the testbench
file. This is done because a number of the simulation constants are calculated based
upon previously set values. These results can be used to enter values in the other series of

constants.
Name Type Meaning
Constant | VHDL_standard integer The VHDL standard
used for simulation. If
unknown, use 1993.
Constant | fail_simulation_to_stop boolean Should the simulation
use a fail to stop? This is
only used if the
VHDL_standard <2008.
Constant | Cameralink_mode CameralinkMode Which mode needs to
(BASE,MEDUIM,FULL) |be simulated?
Constant | Cameralink_numchannels | natural How many channels
(110 8) are used?

2 This simulation was done on an earlier version of the Cameralink module, and this value
may now be incorrect.

Pieter van der Star Page 7 of 14
during internship at TNO

Description of the HDL implementation for Cameralink.
4 Appendix to Simplifying development for FPGAs

15 december 2015

Name Type Meaning
Constant | Cameralink_numbits natural How many bits are
(8 to 36) used per channel?
Constant | system_clock_frequency |natural What is the frequency
of the system clock in
Hz?2
Constant | chip_family string Which chip family
(Xilinx_Spartan_é) needs to be simulated?
Constant | Cameralink_frequency natural What is the speed of
the Cameralink data
clock in Hz?2
Constant | additional_output_delay |integer Depending on the
used components the
delay in the module
may vary. This is used o
correct for that.
Constant | differential_signalling boolean Are the inputs to the
module LVDS signals?
Constant | trigger_index integer What is the position of
(0 to 3) the trigger signal in the
four camera control
signals?
Constant | trigger_ high fime For how long is the
trigger high?
Constant | framerate_camera natural What is the frame rate
of the camera in fps
(Hz)2
Constant |enable_PoCL boolean Should the power over
Cameralink be used?
Constant | num_buffers CameralinkNumber |The number of buffers
OfBuffers used for each link
(Auto,1,2) synchronizer
Constant | skew_x_fo_y fime How big a skew needs
to be used between
link X and link Y2
Constant | skew_x_to_z fime How big a skew needs
to be used between
link X and link Z2
Constant | connected_rising_ fime Maximum time for 'A'in
actual_to_expected figure 2 on page 10.
Constant | connected_falling_ fime Maximum time for 'B' in
expected_to_actual figure 2 on page 10.
Constant | connected_rising_ fime Maximum time for 'C'in
expected_to_actual figure 2 on page 10.
Constant | connected_falling_ fime Maximum time for 'D' in
actual_to_expected figure 2 on page 10.

Table 2. Table with the constants for simulation.

Pieter van der Star

during internship at TNO

Page 8 of 14

Description of the HDL implementation for Cameralink. 15 december 2015
4 Appendix to Simplifying development for FPGAs

6.1 The constants for simulation explained.

A number of these constants are also used in the interface of the Cameralink
module and are therefore not discussed here. Please see paragraph 3.1 for the
explanation of these constants.

VHDL_standard

The number of the VHDL standard supported by the simulator. With VHDL-2008 ¢
number of simulation decisions and waiting fimes can be implemented in a nicer
way when compared to earlier versions. This constant is used to determine if these
opfions can be used.

fail_simulation_to_stop

In order to stop the simulation once it has finished a report with severity-level failure
can be "sent to the simulator". This will cause the simulator fo stop. A disadvantage
of this is that the simulation will not be able to continue. VHDL-2008 has a better
option for this. Thus this constant will be ignored when the VHDL_standard is set to a
value >= 2008.

additional_output_delay

Depending on the components used the delay varies. The testbench does not
know this delay and assumes the delay is equal to the number of synchroniser steps,
which is fixed to 3, multiplied by the number of buffers used. This is not always
accurate and this constant is used to compensate for the miscalculation.

skew_x_to_y3

In order o simulate a skew between the links it is possible fo enter a skew between
the links X and Y. Negative values are allowed. This will cause link Y to start
transmitting before link X.

skew_x_to_z3

In order to simulate a skew between the links it is possible to enter a skew between
the links X and Z. Negative values are allowed. This will cause link Z to start
tfransmitting before link X.

connected_rising_actual_to_expected?

Because the connected flag depends on the lock signal of the PLL the flag does
not always rise the moment the clock becomes active. This constant sets the
negative slack allowed for the flag. For more clarity please see 'A' in figure 2.

connected_falling_expected_to_actual’

Because the connected flag depends on the lock signal of the PLL the flag does
not always fall the moment the clock becomes inactive. This constant sets the
positive slack allowed for the flag. For more clarity please see 'B' in figure 2.

connected_rising_expected_to_actuald

Because the connected flag depends on the lock signal of the PLL the flag does
not always rise the moment the clock becomes active. This constant sets the
positive slack allowed for the flag. For more clarity please see 'C' in figure 2.

connected_falling_actual_to_expected?

Because the connected flag depends on the lock signal of the PLL the flag does
not always fall the moment the clock becomes inactive. This constant sets the
negative slack allowed for the flag. For more clarity please see 'D'in figure 2.

3 These can use calculated constants to be assigned a value.

Pieter van der Star Page 9 of 14
during internship at TNO

Expected

Actual

1
|
I
B |

Figure 2. Timing locations for the checks on the connected flag.

Apart from the constants mentioned before some constants are calculated. They
are used in the simulation, but can also be used to calculate values entered by the
user. (An example of this is shown in code fragment 1.) These constants are:

clockPulse
The period of the system clock.

camera_frame_duration
The period of one frame.

trigger_hold_time
The trigger indicator keeps high during this time

Cameralink_frequency
The frequency of the Cameralink data

Cameralink_bittime
The time for which the four bits stay on the data lines.

constant skew_x_to_y : time := Cameralink_bittime*5;

Code fragment 1. Example of using a calculated constant in the assignment of a value to another
constant.

7 Delays

Processing the data takes tfime. These delays are given in clock cycles because those
are the most significant delays and the other propagation delays depend on the design
and on the FPGA. The delay times depend on the components used and the speed of
the Cameralink data transfer. Thus they are not given here. The most significant delay is
caused by the synchronizer and the deglitcher. Depending on the configuration this
takes four to five cycles of the system clock. The synchronizer delay of 4 cycles also
applies to the indicator signals with the exception of the connected signal. This signal
depends on the PLL locked flag. Depending on the PLL used this flag may rise a little
after a data clock signal is present, and it will fall a little after the data clock has been
lost.

8 Hierarchy

The Cameralink module consists of a number of submodules. In this chapter each of the
submodules will be discussed. A schematic overview of the connections in the module,
which is configured for mode full, is given in figure 4 (on page 12). The given connections
are for Cameralink mode full. The number of Cameralink_link modules depends on the
mode being used. For clarity the reset signal and the system clock signal have been left
out.

Pieter van der Star Page 10 of 14
during internship at TNO

Description of the HDL implementation for Cameralink. 15 december 2015
4 Appendix to Simplifying development for FPGAs

8.1 Cameralink_link

This module receives the data from one Cameralink link, handles the bit
permutations and exiracts the flags. The Cameralink module contains three
Cameralink_link modules if used in mode full, two modules if used in mode
medium and one link if used in mode base.

8.2 one _shot hold

This module outputs high when the input value becomes active and holds the high
value for a given time after the input becomes inactive (please see figure 3). This
hold time is given when this module is instantiated. The Cameralink module
contains two one_shot_hold modules. The hold time is determined by

constants/generics.
Input f 1
Ouiput ! | |‘\
[Presetfime |
Figure 3. Timing diagram of the one_shot_hold module.
Pieter van der Star Page 11 of 14

during internship at TNO

Description of the HDL implementation for Cameralink.
4 Appendix to Simplifying development for FPGAs

15 december 2015

.
Cameralink
camera_control 4 4 camera_control
one_shot_hold
1 . trigger _indicator
in out
PoCL_enabled
one_shot_hold
new_pixel_indicator
@ in out
data_valid
Cameralink_link [mode base, medium & full]
lock PLL 8 PORTO| !
x_cloc
Lt ke clock fast 8 pogt |
x_data 4 data 4 slow—|
locked 8 porm2 | 1
Deserializer 28 data valid
dclock_fas data] | |
dclock_slow new_data frame valid
data |
line valid
Synchronizer 28 pare
data data
new_data new_data new datg
connected
Cameralink_link [mode medium & full]
clock PLL > PORTO {2
Y- ta clock
daladc clock Joo g PORTI| 1 ne pixelstream
y,d‘rmo o ldata 2 \ocslgg_‘ 8 n
PORT2
Deserializer 28 data valid —&} —T -
dclock_fas data . frame_valid
dclock_slow new_data frame valid -|_|&)
data | r i i
line valid -'?L ine_vali
spare
Synchronizer 28 spare 2
daia data new_data
new_data new_data new datg
connected .|—|& connected
Cameralink_link [mode full]
lock L g PORTO|
z_cloc
e clock fast 8 pogri | 0
z_data 4 4 slow
il locked [8 ORI
Deserializer 28 data valid
dclock_fas data X
dclock_slow new_data frame valid
data | . "
line valid
Synchronizer 28 Lo
data data
new_data new_data new dotg
connected

Figure 4. Schematic overview of the connections between the submodules in the Cameralink module mode full.

Pieter van der Star
during internship at TNO

Page 12 of 14

Description of the HDL implementation for Cameralink. 15 december 2015
4 Appendix to Simplifying development for FPGAs

9 Errors

Because the hardware is conditionally generated it is possible some of the inputs of the
Cameralink module are not connected to any logic. Some compilers# give warnings for
each unused port. These warnings can be ignored.

10 Adding chip family support

In order to get the module to work on a not yet supported board a PLL and a deserializer
will have to be designed. The PLL interface has the following inputs and outputs:

- One clock input.

- One output clock with a frequency of seven fimes that of the input clock.

- One clock output with the frequency of the input clock, in phase with the

multiplied clock
- Onereset input
- One locked output

The deserializer needs to have a component that takes the LVDS signals and maps them
to an internal signal. The other "stuff" for the deserializer is not chip specific. If a chip does
not have a deserializer the generic deserializer can be used.

These chip-specific components will have to be placed inside an if-generate statement
where the chip_family constant is tested. The file where these additions will need to be
placed is Cameralink_link.vhd. Also the buffers in the Cameralink module itself need to
be added. Adding comments to the chip_family constants and generate statementsis a
good thing to do. It is also recommended to update this document.

Some of the components are declared in a library. The Cameralink library handles the
inclusion of the correct libraries. If a new board is added the Cameralink library must be
adapted to enable the selection of the correct library for the selected chip. This is done
by adding the libraries in the list.

Special attention must be taken when the IP infers buffers. Some of these buffers are
already instantiated on a higher level. Thus these buffers are not needed and might
even cause a compilation failure. In that case they will have to be removed from the
lower level.

11 External IP

Some components of the Cameralink module are IP blocks belonging to the chip
vendor. Their license allows usage of these cores in the design [2][3]. Some of this IP is
edited slightly either to increase efficiency® or to enable easier usage higher up in the
hierarchy.

The PLL module from Xilinxé¢ has been edited slightly to allow a variable value for the input
clock period. This value is now determined on instantfiation instead of being a fixed
number. This might allow for smaller logic surrounding the PLL. It is recommended to do
the same when adding a PLL for other chip families.

Some buffers have been removed from the deserializer. These buffers are implemented
at a higher hierarchy level and therefore not needed here. If those buffers were not
removed they would have been put in series with other buffers, causing errors on

4 E.g. Xilinx ISE.
5 A constant is changed into a generic for adaptability.
¢ For the Xilinx Spartan 6.

Pieter van der Star Page 13 of 14
during internship at TNO

Description of the HDL implementation for Cameralink. 15 december 2015
4 Appendix to Simplifying development for FPGAs

compilation. The buffers are needed in a higher hierarchy level to prevent unused LVDS
signals from causing errors.

12 References

[1] Description of the Cameralink protocol
Pieter van der Star
15 December 2015

[2] LogiCORE IP Clocking Wizard Product Guide
Xilinx inc.
25 July 2012

[3] Xilinx, inc. End user licence agreement
Xilinx corp.
Downloaded from the Xilinx.com welbsite on 21 October 2015

Pieter van der Star Page 14 of 14
during internship at TNO

Appendix V. Clock domain analogy

Number of pages: 1
Description: This document gives an explanation of the problems surrounding the
crossing from one clock domain into another.

Clock domain analogy

A clock domain may sound like it is something like a time zone, but it is a bit different!. It is
more like a day on Earth not quite being the same as a day on Mars2. When crossing clock
domains two problems arise. One being possible metastability, the other being data loss.
Data loss is easily explained. Imagine a tennis court. You stand at one side of the court, at the
other side a ball machine fires tennis balls at you at a rate such that you can catch them all,
one by one, and put them in a bin. Next the machine starts firing the balls at a gradually
higher rate. At first you can keep up, until the moment you cannot and you drop some balls.
If those balls were to have information on them you would start to lose that information. That
is data loss. One part of the system gives information so fast that the other part cannot keep
up and loses the data or it may not even know the data was sent.

Explaining metastability requires a bit of philosophy. The ball machine now fires balls at a
constant rate. You do not have to catch them, but you say at which half of the court they fall,
yours or the ball machine's. When the ball falls in the middle of either halve it is easy 1o tell,

but what if it falls on top of the net. On which half of the field did it fallg You cannot tell, but
have to give an answer so you make an educated guess, or ask for a video replay in super-
slow-motion in hopes it can help you. A digital system also has that problem, but than with a
voltage.

Looking at some standard? a logic '0' is defined to be any value between 0.4 V.and 0.8 V. A
logic '1'is anything between 2.0 V and 2.4 V. (Please see figure 1 for a number line with the
values indicated.) So far so good, but physics takes care fo mess things up a bit. To change
from a '0'to a '1' and vice versa takes time. The values af these "ramps" is undefined (please
see figure 2 on page 2). The hardware however is designed to work at the levels of '0' and '’
and the behaviour of these components is thus also undefined, but by design they either
output a'0' or a '1'4. So their output should be defined. Should, because the recovery takes
fime as well and, if the next activating clock edge comes too soon, the output will also be
metastable. To prevent that from happening at least two registers are needed to ensure
stable data. With a combined recovery rate less than the period of the controlling clocks.

33V——

24N—71— } :

20V——

0.8 V—Fg— } 0

04V—T1—
OV———

Figure 1. Voltage levels for 3.3 V LVTIL [2].

1 Although the different domains can be "separated" only by a phase-shift.

2 The Mars sidereal day, as measured with respect to the fixed stars, is 24h 37m 22.663s, as
compared with 23h 56m 04.0905s for Earth [1].

3 3.3 V LVITTL/LVCMOS.

4 Except tri-state components.

5 With the setup and hold fimes ignored.

Pieter van der Star Page 1 of 2
during internship at TNO

Clock domain analogy
5t Appendix to Simplifying development for FPGAs

15 December 2015

0

0

Figure 2. Simple example of metastability.

(1]

[2]

Authors:
Title:
Created on:
Updated on:
Available at:
Viewed on:
Author:

Title:
Created in:

Pieter van der Star
during internship at TNO

NASA Goddard Institute for Space Studies; Michael Allison
and Robert Schmunk

Technical Notes on Mars Solar Time as Adopted by the
Mars24 Sunclock

unknown

30 June 2015
http://www.giss.nasa.gov/tools/mars24/help/notes.html
16 November 2015

Texas Instruments

Voltage-Level-Translatation Devices
September 2002

Page 2 of 2

Appendix VL. List of test equipment

Number of pages: 1
Description: This document contains details of all fest equipment used.

List of test equipment

Oscilloscope

Manufacturer
Type
Calibrated
Code

Note

Logic analyzers

Manufacturer
Type
Calibrated
Code

Manufacturer
Type

Version

Core version
Calibrated
Code

Cameras

Manufacturer
Type
Calibrated
Code

Manufacturer
Type
Calibrated
Code

Manufacturer
Type
Calibrated
Code

Manufacturer
Type

Code

(ON

CPU

Motherboard
Serial (RS-232)

Development board

Manufacturer
Type
Chip
Serial (RS-232)

Pieter van der Star
During internship at TNO

: Tektronix

: DPO 4104 Digital Phosphor Oscilloscope

: 05-05-2006

: [TNO] 41120939

: Not used with original probes, all four probes are from different

manufacturers and are different types.

: Hewlett Packard

: 16500B Logic analysis system
:11-10-1994

: [TUI] 16827

2 Xilinx

: Chips Scope Pro Analyzer
:14.7 P.20131013

:1.04a

:N/A

:N/A

: Baver
:HXCI13
N/A
N/A

: Photon focus
: Lingo

N/A

:N/A

: Adie
- 4000m/D
N/A
N/A

Computer (receiving image over RS-232)

: Dell

: Optiplex 990

:PC-11879

: Windows 7 Enterprise 64-bit SP1
:Intel Core i5 2400 @ 3.10 GHz

Sandy Bridge 32 nm Technology

: Dell Inc. OVNP2H (CPU 1)
: unknown

: AVNET

: Xilinx Spartan-6 LX150T PCI Express Development Board
: Xilinx Spartan-6 XC6SLX150T Fgg676BIVID37

: Cypress CP2102

Page 1 of 1

Appendix VIl. Sequence of test images

Number of pages: 2
Description: This document contains all the test images next fo one anotherin
chronological order. This way the progress can be easily seen.

Sequence of the test images

Image the camera sends, test image First image output, test image

Second image output, test image

Third image output, test image

Fourth image output, test image Fifth image output, real image

Pieter van der Star Page 1 of 2
During internship at TNO

Sequence of the test images 14 december 2015
7th Appendix to Simplifying development for FPGAs

Seventh image output, real image

Sixth image outfput, real image

"

Eight image output, real image

Pieter van der Star Page 2 of 2
During internship at TNO

