

Simplifying the use of RadiMation®

An assignment from

20 MARCH 2020

COMPANY: DARE!! B.V.
Author: Ralph Heij

Version: v3

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 1 of 58

Auto-Detection Over Various Protocols in
C++

Simplifying the Use of RadiMation®

Thesis Graduation Internship

General:

Date 20-03-2020
Author Ralph Heij
Version vA04

Institute:

Name De Haagse Hogeschool
Location Delft
Course Electrical Engineering
Student Number 15028453
Email heijralph@outlook.com
1st School Counsellor Jesse op den Brouw
2nd School Counsellor Patrick Morley

Company:

Name DARE!! B.V.
Location Woerden
Project Supervisor John de Rooij

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 2 of 58

Table of Contents
Table of figures ... 4

1 | Foreword ... 5

2 | Summary ... 6

2.1 English ... 6

2.2 Nederlands .. 8

3 | Introduction... 10

4 | The company DARE!! ... 11

5 | The assignment ... 12

5.1 RadiMation® .. 12

5.2 The details of the graduation assignment .. 15

5.3 FNS .. 17

5.4 RadiCentre .. 17

5.5 wxWidgets ... 18

5.6 Programming terms .. 19

6 | Solution I, USB auto-detection of multiple devices .. 20

6.1 The general approach ... 20

6.2 Acquiring the name of the currently loaded driver .. 20

6.3 Fetch a list of currently connected devices .. 22

6.4 Compare the name of the loaded driver with the names of all devices 23

7 | Solution II, removal of duplicate options .. 25

7.1 The List .. 25

7.2 The general approach ... 25

7.3 Shortening the list ... 26

7.4 Selecting the correct communication method ... 26

7.5 Carrying over the data .. 27

8 | Solution III, automatically finding addresses connected via GPIB or RS-232 28

8.1 GPIB ... 28

8.1.1 What is GPIB ... 28

8.1.2 The general approach .. 29

8.1.3 GPIB Boards .. 29

8.1.4 The search with GPIB ... 30

8.1.5 The CheckDevice() function ... 30

8.1.6 Determining an action ... 31

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 3 of 58

8.2 RS-232 ... 32

8.2.1 What is RS-232 ... 32

8.2.2 The general approach .. 32

8.2.3 VISA .. 32

8.2.4 Scanning ... 33

8.2.5 Determining the result ... 34

9 | Competences ... 35

9.1 Analysing ... 35

9.2 Design .. 35

9.3 Realisation ... 35

9.4 Manage ... 35

9.5 Research .. 36

10 | Conclusion ... 37

11 | References ... 38

12 | Appendix ... 39

FNS 1, Support for connecting multiple devices ... 39

FNS 2, Reduction of options within device driver communications ... 45

FNS 3, Automatically finding the address of devices connected through RS-232 or GPIB 52

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 4 of 58

Table of figures
Figure 1 Company structure of DARE!! B.V... 11

Figure 2 logo of DARE!! ... 11

Figure 3 Modular overview of RadiMation®, from the wiki ... 12

Figure 4 Splash screen of RadiMation® ... 13

Figure 5 Selection of power meters when configuring the device drivers ... 14

Figure 6 Configuration window of the RPR3006P, a Powermeter developed by DARE!!..................... 14

Figure 7 Configuring GPIB through VISA ... 15

Figure 8 Configuring GPIB normally .. 15

Figure 9 Configuring RS-232 through VISA ... 15

Figure 10 Configuring RS-232 normally .. 15

Figure 11 Configuring TCPIP through VISA.. 16

Figure 12 Configuring TCPIP normally... 16

Figure 13 OSI model of RadiMation® .. 18

Figure 14 When configuring USB communication, showing the Detect button 20

Figure 15 Inheritance tree of a section of RadiMation®, showing a potential path from the RadiPower

class to the USBDeviceStreamConfigurationDialog class ... 21

Figure 16 GUI that shows when multiple amounts of the same device is connected to a RadiCentre or

the computer .. 24

Figure 17 How the list was, to how the list should look like. This list specifically is missing the USB

communication method ... 25

Figure 18 Configuration window of GPIB .. 28

Figure 19 Physical GPIB connector, image taken from https://www.electronics-

notes.com/images/GPIB-connector-01.jpg .. 29

Figure 20 The GUI window shown when multiple devices are connected through GPIB 31

Figure 21 The window shown when configuring RS-232 .. 32

Figure 22 The GUI shown when multiple devices are connected through RS-232............................... 34

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 5 of 58

1 | Foreword
This thesis is written to describe the assignment, solution design and solution implementation during

my internship at DARE!! At DARE! I have been given three assignments to simplify and rationalize the

user interface of a comprehensive software product called RadiMation®. It also describes how I solved

the three assignments they have given me. This internship is an integral part of my study Electrical

Engineering and is required to receive my Bachelor’s degree from the Haagse Hogeschool.

I performed this internship from 18 November 2019 to 20 March 2020 and, as stated, all my activities

and experience during this period is brought together in this report.

In addition, this report can be used as a reference book for any follow-up activities to further simplify

the user interface of RadiMation® as there are still various simplifications possible to improve the

easiness and efficiency of using RadiMation® by the end user.

Although this report is public, it is to be noted that all the information I have gathered during this

internship at DARE! is and will remain the intellectual property rights of DARE!!.

Furthermore, this report is also intended to be an official description of my internship for the Haagse

Hogeschool.

I would like to thank DARE!! and, in particular, Ing. John de Rooij, for providing me these assignments

as well as guidance and useful tips when I was unable to find the way forward. I enjoyed the working

atmosphere at DARE! and appreciated feeling very welcome.

I would also like to thank Jesse op den Brouw, my 1st School Counsellor, for giving his guidance and

constructive remarks for this thesis.

I trust that this final report provides an adequate insight of the various phases of my internship and
about the knowledge and competencies I have built up.

Delft, 20 March 2020
Ralph Heij
Student Electrical Engineering – study year 2019-2020
De Haagse Hogeschool, location Delft.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 6 of 58

2 | Summary

2.1 English
This thesis is about my assignment to simplify a complex software product called RadiMation®.

RadiMation® is an application, written in C++, and is used to automate a range of EMC testing.

This document also has the purpose of providing information about how the interfaces and device

drivers within the application are selected and how, through the changes applied to the source code,

the configuration of RadiMation® has been simplified. In essence, the assignment is split into three

parts, and is completely focussed on C++ programming and changing the source code to achieve the

desired result.

RadiMation® is a software application developed and marketed by DARE!! BV. DARE!! is a company

that produces hardware and software focused on the automation of EMC measurements. EMC in

short is Electromagnetic Compatibility, basically making sure that no noise or as little noise as possible

is generated inside a device that might disturb other devices. Hardware wise, DARE!! has created

various devices such as power meters and a RadiCentre, a large hub for different interface cards and

devices that support further automation of EMC testing. This RadiCentre is connected to RadiMation®

(see page 1).

These assignments are related to the auto-detection of various protocols such as GPIB, RS-232 and

USB, as well as the removal of duplicate options to make the configuration for the end user an easier

process. The three assignments are the following:

1. Improvement of the auto-detection with USB.

Before the modifications were applied, the detect button would only work when a single device was

connected. It would give the user a message to disconnect any other devices and then press the button

again. My first assignment was targeted to detect the devices that are connected and give the user

the possibility to select the device from a pop-up list.

This first assignment, the improvement of auto-detection with USB, is about finding the name of the

currently loaded device driver, fetches a list of all currently connected devices through USB. Then for

each device identifies their names and compares it with the name of the loaded device driver. This

scan is also possible in case a RadiCentre®, a box with interface cards that is connected to

RadiMation®, is used. Depending on the number of matches, there is could be no match, which results

in an error message, one match, which results in all the data being filled in automatically, and more

than one match, which results in a GUI popping up showing a list of all matches, in which the end user

has to make a unique selection from.

2. Removal of duplicate options that confuse the end user.

It used to be confusing for the end user to select the correct protocol as, for example, the GPIB

protocol could be chosen through the standard listed protocols, or via the GPIB options through the

VISA protocol. My second assignment has the purpose to simplify the selection of possible protocols

the software uses to communicate with the device.

The device driver has various protocols that are similar in the type of settings they have, such as GPIB

and CompliantGPIB, that both have the same list of settings. This is quite confusing for the end user.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 7 of 58

To solve this, the code is modified and now runs a priority system. There is HTTP, TCPIP, RSIB and UDP,

all taking one address. There are two variants of USB as well. There are a few protocols that have no

alternatives, so they are left as is, such as RS-232. On top of this, there is VISA, a library that can go

through all of these communication methods in a better way. Therefore, based on what the end user

chose as communication method (HTTP, USB, RS-232 or GPIB), RadiMation® attempts communication

through VISA first. If this fails, it will attempt to use the next protocol down the line, until it finds a

protocol that works or until it is out of options and results in an error message.

3. Introduction of auto-detection with GPIB and RS-232.

The goal of the third assignment is the introduction of auto-detection with the RS-232 and GPIB

protocols, as this was not available. The auto-detection for each of these protocols work in a similar

way. Both will create a list of all connected devices and then run a function called CheckDevice() on

each connected device, returning an error in case the connected device is not the one of the currently

loaded driver. Now, the devices that return no error are added to a list and from there it is decided

what has to happen, similar to that described in the USB solution above. No matches return an error

message. One match, data will be automatically filled in and more than one match results in a GUI

window popping up requesting the end user to make a unique selection.

Although all assignments have been completed and they deliver the desired result, this internship has

been quite challenging for its many new and advanced concepts of C++. In combination of the

complexity of the application. The complexity of the general structure of the code and the large

number of classes (>4500) took a few weeks to comprehend and even then, it wasn’t completely clear

to me. However, I have been able to significantly improve my C++ capabilities as well as other

competences, like Analysis, Research and Solution Design.

Even after the simplification that has been realized by changing sections of the source code, there is

still more simplification possible and required as RadiMation® continues to be a quite complex

software product.

This report may help others within DARE!! to get quicker access to information required to perform

further simplification.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 8 of 58

2.2 Nederlands
Dit verslag behandelt mijn afstudeeropdracht en deze opdracht heeft als doel het vereenvoudigen van

een complex softwareproduct, genaamd RadiMation®. RadiMation® is een toepassing, ontwikkeld en

geschreven in C++, en wordt gebruikt voor het automatiseren van een scala of EMC tests.

Dit document heeft ook tot doel informatie te verschaffen omtrent de wijze waarop de interfaces en

device drivers binnen de toepassing worden geselecteerd en hoe, nadat de C++ source code is

aangepast, het configureren van RadiMation® is vereenvoudigd. In essentie, de opdracht is gesplitst

in drie delen, en is volledig toegespitst op het programmeren in C++ en op het aanpassen van de

source code teneinde het beoogde resultaat te verkrijgen.

RadiMation® is een softwaretoepassing die ontwikkeld is door DARE!! B.V. DARE!! is een

internationaal georiënteerd bedrijf dat apparatuur en programmatuur ontwikkeld voor EMC-

testapplicaties. EMC staat voor Elektromagnetische Compatibiliteit. De definitie van EMC is hoe

apparatuur zich verdraagt ten opzichte van haar elektromagnetische omgeving. In andere woorden;

in welke mate beïnvloedt apparatuur andere apparatuur of in welke mate wordt apparatuur door

andere apparatuur beïnvloed? Vanuit een hardware perspectief, DARE!! heeft een aantal apparaten

ontwikkeld zoals Power Meters, Electric Field Probes, Electric Field Generators en een RadiCentre®,

een hub voor verschillende interfaces en apparatuur en die aangesloten wordt op RadiMation®. Dit

RadiCentre® ondersteunt het verder automatiseren van de EMC tests.

De (sub) opdrachten zijn gericht op het auto-detecteren van verschillende protocollen zoals GPIB,

RS-232 en USB, alsmede op het verwijderen van ogenschijnlijk overtollige opties om het configuratie

proces voor de eindgebruiker eenvoudiger en minder verwarrend te maken. De drie opdrachten

luiden als volgt:

1. Verbetering van de auto-detectie via USB.

Voordat de aanpassingen in de code waren aangebracht, werkte de detect button alleen als er maar

een enkel apparaat was aangesloten. Indien meer apparaten weren aangesloten, kreeg de gebruiker

een bericht om de overige apparaten te verwijderen en opnieuw op de knop te drukken. Mijn eerste

opdracht was gericht op het detecteren van alle aangesloten apparaten en daarna de gebruiker de

mogelijkheid te geven uit een pop-up lijst de gewenste apparaten te kiezen.

Deze eerste opdracht, het verbeteren van de auto-detectie via USB, omvat het vinden van de naam

van de geladen device driver en het ophalen van een lijst met alle apparaten die via USB verbonden

zijn. Daarna, voor elk van de apparaten, het identificeren van de naam en deze te vergelijken met de

naam van de geladen device driver. Deze uitgewerkte routine is zelfs ook mogelijk wanneer een

RadiCentre®, een apparaat met interface kaarten die met RadiMation® verbonden is, wordt gebruikt.

Afhankelijk van het aantal “matches” zijn er verschillende mogelijkheden. In geval van geen match

volgt een error bericht, bij één match worden de gegevens automatisch ingevuld en bij meerdere

matches verschijnt een GUI pop-up met een lijst van alle matches waaruit de gebruiker een keuze kan

maken.

2. Verwijderen van gelijksoortige options die de gebruiker verwarren.

Het selecteren van het juiste protocol is verwarrend voor de eindgebruiker omdat, bij voorbeeld, het

GPIB-protocol gekozen kan worden via de standaard lijst van beschikbare protocollen, maar ook via

de GPIB-opties via het VISA-protocol. Mijn tweede opdracht heeft als doel dit selectieproces met

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 9 of 58

betrekking tot de protocolkeuze waarmee met de apparatuur wordt gecommuniceerd, te

vereenvoudigen.

De device driver heeft verschillende protocols die vergelijkbaar zijn qua type van de settings, zoals

GPIB en CompliantGPIB, die beide dezelfde settings kennen. Dit is erg verwarrend voor de

eindgebruiker. Om dit op te lossen is de source code aangepast met een soort van priority routine.

We hebben de protocollen HTTP, TCPIP, RSIB en UDP, die alle maar één adres vragen. Er zijn ook twee

USB-varianten. Daarnaast zijn er enkele die uniek zijn en geen alternatieven kennen zoals RS-232. Die

zijn as-is gelaten. Bovendien is er nog het VISA-protocol, een alternatief die al deze

communicatiemethoden optimeert. Daarom, onafhankelijk van de keuze van de

communicatiemethode van de gebruiker (HTTP, USB, RS-232 or GPIB), RadiMation® probeert

allereerst de communicatie via VISA. Als dit niet lukt, zal worden geprobeerd met het volgende

protocol in de lijst te communiceren totdat een werkend protocol wordt gevonden. Zodra het einde

van de lijst is bereikt en geen succesvolle communicatie tot stand is gebracht, dan volgt een error

message.

3. Implementatie van auto-detectie via GPIB en RS-232.

Het doel van de derde opdracht is de implementatie van auto-detectie voor de protocollen GPIB en

RS-232 omdat deze mogelijkheid tot op heden niet ter beschikking stond. De auto-detectie voor elk

van deze protocollen werkt op een gelijksoortige manier. Voor beide wordt wederom een lijst van alle

aangesloten apparaten gecreëerd en dan wordt voor ieder verbonden apparaat een functie genaamd

CheckDevice() aangeroepen. Deze functie retourneert een error melding als het verbonden apparaat

niet overeenkomt met de geladen device driver. Vervolgens, de apparaten die geen error retourneren

worden opgenomen in een lijst. Vanaf dit punt is het proces zoals bij de auto-detectie via USB. In geval

van geen match volgt een error message, bij één match worden de gegevens automatisch ingevuld en

bij meerdere matches verschijnt een GUI pop-up met een lijst van alle matches waaruit de gebruiker

een keuze kan maken.

Alhoewel alle opdrachten succesvol zijn geïmplementeerd en zij het resultaat leveren dat ook werd

verwacht, was deze afstudeeropdracht een echte uitdaging wegens de complexiteit van het

softwareproduct waarvan ik de source code moest gaan aanpassen. Ook omdat bij dit programma

veel van de nieuwe en geavanceerde mogelijkheden van C++ zijn gebruikt. Wegens de complexiteit

van de programmastructuur en het grote aantal Classes (>4500) heeft het enkele weken geduurd

voordat ik enigszins begreep hoe een en ander functioneerde. En zelfs dan, maar met enige mate.

Wel kan ik bevestigen dat deze uitdagende opdracht sterk heeft bijgedragen aan het verder

ontwikkelen van mij C++ programmeervaardigheden alsmede het uitbouwen van de noodzakelijke

competenties zoals Analyse, Research en Solution Design.

Zelfs na de vereenvoudigingen die het gevolg waren van mijn opdrachten, blijft er nog voldoende

potentiaal over om RadiMation® verder te vereenvoudigen.

Dit verslag kan daarom ook anderen binnen DARE!! helpen een sneller beeld te krijgen van enkele

functionaliteiten en kan wellicht bijdragen tot een snellere toegang tot informatie in geval tot verdere

vereenvoudiging wordt besloten.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 10 of 58

3 | Introduction
“Electromagnetic compatibility, EMC is the concept of enabling different electronics devices to
operate without mutual interference - Electromagnetic Interference, EMI - when they are operated in
close proximity to each other. All electronics circuits have the possibility of radiating of picking up
unwanted electrical interference which can compromise the operation of one or other of the circuits.”
[1]

DARE!! B.V. has developed hardware and software, regarding the measurement of EMC. These
products detect interferences in any electrical product. DARE!! has made products such as electric
field probes, electric field generators, power meters etc. To control these products, a software called
RadiMation® is utilized.

This software application has been written and updated over the years. The end user interface is
complex and, in some case, even confusing. That is why, within DARE!! BV, it became desirable to
simplify certain areas within the application. This graduation assignment addresses that need and
starts with simplifying the way how RadiMation® configures the drivers and the protocols with which
it communicates with the connected devices.

Within this thesis, first the background of the assignment will be described by a.o. explaining about
the company that has given me this assignment and the products and services they provide to the
market.

In Chapter 5 the assignment(s) will be described in detail and in the Chapters 6, 7 and 8 one will find
the details how the solutions have been designed and built executed. In addition, certain concepts
that are not necessarily related to the assignment but will help the reader in understanding it are also
included where necessary.

Finally, a detailed description of the competencies that have been improved can be found in Chapter
9 followed by a final conclusion and recommendation in Chapter 10.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 11 of 58

4 | The company DARE!!
DARE!! Instruments is specialized in creating measurement equipment for performing automated
EMC measurements. Those products are sold worldwide and are high-tech and innovative products
using RF and Laser technology.

DARE!! Instruments is a separate branch of DARE!! B.V., which is separated into two entities, DARE!!
Services and DARE!! Products. DARE!! Instruments is part of DARE!! Products.

Figure 1 Company structure of DARE!! B.V.

DARE!! Products is an internationally orientated company with a focus on creating EMC testing
applications. Examples of such devices are Electric field probes, Electric field Generators and Power
Meters. Other than making products, DARE!! Products is also involved in special projects related to
EMC and RF.

An important piece of software developed by DARE!! is RadiMation®, the software that controls all
products made by DARE!! and can perform measurements with them.

Figure 2 logo of DARE!!

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 12 of 58

5 | The assignment
5.1 RadiMation®

Figure 3 Modular overview of RadiMation®, from the wiki

RadiMation® is a software product that runs on a computer and is able to perform a completely
automated EMC measurement controlling all the required test and measurement equipment. This
includes signal generator, high power RF amplifiers, power meters, field strength sensors, turntables,
antenna towers, spectrum analysers and network analysers and other supporting equipment. Those
instruments are controlled by several protocols like RS-232, USB, GPIB, Ethernet and VISA.

Measurement equipment can normally be controlled by a combination of one or more of these
protocols. To control these test and measurement equipment’s, RadiMation® is using device drivers
that control the hardware products by setting and changing the correct settings to achieve the desired
operation. RadiMation® has more than 4500 different of those device drivers that are created using
object-oriented C++ code.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 13 of 58

These device drivers are all bundled .dll files. This means that the main program loads those .dll files
to acquire data on how to display a device specific GUI or how to control that specific device. For
example, a device by DARE!! will show you various communication methods such as USB, GPIB or RS-
232 and more. A device from the Marconi series (specifically the Marconi 2022A) can only connect
through GPIB, so it will only show that option and even its own unique window when trying to
configure that device.

Figure 4 Splash screen of RadiMation®

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 14 of 58

Figure 5 Selection of power meters when configuring the device drivers

Figure 6 Configuration window of the RPR3006P, a Powermeter developed by DARE!!

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 15 of 58

5.2 The details of the graduation assignment
The graduation assignment is to simplify the configuration of the communication settings of these
device drivers for the end-user. This can be separated in three different parts:

1. Reduce the duplicated selection of communication protocols: At this moment the VISA
connection settings allow to select the GPIB protocol, while also a specific GPIB connection
setting is present:

Figure 7 Configuring GPIB through VISA

Figure 8 Configuring GPIB normally

Also, for RS-232 communication, two possible configurations are available:

Figure 9 Configuring RS-232 through VISA

Figure 10 Configuring RS-232 normally

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 16 of 58

And also, for TCP/IP connections multiple configuration windows are possible:

Figure 11 Configuring TCPIP through VISA

Figure 12 Configuring TCPIP normally

These duplicated windows and settings are internally using different communication settings
and software libraries, but it is very confusing for the end-user. The improvement should
simplify the configuration where the device drivers internally automatically determine the
best software library to communicate with the instrument.

2. Simplify the auto detection of DARE!! Instrument products when multiple of those products
are connected to the PC at the same time. At this moment the auto detection of an USB
connected DARE!! Instrument product requires that only a single product is connected. If
multiple products are connected the auto detection is not able to detect the correct product.
This should be improved in such a way that the end-user for example can select the correct
instrument from a list of one of the detected/connected instruments.

3. Auto detection of the available test and measurement equipment that is connected to the
PC being able to automatically determine which measurement equipment is connected to a
PC, will provide a much easier installation to our end-users. This can be achieved by scanning
the USB, GPIB and Ethernet bus to detect if one or more of our products is connected.

The assignment is thus related to providing a simpler interface for the end-users regarding the
available communication protocols. To achieve this, improved algorithms should be implemented that
interact with the available communication buses to perform auto detection of the available
equipment.

The implementation of the improvements should also comply to the DARE!! internal structured
development process, which requires that first a functional description and an implementation design
is created. Once the actual implementation is finished, also a final test report which includes functional
tests, should be delivered.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 17 of 58

5.3 FNS
FNS stands for “Functionale Specificatie” (FuNctional Specification). It is a document that DARE!!
Products uses to describe future products, which can be software or hardware, or parts of software
or hardware. Inside an FNS one can find the following:

• Changelog

• Introduction

• Product name, goal, description, finances

• Power requirements, measurements, communication interfaces

Many of these are not relevant when developing software. In such a case, an FNS will entail more
about the requirements of the software, the preconditions, an analysis and a design based on that
analysis. The person who makes an FNS does not necessarily be the one who implements the feature.
However, this was the case with this assignment.

There are three separately written FNS’s, one for each part of this assignment. All can be found in the
appendix.

According to DARE!!, an FNS is all the documentation they need to continue working with the software
that has been written. Because the FNS specifies all the visible and behavioural changes that are
notable for the end-user.

5.4 RadiCentre
“EMC test systems can vary from a simple EMC test system with one or two instruments, to complex
installations with many EMC measurement instruments connected, while in many cases even a
turntable and an antenna mast should be controlled. In order to enable full automated EMC testing,
these devices and measuring instruments, should be controlled in an automated manner. Where the
EMC test software RadiMation® acts as the software centre of the EMC system; the EMC test system
RadiCentre is the core of the hardware. With the introduction of the RadiCentre by DARE!!
Instruments, cost effective, full automated testing finally becomes reality!” [2]

At a very basic level, a RadiCentre is practically a large USB hub which can run its own programs, for
specific hardware. It can hold up to seven interface cards, depending on the model. These cards are
specifically made for one purpose. For example, a RadiPower is a card that has 4 USB slots, in which
power meters from DARE!! can be connected to. There is a total of eight different cards currently
available, but only the RadiPower card was used for testing the code. When using the auto-detect
functionality in the USB section, the code has to communicate with the RadiCentre to tell it what
devices are connected to it.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 18 of 58

Figure 13 OSI model of RadiMation®

5.5 wxWidgets
wxWidgets is a library for C++ that allows programs to make a GUI relatively easily. wxWidgets is used
throughout RadiMation® using .xrc files. These are files that hold data of a window. Every window in
RadiMation® has its own class, which holds the references to buttons or other settings. This way
programming behaviour is made easy. Code can be executed when certain buttons are pressed, data
can be retrieved from fields where the user can type in and the window itself can be set to behave in
a certain manner, such as customisations of the borders around textboxes. To edit these .xrc files, a
program called “xrced” is used, a free program that allows for the creation and editing of .xrc files.

Using xrced It is possible to add the buttons to the GUI of the RS-232 communication settings window
and that of the GPIB communication settings window. In the code another window was taken as an
example to figure out how RadiMation® interacts with the buttons and textboxes.

Every button or textbox that is shown to the user has an ID tied to it in the .xrc file. Using this ID
RadiMation® can locate the component and create a pointer to that component. This way code can
be executed on a button press, or data can be extracted from a textbox.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 19 of 58

5.6 Programming terms
In the following solutions there will be explanations about a lot of code and there will be mention of
certain concepts that exist within C++ programming or are relevant to RadiMation®. Here is a list of
terms that have been used with explanations of them:

String A set of characters that can resemble a word, or sentence. “Hello” Is an example of
a string.

Array A ‘container’ of a data type with a set size. An array of integers can have several
numbers within it, but the size must be specified when it is initialised.

Vector An array of a variable size. A vector is initialised with a data type, such as an integer
or a string, or even another vector. Now, data can be added and removed at will.

Class A ‘container’ of multiple data types, however specified. Can contain anything and
can have data protected (only accessible by itself unless shared), public (accessible
by anyone), and private (data only accessible by itself). Classes can also inherit these
data types from other classes, so it is not needed to re-declare these data types.

Pointer The address of a location containing data. Sometimes it’s not possible or not
efficient to carry (or copy into another variable) all the data at that location to
somewhere else. The address is used instead, so the data at that location of
memory can be accessed.

Object An instance of a class. A class only defines the data types. An object actually holds
the data.

*IDN? A command that is send to devices to ask them to return their name. This does not
always work.

ID_NUMBER? A command specific to DARE!! devices, it returns their identification number.
VISA A library for easier communication over USB, GPIB, RS-232 or HTTP.
COM port A communication port, such as USB or RS-232. Does not have to be physical as

virtual comports exist, such as Bluetooth.
Baud rate Definition of the speed of a data transfer. Some devices have a set speed, any baud

rate lower or higher than the set baud rate will fail communication, as it is not what
the device expects

Map Takes a pair of any type of data and any type of data. A map makes sure that you
cannot add a pairing with the same entry twice. For example, one can assign the
sentence “Hello” to an integer value of 1 and save it to the map but cannot then
assign a pairing of 1 and the sentence “World” to the same map.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 20 of 58

6 | Solution I, USB auto-detection of multiple devices
6.1 The general approach
As an example, let’s take a power meter from DARE!!: The RPR3006P, the configuration window can
be seen in figure 6.

Figure 14 When configuring USB communication, showing the Detect button

The “Detect” Button starts the code that has been expanded.

In short, the code works like this:

1. Acquire the name of the currently loaded device driver
2. Fetch a list of currently connected devices (even through a RadiCentre)
3. Compare the name of the loaded driver with the names of all devices
4. Determine result on the number of matches: on 0, error message. On 1, automatically fill in

the address. On 2, show a menu where the user has to select the correct one.

The assignment specifically says that the auto-detection should work for DARE!! devices through USB.
This means that the names of the devices that have to be fetched (for comparison purposes) are
conveniently in one location. This location, however, is not easily accessible.

6.2 Acquiring the name of the currently loaded driver
In figure 15 is a map of classes that either inherit or contain a reference to each other. This is to help
visualise the process from where the names come from and where they need to go to.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 21 of 58

Figure 15 Inheritance tree of a section of RadiMation®, showing a potential path from the RadiPower class to the
USBDeviceStreamConfigurationDialog class

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 22 of 58

For the following explanation, try to follow along with figure 15. The names of the devices are listed
in RadiPower, at the bottom. RadiPower inherits all functions up to DeviceStreamClient, which has a
subclass called DeviceStreamConfigurationManager. USBDeviceStreamConfigurationDialog is where
the name needs to go to. This class contains a pointer to USBDeviceStreamConfiguration, which is
inherited from DeviceStreamConfiguration. The problem is that there is only one device stream config
manager, and there are many device stream configurations. This means it is impossible to fetch the
name from the configuration to the manager, but the manager can give the name to each
configuration.

A string variable has been put inside DeviceStreamConfigurationManager called sIDNExp and a string
variable in DeviceStreamConfiguration called sDeviceTypeIdentifier. Considering they are both in
dstream.h, there is a way to have the data in sIDNExp be copied over to sDeviceTypeIdentifier.
m_DeviceConfigManager is an object made from the class DeviceStreamClient. In the constructer of
RadiCentreBase (Basically when an object of this class is created) the m_IDNRegExp variable is passed
to sIDNExp inside m_DeviceConfigManager. Then, when a DeviceStreamConfiguration is created the
data is passed in sIDNExp to sDeviceTypeIdentifier, and now the code is able to access the name in
USBDeviceStreamConfigurationDialog for comparison purposes.

6.3 Fetch a list of currently connected devices
This one is a bit easier, as this was (mostly) already present. Before the new additions, there already
was an auto-detect button. However, it only worked when a singular device was connected, else it
would throw an error message. Neither did it check to see if it was the correct device, it just wanted
a single device. During this detection, a command was send, which is “ID_NUMBER?\r\n”. the
ID_NUMBER returns an address, or better known as a string of 8 different numbers, from 0 to 255.
(for example, 0.6.213.42.32.5.74.87). Every address comes from a chip from another company that
guaranteed that every address is unique.

There is no worry of devices not responding to this command, as every DARE!! device is programmed
to respond to this. This is not the case when it comes to GPIB or RS-232 communication, which will be
discussed later.

Of course, only the address is not enough. The name is required as well, which is retrieved using the
“*IDN?\r\n” Command. What is happening here is first the *IDN? command is send to ask for the
name, wait a moment and then read what is send back. This is repeated for the ID_NUMBER?
command.

However, one of these devices might return the name “RadiCentre”. The largest RadiCentre
configuration currently has 8 card slots, and each card has 4 USB ports. These numbers may also
increase in the future. In the event that a RadiCentre is found, another scan has to be made.

Communication with the RadiCentre is slightly different. the RadiCentre can be asked how many slots
it has, but it can’t tell which slot has a card. A scan will have to be made on each port on each card,
which is done like this: “1:A*IDN?” with the 1 being the card number and A being the first slot. This
way the names of every device connected through a RadiCentre can be stored in a vector of strings,
but not the identification. That would just return the ID of the RadiCentre. This is OK, as the user is
then told to then configure the RadiCentre tab, while the ID of the RadiCentre is filled in. Scanning
through each port works by using a for loop with characters as the counter, ranging from 1 to 8, and
from A to (A + the number of slots in a card). This way a command can be constructed to send to the

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 23 of 58

RadiCentre. In the event that the first scan of a card returns a specific error, it will skip the rest of the
slots in that card to save time, as it can be assumed that the card simply does not exist. This also means
that the vector of strings that stores the names is filled with four (or how many slots the card that is
being scanned has) blank spots. Should a scan succeed and return a device, its name is then stored
inside the vector of strings in the object that is used to store all data that will be collected from the
communication. This data consists of the name of the device, potentially names of devices is it is a
RadiCentre and the ID number.

The data received is now checked if it is empty or not. In the event that it isn’t, the identification
number and the *IDN? response are stored in the object.

6.4 Compare the name of the loaded driver with the names of all devices
There is now a vector loaded with all connected devices via USB, which contains data on the name,
the identifier and devices connected to it if it is a RadiCentre. In the RadiPower file all names that are
needed are listed, but they are not listed the same. Certain device drivers have a name such as
RPR1014A, which is good, others have a name such as (RPR3006P|7002-006), which has to be cut
down back into RPR3006P. This is done with grabbing substrings, from the first letter to one before
the ‘|’.

Now the size of the vector is checked. At 0 entries, the code can conclude that no device is connected
at all.

At 1 entry, there is only 1 device connected. The name of the loaded driver is now compared with the
name of the device. If this is a match, the address is filled in and the program is done. If not, a check
must be made to see if this is a RadiCentre.

In the event that it is a RadiCentre, all the names logged when the communication with the RadiCentre
took place need to be checked. Should one match, the address is filled in of the RadiCentre and
RadiMation® will tell the user to configure the RadiCentre tab. Should more be found behind the
RadiCentre a menu shows up which will list all the devices. This menu is discussed later. In the event
that a RadiCentre is found but the device is also not connected behind a RadiCentre, an error message
will appear mentioning that it could find a RadiCentre but not the device.

It is also possible that there is a device connected, it does not match the name and is not a RadiCentre.
In this case a message will be shown asking the user if they want to fill in the address anyway, even
though it’s the wrong device.

At 2 or more entries, the process is slightly more complicated. A separate counter is needed to keep
track of name matches in the extra number of devices. The name of every device is checked, and the
counter is increased, should a match occur. If one of these devices is a RadiCentre, a check must be
made for every device behind the RadiCentre and increase the counter if another match is made.
Based on this count, a decision is made similar to that if only one device was found in the vector. No
matches, error message. One match check if it is a RadiCentre otherwise fill in the address directly. If
there are still duplicate devices, a GUI will be shown listing all devices.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 24 of 58

Figure 16 GUI that shows when multiple amounts of the same device is connected to a RadiCentre or the computer

In the above image the GUI is visible that shows all device with a duplicate name. A device is either
directly connected to a PC, or through a RadiCentre. There can be more than one RadiCentre too. Only
one address can be selected at the same time, and it is impossible to press the “Select” button without
having clicked on an address, else the program will show a warning message. With an address selected,
it is then filled into the Device Identifier field. With that the program is finished.

To fill in this list, first the columns have to be created. Then, the data must be filled in per row. Another
name comparison is made here, just like before. If this is a match, the address of the device is added
to the list here, with the word “Direct” since it is not a RadiCentre. Should a scan be a RadiCentre, all
devices behind it will be scanned as well. Then, based on its position in the vector, a slot number is
calculated and shown on the list, alongside what RadiCentre it is connected to.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 25 of 58

7 | Solution II, removal of duplicate options
7.1 The List

Figure 17 How the list was, to how the list should look like. This list specifically is missing the USB communication method

RadiMation® allows communication over a total of twelve different protocols. However, there are a
lot of similarities. HTTP, TCPIP (Ethernet), RSIB and UDP all take a single address as argument to
communicate with. GPIB and CompliantGPIB only have a difference internally in RadiMation® and is
not important to the end user. These two take the exact same settings. USB also has a similar version,
namely USB_D2xx. There is also RS-232, manual, and USBHID. RS-232 has no similar counterpart in
RadiMation®, Manual has no configurable settings and USBHID is very rarely seen in RadiMation® so
it is set aside and not included with the other USB communication protocols. USBHID also takes two
settings (PID and VID) instead of a singular address that USB and USB_D2xx uses.

As seen in figure 9, VISA also has similar options. However, VISA is not always installed on the PC
alongside RadiMation®. Therefore, a separate check has to be made in the code to see if VISA is
installed. If it is, the options through VISA take priority, and will be attempted first.

7.2 The general approach
In general, the following needs to happen:

1. The list must be shortened to HTTP, GPIB, RS-232, Manual, USB, if these or similar
communication protocols are present.

2. Once a communication protocol is selected, the end user can press a button to check if the
device is connected. This button already exists and is not part of the assignment.

3. RadiMation® will automatically fill in the other communication protocols (of those available)
with the same data. As an example, let’s take HTTP as the selected communication protocol.

4. How this should work is a priority system. RadiMation® will take a communication protocol,
attempt to connect with it, and fail or succeed. In the event of success this protocol is then
chosen to continue with. In case of failure the next protocol down the list is used.

5. Due to HTTP being chosen, the list is as follows of high to low priority: VISA->HTTP->TCPIP-
>UDP->RSIB.

6. The address filled in by the end user when the driver was being configured is saved and applied
to all other communication protocols.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 26 of 58

7. VISA is checked if it is installed. If so, use that. The LAN sub-section of VISA is automatically
selected and filled in. Communication using this protocol is attempted with this address. This
will almost always work. If not, or VISA is not installed, immediately proceed to the HTTP
protocol.

8. RadiMation® will now attempt to work with HTTP. If it succeeds if keeps this protocol and if it
fails it picks the next one in the list, being TCPIP. This continues on until RSIB is attempted.

9. Should it fail at RSIB the end user is told that communication has failed.

7.3 Shortening the list
Most of the code to be edited already exists in a class that has been addressed before, which is the
DeviceStreamConfigurationManager in dstream.h. This class holds the data of the configurations of
all devices and so it is possible to manipulate the data here to be carried over when a different
communication protocol is about to be used. One of the functions called when populating the list of
device drivers is SetSupportedDeviceStream(). This function reads which communication protocols are
supported by the driver and fills a map. This map takes a string (the name of the communication
protocol) and a pointer to the configuration of this particular device. This map is then used later to
receive the correct configuration based on the communication protocol that the end user selected.

This code is now edited to show a smaller list. Normally a vector would be filled with the names of all
communication protocols and that would be used. Now, a second vector is created. In the event that
either GPIB protocol exists, only the normal GPIB protocol is added. When any of the internet
protocols exist (HTTP, TCPIP, RSIB, UDP), only HTTP will be added and so forth. VISA is no longer
necessary to be shown here, therefore it is excluded. This second vector is now used to populate the
list instead. The first vector is still saved for later use.

7.4 Selecting the correct communication method
Before an attempt to communicate with the device is made, RadiMation® will have to check which
communication protocol has been selected. This is a function called GetSelectedDeviceStream().

There are three types of communication protocols that need to be cycled through. These are GPIB,
HTTP and USB. In the previous paragraph it was explained how a second vector was populated and
used as the list that is shown to the end user. Now, after the end user no longer sees this list, it is now
populated with all supported options. This is necessary because this way the other device stream
configurations are created, which will have to be slightly manipulated later. The several options for
GPIB, HTTP and USB are stored inside an array. This step is skipped if the connection is RS-232, USBHID
or Manual. Depending on which option is selected, an array is passed through a function that will cycle
through all communication protocols inside the array.

First, the function (called OptionCycler()) checks for each entry in the array if it is a supported
communication protocol. There is no need to try TCPIP communication, for example, if it is not
supported. If it is an option, it is now selected as the current communication protocol. Using this
protocol, a small attempt to connect to the device is made. Should it succeed, the function is done
and will return. If not, the next protocol is selected, and the program is now back at the beginning of
this function. Before it does this, the data saved is also carried over to the next valid communication
protocol. This is explained later. If all communication protocols fail the selection will revert to its first
viable selection. Now the function GetSelectedDeviceStream() has the correct device stream selected,
for which it will load its slightly modified configuration and finish normally.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 27 of 58

7.5 Carrying over the data
Before a communication attempt is made, the data that RadiMation® will use has to be intercepted
with that which was filled in by the end user. The end user can no longer configure the TCPIP protocol
so RadiMation® must make sure that the address filled in at the HTTP section is also applied in the
TCPIP protocol. Every communication protocol has a connect function, but some protocols share the
same connect function. Inside every connect function, another function related to the device stream
configuration is called: the GetUniqueAddressString() function. This function simply returns what was
filled in by the end user when he or she configurated the device driver and is present in every connect
function. A string has been created as a property in the device stream configuration object.

Once the GetUniqueAddressString() function is called, the same as before is returned but along the
way its output is also saved to the string. All the HTTP communication protocols take a single address
such as http://192.168.1.0:80 and the USB take a device identification of 8 numbers, as talked about
in Solution 1. GPIB is a bit different. With GPIB, inside the string the board number is stored, alongside
its primary and secondary address as well as its delay, whether the device should be cleared during
initialisation and whether or not the device should be readdressed. These six variables are stored
inside a single string, separated by commas. Converting this to a string is easy. Getting this data out of
the string is a different story, as each piece of data has their own datatype, such as bool, int, DWORD
and more. The string has to be cut up in between the comma’s and then applied to their respective
variables separately, before a connection is made. Now RadiMation® will apply this data and attempt
a communication.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 28 of 58

8 | Solution III, automatically finding addresses connected via GPIB or
RS-232
8.1 GPIB

Figure 18 Configuration window of GPIB

8.1.1 What is GPIB

GPIB stands for General Purpose Interface Bus, though it can also be called the IEEE 488 bus. Every
device connected has its own unique address. This is a value from 0 to 31, which includes the GPIB
controller Board as well.

“In the original HPIB protocol, transfers utilise three wire handshaking system. Using this the
maximum data rate achievable is around 1 Mbyte per second, but this is always governed by the speed
of the slowest device. A later enhancement often referred to as HS-488 relaxes the handshaking
conditions and enables data rates up to about 8 Mbytes / second.

The connector used for the IEEE 488 bus is standardised as a 24-way Amphenol 57 series type. This
provides an ideal physical interface for the standard. The IEEE 488 or GPIB connector is very similar in
format to those that were used for parallel printer ports on PCs although the type used for the GPIB
has the advantage it has been changed so that several connectors can be piggy-backed. This helps the
physical setting up of the bus and prevents complications with special connection boxes or star
points.“ [5]

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 29 of 58

In GPIB, there are three methods for how devices can act: Controllers, talkers and listeners. Controllers
make sure there are no conflicts on the bus, such as two talkers talking. This would corrupt the data.
Talkers put information on the bus and listeners receive that information. Many devices are able to
switch from being a listener to a talker and vice versa.

Figure 19 Physical GPIB connector, image taken from https://www.electronics-notes.com/images/GPIB-connector-01.jpg

8.1.2 The general approach

The plan here is similar to the solution of the USB auto-detection. Find all devices (in the case of GPIB
I use a special function, FindListeners()) and ask each device if they are the device we are looking for.
This is done through another function inside RadiMation® called CheckDevice(), which will be
explained later. This function returns either an error or not. Once done, the number of devices that
did not return an error is counted and an appropriate result will be displayed.

8.1.3 GPIB Boards

There can be many GPIB boards connected to a computer. However, RadiMation® only allows up to a
maximum of four boards. However, usually only one board is available, but then we still don’t know if
that’s board #0, 1, 2 or 3. Therefore, a function is used to communicate with the GPIB boards one by
one to see if there is a response, and if there is, they are added to a vector. This vector is later used
when scanning the individual boards and making sure that there are no scans on boards that don’t
exist.

At this point, a “Please Wait” message will appear, since this process may take up some time.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 30 of 58

8.1.4 The search with GPIB

The data that needs to store is the GPIB board number, and any devices connected to that specific
GPIB board. The thing is, there can be multiple GPIB boards. To save this data efficiently, a two-
dimensional vector has been applied. This vector stores a GPIB Board as its first number, and then any
GPIB address on that board as its second. For example, a vector called GPIBData could have data in
position GPIBData[0][3], which would be the on board #0 and on that board, the fourth address.

NI-488.2 Library
To find all the connected devices with GPIB, a function of the NI 488.2 library is used. The
National Instruments 488.2 library holds functions related to GPIB communication.

“NI-488.2 provides support for customers using NI GPIB controllers and NI embedded
controllers with GPIB ports.

NI-488.2 is an NI instrument driver with several utilities that help in developing and debugging
an application program. NI-488.2 includes high-level commands that automatically handle all
bus management, so you do not have to learn the programming details of the GPIB hardware
product or the IEEE 488.2 protocol. Low-level commands are also available for maximum
flexibility and performance. “[3]

From this library a function called FindListeners() is utilised. This function requires an array as input
and a different array as output. It will proceed to fill the output with the addresses of the devices,
based on the addresses of the input. So, if the list is filled with data ranging from 0 to 31, it should
scan each and every GPIB address. A little extra is required to make this function functional in the
code.
an empty input array is created with a size of 32, which will then be filled with the values of 0 to 31.
FindListeners() requires that the last entry in the input array has a value of NOADDR, so It is declared
that in position 31 of that list is equal to NOADDR. Then, an output array is created of data type
“short”. This is because FindListeners() requires it. Every entry is filled in this array with a value of -1,
which is later explained. Finally, another function is used to determine the address of the GPIB board
itself. This way it is eventually excluded in the resulting vector. Now the function FindListeners() is
called to fill the output array with addresses. Any address that does not respond will remain at a value
of -1. Now with the use of a for loop the address of the GPIB board is filtered out and those with a
value of -1 are filtered out, so that the resulting vector will be filled with correct addresses.

8.1.5 The CheckDevice() function

Each driver in RadiMation® includes a function, CheckDevice() that checks if that specific device is
connected. Whenever CheckDevice() is called, and depending on which device driver is currently
loaded, that function of checking if the device is connected, will be performed. It will return an error
in the case that it cannot find the device, and no error if it can. Using this function, the code does not
need to know the name of the device for comparison, it already knows if it is there or not.

Now for every entry inside the vector that holds the addresses, CheckDevice() is called. Every address
that succeeds is copied over to another vector to hold the address data for the successfully connected
device, and a counter is increased for counting the number of matches.

At the point the “Please Wait” window can close, as the part that takes up most of the time is now
finished.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 31 of 58

8.1.6 Determining an action

Now, three things can be concluded:

1. There are no matches. A message will be displayed notifying the user that the auto-detection
was a failure.

2. At one match the correct device is found and the GPIB board and address is filled in.
3. At more than one match, similar to solution 1, a new GUI window is shown that contains all

duplicate addresses, allowing the user to select one of them.

Figure 20 The GUI window shown when multiple devices are connected through GPIB

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 32 of 58

8.2 RS-232

Figure 21 The window shown when configuring RS-232

8.2.1 What is RS-232

“RS-232 defines the signals connecting between DTE and DCE. Here, DTE stands for Data Terminal
Equipment and an example for DTE is a computer. DCE stands for Data Communication Equipment or
Data Circuit Terminating Equipment and an example for DCE is a modem. RS-232 uses serial
communication, where one bit of data is sent at a time along a single data line. This is contrast to
parallel communication, where multiple bits of data are sent at a time using multiple data lines.”[4]

RS-232 is, to nobody’s surprise, a communication protocol. This protocol Includes variables such as
baud rates, start bits, stop bits and parity. Fortunately, it is rare that the start- and stop bits and parity
changes settings other than default so these variables have not been considered when coming up with
the design for this solution.

8.2.2 The general approach

The plan is basically the same as that of the GPIB auto-detection. Find all connected devices and for
each of them run the CheckDevice() function on them.

8.2.3 VISA

At the very start of the code, the “Please Wait” window is displayed, as the searching with RS-232
needs three seconds per potentially found device. If VISA is installed, it is a better and more refined

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 33 of 58

way of communicating via RS-232 and is preferably used. The downside to this, is that certain COM
ports are reserved, such as COM1 and COM2. To solve this, National Instruments created aliases to
COM ports, called “ASRL”. VISA will attempt to have COM ports be the same as ASRL ports, but this
does not always happen. Furthermore, with how currently the communication over RS-232 is built in
RadiMation®, it can go like this: there is a device on COM9, which has an alias of ASRL11. In the code
a request for communication is made with port 9. It will attempt to communicate over COM first,
which is COM9. This will succeed. The problem is, when it moves on to 11, it will first communicate
with COM11, which will fail. So now the code will search for ASRL11, which will succeed because it has
an alias for COM9. The device is now found twice. This has to be prevented else duplicate data will be
stored. In the event that VISA is not installed, only the COM ports will be searched.

To prevent this from happening, the code must acquire the list of aliases. Fortunately, there is a text
file that can simply read and take the data from, which is visaconf.ini.

The first step, after showing the “Please Wait” window, is to check is VISA is installed. No need to fetch
a file from VISA if it doesn’t exist. Of course, the file does not contain just the aliases, it contains a
bunch of other data as well that is irrelevant to the code. So, RadiMation® begin to scan each line and
then compare that line to the string “[ALIASES], which is the start of the relevant section. From this
point on until the end of the section, marked with the word “NumAliases”, every line will be added to
a vector of strings, so that later the code can scan through the relevant lines individually. Now the file
is no longer needed, so the program closes the file. A correct line looks like this:
“Alias11="'COM8','ASRL10::INSTR’’” From this line, the numbers 8 and 10 are important. These
numbers are paired and added to a map of numbers. This map will later serve as the base of an
exclusion list, so that a device is not scanned twice. Another property that is being made of use is that,
if the COM port and the ASRL value are different, the ASRL value is always higher.

8.2.4 Scanning

RadiMation® has fourteen set baud rates. Sometimes a baud rate is already set by a device driver
inside RadiMation®, because when developing drivers for the devices, RadiMation® already has the
correct baud rate saved for that device. This is not always the case, as certain it is simply unknown
which baud rate has to be used. Therefore, in the scenario where it is not clear which baud rate has
to be used, the code will have to scan each baud rate.

Even though a large amount of ports can be connected via RS-232, it seems unlikely the number of
connected devices will pass further than 256 ports, so the code will start scanning from port 1 to port
255. The first thing to do is to check the exclusion list (empty at the start). Should the number the
program is currently scanning be in the list, the number is skipped and start with the next number.
This is to prevent the above situation with devices being scanned twice. Continuing, the port is now
set using a function. This port will be referenced when trying to open a connection. Afterwards, a
check has to be made to see if the settings of the current RS-232 configuration can be edited or not.
When attempting to configure a device driver in RadiMation®, sometimes the settings are already
locked, because DARE!! is sure that the device uses these settings. In this case, there is no need to
scan each baud rate, just the one that is configured. Then, a connection is opened, by using the baud
rate, parity, data bits and stop bits. If this succeeds, a CheckDevice() function is called for this device.
If this does not return an error, the baud rate is added to a vector of numbers and so is the com port,
as well as a counter that is raised for the number of successful matches.

Now, the alias of the COM port is added to the exclusion list, so that it is skipped, and it is not found
again.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 34 of 58

8.2.5 Determining the result

Same procedure as all the other solutions. Count the amount of matches from CheckDevice(). At no
matches, error message, at one match, fill it in, at two or more matches show the GUI as shown in
figure 22 and the end user has to select the device.

Figure 22 The GUI shown when multiple devices are connected through RS-232

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 35 of 58

9 | Competences
An internship should also contribute to the further development of the competencies that are
required to adequately perform my activities after my education is completed and I am ready for “the
real work”. Below, I have addressed how this internship has contributed to this requirement.

9.1 Analysing
It was necessary in my assignments, to extend the USB auto-detection function, to create a button for
auto-detection with GPIB and RS-232 and to remove options in a list of communication protocols. For
this I had to fully understand how the original code is structured and how it works, how roughly
RadiMation® is build (such as its class structure) up, the level of complexity within RadiMation® and
develop ideas as to how to build upon this foundation. Questions such as “how should the code work
exactly?”, or “where I should edit the code?” must be asked. RadiMation® is an incredibly large and
complex program and it is easy to get lost in it. For each one of these assignments an FNS was made,
but these also required knowledge of the current state of the code. In these FNS’s I wrote about how
the code should work and made a few terms to test the code on, once it is functional. Alongside this I
also broke up the code in pieces and gave each piece a time estimate for my overall planning to make
sure I finish my assignments on time. All this required a significant effort in the area of Analysis.

9.2 Design
Using this foundation, being the result of my analysis, a solution for each sub-assignment had to be
designed. I have demonstrated this in each of the FNS’s to make a design based on what I had
analysed. Such as how the new auto-detection button for USB should work, by adding in additional
commands to receive more data from the devices, so I can sort them. With GPIB and RS-232 I thought
about a similar solution of scanning all devices and then sending a command to them. With the
removal of options, I needed a new method for making sure it switched communication protocols
should one fail. Considering I was unable to find enough physical devices to test the communication
with, I had to input dummy data (fake data) to see if my code worked, alongside plenty of debug
messages that would show up in the log. To help me understand what needed to be done, I have
created flowcharts that showed me inheritance trees of the classes and helped me visualise and draw
a mental path to retrieving certain values. The FNS’s themselves are counted as documentation, as far
as DARE!! is concerned. These FNS’s are attached to this report.

9.3 Realisation
While creating the code, there are guidelines set by DARE!! when it comes to programming. There is
a large checklist that has to be filled in to make sure the code is stable and can be shipped with the
next release of RadiMation®. An example of such is when variables are named, their first letter dictates
their type, such as a string will start with an ‘s’ and an integer will start with an ‘I’, leading to variable
names such as ‘sWord’ and ‘iNumber’. This practice has been committed/implemented to throughout
the code. Due to the amount of code I had to create/modify, it was very unlikely that it would be
correct the first time around. Therefore, much testing had to be performed to find and identify any
bugs in the code, and to make sure the code is created properly and without error. The process for
this is also roughly documented inside the FNS’s.

9.4 Manage
At the start of the internship I made a rough planning estimate of the time I needed for the various
solutions I was targeting and when, taking into account that I needed some time to invest into other
school activities for classes for not yet completed tests. In each of the FNS’s I had to break up certain
aspects of the assignment and give an estimate of how long it would take to program the solutions.
This was are hard to do due to being unable to estimate how much extra analysis had to be performed

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 36 of 58

with RadiMation’s code and being unable to foresee any bugs that may arise. Every four weeks I had
a conversation with my project supervisor about the current status of the assignment. Here we
discussed any errors I was making and how to improve them. Every day at 12:00 the project supervisor
was asking my colleagues and me if we had any questions about the code. This helped me with no
longer hitting a wall most of the time and saving up time to use for the assignment instead of just
thinking and not reaching a conclusion.

9.5 Research
First of all, RadiMation® is an incredibly complex program, written in C++ and it uses all of the special
functions C++ was created for. The fact that it included more than 4500 classes is an indication of the
complexity I was dealing with. It took me weeks of research and analysis to somewhat comprehend
the structure and functioning of this application.

Before being able to create auto-detection code for RS-232 and GPIB, I needed to know how each of
these protocols worked on a basic level. This would influence certain solution design decisions that I
had to make. Although the functioning of these protocols is well described in the Internet, the
RadiMation® code also includes functions that demonstrate how GPIB and RS-232 worked when
connecting with a device. In addition, I had to consult a book on WxWidgets since I needed to use a
property of a GUI that was not used before in RadiMation® and it was not well explained on the
internet. Since RadiMation® is a highly complex C++ program, there are plenty of concepts used that
I had no experience with, nor did I even hear about them. For example, virtual functions, the
memmove function (eventually not used), vectors and much more.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 37 of 58

10 | Conclusion
The three assignments that were given to me by DARE!! have been successfully completed. My
activities have contributed to the simplification of the configuration process for the end user.

By introducing the auto-detection of the devices that are connected either directly to RadiMation® or
indirectly via a RadiCentre®, the end user will not be confused about which protocol to select. Also,
the removal of similar/redundant selection options when selecting protocols contributes significantly
to the efficiency and user experience.

All these modifications were done through changing the source code of the program which is written
in C++.

This internship at DARE!! was a challenge. The complexity of the RadiMation® program, being an
application that has been growing over time, requires a thorough understanding of it structure and
applied programming techniques. As a student and hence a “beginning C++ programmer” instead of
an experienced Software Engineer, the complexity was sometimes overwhelming.

In the past, I thought I had learned many high-level concepts of C++, and I also thought knowing how
to potentially find my way around a large project similar to RadiMation®. This project however caused
me to be often confused and stuck and not exactly knowing how to continue. Thankfully, with the
guidance of the DARE!! colleagues and my project supervisor I was able to overcome the challenges I
encountered on route to completion of my assignment.

My colleagues were friendly and helpful, in the time that my project supervisor was unavailable I could
rely on my colleagues to help me with certain issues. I have devoted all my energy to writing, as far as
I know, bug free code (after testing of course) and I trust that, with my additions to and modification
of, the source code in C++, DARE!! will be happy to include it in the next version of their product.

With these additions, the end user is now more easily able to find connected devices through
RadiMation® instead of needing to look up any ID for each device. Not only that, there is now clarity
in the options available and so RadiMation® can no longer confuse the user when it comes to making
choices during the configuration process.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 38 of 58

11 | References
1. https://www.electronics-notes.com/articles/analogue_circuits/emc-emi-electromagnetic-

interference-compatibility/what-is-emc-basics-tutorial.php
2. https://www.dare.eu/emc-systems
3. https://www.ni.com/nl-nl/support/downloads/drivers/download.ni-488-2.html#329025
4. https://www.electronicshub.org/RS-232-protocol-basics/
5. https://www.electronics-notes.com/articles/test-methods/gpib-ieee-488-bus/what-is-gpib-

ieee488.php
6. Cross-Platform GUI Programming with wxWidgets, by Julian Smart and Kevin Hock, second

edition

https://www.electronics-notes.com/articles/analogue_circuits/emc-emi-electromagnetic-interference-compatibility/what-is-emc-basics-tutorial.php
https://www.electronics-notes.com/articles/analogue_circuits/emc-emi-electromagnetic-interference-compatibility/what-is-emc-basics-tutorial.php
https://www.dare.eu/emc-systems
https://www.ni.com/nl-nl/support/downloads/drivers/download.ni-488-2.html#329025
https://www.electronicshub.org/rs232-protocol-basics/
https://www.electronics-notes.com/articles/test-methods/gpib-ieee-488-bus/what-is-gpib-ieee488.php
https://www.electronics-notes.com/articles/test-methods/gpib-ieee-488-bus/what-is-gpib-ieee488.php

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 39 of 58

12 | Appendix

FNS 1, Support for connecting multiple devices

Document 1248

--- FUNCTIONELE SPECIFICATIE [FNS] ---

Multiple DARE!! devices address auto-detect

Written by : RAHE

Filename : FNS - Support for connecting multiple devices.docx

Date : 7-11-2019

This document (or part of it) may not be
reproduced and/or published by print,

photo print, microfilm or any other means

without the previous written consent of
DARE!! Development, DARE!!

Instruments and/or DARE!! Projects.

All rights and obligations of contracting

parties are subject to either the standard
conditions of DARE!! Development,

DARE!! Instruments and/or DARE!!

Projects or the relevant agreement
concluded between the contracting parties.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 40 of 58

Change log:

Version Date Changes By

1.0 7-11-2019 Initial Version RAHE

1.1 12-11-2019 General changes RAHE

1.2 2019-11-19 Review and a few additional questions JORO

1.3 20-11-19 Answer questions RAHE

1.4 2019-12-10 Review and a few additional questions JORO

1.5 2019-12-10 Answer additional questions RAHE

Approved by (*):

Date:

Senior Engineer / Customer

(*) The design review document must be approved by a senior engineer before proceeding to the next

development stage. In the case a senior engineer carried out the design review, another senior

engineer must approve this document.

In the case of an external customer, this customer also must approve and sign this document.

Every version of the document must be signed by a digital signature. The signed document must be

printed as PDF and stored in the relevant project directory.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 41 of 58

Change log ... 40

Approved by (*): ... 40

1 Omschrijving product .. 42

1.1 Product naam .. 42

1.2 Doel ... 42

1.3 Financieel .. 42

2 Specifications ... 43

2.1 Requirements .. 43

2.2 Preconditions .. 43

3 Analysis: .. Fout! Bladwijzer niet gedefinieerd.

4 Design .. 43

4.1 Estimate .. 44

5 Testen van het proto type .. Fout! Bladwijzer niet gedefinieerd.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 42 of 58

Omschrijving product:

Product naam:

Multiple DARE!! devices address auto-detect

Doel:

Allow end users with multiple connected DARE!! devices to have all addresses configured by pressing

a single button.

Financieel

What is the planned selling price?

- This feature will be part of the standard product for all customers with a valid support
contract.

What are the planned production costs?

- No production costs.
What are the expected production numbers?

- Not applicable

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 43 of 58

Specifications:

A simple button should be added to the GUI that when clicked, finds all connected DARE!! Devices and

fills in the correct address given which device driver is currently open

Requirements:

A button in the GUI with “Detect” on it, in the communication tab, with the USB option.

No visual changes have to be made, the functionality of the existing button will be changed.

Preconditions:

One or more DARE!! Devices have to be connected. Should none be found, an error is displayed with

the text “No DARE!! device found”.

The function should look at what device driver is currently open, fetch all connected devices, compare

the names of the device driver and all connected devices, and if one matches, grab the address and

auto-fill it.

Two problems may arise with this function.

• Problem 1: If multiple devices of the same type are connected

• Problem 2: If devices are connected to a RadiCentre, which is connected to the PC

Problem 1 can be solved by showing a list of addresses where the end user has to select the correct

one for the device.

Problem 2 can be solved by scanning again from the viewpoint of the RadiCentre

Design:

According to the analysis, a suggested design has been created:

1. The existing button in the USB settings of the communication tab in DARE!! Device drivers’s
functionality will be slightly changed

2. The name of the currently opened device driver will be stored in a string.
3. A list will be created of the names of all currently connected devices
4. Every name will be compared to the one stored

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 44 of 58

5. Should multiple matches occur, a second list will be generated for the end-user to interact
with and select the correct address. The list should look like this:

The name “DriverName” used here is merely an example. It will be replaced with the name of

the currently loaded device driver. The Ok button will always be selectable, but if no selection

is made, an error message will show up with the message “No selection is made! Please select

an address”.

6. Should a RadiCentre be found, then the RadiCentre’s address should be ignored and instead
the search must continue through the RadiCentre. This can be done by asking the
RadiCentre what devices are currently connected to it, and adding that list to the original
one. Once completed, the search continues as normal. At the end of the scan all devices
with the same name will be listed, even those found through a RadiCentre.

7. Should no device be found, a number of error messages can be shown to the user depending
on the situation, such as:

a. No connected DARE!! Devices are detected at all

b. Another DARE!! device (RPR3006W) is found but that is another model device

c. Multiple other DARE!! devices are found, but none of them is of the correct model.

Estimate:

1. Researching methods to find connected devices (10 hours)
2. Implement a search function (8 hours)
3. Have the function search after a RadiCentre is detected (15 hours)
4. Extra GUI screen for selecting addresses (10 hours)

Testen van het prototype:

o Connect no device, press the button. It should show one of the error messages
o Connect two different DARE!! devices, if it is the correct driver, only the correct

address should be inserted into the box
o Connect two of the same DARE!! devices, if it is the correct driver, the GUI should

pop up
o Repeat the tests above with a device connected through a RadiCentre, the results

should be the same as the previous tests
o Repeat the tests above with two of the same DARE!! Devices through a RadiCentre

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 45 of 58

FNS 2, Reduction of options within device driver communications

Document 1248

--- FUNCTIONELE SPECIFICATIE [FNS] ---

Reduction of options within device driver communications

Written by : RAHE

Filename : FNS - Reduction of options within device driver

communications

Date : 7-11-2019

This document (or part of it) may not be
reproduced and/or published by print,

photo print, microfilm or any other means

without the previous written consent of
DARE!! Development, DARE!!

Instruments and/or DARE!! Projects.

All rights and obligations of contracting
parties are subject to either the standard
conditions of DARE!! Development,

DARE!! Instruments and/or DARE!!

Projects or the relevant agreement
concluded between the contracting parties.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 46 of 58

Change log:

Version Date Changes By

1.0 7-11-2019 Initial Version RAHE

1.1 12-11-2019 General Changes RAHE

1.2 2019-11-19 Review and additional questions JORO

1.3 20-11-19 Update on questions RAHE

1.4 2019-12-10 Review and additional questions. Added backwards

compatibility

JORO

1.5 2019-12-11 Answer additional questions RAHE

Approved by (*):

Date:

Senior Engineer / Customer

(*) The design review document must be approved by a senior engineer before proceeding to the next

development stage. In the case a senior engineer carried out the design review, another senior

engineer must approve this document.

In the case of an external customer, this customer also must approve and sign this document.

Every version of the document must be signed by a digital signature. The signed document must be

printed as PDF and stored in the relevant project directory.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 47 of 58

Change log ... 46

Approved by (*): ... 46

1 Omschrijving product .. 48

1.1 Product naam .. 48

1.2 Doel ... 48

1.3 Financieel .. 48

2 Specifications ... 49

2.1 Requirements .. 50

2.2 Preconditions .. 50

3 Analysis: ... 50

4 Design .. 50

4.1 Estimate .. 51

5 Testen van het proto type ... 51

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 48 of 58

Omschrijving product:

Product naam:

Reduction of options within device driver communications

Doel:

Reduce the confusion for the end-user when configuring a device

Financieel:

What is the planned selling price?

- This feature will be part of the standard product for all customers with a valid support
contract.

What are the planned production costs?

- No production costs.
What are the expected production numbers?

- Not applicable

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 49 of 58

Specifications:

Certain options in the communications tab are confusing for the end user, as there are three ways to

open a GPIB connection (GPIB, CompliantGPIB and through VISA), two ways for RS-232 (through

WindowsAPI and VISA) etc. The end result requires removal of duplicate options, and only the

connection methods remain, which is USB, LAN, GPIB or RS-232.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 50 of 58

Options such as VISA-Alias and the port selection of LAN based instruments will still be available, under

the correct tab. If VISA is not installed, the VISA-Alias option is greyed out. The VISA option should be

enabled by default.

All the device drivers that are currently using a communication method that is not present anymore

in the new situation, should automatically be converted to the corresponding new available

communication stream, with the correct settings.

An existing working device driver should remain working after this new implementation. (Backwards

compatibility!)

Requirements:

Removal of the options in the communications menu

Preconditions:

None

Analysis:

To reduce the amount of options a potential solution is a priority system. In the background a series

of checks should be made to choose the correct method of communication.

All options except for the protocols themselves should be removed, resulting in less confusion for the

end-user. The options window still exists for tweaking these communication methods. The button

used to connect to the device shall be used for the auto-detection. It should scan for the device, using

the settings set in the communication menu.

Design:

According to the analysis, a suggested design has been created:

8. Edit the function that is called when a connection to the device is made
9. Depending on how the communication is configured, an amount of checks will happen

a. When GPIB is selected, VISA>GPIB
b. When LAN is selected, VISA>HTTP>TCPIP>UDP>RSIB

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 51 of 58

c. When RS-232 is selected, VISA>WindowsAPI
d. When USB is selected, USBTMC>DARE USB>VCP

10. These checks are based on what is possible within the communication settings. Not all
devices can do communication via USB, if it’s not possible, it should be skipped.

11. Checks will happen based on what is installed (VISA for example), and just trial and error for
each option. If VISA is not installed the first attempt can be skipped.

12. Check if the first configuration is possible. If it is, select it and stop there. If it isn’t, attempt
to do the same with the next one down the line

13. When all options fail, the device driver only has to return the corresponding ERRORCODE.
The error message such as “Failed to find device! Is it connected properly and is the correct
port chosen?”.

14. Removal of the options VISA, UDP, TCPIP, HTTP, RSIB, CompliantGPIB
Estimate:

5. Separate check for each protocol (30 hours)
6. Function to go by each method (3 hours)
7. Removal other options (5 hours)
8. Ensure that existing device driver will be converted to one of the new possibilities

(20 Hours)
Testen van het proto type:

o Test if a device can connect with and without VISA on. It should connect in both
situations

o Have separate devices attempt to connect through TCPIP, UDP and HTTP with only
the LAN option selected

o Connect a device through GPIB
o Connect a device through LAN
o Connect a device through USB
o Connect a device through RS-232
o For each of these, see if the first possible method went through
o Connect a device with deliberate wrong settings, attempt to get every warning

message to pop up

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 52 of 58

FNS 3, Automatically finding the address of devices connected through RS-232 or GPIB

Document 1248

--- FUNCTIONELE SPECIFICATIE [FNS] ---

Automatically finding the address of devices connected

through RS-232 or GPIB

Written by : RAHE

Filename : Automatically finding the address of devices connected

through RS-232 or GPIB

Date : 7-11-2019

This document (or part of it) may not be

reproduced and/or published by print,

photo print, microfilm or any other means
without the previous written consent of
DARE!! Development, DARE!!

Instruments and/or DARE!! Projects.

All rights and obligations of contracting
parties are subject to either the standard
conditions of DARE!! Development,

DARE!! Instruments and/or DARE!!

Projects or the relevant agreement

concluded between the contracting parties.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 53 of 58

Change log:

Version Date Changes By

1.0 7-11-2019 Initial Version RAHE

1.1 13-11-2019 General Changes RAHE

1.2 2019-11-19 Review and additional questions JORO

1.3 2019-11-20 Answer questions RAHE

1.4 2019-12-10 Review and small additional questions JORO

1.5 2019-12-10 Answer small questions RAHE

Approved by (*):

Date:

Senior Engineer / Customer

(*) The design review document must be approved by a senior engineer before proceeding to the next

development stage. In the case a senior engineer carried out the design review, another senior

engineer must approve this document.

In the case of an external customer, this customer also must approve and sign this document.

Every version of the document must be signed by a digital signature. The signed document must be

printed as PDF and stored in the relevant project directory.

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 54 of 58

Change log ... 53

Approved by (*): ... 53

1 Omschrijving product .. 55

1.1 Product naam .. 55

1.2 Doel ... 55

1.3 Financieel .. 55

2 Specifications ... 56

2.1 Requirements .. 56

2.2 Preconditions .. 56

3 Analysis: ... 56

GPIB ... 56

RS-232 ... 56

4 Design .. 56

4.1 Estimate .. 58

5 Testen van het proto type ... 58

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 55 of 58

Omschrijving product:

Product naam:

Automatically finding the addresses of connected devices through RS-232 or GPIB.

Doel:

Allow end users to press a button and RadiMation® automatically finds the correct address.

Financieel:

What is the planned selling price?

- This feature will be part of the standard product for all customers with a valid support
contract.

What are the planned production costs?

- No production costs.
What are the expected production numbers?

- Not applicable

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 56 of 58

Specifications:

A simple button should be added to the GUI that carries out the function of detecting at which address

the device is connected.

Requirements:

A button in the GUI with “Detect” on it, in the tab of RS-232 and GPIB.

Preconditions:

A device has to be connected through RS-232 or GPIB.

Analysis:

GPIB

After scanning all GPIB boards in the advanced settings, every possible GPIB port (except the address

of the GPIB board itself) has to be scanned. A device will eventually be found (if connected).

RS-232

The problem with RS-232 is that it can span across different baud rates. To solve this, first a scan

should be made on the default set baud rate. Should this fail, a scan should be made on all available

standard baud rates.

In both cases, if multiple devices are found a list should pop up showing all the ports with connected

devices. The data contained in this list can be checked by using the existing CheckDevice function.

Design:

According to the analysis, a suggested design has been created:

A button will be placed in the GPIB and RS-232 tab, looking like this:

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 57 of 58

1. Once the ‘Detect’ button is pressed, it will scan each GPIB port (if in the GPIB tab) or each
RS-232 port (if in the RS-232 tab). A warning message will pop up, preventing anything from
happening until this scan each completed. The only other option other than waiting, is a
cancel button to stop the search early. The message should display the text “Please wait, this
detection may take several seconds”.

2. If no device is a found, an error message is given to the user, which will be: “No device

found, is everything connected properly?”.
3. If only one device is found, the address of that device will automatically be selected in the

‘Primary Address’ or the ‘COM port’ setting. However in the event that the loaded device
driver does not match the name of the connected device, a warning message should pop up
saying “A device has been detected but is not the same as the device currently being
configured. Do you want to continue?” followed by a yes or no button.

4. Should multiple devices be discovered, they will all be compared to the currently loaded
device driver. If only one matches, it picks that one. Should multiple devices pop up that
match the name of the loaded driver, a GUI should pop-up allowing the user to find the

Intellectual property rights of DARE!!
BV

15028453_Thesis_Dare_Heij_v
3.docx

Page 58 of 58

names of the devices.

5. In the event that that the detection is RS-232, a COM Port is shown in the table above. If it is

GPIB, GPIB Port is shown instead. Two similar GUI’s will have to be made for this.
Estimate:

9. Add a button to the GUI (4 hours)
10. Create the GUI to display all devices (10 hours)
11. Functionality to go past each address (20 hours)
12. Show the ‘Busy’ dialog with the ability to cancel the running search (5 hours)

Testen van het proto type:

o Connect no device, press the button, it should show the user an error message, such
as “No device found on xxx bus”

o Connect a device through RS-232 at 57600 baud
o Connect a device through RS-232 at a different baud rate
o Connect a device through GPIB
o Connect multiple devices through GPIB
o Connect multiple devices through RS-232
o Possible to find the correct GPIB device when it is connected to the second GPIB

adapter of the PC?

