

Product report

 on

NETWORKED LED DRIVER
SYSTEM AND API

by

Winer Bao

11112514

Electrical & Electronics Engineering

The Hague University of Applied Sciences

Company: Tekt Industries Pty. Ltd.

Supervisor: Matthew Adams

May 26th 2015

Preface
This project is part of the graduation thesis for a final year electrical & electronics-

engineering student. This is my third and last internship and is part of my curriculum

at The Hague University of Applied Sciences. To conclude my studies, I have to

successfully execute my graduation project and defend my thesis. During my studies,

I tried to focus on sociocultural globalization as I think this experience/knowledge can

be a personal benefit in the future. I decided to do my thesis in a foreign country,

specifically an English-speaking country. During my search for the perfect company

with my desired project, I found a company Tekt Industries Pty. Ltd located in

Melbourne, Australia.

For five months from February 2015 until June 2015, I did an internship at Tekt

Industries Pty. Ltd. I worked on an assignment project in which I create a server

software in programming language C++ to interface with hardware prototypes the

company designed and fabricated. This topic suits my future major in embedded

systems. Through the assignment, I did not only gain a lot of knowledge but more

importantly, I also had a great chance to sharpen my skills in a professional working

environment. Not less important than the knowledge gain that I have learnt is the

communication skills that I have been trained and practiced through giving

presentations, discussing with the supervisors, experts in the field and other staffs

within the company.

I am very appreciative to Mr. M. Adams; my supervisor at Tekt Industries Pty. Ltd.

Matthew gave me very valuable instructions at critical moments during the project.

Throughout the internship, I have also learnt many things about circuitry design, PCB

assembly and working in an English-speaking environment, whose benefits are far

beyond what I could learn in a normal project. In short, I would like to thank Matthew

and The Hague University of Applied Sciences for introducing me to this great

opportunity in which I have developed myself both academically, professionally and

socially.

May 26th 2015

 Networked LED Driver System and API

III

Executive summary
The company, Tekt Industries, is currently developing two LED driver boards which

can be connected to the network or by a USB connection. Each device connected to

a local network has a unique IP address and a port number to where data can be sent.

The user must remember the IP address and port number of a driver board to be able

to send data to it. Remembering this information can be tedious.

The solution to the problem is to run a server between the user’s program and the

driver boards. This solution is recommended and requested by the project provider.

The main purpose of the server is to provide a level of abstraction. The user only needs

to remember the IP address and port number of the server to send data to any driver

boards connected to the network.

A communication protocol is set up through which all programs can interact with the

server software. The communication protocol is a UDP based protocol because of the

time sensitivity of application. All messages start with a Source ID. This ID indicates

the type of source and the type of message. This is followed by parameters, which are

separated by forward-slashes. This simple, yet clear protocol is chosen because it is

easily understandable to the user and the software.

The C++ server software is written for its functionality rather than speed, graphical

User Interface (UI) and such. The software is also written with future modification and

expansion in mind. The server software can be divided in multiple levels. Each level

has its own purpose and the structure of the server is depend on each one of the

levels. Some level handles the message reception and delivery while others create

object to store channel settings.

A total of seven test and sample programs are created to test the performance of the

server. Each sender program sends LED color data. Each data output varies slightly

in types of data format. The server handled multiple data message and commands

without any interruption and/ or problems. The output was able to display on actual

LED hardware as well as on the driver simulation program.

An API library is written to create a simple environment which software developers can

use without diving deeply into the communication protocol, socket setup and other

complex processes.

 Networked LED Driver System and API

IV

Contents
Preface ... II

Executive summary ... III

 Introduction ... 1

 Project background ... 3

2.1. Company profile .. 3

2.2. Company brands ... 4

 Project definition .. 6

3.1. Problem statement .. 6

3.2. Project requirements and boundaries ... 6

3.3. Project goal and deliverables .. 7

 Basic of design .. 8

 Product development .. 12

5.1. Communication protocol ... 12

5.2. Server software ... 13

5.2.1. Definitions header file ... 14

5.2.2. ChannelObject header and cpp file .. 16

5.2.3. Database header and cpp file ... 29

5.2.4. MessageHander header and cpp file .. 33

5.2.5. USBdriver header and cpp file .. 40

5.2.6. Main cpp file ... 41

5.3. Test/ Sample programs ... 41

5.4. API library.. 44

 Testing .. 47

 Conclusion .. 52

 Recommendations .. 53

Bibliography ... 54

Appendices

Appendix 1: Communication protocol……………………………………………………57
Appendix 2: Definitions.h source code…………………………………………………..64
Appendix 3: ChannelObject.h and ChannelObject.cpp source code…………………66
Appendix 4: Database.h and Database.cpp source code……………………………..85
Appendix 5: MessageHandler.h and MessageHandler.cpp source code……………95
Appendix 6: USBdriver.h and USBdriver.cpp source code…………………..………113
Appendix 7: main.cpp source code……………………………………………………..120

 Networked LED Driver System and API

V

Appendix 8: Sender_Knob source code……………………………………………….121
Appendix 9: Sender_Webcam source code…………………………………………...129
Appendix 10: Sender_Rainbow source code………………………………………….135
Appendix 11: Sender_GIF source code………………………………………………..139
Appendix 12: Driver_Receive source code……………………………………………144
Appendix 13: Admin_Control source code…………………………………………….147
Appendix 14: API test source code……………………………………………………..184
Appendix 15: API library source code………………………………………………….186

Pictures

Picture 6.1 Sender_Rainbow on LED strip……………………………………………...49
Picture 6.2 Sender_Rainbow on Matrix-style strips…………………………………....49
Picture 6.3 Sender_GIF data display…………………………………………………….50

Figures

Figure 2.1 LED Point Runner………………………………………………………………5
Figure 2.2 LED Line Driver…………………………………………………………………5
Figure 4.1 Networked LED Driver System overview…………………………………….8
Figure 4.2 Server phases…………………………………………………………………..9
Figure 4.3 Data processing overview……………………………………………………..9
Figure 4.4 Command processing overview……………………………………………..10
Figure 5.1 General communication protocol format……………………………………12
Figure 5.2 Server structure and dataflow………………………………………………..13
Figure 5.3 Class hierarchy………………………………………………………………..16
Figure 5.4 Sender_Knob user interface…………………………………………………42
Figure 5.5 Sender_Webcam user interface……………………………………………..42
Figure 5.6 Sender_GIF user interface…………………………………………………...43
Figure 5.7 Admin_Control user interface………………………………………………..44
Figure 6.1 Sender_Knob data output…………………………………………………….47
Figure 6.2 Sender_Knob data display…………………………………………………...47
Figure 6.3 Sender_Webcam data output………………………………………………..48
Figure 6.4 Sender_Webcam data display……………………………………………….48
Figure 6.5 Sender_Rainbow data display……………………………………………….48
Figure 6.6 Sender_GIF data output……………………………………………………...50
Figure 6.7 API test program data display………………………………………………..51

Tables

Table 5.1 Communication protocol - Source IDs……………………………………….12

List of Abbreviations

LED light emitting diode

LANs local area networks

PCBs printed circuit boards

CAD computer aided design

DSP digital signal processing

 Networked LED Driver System and API

VI

VHDL VHSIC Hardware Description Language

FPGA field-programmable gate arrays

CPLDs complex programmable logic devices

USB universal serial bus

UDP User Datagram Protocol

CPU central processing unit

MCU memory control unit

API application programming interface

OS operating system

UI user interface

IDE integrated development environment

 Networked LED Driver System and API

1

 Introduction
Light emitting diode (LED) strip lights are becoming more and more popular and it is

understandable why – they provide an endless source of practical light and are

aesthetically appealing in interior and outdoor design. They offer plenty of home décor

possibilities due to their wide range of applications and designs. (Dési, 2011)

LED lighting is not only seen in homes but also galleries, theaters, venues and many

more places use them to enhance or create a unique visual experience. The gadgets

are only possible thanks to advancements in LED technologies and computer

sciences. New researches and advancements in LED technologies lowered

production costs of LED lighting and increased their efficiency by a substantial amount.

As prices of LEDs falls and options abound, LED products are becoming more

accessible to the general consumer. (Tweed, 2013) LEDs are very efficient compared

to other types of light sources, can have practically any color you want and have a

long lifetime. This, along with many other advantages, makes LED lighting almost a

no-brainer. These LEDs combined with software can create spectacular displays and

décor.

Computers process data under control of sets of instructions called computer

programs. These computer programs that run on a computer are also referred to as

software. High-level languages were developed to speed up the programming

process. C and C++ are among the most powerful and most widely used high-level

programming languages. As computers became more powerful, it was thought that

many tasks could be made to share the resources of the computer to achieve better

utilization. This is called multiprogramming. These machines could in turn be linked

together in computer networks, such as in Local Area Networks (LANs), to increase

its total performance. This led to the phenomenon of distributed computing, where

different portions of a task can be performed on different computers. Information is

easily shared across computer networks where some computers called servers can

store programs and data that may be used by client computers distributed throughout

the network, hence the term client/server computing. C and C++ have become the

programming language of choice for writing software for operating systems, for

computer networking and for distributed client/server applications. (Deitel, 1997)

Tekt Industries Pty. Ltd, provider of this project, is currently developing two LED driver

boards capable of controlling multiple LED strips and/or LED matrixes. The driven LED

can be of any type, color, length, dimensions and can be in any position or location.

This offer limitless combinations and opens the door to many interesting applications.

The small size of the driver boards makes it easy to embed them in e.g. furniture. Data

is send by programs created by the user to a server/hub. The server decodes the data

and sends it to the individual driver boards.

The purpose of this report is to document the technical details of the software created

in this project. The design and the implementation of the software are carefully

explained in detail. Nonetheless, the design idea is brought to light in this report.

 Networked LED Driver System and API

2

Chapter 2 gives a brief background of the company and the project. Chapter 3 defines

the problem which this project is trying to solve. The requirement, project boundaries

and deliverables are also stated in this chapter. A broad description of the server

software is presented in chapter 4. Chapter 5 will dissect the project into key

components and each component is described and explained in details. The testing

and outcome of the product development is documented in chapter 6. A conclusion is

made and some recommendations are given in chapter 7 and 8.

 Networked LED Driver System and API

3

 Project background
Tekt Industries Pty. Ltd. is a company located in Melbourne, Australia. It is a small and

healthy company offering engineering services like circuit design, embedded

programming, test and measurement and prototype fabrication to its clients. To get a

better understanding of the context of this project, brief background information about

the company is given in this chapter.

2.1. Company profile
Tekt Industries Pty. Ltd. has been active in the area of PCB design, embedded

programming, test and measurement and prototype fabrication. The company worked

with clients in many fields from entertainment to healthcare. They have clients such as

Intel Australia & Sensing City, Melbourne Zoo and RMIT – School of Fashion and

Textiles.

They have a dedicated team specializing in the design and layout of rigid and flexible

printed circuit boards (PCBs) which incorporate a range of technologies such as

analog filters and amplifiers, low data rate digital RF transceiver implementations, and

embedded microcontroller systems. They use a complete suite of computer aided

design (CAD) software including Solidworks 2015 and Altium Designer 15 so that any

design, which involves tight integration between complex mechanical and electrical

sub-assemblies, can be developed with speed and confidence. (Tekt Industries Pty.

Ltd., 2015)

No embedded system is complete without the software and so they develop using

standard C/C++ programming languages alongside C# and even a bit of

Processing/Java to implement application specific functionality such as control, digital

signal processing (DSP), and sensing. They have worked with different device brands

such as Microchip, Atmel, Freescale, ARM and STMicroelectronics. This does not

mean that a bit of VHSIC Hardware Description Language (VHDL) on Xilinx, Altera, or

MicroSemi field-programmable gate arrays (FPGAs) and complex programmable logic

devices (CPLDs) is out of the question. (Tekt Industries Pty. Ltd., 2015)

Tekt Industries has invested heavily in test equipment such as high-resolution thermal

imaging cameras (FLIR), state of the art Oscilloscopes (Rhode & Schwarz), Spectrum

Analyzers (Agilent), and specialist audio test equipment (Audio Precision). This

equipment allows them to see deeper into any design during prototyping and provide

their clients with better metrics to gauge design performance. It also helps then

prepare their client’s product for both local and overseas compliance testing so that

this process may be streamlined. (Tekt Industries Pty. Ltd., 2015)

Initial PCB prototypes can often be assembled in-house to accelerate the design

validation process and gain further understanding of assembly constrains. They also

routinely organize manufacture and assembly of PCBs through local and overseas

providers for more complex designs and higher volume orders. With an in-house CNC

laser cutter, 3D printer, and CNC milling machine, small proof of concept prototypes

can be fabricated with much faster turnaround than many offshore fabricators

depending on desired finish. (Tekt Industries Pty. Ltd., 2015)

 Networked LED Driver System and API

4

2.2. Company brands
Apart from providing engineering services to contractors, Tekt Industries also has its

own product line. The company recently launched the Tektyte brand.

“Founded in December 2014, Tektyte focuses on creating high quality tools and

development platforms for electronics professionals and enthusiasts.” (Tekt Industries

Pty. Ltd., 2015)

Kickstarter is place where backers can pledge their money to fund creative projects. It

is home for everything from films, games, and music to art, design and technology.

(Kickstarter Inc., n.d.)

With its recent successfully funded kickstarter project for a circuit tester called the

LogIt, the company is looking forward to expand its product line by creating new

development boards and tools. One of the way the company is trying to make its yet-

to-be-released product line stand out from the crowd by using a unique hexagonal

PCB shape.

Two of such development boards are network connected or Universal Serial Bus

(USB) connected LED driver board (LED-PR-001 and LED-LDR-001), each with its

specific application and features. These two boards are called: LED Point Runner and

LED Line Driver. The LED Point Runner LED-PR-001 board has 40 channels, capable

of driving up to 1000 LEDs per channel. The board can drive LED strips and/or LED

matrixes and each LED are individually addressable. The color data is sent as 24-bit

value; each LED can therefore display 16777216 different color. The brain of the

system is an Altera Max 10 FPGA, which can interpret USB data and decode them to

drive the LEDs connected to its channels. The device can be connected to a computer

via the micro-USB to receive data from the server. An Intel Edison (optional) can be

plugged in to act as an User Datagram Protocol (UDP) to USB bridge. It will receive

data sent by the server over a wireless connection, convert it to USB data and sends

it to the FPGA. The Intel Edison is a small, powerful computer with high performance,

dual-core central processing unit (CPU) and a single core micro-controller to support

complex data collections in a low power package. (Intel Corporation, n.d.)

The LED Line Driver LED-LDR-001 has 16 channels, capable of driving up to 1000

LEDs per channel. The board can drive any non-addressable LED strips and it is

connected to a network via the Ethernet connection to receive data from the server.

The color data is sent as 24-bit value. The brain of the system is an Atmel SAM4E

Memory Control Unit (MCU), which can interpret UDP data and decode them to drive

the LEDs connected to its channels. An Intel Edison (optional) is onboard to act as a

wireless UDP receiver. It will receive data sent by the server over a wireless

connection and redirects it to the MCU. Figure 2.1 and 2.2 shows the two Tektyte

driver boards that the company designed.

 Networked LED Driver System and API

5

Figure 2.1 LED Point Runner

Figure 2.2 LED Line Driver

These driver boards are still in development phase. Therefore, the embedded

software for these boards are limited in capabilities and the application programming

interface (API) is still evolving. The Point Runner boards can only receive one

command (set length) and receive data designed for LED strips. At the time of writing,

the Point Runner cannot receive any data by the UDP protocol/ internet network. The

only input port is the USB interface of the device. The Line Driver boards receive data

by hard-wire Ethernet using an old data protocol. The data protocol is bare-bone and

designed for minimal to none data manipulation on the microcontroller. The company

wishes to change this protocol in the future.

 Networked LED Driver System and API

6

 Project definition
The Tektyte Point Runner board connects to a computer via a USB connection to

receive color data. This color data is needed to display colors on the LEDs connected

to its channel port. When an Intel Edison is plugged in the board, the Edison can

process UDP packets received via the integrated Wi-Fi and feed this data to the USB

data line connected to the FPGA. The Line Driver board connects only via an Ethernet

port to a local network. Thus, the color data is sent via an internet protocol. To make

the driver board truly wireless (in terms of data connection), an Intel Edison can be

added to utilize its Wi-Fi capability.

3.1. Problem statement
Each device connected to a local network has a unique IP address and a port number

to where data can be sent. The user must remember the IP address and port number

of a driver board to be able to send data to it. Remembering this information can be

tedious. However, if the user has multiple boards deployed in the network, it is almost

impossible to remember the IP addresses and port numbers of all the different boards.

The company does not have a solution to this problem yet.

3.2. Project requirements and boundaries
The start date of this project is on February 9th 2015. The project assignment lasts 17

weeks and ends on June 5th 2015.

The project executor is only working on the software development. The hardware of

the prototype is in charge of the client and any changes in the hardware are reported

to the project executor.

The solution must be written in C++ programming language and run on a Windows

operating system (OS). Before creating the solution, a communication protocols must

be defined. The solution must be able to handle incoming data packets from multiple

senders. Important information is stored in the server for future use and the data is

then processed and forwarded to the correct driver boards. An administrator program

connects to the solution to view and change various properties of the solution. The

solution is able to send data to the Point Runner driver board by USB or by the UDP

protocol. Creating an API is also part of the project. The API is written in C++ and its

main purpose is provide an easier and faster programming environment for the end-

user. Some sample programs are created in Processing and also serve as programs

to test the solution’s performance.

Processing is a programming language, development environment, and online

community. Since 2001, Processing has promoted software literacy within the visual

arts and visual literacy within technology. Initially created to serve as a software

sketchbook and to teach computer programming fundamentals within a visual context,

Processing evolved into a development tool for professionals. Today, there are tens

of thousands of students, artists, designers, researchers, and hobbyists who use

Processing for learning, prototyping, and production. (Processing Foundation, n.d.)

 Networked LED Driver System and API

7

3.3. Project goal and deliverables
The goal of this project is to research and implement a solution that meets the project

requirements. During 17 weeks, a software is created to interface with the LED driver

boards, which implements various features requested by the project provider. At the

end of the project, the intern submits a final report of the project product. In this report

all technical details of the product are documented.

The deliverables of the project are:

1 Solution communication protocol documentation

2 Solution software Visual Studio code

3 API library Visual Studio code

4 Test/ Sample sender programs Processing code

5 Test/ Sample driver program Processing code

6 Test/ Sample administrator program Processing code

7 Final product report

 Networked LED Driver System and API

8

 Basic of design
The solution to the problem is to run a server between the user’s program and the

driver boards. This solution is recommended and requested by the project provider.

The main purpose of the server is to provide a level of abstraction. The user sends

data to the server and the server processes and routes the data to the correct address

of the driver boards. This is called network address translation. The user only needs

to remember the IP address and port number of the server to send data to any driver

boards connected to the network. For the user, this means a cleaner and easier

interface to work with. The server also decodes and checks the data send by the user

for any error. Therefore, it acts like a data format error filter. An API is created to further

simplify the interface with the server. The API hides the protocol between the user

program and the server software and provides a unified data handling. Figure 4.1

shows the visual representation of the Network LED Driver System.

Figure 4.1 Networked LED Driver System overview

The server makes use of the thread library to benefit from the multithreading

capabilities. Multiple threads can run simultaneously to increase the server’s

performance. For example, the server can process messages while it waits for the

other messages to send.

The server activities can be divided into 3 categories/ phases: Receive, Process and

Send. (Figure 4.2)

 Networked LED Driver System and API

9

Figure 4.2 Server phases

The first phase Receive waits until an UDP message arrives at the server socket.

When a message is received, it sorts and adds the messages safely in the appropriate

inbox. The messages are sorted based on the send source and message type. The

message can be send by a user program (Sender), a driver program (Driver) or an

administrator program (Admin). Each program can send two types of messages: data

or command.

The second phase Process contains multiple inboxes. A message is removed from

the inbox when Process thread becomes available. The message is then processed

according to a predetermined method. The processing method varies depending on

the type of message, the send source and the instruction of the message. A simplified

and universal method to process a data message type can be seen in figure 4.3. The

function checks and waits for notification that new messages are available. When the

function is notified to continue, it will process and decode the message. If the driver

board is connected by an Internet protocol, the decoded message is added to the

outbox. If the outbox is already in use, the function will wait for its turn. After the

function added the message to the outbox, it will start from the beginning again. If the

driver board is connected by a USB connection, the decoded message is sent

forwarded to a USB driver program.

Figure 4.3 Data processing overview

 Networked LED Driver System and API

10

The processing of a command message type looks similar to the one from a data type

except no message is added to the outbox. A command often gives an instruction to

change one or more configuration of the server. Figure 4.4 illustrates a simplified and

universal method to process a command message type.

Figure 4.4 Command processing overview

The newly received message is always checked for the correct format before being

decoded. An error message is displayed when it fails the test. After successfully

passing this test, the message is processed accordingly.

The third phase Send removes a message from the outbox and sends the message

to the correspondent using UDP or USB. If there is no message available in the outbox,

the function will wait until notified to continue.

Two sender sample programs are created using Processing. These serve as programs

to tests the proper working of the server software.

Processing is a programming language, development environment, and online

community. Since 2001, Processing has promoted software literacy within the visual

arts and visual literacy within technology. Initially created to serve as a software

sketchbook and to teach computer programming fundamentals within a visual context,

Processing evolved into a development tool for professionals. Today, there are tens

of thousands of students, artists, designers, researchers, and hobbyists who use

Processing for learning, prototyping, and production. (Processing Foundation, n.d.)

The first sample software gathers a video stream of an webcam and down samples it

to a lower resolution. Each row is sent to the server as a strip. Before any data can be

sent to the server, the user must connect to the server To stop the data stream, the

user disconnect the program from the server.

The second sample program the user can control each LED pixel individually. The

color of the pixel can be set by selecting a LED pixel and turning knobs to change its

red, green and blue values. The amount of channel and pixels per channel can be

changed in the program. The program must connected to the server before sending

data. When the program is connected to the server the indicator on the top right

changes from black to green and vice versa.

The driver sample program is created to visualize the output of the server software

This program simulates the functions of a driver board and LED strips. It takes

individual channel information and displays it on screen in circular dots.

 Networked LED Driver System and API

11

The server administrator can use the administrator program to review and change

channel information. The program has four tabs. The senders tab shows all senders

currently registered on the server network. Their IP, port number, name and such is

shown in a list. The user can click on a channel to show more information about a

channel. In the drivers tab the user can see all the drivers registered to the server

network. The user can change some channel settings in this tab.

When a channel linked to a strip object is selected, the user can change the class type

to matrix, color mode, LED type, configuration and the length of the object. The length

of a strip is the amount of LED pixels on the strip. When a channel linked to a matrix

object is selected, the user can change the class type to strip, color mode, the width

and the height of the object. The width of a matrix is the amount of LED pixel on the

X-axis of the matrix. The height of a matrix is the amount of LED pixel on the Y-axis of

the matrix. A channel can also be linked to a raw object. This object contains no

changeable parameters and is intended for compatibility with previously created

sender programs.

 Networked LED Driver System and API

12

 Product development
Tekt Industries Pty. Ltd. is developing two LED driver boards with model number LED-

PR-001 and LED-LDR-001. The intern is not responsible for the hardware design/

manufacturing and embedded software of these boards. The intern is only responsible

for creating the server software and sample programs. In this chapter, the

communication protocol, the server software, test/sample software and the API library

are explained in detail.

5.1. Communication protocol
Before the server software can be created, a communication protocol must be set. The

driver boards are primarily intended for art displays. A UDP based protocol is chosen

because of the time sensitivity of application. Time-sensitive applications often use

UDP because dropping packets is preferable to waiting for delayed packets.

A simple, yet clear protocol is chosen that the user and the software can easily

understand. Figure 5.1 shows the general format of the communication protocol.

Figure 5.1 General communication protocol format

All messages start with a Source ID. This ID indicates the type of source and the type

of message. For example, a type of source can be a sender and the type of the

message can be a command; the source ID of this message is “*” (see Table 5.1).

Sender data >

Sender command *

Driver data /

Driver command #

Administrator data &

Administrator command @

Table 5.1 Communication protocol - Source IDs

After the source ID comes the first parameter. Parameters are separated by a forward-

slash symbol (“/”). The content of the parameters varies and can be one or two bytes

long. Command messages generally contain settings information of an channel while

 Networked LED Driver System and API

13

data message generally contain a channel number and color data. The communication

protocol is documented and can be found in Appendix 1.

5.2. Server software
It is important to note that this is a first generation software. That means the software

is written for its functionality rather than speed, graphical user interface (UI) and such.

The software is also written with future modification and expansion in mind. The

integrated development environment (IDE) used in this project is Microsoft Visual

Studio Express 2013 for Windows Desktop Version 12.0.31101.00 Update 4. The

entire server software is written in C++ programming language.

As programs grow larger and larger (and include more files), it becomes increasingly

tedious to have to forward declare every function you want to use that lives in a

different file. Wouldn’t it be nice if you could put all your declarations in one place?

C++ code files (with a .cpp extension) are not the only files commonly seen in C++

programs. The other type of file is called a header file, sometimes known as an include

file. Header files usually have a .h extension, but you will sometimes see them with a

.hpp extension or no extension at all. The purpose of a header file is to hold

declarations for other files to use. (Alex, 2007)

The software is split into seven header files and six cpp files: Definitions.h, main.cpp,

MessageHandler.h, MessageHandler.cpp, Database.h, Database.cpp, Channel-

Object.h, ChannelObject.cpp, USBdriver.h, USBdriver.cpp, stdafx.h, stdafx.cpp and

targetver.h. The header file stdafx.h, cpp file stdafx.cpp and header file targetver.h are

needed for proper working in Windows and do not contribute any significance to the

features of the server. These files are automatically generated by the IDE. They are

generic code and are, therefore, not explained.

Figure 5.2 Server structure and dataflow

Figure 5.1 shows the structure and dataflow of the server. Pink arrows show when a

function is called and the green arrows show that a value is returned. Functions and/or

terms from the lower level files are often used in the higher level files. The Definition

header files are used by all other header and cpp files. Based on how the different files

interact with one another, it is best to start the explanation at the Definition header file.

 Networked LED Driver System and API

14

From there, the next lowest level file (ChannelObject) is explained next. Going up the

level, Database, MessageHandler, USBdriver and main are explained.

5.2.1. Definitions header file
This header file declares many constants used throughout the entire program.

const int TOTAL_SENDERDATAPROCESSINGTHREADS = 50;

const int TOTAL_SENDERCOMMANDPROCESSINGTHREADS = 1;

const int TOTAL_DRIVERDATAPROCESSINGTHREADS = 1;

const int TOTAL_DRIVERCOMMANDPROCESSINGTHREADS = 1;

const int TOTAL_ADMINDATAPROCESSINGTHREADS = 1;

const int TOTAL_ADMINCOMMANDPROCESSINGTHREADS = 1;

The above shown constants are used to specify the amount of threads to be started

at the beginning of the program. There are six different functions running in parallel.

Multiple threads of the function that processes sender data are created to handle the

large amount of data coming into the program by UDP.

static const char* SERVER_ADDR = "127.0.0.1";

const int SERVER_PORT = 21234;

The above shown constants declare the IP address and port number of the server.

const char SENDERDATA = '>';

const char SENDERCMD = '*';

const char DRIVERDATA = '/';

const char DRIVERCMD = '#';

const char ADMINDATA = '&';

const char ADMINCMD = '@';

const unsigned char ALL = 0x00;

const unsigned char SINGLE = 0x01;

const unsigned char MULTIPLE = 0x02;

/* SENDERCMD definitions */

const unsigned char SENDER_CONNECT = 0x00;

const unsigned char SENDER_DISCONNECT = 0x02;

const unsigned char DRIVER_CONNECT = 0x00;

const unsigned char DRIVER_DISCONNECT = 0x01;

const unsigned char REQUEST_SENDERDATA = 0x02;

const unsigned char REQUEST_DRIVERDATA = 0x03;

const unsigned char ADMIN_CONNECT = 0x00;

const unsigned char ADMIN_DISCONNECT = 0x01;

const unsigned char CHANNELMOD = 0x04;

const unsigned char SET_LENGTH = 0x04;

 Networked LED Driver System and API

15

const unsigned char GET_LENGTH = 0x05;

const unsigned char CLASS_STRIP = 0x00;

const unsigned char CLASS_MATRIX = 0x01;

const unsigned char CLASS_RAW = 0x03;

const unsigned char TYPE_ADDRESSABLE = 0x02;

const unsigned char TYPE_NONADDRESSABLE = 0x03;

const unsigned char CONFIG_LINE = 0x04;

const unsigned char CONFIG_OTHER = 0x05;

const unsigned char COLOR_MONO = 0x06;

const unsigned char COLOR_RGB = 0x07;

The above shown constants are used to specify the source and type of the message.

These symbols are set in the communication protocol.

enum led_t

{

ADDRESSABLE,

 NONADDRESSABLE,

};

enum color_mode

{

 MONO,

 RGB,

};

enum config_t

{

 LINE,

 OTHER,

};

enum class_t

{

 STRIP,

 MATRIX,

 RAW,

};

enum connection_t

{

 USB,

 UDP,

};

16

These five enumeration declaration (shown above) are defined to restrict to one of

several explicitly named constants. This way, input error can be limited significantly.

New constants are easily added if needed in future iterations of the server software.

extern int ByteToInt(unsigned char MSB, unsigned char LSB);

This declares a helper function used often in the program. It converts two bytes into a

16-bit integer.

5.2.2. ChannelObject header and cpp file
The ChannelObject header file declares twelve classes and its member functions and

attributes. Each class has functions that saves and returns a value of one of the

attributes important to the proper functioning of the server.

A struct is defined of custom exceptions. When a “MyException” is thrown, it prints the

error message on the console.

Figure 5.3 shows a detailed hierarchy of the different classes. This hierarchy can be

easily expanded in the future. Using classes, inheritance and polymorphism, complex

software with great deal of flexibility can be achieved. More flexibility means a greater

degree of freedom to create a logical, highly upgradable and easy-to-understand

software. All classes contain private attributes which can be changed using public

member functions. This is called data encapsulation. It creates a great level of data

abstraction. Class private attributes are protected from inadvertent user-level errors,

which might corrupt the state of the object. The levels of classes are created to give

the future developer of the server more control over which objects he/she wishes to

modify. For example: if the developer wishes control all Strip objects, he/she can call

a virtual function of all Strip objects. Thanks to polymorphism, the program will execute

the correct function of any derived object from Strip.

Figure 5.3 Class hierarchy

Class LED is an abstract base class and stores basic information all of its derived

classes must contain. The SET-functions takes call by reference arguments to avoid

 Networked LED Driver System and API

17

unnecessary coping of data. The GET-functions are declared as constant to prevent

any modification to the private variables.

The LED class has ten private variables:

1. char* channelName

2. int external_channel

3. int internal_channel

4. color_mode color

5. int group

6. class_t classType

7. std::string DriverIP

8. int DriverPort

9. std::string SenderIP

10. int SenderPort

11. connection_t connectType

These private attributes are self-explanatory and can be changed or returned with the

public member functions in its class. The variable “internal_channel” is the channel

number the driver uses to identify its channel. The variable “external_channel” is the

channel number by which the sender can access the object. Each external channel

number is unique and mapped to the internal channel number.

The LED class has twenty-three public member functions:

1. LED(const char* name, const int& Ext_ch, const int& Int_ch, const

color_mode& c, const class_t& ct)

This is the constructor of this class. The first argument is a char pointer to a string.

The string contains the name associated to the new created LED object. The name

can be used by the user to identify the channel faster. The second argument is the

external channel number coupled to the object. This number is also used for

reference purposes for the sender. The third argument is the internal channel

number. The fourth argument holds the color mode of the objects. The most

common LEDs can either display one color or a RGB color. The final argument

declares the LED object to be a certain class. Some LEDs come in strip or matrix

form.

2. virtual ~LED()

This is the default destructor of this class. It is declare virtual to benefit of the

polymorphism capabilities of the C++ language. The function deletes the memory

content pointer by the name pointer before the object destruction to prevent

memory leaks.

3. void setExternnalChannel(const int& ch)

changes the private variable external_ channel to the value of argument “ch”.

 Networked LED Driver System and API

18

4. void setInternalChannel(const int& ch)

changes the private variable internal_ channel to the value of argument “ch”.

5. void setColorMode(const color_mode& c)

changes the private variable color to the value of argument “c”.

6. void setGroup(const int& g)

changes the private variable group to the value of argument “g”.

7. void setClassType(const class_t& ct)

changes the private variable classType to the value of argument “ct”.

8. void setDriverInfo(const std::string& IP, const int& port)

changes the private variable DriverIP and DriverPort to the value of argument “IP”

and “port” respectively.

9. void setSenderInfo(const std::string& IP, const int& port)

changes the private variable SenderIP and SenderPort to the value of argument

“IP” and “port” respectively.

10. void setConnectionType(const connection_t& con_t)

changes the private variable connectType to the value of argument “con_t”.

11. char* getName() const

returns a char pointer of the memory where the name of the channel is stored.

12. int getChannel() const

returns the channel number of the object.

13. color_mode getColorMode() const

returns the color mode of the object.

14. int getGroup() const

returns the group number of the object.

15. class_t getClassType() const

returns the class of the object.

16. std::string getDriverIP() const

returns the IP address of the driver board associated to this object.

17. int getDriverPort() const

returns the port number of the driver board associated to this object.

 Networked LED Driver System and API

19

18. std::string getSenderIP() const

returns the IP address of the sender associated to this object.

19. int getSenderPort() const

returns the port number of the sender associated to this object.

20. connection_t getConnectionType()

returns the connection type of the driver associated to this object.

21. virtual bool checkSenderDTformat(const std::vector<unsigned char>&

bufIn) const = 0

This function is declared pure virtual. Derived classes of LED must define this

function.

22. virtual void decodeUDP(std::vector<unsigned char>& TXbuf, const

std::vector<unsigned char>& bufIn) = 0

This function is declared pure virtual. Derived classes of LED must define this

function.

23. virtual void decodeUSB(const std::vector<unsigned char>& bufIn) = 0

This function is declared pure virtual. Derived classes of LED must define this

function.

Class Matrix is a derived class of the base class LED. It has two unique properties; it

has a height and a width. The inherited virtual functions are not defined in this class.

Therefore, this class is also an abstract class. The SET-functions takes call by

reference arguments to avoid unnecessary coping of data. The GET-functions are

declared as constant to prevent any modification to the private variables.

The Matrix class has two private (non-inherited) variables:

1. int width

2. int height

These private attributes are self-explanatory and can be changed or returned with the

public member functions in its class.

 The Matrix class has seven public (non-inherited) member functions:

1. Matrix(const char* name, const int& Ext_ch, const int& Int_ch, const int& wd,

const int& ht, const color_mode& c)

This is the constructor of a Matrix object. It calls the LED constructor and passes

the arguments “name”, “Ext_ch”, “Int_ch”, “c” and MATRIX. This automatically

creates an LED object with the new attribues. The function also sets the width and

the height of the object.

 Networked LED Driver System and API

20

2. virtual ~Matrix()

This is the default destructor. This function is declared as virtual ensure proper

polymorphic destruction of the object at the end of its life.

3. void setWidth(const int& wd)

changes the private variable width to the value of the argument “wd”.

4. void setHeigth(const int& ht)

changes the private variable height to the value of the argument “ht”.

5. void setDimensions(const int& wd, const int& ht)

changes both the private variable width and height to the value of the argument

“wd” and “ht” respectively.

6. int getWidth() const

returns the value of the private variable width.

7. int getHeight() const

returns the value of the private variable height.

Class Strip is a derived class of the base class LED. The inherited virtual functions

are not defined in this class. Therefore, this class is also an abstract class. This class

has a unique property; it has a length. The SET-functions takes call by reference

arguments to avoid unnecessary coping of data. The GET-functions are declared as

constant to prevent any modification to the private variables.

The Strip class has three private (non-inherited) variables:

1. int pixelLength;

2. led_t ledtype;

3. config_t configuration;

These private attributes are self-explanatory and can be changed or returned with the

public member functions in its class.

 The Strip class has eight public (non-inherited) member functions:

1. Strip(const char* name, const int& Ext_ch, const int& Int_ch, const int& len,

const led_t& type, const color_mode& c, const config_t& config);

This is the constructor of a Strip object. It calls the LED constructor and passes the

arguments “name”, “Ext_ch”, “Int_ch”, “c” and STRIP. This automatically creates

an LED object with the new attribues. The function also sets the length, the LED

type and the configuration type of the object.

2. virtual ~Strip();

This is the default destructor. This function is declared as virtual ensure proper

polymorphic destruction of the object at the end of its life.

 Networked LED Driver System and API

21

3. void setLength(const int& len);

sets the length of the LED strip to the value of argument “len”.

4. void setType(const led_t& type);

sets the type of LED to the value of argument “type”.

5. void setConfig(const config_t& config);

sets the configuration in which the LED strip is. The configuration variable has no

meaningful function and is created for future expansion of the server software.

6. int getLength() const;

returns the length of the LED strip.

7. led_t getType() const;

returns the type of the LED strip

8. config_t getConfig() const;

returns the configuration of the LED strip.

Class Raw is a derived class of the base class LED. The inherited functions are

defined. Therefore this class is not an abstract class. This class is created for the sole

purpose of backwards compatibility with the older programs the project provider

created prior this project. This class only stores the most essential information and has

no unique property. Therefore, this class is a wrapper class to package the data into

a message the server software can accept. This class should be phased out in future

iterations of the server software.

The class contains no private variable and has five public (non-inherited) member

functions:

1. Raw(const char* name, const int& Ext_ch, const int& Int_ch)

This is the constructor of a Raw object. It calls the LED constructor and passes the

arguments “name”, “Ext_ch”, “Int_ch”, “c” and RAW. This automatically creates an

LED object with the new attribues.

2. virtual ~Raw()

This is the default destructor. This function is declared as virtual ensure proper

polymorphic destruction of the object at the end of its life.

3. virtual bool checkSenderDTformat(const std::vector<unsigned char>&

bufIn) const override

This function inspects if the incoming message (bufIn) complies with the

communication protocol. The function returns a Boolean; true return value means

the message does conform to the protocol and false means the message does not

conform to the protocol. This function defines the pure virtual function declared in

the LED class.

 Networked LED Driver System and API

22

4. virtual void decodeUDP(std::vector<unsigned char>& TXbuf, const

std::vector<unsigned char>& bufIn) override

This function is used when the driver board associated to this object is using the

UDP protocol to send and receive data. The color data is extracted from the

message (bufIn) by removing all the unnecessary information. This color data is

then copied to the outgoing message container/vector TXbuf. In other words, the

message is stripped to its bare minimum (raw data). This function defines the pure

virtual function declared in the LED class.

5. virtual void decodeUSB(const std::vector<unsigned char>& bufIn) override

This function is used when the driver board associated to this object is connected

to the server by USB. The function decodes the incoming message (bufIn). The

color data is extracted for the message and transferred to a USB driver software

(created by the company). This function defines the pure virtual function declared

in the LED class.

Class AddressableStrip is a derived class of the class Strip. The inherited virtual

functions are not defined in this class. Therefore, this class is also an abstract classes.

As explained at the beginning of this chapter, this class is created to give the developer

more creative control over groups of subclasses.

The class contains no private variable and has two public (non-inherited) member

functions:

1. AddressableStrip(const char* name, const int& Ext_ch, const int& Int_ch,

const int& len, const color_mode& c, const config_t config)

This is the constructor of an AddressableStrip object. It calls the Strip constructor

and passes the arguments “name”, “Ext_ch”, “Int_ch”, “len”, ADDRESSABLE, “c”

and “config”. This automatically creates a Strip object with the new attribues.

2. virtual ~AddressableStrip()

This is the default destructor. This function is declared as virtual ensure proper

polymorphic destruction of the object at the end of its life.

Class NonAddressableStrip is a derived class of the class Strip. The inherited virtual

functions are not defined in this class. Therefore, this class is also an abstract classes.

As explained at the beginning of this chapter, this class is created to give the developer

more creative control over groups of subclasses.

The class contains no private variable and has two public (non-inherited) member

functions:

1. NonAddressableStrip(const char* name, const int& Ext_ch, const int&

Int_ch, const int& len, const color_mode& c, const config_t config)

This is the constructor of an NonAddressableStrip object. It calls the Strip

constructor and passes the arguments “name”, “Ext_ch”, “Int_ch”, “len”,

 Networked LED Driver System and API

23

NONADDRESSABLE, “c” and “config”. This automatically creates a Strip object

with the new attribues.

2. virtual ~AddressableStrip()

This is the default destructor. This function is declared as virtual ensure proper

polymorphic destruction of the object at the end of its life.

Derived classes from the AddressableStrip, NonAddressableStrip and Matrix classes

are created because each class, type and color mode combination requires a different

method to process/decode data. Each derived class contains three member functions

which has its own definition: checkSenderDTformat(…), decodeUDP(…) and

decodeUSB(…). Each class has its own message format and its own way of

processing the data. The processing sequence is determined by the communication

protocol described in chapter 5.1.

Class AddressableStripMono is a derived class of the base class AddressableStrip.

The inherited functions are defined. Therefore this class is not an abstract class.

The class contains no private variable and has six public (non-inherited) member

functions:

1. AddressableStripMono(const char* name, const int& Ext_ch, const int&

Int_ch)

This is a constructor of an AddressableStripMono object. This function is used

when a driver connects to the server. It calls the AddressableStrip constructor and

passes the arguments “name”, “Ext_ch”, “Int_ch”, 1, ADDRESSABLE, MONO and

OTHER. This automatically creates the AddressableStrip object with the new

attribues. The channel settings are unknown and therefore set to a default.

2. AddressableStripMono(const char* name, const int& Ext_ch, const int&

Int_ch, const int& len, const config_t config)

This is a constructor of an AddressableStripMono object. It calls the

AddressableStrip constructor and passes the arguments “name”, “Ext_ch”,

“Int_ch”, “len”, ADDRESSABLE, MONO and “config”. This automatically creates

an AddressableStrip object with the new attribues. This function is used when the

channel settings become known or is set by the administrator.

3. virtual ~AddressableStripMono()

This is the default destructor. This function is declared as virtual ensure proper

polymorphic destruction of the object at the end of its life.

4. virtual bool checkSenderDTformat(const std::vector<unsigned char>&

bufIn) const override

checks the message size and byte sequence of the message to determine if the

message complies with the communication protocol. The message size must equal

to 6 + (length of the strip) bytes.

 Networked LED Driver System and API

24

5. virtual void decodeUDP(std::vector<unsigned char>& TXbuf, const

std::vector<unsigned char>& bufIn) override

decodes and transform the incoming message (bufIn) into an outgoing message

(TXbuf) that conforms to the communication protocol. The external channel

number in bufIn is replaced with the internal channel number. Refer to the

communication protocol in Appendix 1 to see the exact format of the message.

6. virtual void decodeUSB(std::vector<unsigned char>& TXbuf, const

std::vector<unsigned char>& bufIn) override

This function has not be implemented yet because no USB driver software for this

class has been written by the company yet.

Class AddressableStripRGB is a derived class of the base class AddressableStrip.

The inherited functions are defined. Therefore this class is not an abstract class.

The class contains no private variable and has six public (non-inherited) member

functions:

1. AddressableStripRGB(const char* name, const int& Ext_ch, const int&

Int_ch)

This is a constructor of an AddressableStripRGB object. This function is used when

a driver connects to the server. It calls the AddressableStrip constructor and

passes the arguments “name”, “Ext_ch”, “Int_ch”, 1, ADDRESSABLE, RGB and

OTHER. This automatically creates an AddressableStrip object with the new

attribues. The channel settings are unknown and therefore set to a default.

2. AddressableStripRGB(const char* name, const int& Ext_ch, const int&

Int_ch, const int& len, const config_t config)

This is a constructor of an AddressableStripRGB object. It calls the

AddressableStrip constructor and passes the arguments “name”, “Ext_ch”,

“Int_ch”, “len”, ADDRESSABLE, RGB and “config”. This automatically creates an

AddressableStrip object with the new attribues. This function is used when the

channel settings become known or is set by the administrator.

3. virtual ~AddressableStripRGB()

This is the default destructor. This function is declared as virtual ensure proper

polymorphic destruction of the object at the end of its life.

4. virtual bool checkSenderDTformat(const std::vector<unsigned char>&

bufIn) const override

checks the message size and byte sequence of the message to determine if the

message complies with the communication protocol. The message size must equal

to 6 + (length of the strip x 3) bytes.

 Networked LED Driver System and API

25

5. virtual void decodeUDP(std::vector<unsigned char>& TXbuf, const

std::vector<unsigned char>& bufIn) override

decodes and transform the incoming message (bufIn) into an outgoing message

(TXbuf) that conforms to the communication protocol. The external channel

number in bufIn is replaced with the internal channel number. Refer to the

communication protocol in Appendix 1 to see the exact format of the message.

6. virtual void decodeUSB(std::vector<unsigned char>& TXbuf, const

std::vector<unsigned char>& bufIn) override

The color data is extracted from the incoming message (bufIn). This data is then

passed to the USB driver function std::vector<unsigned char>

cmd_load_data(unsigned int ch_num, unsigned int len, const std::vector<unsigned

char>& RGBdata) to process a message suitable for the USB driver software. This

USB driver function output the message to the outgoing message (TXbuf). The

USB protocol is previously defined by the company and the API is created by a

member of the company. The executer of this project did not participate in the USB

protocol definition and API creation.

Class NonAddressableStripMono is a derived class of the base class

NonAddressableStrip. The inherited functions are defined.

The class contains no private variable and has six public (non-inherited) member

functions:

1. NonAddressableStripMono(const char* name, const int& Ext_ch, const int&

Int_ch)

This is a constructor of a NonAddressableStripMono object. This function is used

when a driver connects to the server. It calls the NonAddressableStrip constructor

and passes the arguments “name”, “Ext_ch”, “Int_ch”, 1, NONADDRESSABLE,

MONO and OTHER. This automatically creates a NonAddressableStrip object with

the new attribues. The channel settings are unknown and therefore set to a default.

2. NonAddressableStripMono(const char* name, const int& Ext_ch, const int&

Int_ch, const int& len, const config_t config)

This is a constructor of a NonAddressableStripMono object. It calls the

NonAddressableStrip constructor and passes the arguments “name”, “Ext_ch”,

“Int_ch”, “len”, NONADDRESSABLE, MONO and “config”. This automatically

creates a NonAddressableStrip object with the new attribues. This function is used

when the channel settings become known or is set by the administrator.

3. virtual ~NonAddressableStripMono()

This is the default destructor. This function is declared as virtual ensure proper

polymorphic destruction of the object at the end of its life.

 Networked LED Driver System and API

26

4. virtual bool checkSenderDTformat(const std::vector<unsigned char>&

bufIn) const override

checks the message size and byte sequence of the message to determine if the

message complies with the communication protocol. The message size must equal

to 5 bytes.

5. virtual void decodeUDP(std::vector<unsigned char>& TXbuf, const

std::vector<unsigned char>& bufIn) override

decodes and transform the incoming message (bufIn) into an outgoing message

(TXbuf) that conforms to the communication protocol. The external channel

number in bufIn is replaced with the internal channel number. Refer to the

communication protocol in Appendix 1 to see the exact format of the message.

6. virtual void decodeUSB(std::vector<unsigned char>& TXbuf, const

std::vector<unsigned char>& bufIn) override

This function has not be implemented yet because no USB driver software for this

class has been written by the company yet.

Class NonAddressableStripRGB is a derived class of the base class

NonAddressableStrip. The inherited functions are defined. Therefore this class is not

an abstract class.

The class contains no private variable and has six public (non-inherited) member

functions:

1. NonAddressableStripRGB(const char* name, const int& Ext_ch, const int&

Int_ch)

This is a constructor of a NonAddressableStripRGB object. This function is used

when a driver connects to the server. It calls the NonAddressableStrip constructor

and passes the arguments “name”, “Ext_ch”, “Int_ch”, 1, NONADDRESSABLE,

RGB and OTHER. This automatically creates a NonAddressableStrip object with

the new attribues. The channel settings are unknown and therefore set to a default.

2. NonAddressableStripRGB(const char* name, const int& Ext_ch, const int&

Int_ch, const int& len, const config_t config)

This is a constructor of a NonAddressableStripMono object. It calls the

NonAddressableStrip constructor and passes the arguments “name”, “Ext_ch”,

“Int_ch”, “len”, NONADDRESSABLE, RGB and “config”. This automatically creates

a NonAddressableStrip object with the new attribues. This function is used when

the channel settings become known or is set by the administrator.

3. virtual ~NonAddressableStripRGB()

This is the default destructor. This function is declared as virtual ensure proper

polymorphic destruction of the object at the end of its life.

 Networked LED Driver System and API

27

4. virtual bool checkSenderDTformat(const std::vector<unsigned char>&

bufIn) const override

checks the message size and byte sequence of the message to determine if the

message complies with the communication protocol. The message size must equal

to 7 bytes.

5. virtual void decodeUDP(std::vector<unsigned char>& TXbuf, const

std::vector<unsigned char>& bufIn) override

decodes and transform the incoming message (bufIn) into an outgoing message

(TXbuf) that conforms to the communication protocol. The external channel

number in bufIn is replaced with the internal channel number. Refer to the

communication protocol in Appendix 1 to see the exact format of the message.

6. virtual void decodeUSB(std::vector<unsigned char>& TXbuf, const

std::vector<unsigned char>& bufIn) override

This function has not be implemented yet because no USB driver software for this

class has been written by the company yet.

Class MatrixMono is a derived class of the base class Matrix. The inherited functions

are defined. Therefore this class is not an abstract class.

The class contains no private variable and has six public (non-inherited) member

functions:

1. MatrixMono(const char* name, const int& Ext_ch, const int& Int_ch)

This is a constructor of a MatrixMono object. This function is used when a driver

connects to the server. It calls the Matrix constructor and passes the arguments

“name”, “Ext_ch”, “Int_ch”, 1, 1 and MONO. This automatically creates a Matrix

object with the new attribues. The channel settings are unknown and therefore set

to a default.

2. MatrixMono(const char* name, const int& Ext_ch, const int& Int_ch, const

int& wd, const int& ht)

This is a constructor of a MatrixMono object. It calls the Matrix constructor and

passes the arguments “name”, “Ext_ch”, “Int_ch”, “wd”, “ht” and MONO. This

automatically creates a Matrix object with the new attribues. This function is used

when the channel settings become known or is set by the administrator.

3. virtual ~MatrixMono()

This is the default destructor. This function is declared as virtual ensure proper

polymorphic destruction of the object at the end of its life.

 Networked LED Driver System and API

28

4. virtual bool checkSenderDTformat(const std::vector<unsigned char>&

bufIn) const override

checks the message size and byte sequence of the message to determine if the

message complies with the communication protocol. The message size must equal

to 5 bytes.

5. virtual void decodeUDP(std::vector<unsigned char>& TXbuf, const

std::vector<unsigned char>& bufIn) override

decodes and transform the incoming message (bufIn) into an outgoing message

(TXbuf) that conforms to the communication protocol. The external channel

number in bufIn is replaced with the internal channel number. Refer to the

communication protocol in Appendix 1 to see the exact format of the message.

6. virtual void decodeUSB(std::vector<unsigned char>& TXbuf, const

std::vector<unsigned char>& bufIn) override

This function has not be implemented yet because no USB driver software for this

class has been written by the company yet.

Class MatrixRGB is a derived class of the base class Matrix. The inherited functions

are defined. Therefore this class is not an abstract class.

The class contains no private variable and has six public (non-inherited) member

functions:

1. MatrixRGB(const char* name, const int& Ext_ch, const int& Int_ch)

This is a constructor of a MatrixMono object. This function is used when a driver

connects to the server. It calls the Matrix constructor and passes the arguments

“name”, “Ext_ch”, “Int_ch”, 1, 1 and RGB. This automatically creates a Matrix object

with the new attribues. The channel settings are unknown and therefore set to a

default.

2. MatrixRGB(const char* name, const int& Ext_ch, const int& Int_ch, const

int& wd, const int& ht)

This is a constructor of a MatrixRGB object. It calls the Matrix constructor and

passes the arguments “name”, “Ext_ch”, “Int_ch”, “wd”, “ht” and RGB. This

automatically creates a Matrix object with the new attribues. This function is used

when the channel settings become known or is set by the administrator.

3. virtual ~MatrixRGB()

This is the default destructor. This function is declared as virtual ensure proper

polymorphic destruction of the object at the end of its life.

 Networked LED Driver System and API

29

4. virtual bool checkSenderDTformat(const std::vector<unsigned char>&

bufIn) const override

checks the message size and byte sequence of the message to determine if the

message complies with the communication protocol. The message size must equal

to 5 bytes.

5. virtual void decodeUDP(std::vector<unsigned char>& TXbuf, const

std::vector<unsigned char>& bufIn) override

decodes and transform the incoming message (bufIn) into an outgoing message

(TXbuf) that conforms to the communication protocol. The external channel

number in bufIn is replaced with the internal channel number. Refer to the

communication protocol in Appendix 1 to see the exact format of the message.

6. virtual void decodeUSB(std::vector<unsigned char>& TXbuf, const

std::vector<unsigned char>& bufIn) override

This function has not be implemented yet because no USB driver software for this

class has been written by the company yet.

5.2.3. Database header and cpp file
The Database header file declares one class and its member functions and attributes.

The class has functions that saves and returns a value of one of the attributes

important to the proper functioning of the server. The header file also define a template

function.

Class Mapping has a private data structure (databaseAdmin) to hold the IP address

and port number of the administrator. It also has a private storage container “database”

that holds all the objects associated with the driver channels connected to the server.

The Mapping class has thirty-two public member functions and three private member

functions:

1. void registerDriver(const int& channel, const std::string& IP, const int& port,

connection_t con_t)

This function creates a default Raw object when a driver channel connects to the

server. This new object is added to the server database. Its channel number, IP

address, port number and the connection type is stored.

2. void deregisterDriver(const int& channel)

This function is called when a driver channel disconnects from the server. It

removes the object associated with the driver channel from the database.

 Networked LED Driver System and API

30

3. void registerSender(const int& channel, const std::string& IP, const int&

port)

This function is called when a sender connects to a channel. The IP address and

port number of the sender is saved into the object with the same channel number.

4. void deregisterSender(const int& channel)

When a sender disconnects from a channel, the sender IP address and sender

port number of the object is set back to “0.0.0.0” and 0 respectively.

5. void registerAdmin(const std::string& IP, const int& port)

This function is called when an administrator connects to the server. The IP

address and port number of the administrator is stored in the struct

“databaseAdmin”.

6. void deregisterAdmin()

This function is called when the administrator disconnects form the server The IP

address and port number of the administrator is reset to “0.0.0.0” and 0

respectively.

7. void changeStrip(const int& channel, const int& length, const led_t&

msgType, const config_t& msgConfig, const color_mode& color, const int&

group)

This function retrieves the driver and sender IP addresses and port number of the

object stored in the database. This old object is destroyed and a new derived Strip

object is constructed. The IP addresses, port numbers and other parameters,

passed to the function, is then stored into the newly created object.

8. void changeMatrix(const int& channel, const int& width, const int& height,

const color_mode& color, const int& group)

This function retrieves the driver and sender IP addresses and port number of the

object stored in the database. This old object is destroyed and a new derived Matrix

object is constructed. The IP addresses, port numbers and other parameters,

passed to the function, is then stored into the newly created object.

9. void changeRaw(const int& channel, const int& group)

This function retrieves the driver and sender IP addresses and port number of the

object stored in the database. This old object is destroyed and a new derived Raw

object is constructed. The IP addresses, port numbers and other parameter,

passed to the function, is then stored into the newly created object.

10. std::string printdatabaseChannelDriver()

assembles a string containing all attribute information of all the driver channels

stored in the database. The message format is defined in the communication

protocol.

 Networked LED Driver System and API

31

11. std::string printdatabaseChannelSender()

assembles a string containing all attribute information of all the sender stored in

the database. The message format is defined in the communication protocol.

12. bool doesChannelExist(const int& channel) const

returns true when a channel is linked to a driver board. If no driver board is linked

to this channel, a false is returned.

13. bool doesChannelBelongToSender(const int& channel, const std::string&

IP, const int& port)

returns true when the sender IP and port number matches the IP and port number

stored in the database. If no match is found, a false is returned.

14. bool doesChannelBelongToDriver(int channel, std::string IP, int port)

returns true when the driver IP and port number matches the IP and port number

stored in the database. If no match is found, a false is returned.

15. bool isChannelOccupied(const int& channel)

checks if the channel is already used by another sender. If so, the function returns

a true and vice versa.

16. bool isDriverOccupied(const int& channel) const

checks if a driver is already using the channel number. If so, the function returns a

true and vice versa.

17. bool doesAdminExist() const

checks if an administrator is already connected to the server.

18. bool doesBelongToAdmin(const std::string& IP, const int& port) const

returns true when the administrator IP and port number matches the IP and port

number stored in the database. If no match is found, a false is returned.

19. bool checkSenderDTformat(const int& channel, const std::vector<unsigned

char>& bufIn)

searches for the object associated to the channel number (channel) in the

database. The function then calls the checkSenderDTformat(…) function of that

object.

20. void decodeUDP(const int& channel, std::vector<unsigned char>& TXbuf,

const std::vector<unsigned char>& bufIn)

searches for the object associated to the channel number (channel) in the

database. The function then calls the decodeUDP(…) function of that object.

 Networked LED Driver System and API

32

21. void decodeUSB(const int& channel, const std::vector<unsigned char>&

bufIn)

searches for the object associated to the channel number (channel) in the

database. The function then calls the decodeUSB(…) function of that object.

22. std::string getDriverIPaddr(const int& channel)

searches for the object associated to the channel number (channel) in the

database. The function then calls the getDriverIPaddr(…) function of that object.

23. int getDriverPort(const int& channel)

searches for the object associated to the channel number (channel) in the

database. The function then calls the getDriverPort(…) function of that object.

24. class_t getClass(const int& channel)

searches for the object associated to the channel number (channel) in the

database. The function then calls the getClass(…) function of that object.

25. color_mode getColorMode(const int& channel)

searches for the object associated to the channel number (channel) in the

database. The function then calls the getColorMode (…) function of that object.

26. connection_t getConnectionType(const int& channel)

searches for the object associated to the channel number (channel) in the

database. The function then calls the getConnectionType(…) function of that

object.

27. int getLength(const int& channel)

searches for the Strip object associated to the channel number (channel) in the

database. The function then calls the getLength(…) function of that Strip object.

28. led_t getType(const int& channel)

searches for the Strip object associated to the channel number (channel) in the

database. The function then calls the getType(…) function of that Strip object.

29. config_t getConfig(const int& channel)

searches for the Strip object associated to the channel number (channel) in the

database. The function then calls the getConfig(…) function of that Strip object.

30. int getWidth(const int& channel)

searches for the Matrix object associated to the channel number (channel) in the

database. The function then calls the getWidth(…) function of that Matrix object.

31. int getHeight(const int& channel)

searches for the Matrix object associated to the channel number (channel) in the

database. The function then calls the getHeight(…) function of that Matrix object.

 Networked LED Driver System and API

33

32. LED* createDerivedStrip(const int& channel, const std::string& IP, const

int& port, const int& length, const led_t& msgType, const config_t&

msgConfig, const color_mode& colorMode)

The function determines the class of the Strip object needed based on the

parameter passed to the arguments and uses the createObject template to create

the required Strip object.

33. LED* createDerivedMatrix(const int& channel, const std::string& IP, const

int& port, const color_mode& colorMode, const int& width, const int& height)

The function determines the class of the Matrix object needed based on the

parameter passed to the arguments and uses the createObject template to create

the required Matrix object.

34. LED* createDerivedRaw(const int& channel, const std::string& IP, const int&

port)

uses the createObject template to create the required Matrix object.

35. template<typename T>

T* createObject(int Ext_channel, int Int_channel) const

The function template calls the constructor with three argument of the T class. The

first argument is the channel number converted to a string.

5.2.4. MessageHander header and cpp file
The MessageHandler program receives, sorts, processes and sends message that

arrives at the UDP socket of the server. Based on the source and type of message,

the message is redirected to different location/paths.

The header file defines a constant BUFSIZE as 65507. This is the maximum size an

incoming UDP message can be. Any message sizes larger than this number returns

an error. There is also an enumeration declaration Response in this header file. This

used to generate generic feedback message to the sender of a message.

enum Response

{

 WRONGFORMAT,

 ACCESSDENIED,

 NOTREGISTERED,

 NODRIVER,

 REGISTERCONFIFRM,

 ALREADYCONNECTED,

 CHANNELOCCUPIED,

 CHANNELRECONFIGURED,

 DISCONNECTCONFIRM,

 WRONGSETTINGS,

};

 Networked LED Driver System and API

34

The above shown code contains the different keys. More key can be added in the

future.

The Socket class has ten private variables:

1. struct sockaddr_in myaddr;

stores the IP address, port number and other network setting in a struct

sockaddr_in. This struct is needed to access the UDP socket.

2. struct sockaddr_in remaddr;

stores the IP address, port number and other network setting of the receiver of the

outgoing message.

3. int addrlen = sizeof(remaddr);

stores the address length of the remote address.

4. int recvlen;

stores the byte length of the incoming message.

5. SOCKET s;

This is the socket used for receiving and sending data

6. WSADATA wsa;

Stores information about the socket

7. char buf[BUFSIZE];

This is the buffer where the incoming message is temporarily stored before being

routed to the appropriate message storage container.

8. bool Server_isRunning;

is false when the server must shut down. The server continues to run when the

variable is true.

The Socket class has eleven public member functions and six private member

functions:

1. Socket(Mapping& m);

This is the constructor of an Socket object. It calls the setupUDP() function and

initializes threads. These threads are collected in a storage container called

“thread”. There are seven different functions called in the threads:

processSenderDT(…), processSenderCMD(…), processDriverDT(…), process-

DriverCMD(…), processAdmin-DT(…), processAdminCMD(…) and sendUDP-

msg(…).

2. ~Socket();

This is the object default destructor. It sets the variable Server_isRunning to false

to indicate a sever shutdown and wakes all threads up from their blocked state. A

 Networked LED Driver System and API

35

command is send is sent to close the UDP socket used by the server. Finally, all

threads will be joined before the server is shutdown.

3. int setupUDPsocket();

This creates a UDP socket where messages can be sent to and from. If the socket

initialization cannot be completed, the program will terminated.

4. void checkUDPmsg();

This function will run continuously if variable “Server_isRunning” equals true. The

recvfrom() function copies any messages received at the UDP socket to a char

array (buf) and returns the byte size of the received message. The size number is

saved in variable “recvlen”. The recvfrom blocks until a message is received or

when the socket is closed. A function is said to block when the process cannot

continue because the function is not exiting. The server can start shutting down

while the revcfrom() function is blocking. When the socket is closed, the recfrom()

function exits. The variable “Server_isRunning is tested immediately. If the variable

equals false, the checkUDPmsg() returns.

If variable recvlen does not equal -1 (SOCKET_ERROR), the message stored in

buf is copied to a vector storage container. This removes all the used space

allocated in the buf array and the software developer can use all its advanced

member functions such as iterators. The message and source information are

stored in the correct inbox/message queue based on the source and type of the

message. Since the inboxes are shared with other threads, mutexes are used to

ensure safe access to the inboxes.

5. void processSenderDT(Mapping& map);

This function will run continuously if variable “Server_isRunning” equals true. The

function tries to lock the mutex “mtxSenderDT”. If it fails, the thread blocks. The

server can start shutting down while the thread is blocked. When the conditional

variable is notified, the thread is unblocked. When the thread wakes up, it locks the

mutex if the inbox “queueSenderDT” contains messages or the “Server_isRunning”

equals false. The thread continues to block if none of the conditions are true. The

variable “Server_isRunning is tested immediately. If the variable equals false, the

processSenderDT() returns.

If the server is still running, a message and its source information are removed

from the inboxes. The message must pass the message format test. This is done

by calling the checkSenderDTformat() function from the Mapping class. The

channel number and the message itself is passed to the function. The next test

(doesChannelExist() function from the Mapping class) checks if a driver is

connected to drive the requested channel. The next test (isChannelOccupied()

function from the Mapping class) checks if a sender is already connected to the

server. All senders must be connected to the server before sending data message

to the server. The final test (doesChannelBelongToSender() function from the

Mapping class) checks if the sender is the owner/ connected to this channel. If the

channel is connected to the driver by UDP, the decodeUDP() function is called.

 Networked LED Driver System and API

36

The decoded message is redirected to the outbox (OutgoingMessage-

Queue_UDP). If the channel is connected to the driver by USB, the decodeUSB()

function is called.

6. void processSenderCMD(Mapping& map);

This function will run continuously if variable “Server_isRunning” equals true. The

function tries to lock the mutex “mtxSenderCMD”. If it fails, the thread blocks. The

server can start shutting down while the thread is blocked. When the conditional

variable is notified, the thread is unblocked. When the thread wakes up, it locks the

mutex if the inbox “queueSenderCMD” contains messages or the

“Server_isRunning” equals false. The thread continues to block if none of the

conditions are true. The variable “Server_isRunning is tested immediately. If the

variable equals false, the processSender-CMD() returns.

If the server is still running, a message and its source information are removed

from the inboxes. The message must pass the message format test. This is done

by calling the checkSenderCMDformat() function from the Mapping class. The

channel number and the message itself is passed to the function. The message

contains a command identifier.

If the identifier equals to SENDER_CONNECT, the first test (doesChannelExist()

function from the Mapping class) checks if a driver is connected to drive the

requested channel. The next test (isChannelOccupied() function from the Mapping

class) checks if a sender is already connected to the server. Only when all

parameters matches the settings saved in the server, the registerSender() function

is called.

If the identifier equals to SENER_DISCONNECT, the program checks if the sender

is indeed who he claims to be before disconnecting the sender from the server.

7. void processDriverDT(Mapping& map);

This function is a framework and is to be implement in the future. At the time of

writing, the driver boards cannot send any data to the server.

8. void processDriverCMD(Mapping& map);

This function will run continuously if variable “Server_isRunning” equals true. The

function tries to lock the mutex “mtxDriverCMD”. If it fails, the thread blocks. The

server can start shutting down while the thread is blocked. When the conditional

variable is notified, the thread is unblocked. When the thread wakes up, it locks the

mutex if the inbox “queueDriverCMD” contains messages or the

“Server_isRunning” equals false. The thread continues to block if none of the

conditions are true. The variable “Server_isRunning is tested immediately. If the

variable equals false, the processDriver-CMD() returns.

If the server is still running, a message and its source information are removed

from the inboxes. The message must pass the message format test. This is done

by calling the checkDriverCMDformat() function from the Mapping class. The

 Networked LED Driver System and API

37

channel number and the message itself is passed to the function. The message

contains a command identifier.

If the identifier equals to DRIVER_CONNECT, the isChannelOccupied() function

from the Mapping class checks if a driver is already connected to the server. The

driver is registered to the server by calling the registerDriver() function.

If the identifier equals to DRIVER_DISCONNECT, the program checks if the driver

is indeed who he claims to be before disconnecting the driver from the server.

9. void processAdminDT(Mapping& map);

This function will run continuously if variable “Server_isRunning” equals true. The

function tries to lock the mutex “mtxAdminDT”. If it fails, the thread blocks. The

server can start shutting down while the thread is blocked. When the conditional

variable is notified, the thread is unblocked. When the thread wakes up, it locks the

mutex if the inbox “queueAdminDT” contains messages or the “Server_isRunning”

equals false. The thread continues to block if none of the conditions are true. The

variable “Server_isRunning is tested immediately. If the variable equals false, the

processAdminDT() returns.

If the server is still running, a message and its source information are removed

from the inboxes. The message must pass the message format test. This is done

by calling the checkAdminDTformat() function from the Mapping class. The

channel number and the message itself is passed to the function. The message

contains a request identifier.

The administrator must be registered to the server before it can request data. The

function “doesBelongToAdmin()” is called to check if the sender of the request is

indeed the registered administrator. If the test is passed, the request identifier

“REQUEST_SENDERDATA” will call the function getDatabase_SenderInfo() or

“REQUEST_DRIVERDATA” will call the function getDatabase_DriverInfo().

10. void processAdminCMD(Mapping& map);

This function will run continuously if variable “Server_isRunning” equals true. The

function tries to lock the mutex “mtxAdminCMD”. If it fails, the thread blocks. The

server can start shutting down while the thread is blocked. When the conditional

variable is notified, the thread is unblocked. When the thread wakes up, it locks the

mutex if the inbox “queueAdminCMD” contains messages or the

“Server_isRunning” equals false. The thread continues to block if none of the

conditions are true. The variable “Server_isRunning is tested immediately. If the

variable equals false, the processAdminCMD() returns.

If the server is still running, a message and its source information are removed

from the inboxes. The message must pass the message format test. This is done

by calling the checkAdminCMDformat() function from the Mapping class. The

channel number and the message itself is passed to the function. The message

contains a command identifier.

 Networked LED Driver System and API

38

If the identifier equals to ADMIN_CONNECT, the doesAdminExist() function from

the Mapping class checks if a administrator is already connected to the server. The

administrator is registered to the server by calling the registerAdmin() function.

If the identifier equals to ADMIN_DISCONNECT, the program checks if the

administrator is indeed who he claims to be before disconnecting the administrator

from the server.

If the identifier equals to CHANNELMOD, the program changes the channel object

by calling “changeStrip()”, “changeMatrix() or changeRaw()” function from the

Mapping class. Before this is done, an identity test is done to ensure the right

administrator is sending this command.

11. void sendUDPmsg(Mapping& map);

This function will run continuously if variable “Server_isRunning” equals true. The

function tries to lock the mutex “mtxOut_UDP”. If it fails, the thread blocks. The

server can start shutting down while the thread is blocked. When the conditional

variable is notified, the thread is unblocked. When the thread wakes up, it locks the

mutex if the inbox “OutgoingMessageQueue_UDP” contains messages or the

“Server_isRunning” equals false. The thread continues to block if none of the

conditions are true. The variable “Server_isRunning is tested immediately. If the

variable equals false, the sendUDPmsg() returns.

If the server is still running, a message and its source information are removed

from the outbox. The message is send to the destination using the function

“sendto(…).

12. void bool isSenderCMDMessageFormatCorrect(const std::vector<unsigned

char>& bufIn) const;

checks the message size and byte sequence of the message to determine if the

message complies with the communication protocol. The format varies per type of

command. Refer to the communication protocol in Appendix 1 for more detail on

the format.

13. bool isDriverDTMessageFormatCorrect(const std::vector<unsigned char>&

bufIn) const;

checks the message size and byte sequence of the message to determine if the

message complies with the communication protocol. The format varies per type of

request. Refer to the communication protocol in Appendix 1 for more detail on the

format.

14. bool isDriverCMDMessageFormatCorrect(const std::vector<unsigned

char>& bufIn) const;

checks the message size and byte sequence of the message to determine if the

message complies with the communication protocol. The format varies per type of

command. Refer to the communication protocol in Appendix 1 for more detail on

the format.

 Networked LED Driver System and API

39

15. bool isAdminDTMessageFormatCorrect(const std::vector<unsigned char>&

bufIn) const;

checks the message size and byte sequence of the message to determine if the

message complies with the communication protocol. The format varies per type of

request. Refer to the communication protocol in Appendix 1 for more detail on the

format.

16. bool isAdminCMDMessageFormatCorrect(const std::vector<unsigned

char>& bufIn) const;

checks the message size and byte sequence of the message to determine if the

message complies with the communication protocol. The format varies per type of

command. Refer to the communication protocol in Appendix 1 for more detail on

the format.

17. void feedbackMessage(const Response& response, const sockaddr_in&

msgaddr);

creates a string message intended to provide the sender of the message some

feedback. The sender can used this feedback to track the state of the connection

with the server.

The Socket class also has fourteen storage container, eight mutexes and seven

conditional variables:

/* Mutexes */

std::mutex mtxSenderDT;

std::mutex mtxSenderCMD;

std::mutex mtxDriverDT;

std::mutex mtxDriverCMD;

std::mutex mtxAdminDT;

std::mutex mtxAdminCMD;

std::mutex mtxOut_UDP;

std::mutex mtxOut_USB;

/* conditional variables */

std::condition_variable cond_varsSenderDT;

std::condition_variable cond_varsSenderCMD;

std::condition_variable cond_varsDriverDT;

std::condition_variable cond_varsDriverCMD;

std::condition_variable cond_varsAdminDT;

std::condition_variable cond_varsAdminCMD;

std::condition_variable cond_varsOut_UDP;

/* message inboxes/outbox */

std::queue <std::vector<unsigned char>> queueSenderDT;

std::queue <std::vector<unsigned char>> queueSenderCMD;

std::queue <std::vector<unsigned char>> queueDriverDT;

std::queue <std::vector<unsigned char>> queueDriverCMD;

 Networked LED Driver System and API

40

std::queue <std::vector<unsigned char>> queueAdminDT;

std::queue <std::vector<unsigned char>> queueAdminCMD;

std::queue <std::vector<unsigned char>> OutgoingMessageQueue_UDP;

/* IP and port number storage */

std::queue <sockaddr_in> sockaddrSenderDT;

std::queue <sockaddr_in> sockaddrSenderCMD;

std::queue <sockaddr_in> sockaddrDriverDT;

std::queue <sockaddr_in> sockaddrDriverCMD;

std::queue <sockaddr_in> sockaddrAdminDT;

std::queue <sockaddr_in> sockaddrAdminCMD;

std::queue <sockaddr_in> sockaddrOut_UDP;

5.2.5. USBdriver header and cpp file
These files are part of the API written by another member of the company. The

executer of this project created new useful functions to streamline the API to the

server. The API functions not created by the project executer will be explain in a clear

but not detailed manner.

The enumeration exitCodes are used to provide the programmer some feedback when

the program is terminated by an error. When a driver board is connected by USB to

the server, a Device object is created which stores information such as the device

description.

The header file defines ten functions:

1. void scanForUSBdevices()

calls the openDevices(), purgeRxTxBuffers(…) and setBitMode(…) functions. This

function is added by the project executer.

2. void setUSBChannelLength(unsigned int chNum, unsigned int len)

calls cmd_set_length(…) functions and sends the message stored in TXbuffer to

the driver board. This function is added by the project executer.

3. unsigned int cmd_set_length(unsigned int ch_num, unsigned int len)

assembles a set length command in TXbuffer

4. std::vector<unsigned char> cmd_load_data(unsigned int ch_num,
unsigned int len, const std::vector<unsigned char>& RGBdata)

assembles and returns a color data message. The message follows a protocol

created by the company. This function is added by the project executer.

5. void sendUSB_RGBStripData(std::vector<unsigned char>& RGBdata)

sends the message created by cmd_load_data to the driver board. This function is

added by the project executer.

 Networked LED Driver System and API

41

6. int openDevices()

scans for any driver boards connected to the server by USB. When the found

device are save in a list called “deviceList”.

7. void purgeRxTxBuffers(FT_HANDLE ftHandle)

clears the RX and TX buffer of the driver boards.

8. void setBitMode(FT_HANDLE ftHandle, UCHAR ucMask, UCHAR ucMode)

sets the mode of the USB device

9. Device* get_deviceList()

returns a pointer to the “deviceList”. The program can gain access to this list. This

function is added by the project executer.

10. DWORD get_numDevs()
Returns the number for connected driver boards. This function is added by the

project executer.

5.2.6. Main cpp file
This is the highest level program; the program start here. A Mapping object is created

to store LED objects. A Socket object is created which will open an UDP socket when

other programs can send messages to. Creating the Socket object will also start the

various threads described in chapter 5.2.4. The program searches for USB connected

driver boards. If there are USB boards connected, the new channels are registered.

New UDP channels are automatically created because the driver boards cannot send

any data to the server as of yet. When “shutdown” is typed in the console, the program

arrives at the end of the program. The destructor of the Socket object will close the

UDP socket and join all the threads. The program closes with a “server shutdown”

message.

5.3. Test/ Sample programs
The primary purpose of these programs is to test the performance of the server

software. They can also be used as sample programs because part of the sample

program can be reused. A total of six test Processing programs are made:

Sender_Knobs, Sender_Webcam, Sender_Rainbow, Sender_GIF, Driver_Receive

and Admin_Control. Another test program is created in Visual Studio that uses the API

library describe in chapter 5.4.

The Sender_Knob program displays four virtual LED strip. They are 1, 5, 8 and 10

LEDs long and each virtual LED can be controlled. The user clicks on one of the LEDs

and can changed the color of the LED but adjusting the knob on the left (see figure

5.4). Before the user can send data to the server, the user must press “s” on their

keyboard to allow the program to connect to the server. Pressing “q’ will disconnect

the program from the server.

 Networked LED Driver System and API

42

Figure 5.4 Sender_Knob user interface

The Sender_Webcam program runs on a macintosh operation system and loads the

data stream of a built-in webcam. The video feed has a dimension of 1280 by 720

pixels and is downsampled to 40 by 23 pixels. This downsampled video feed is then

processed as 23 individual LED strips of 40 LEDs each (figure 5.5). Before the user

can send data to the server, the user must press “s” on their keyboard to allow the

program to connect to the server. Pressing “q’ will disconnect the program from the

server.

The Sender_Rainbow program has no user interface (UI). The user presses “s” to

connect and start the program. Data for one LED strip with a length of 256 is send to

the server. The output of the program is a scroll of rainbow colors across the LED

strip.

Figure 5.5 Sender_Webcam user interface

The Sender_GIF program can drive one or more LED matrixes. On matrix panel is set

to be 32 by 8 pixels. The size of the panels can be changed in the code. The program

sends data to three panels of 32 by 8 pixels. A total of 768 points are sampled for the

GIF file and send to the server. Before the user can send data to the server, the user

 Networked LED Driver System and API

43

must press “s” on their keyboard to allow the program to connect to the server.

Pressing “q’ will disconnect the program from the server. Figure 5.6 shows a loaded

GIF file in the UI of the program.

Figure 5.6 Sender_GIF user interface

At the time of writing, no UDP software support has been implemented on the Point

Runner driver board yet. To test the UDP functions of the server, a receiver program

is created. The Driver_Recieve program is supposed to replicate the same function

of the Point Runner driver boards. The program has predefined amount of virtual

LED strip with a predefined length. The program decodes the output message of the

server and put the color on the display.

The Admin_Control program is used to control the channel settings of all the driver

boards connected to the server in the DRIVERS tab. IP address and port numbers of

all the senders can also be reviewed in the SENDERS tab. The GROUP does not

contain any interface and will be implemented in the future. The user connects and

disconnect the program to/from the server in the STATUS tab. Figure 5.7 shows the

DRIVER tab where the user can change the channel’s settings.

The API test program uses the API library to send data of one strip with a length of

256. The color alternates between red, green and blue. The colors are shifted to the

left after a predefined interval.

 Networked LED Driver System and API

44

Figure 5.7 Admin_Control user interface

5.4. API library
The purpose of an API is to simplify the interface, which the programmer use to create

their own program. The idea behind this API library is to create a minimal interface

that can process multiple types of data. The programmer must create a

“StripChannelParameter” or “MatrixChannelParameter” object. This object hold the

settings of a channel message. The API uses this object to determine how to process

a message

When a StripChannelParameter object is created, its member variable must be set.

This object contain the following variables: Int ChannelNumber, color_mode

ColorMode, class_t Class, config_t Configuration, led_t StripType and int Length.

When a MatrixChannelParameter object is created, its member variable must be set.

This object contain the following variables: Int ChannelNumber, color_mode

ColorMode, class_t Class, int Width and int Height.

 Networked LED Driver System and API

45

To define some of the variable the following enumrations must be used:

enum led_t

{

 ADDRESSABLE,

 NONADDRESSABLE,

};

enum color_mode

{

 MONO,

 RGB,

};

enum config_t

{

 LINE,

 OTHER,

};

enum class_t

{

 STRIP,

 MATRIX,

};

The programmer can use the seven API functions:

1. void SetServerAddress(char* IP, int port);

sets the IP address and port number to which messages are sent.

2. void SetMyAddress(char* IP, int port);

sets the IP address and port number of the program. This is needed to create a

UDP socket, which is used to send the UDP message.

3. void ConnectChannelToServer(ChannelParameters* param);

sends a connect command to the server.

4. void DisconnectChannelFromServer(const ChannelParameters& param);

sends a disconnect command to the server.

5. void DrawAll(ChannelParameters* param, unsigned char data[]);

This function update all LED of the channel. The programmer must ensure the

data[] is the correct size.

 Networked LED Driver System and API

46

6. void DrawSingle(ChannelParameters* param, int index[], unsigned char

data[]);

This function update only one LED of the channel. The programmer must ensure

the data[] is the correct size.

7. void DrawMultiple(ChannelParameters* param, unsigned char pixels, int

indexes[], unsigned char data[]);

This function updates multiple LEDs of the channel. This is useful when a couple

of LEDs must be changed. However if a larger amount of LEDs needs to be

changed, using the DrawAll() function is more efficient. The programmer must

ensure the data[] is the correct size.

 Networked LED Driver System and API

47

 Testing
To test the performance of the server software, all the test programs are run with the

Driver_Receive program and with a USB connected Point Runner. All test were

successfully completed.

Test 1:

The Sender_Knob program sends data to the server and this data is reflected on the

Driver_Receive program and on the USB connected driver board. Figure 6.1 shows

the program sending the data and figure 6.2 shows the output of the Driver_Receive

program.

Figure 6.1 Sender_Knob data output

Figure 6.2 Sender_Knob data display

 Networked LED Driver System and API

48

Test 2:

A webcam stream is downsampled and sent as output. Figure 6.3 shows the program

sending the data and figure 6.4 shows the output of the Driver_Receive program. The

display are updating at 30 frames per second.

Figure 6.3 Sender_Webcam data output

Figure 6.4 Sender_Webcam data display

Test 3:

The Sender_Rainbow program sends three strip of data. The data is decoded and

dispayed in the Driver_Receive program (figure 6.5). The display are updating at 60

frames per second.

Figure 6.5 Sender_Rainbow data display

 Networked LED Driver System and API

49

Test 4:

The Sender_Rainbow program sends data to different types of LED strips connected

to the Point Runner. Picture 6.1 and 6.2 shows the LED strips being driven by the

Point Runner driver board. The display are updating at 60 frames per second.

Picture 6.1 Sender_Rainbow on LED strip

Picture 6.2 Sender_Rainbow on Matrix-style strips

50

Test 5:

The Sender_GIF program samples a GIF file and sends data to the server. The driver

boards drives three LED strips. The LED strips are arranged in a Matrix format. Each

of the panels has a width of 32 pixels and a height of 8 pixels. The total frame is

therefore 32 pixels wide and 24 pixels high. The display are updating at 30 frames per

second. The animation is shown on the Sender_GIF window (figure 6.6). In picture

6.3, the LED matrixes driven by the driver board is shown.

Figure 6.6 Sender_GIF data output

Picture 6.3 Sender_GIF data display

51

Test 6:

The API test program sends alternating red, green and blue color to the server. The

Driver_Receive program displays the color data in figure 6.7.

Figure 6.7 API test program data display

 Networked LED Driver System and API

52

 Conclusion
The goal of this project is to create a solution, which will eliminate the need for the

user to remember multiple IP address and port number of driver boards connected to

the network. The chosen solution is to implement a server, which will automatically

routes messages sent by the user to the correct driver board. The IP address and port

number of the server is the only information the user needs to remember.

Before the server software can be defined, a communication protocol is set. In this

protocol, a set of instructions and message format is defined. Any program that

interacts with the server must follow this protocol. Otherwise, its messages will be

discarded. The server can decode incoming UDP message and the processed

message to the driver board either by UDP of by USB. Various settings can be

changed with an administrator program. Every incoming message is checked for its

message format, source identity and settings before being processed. Various test

programs are created to test the performance of the server. There were no problems

detected during testing. An API library is created to provide future software developer

a simple interface to create their own software. The API library hides complex process

needed to send message to the server. This allows the software developer to focus

more on creating great software rather on the protocol.

 Networked LED Driver System and API

53

 Recommendations
The data transfer between the server and driver boards are unidirectional. The driver

boards can only receive data from the server but not send data to the server.

Expanding the embedded software to support bi-directional data transfer on the driver

boards offers better device identification, settings synchronization and more.

The administrator program can be improved to include better data processing and

manipulation. Some yet-to-be implemented features should be added in the future.

 Networked LED Driver System and API

54

Bibliography
Alex, 2007. 1.9 - Header files << Learn C++. [Online]

Available at: http://www.learncpp.com/cpp-tutorial/19-header-files/

[Accessed 13 May 2015].

Allain, A., n.d. Enumerated Types - Enums in C++- Cprogramming.com. [Online]

Available at: http://www.cprogramming.com/tutorial/enum.html

[Accessed 24 February 2015].

Anon., n.d. http://ubaa.net/shared/processing/udp/index.htm. [Online]

Available at: http://ubaa.net/shared/processing/udp/index.htm

[Accessed 10 February 2015].

Arduino, n.d. Arduino - APIStyleGuide. [Online]

Available at: http://arduino.cc/en/Reference/APIStyleGuide

[Accessed 27 February 2015].

Broeders, H., 2014. Informatie voor studenten van Harry Broeders. [Online]

Available at: http://bd.eduweb.hhs.nl/studinfo.htm

[Accessed 6 January 2015].

Centers for Medicare & Medicaid Services - United States Department of Health and

Human Services, 2008. Selecting a development approach, s.l.: Office of Information

Service.

cplusplus.com, n.d. <regex> - C++ Reference. [Online]

Available at: http://www.cplusplus.com/reference/regex/

[Accessed 18 February 2015].

cplusplus.com, n.d. shared_ptr - C++ Reference. [Online]

Available at: http://www.cplusplus.com/reference/memory/shared_ptr/

[Accessed 26 March 2015].

Deitel, D. &., 1997. C++ How to program Second Edition. In: L. Steele, C.

Trentacoste, M. Schiaparelli & L. J. Clark, eds. C++ How to program Second Edition.

New Jersey: Prentice Hall, p. PREFACE XXXIII.

Deitel, D. &., 1997. C++ How to program Second Edition. In: L. Steele, C.

Trentacoste, M. Schiaparelli & L. J. Clark, eds. C++ How to program Second Edition.

New Jersey: Prentice Hall, p. 365.

Deitel, D. &., 1997. C++ How to program Second Edition. In: L. Steele, C.

Trentacoste, M. Schiaparelli & L. J. Clark, eds. C++ How to program Second Edition.

New Jersey: Prentice Hall, p. 520.

Deitel, D. &., 1997. C++ How to Program Second Edition. In: L. Steele, C.

Trentacoste, M. Schiaparelli & L. J. Clark, eds. C++ How to Program Second Edition.

New Jersey: Prentice Hall, pp. 5-45.

Dési, A., 2011. LED strip lights are all the rage. [Online]

Available at: http://www.property24.com/articles/led-strip-lights-are-all-the-

 Networked LED Driver System and API

55

rage/13656

[Accessed 07 April 2015].

Goyvaerts, J., 2013. Regular Expressions Quick Start. [Online]

Available at: http://www.regular-expressions.info/quickstart.html

[Accessed 16 February 2015].

HectorLasso, 2002. UNIX Socket FAQ (Page 1)/ UNIX Socket FAQ. [Online]

Available at: http://developerweb.net/viewforum.php?id=70

[Accessed 23 February 2015].

Intel Corporation, n.d. Intel Edison - One tiny platform, endless possibilities. [Online]

Available at: http://www.intel.com.au/content/www/au/en/do-it-yourself/edison.html

[Accessed 12 May 2015].

Kickstarter Inc., n.d. What is kickstarter - Kickstarter. [Online]

Available at: https://www.kickstarter.com/hello?ref=footer

[Accessed 12 May 2015].

Krzyzanowski, P., 2015. CS 417 Documents. [Online]

Available at: https://www.cs.rutgers.edu/~pxk/417/notes/sockets/udp.html

[Accessed 17 February 2015].

Maneas, S.-E., 2014. Java Map Example. [Online]

Available at: http://examples.javacodegeeks.com/java-basics/java-map-example/

[Accessed 13 February 2015].

Oracle, 2011. HashMap (Java Platform SE 6). [Online]

Available at:

http://docs.oracle.com/javase/6/docs/api/java/util/HashMap.html#keySet()

[Accessed 13 February 2015].

O'Steen, P., n.d.

http://cs.baylor.edu/~donahoo/practical/CSockets/WindowsSockets.pdf. [Online]

Available at: http://cs.baylor.edu/~donahoo/practical/CSockets/WindowsSockets.pdf

[Accessed 26 February 2015].

Overland, B., 2013. Be Smart About C++11 Smart Pointers. [Online]

Available at: http://www.informit.com/articles/article.aspx?p=2085179

[Accessed 06 March 2015].

Paul, J., 2012. How to convert Char to String in Java. [Online]

Available at: http://javarevisited.blogspot.com.au/2012/02/how-to-convert-char-to-

string-in-java.html

[Accessed 10 February 2015].

Pohl, I. & Kelley, A., 2009. De programmeertaal C. In: L. Schoofs, ed. De

programmeertaal C. Renewed 4th ed. Amsterdam: Addison Wesley Longman, pp. 2-

3.

 Networked LED Driver System and API

56

Processing Foundation, n.d. Processing.org. [Online]

Available at: https://processing.org/

[Accessed 10 April 2015].

Schlegel, A., n.d. controlP5 (Javadocs: controlP5). [Online]

Available at: http://www.sojamo.de/libraries/controlP5/reference/index.html

[Accessed 10 February 2015].

Shiffman, D., 2011. Daniel Shiffman. [Online]

Available at: http://shiffman.net/2011/12/22/night-3-regular-expressions-in-

processing/

[Accessed 25 March 2015].

Skinner, G., n.d. RegExr: Learn, Build, & Test RegEx. [Online]

Available at: http://www.regexr.com/

[Accessed 18 February 2015].

Stroustrup, B., 2000. The C++ Programming Language. Special ed. New Jersey:

Addison-Wesley Professional.

Tekt Industries Pty. Ltd., 2015. Tekt Industries Pty. Ltd. >> Brands. [Online]

Available at: www.tektindustries.com/brands/

[Accessed 12 May 2015].

Tekt Industries Pty. Ltd., 2015. Tekt Industries Pty. Ltd. >> Engineering Services.

[Online]

Available at: www.tektindustries.com/engineeringservices/

[Accessed 12 May 2015].

Tweed, K., 2013. $10 LED Price War Heats Up the Lighting Market. [Online]

Available at: https://www.greentechmedia.com/articles/read/10-LED-Price-War-

Heats-Up-The-Lighting-Market

[Accessed 07 April 2015].

 Networked LED Driver System and API

57

Appendix 1: Communication protocol

 Networked LED Driver System and API

58

 Networked LED Driver System and API

59

 Networked LED Driver System and API

60

 Networked LED Driver System and API

61

 Networked LED Driver System and API

62

 Networked LED Driver System and API

63

 Networked LED Driver System and API

64

Appendix 2: Definitions.h source code

 Networked LED Driver System and API

65

 Networked LED Driver System and API

66

Appendix 3: ChannelObject.h and ChannelObject.cpp source code

 Networked LED Driver System and API

67

 Networked LED Driver System and API

68

 Networked LED Driver System and API

69

 Networked LED Driver System and API

70

 Networked LED Driver System and API

71

 Networked LED Driver System and API

72

 Networked LED Driver System and API

73

 Networked LED Driver System and API

74

 Networked LED Driver System and API

75

 Networked LED Driver System and API

76

 Networked LED Driver System and API

77

 Networked LED Driver System and API

78

 Networked LED Driver System and API

79

 Networked LED Driver System and API

80

 Networked LED Driver System and API

81

 Networked LED Driver System and API

82

 Networked LED Driver System and API

83

 Networked LED Driver System and API

84

 Networked LED Driver System and API

85

Appendix 4: Database.h and Database.cpp source code

 Networked LED Driver System and API

86

 Networked LED Driver System and API

87

 Networked LED Driver System and API

88

 Networked LED Driver System and API

89

 Networked LED Driver System and API

90

 Networked LED Driver System and API

91

 Networked LED Driver System and API

92

 Networked LED Driver System and API

93

 Networked LED Driver System and API

94

