
Actor-based MapReduce-application for calculating

Key Performance Indicators

Bachelor thesis

Max Messerich

In fulfillment of the requirements for the degree

Bachelor of Science in Informatics

To be awarded by the

Fontys Hogeschool Techniek en Logistiek

June 12, 2018

i

Information Page

Fontys Hogeschool Techniek en Logistiek
Postbus 141, 5900 AC Venlo

Bachelor thesis

Name of student: Max Messerich
Student number: 2672502
Course: Software Engineering
Period: February - June 2018

Company name: traperto GmbH
Address: Gertrud-Boss-Straße 7
Postcode, City: 47533, Kleve
Country: Germany

Company coach: Thorsten Rintelen
Email: t.rintelen@traperto.com

University coach: Ferd van Odenhoven
Email: f.vanodenhoven@fontys.nl

Examinator: Stefan Sobek

Non-disclosure agreement: Does not apply.

ii

Statement of Authenticity

I, the undersigned, hereby certify that I have compiled and written the attached document / piece of work and
the underlying work without assistance from anyone except the specifically assigned academic supervisors and
examiners. This work is solely my own, and I am solely responsible for the content, organization, and making
of this document / piece of work.

I hereby acknowledge that I have read the instructions for preparation and submission of documents / pieces
of work provided by my course / my academic institution, and I understand that this document / piece of
work will not be accepted for evaluation or for the award of academic credits if it is determined that it has
not been prepared in compliance with those instructions and this statement of authenticity.

I further certify that I did not commit plagiarism, did neither take over nor paraphrase (digital or printed,
translated or original) material (e.g. ideas, data, pieces of text, figures, diagrams, tables, recordings, videos,
code, ...) produced by others without correct and complete citation and correct and complete reference of the
source(s). I understand that this document / piece of work and the underlying work will not be accepted for
evaluation or for the award of academic credits if it is determined that it embodies plagiarism.

Name: Max Messerich
Student Number: 2672502
Place/Date: Kleve, June 12, 2018

Signature:

iii

Contents

Statement of Authenticity ii

1 Introduction 2

1.1 Company description . 2

1.2 What is a Key Performance Indicator . 2

1.3 Problem Statement . 2

2 Background 3

2.1 Problem description . 3

2.2 Representing the structure of a business . 5

2.3 Solving the performance issues . 9

3 Mathematical definition of the data layer 10

3.1 Representing the relationship between two elements of a business structure 10

3.2 Representing a layer of the business structure . 11

3.3 Connecting data to the business . 12

3.4 Representing multiple business layers . 12

4 Creating graph representations of business structures 17

4.1 Exemplary business structure, input files and application output 17

4.2 Mathematical definition of the program . 20

4.3 Providing meta information . 24

4.4 Creating interconnected vertices . 28

5 MapReduce graph processing-application 31

5.1 Meta information in model classes . 31

5.2 Programming the map-reduce process . 31

5.3 Using actors to execute QueryContainers . 33

5.4 Recursion control . 35

6 Quality Control 36

6.1 Unit tests . 36

6.2 Code quality . 36

7 Conclusion 37

Appendix 39

A Graph algorithms 39

A.1 Depth-first search . 39

A.2 Topological sorting . 40

B Graphs produced with the graph extractor 41

iv

C Using the actor model 46
C.1 Sequential traversal . 46
C.2 Parallel traversal . 47
C.3 Using the actor model to keep track of a decentralized state . 47

D Performance comparison between sequential Depth-first search (DFS) and parallel Breadth-
first search (BFS) 49

E Code snippets 51
E.1 Depth-first-search algorithm . 53
E.2 Graph Extraction application . 54
E.3 WorkerActor implementation . 61

v

List of Figures

2.1 Key Performance Indicators (KPIs) for all levels of the organizational structure 3
2.2 Complex organizational structure to be represented. 4
2.3 Calculating KPIs from children. 6
2.4 Calculating KPIs from children. 7
2.5 Multilayer graph representing a domain model with two layers. 8
2.6 Multilayer graph representing a domain model with interconnected layers. 8
2.7 Diagram showing a data structure to be processed. 9
2.8 Diagram showing the relational structures of the current version of the application. 9

3.1 A undirected graph . 10
3.2 A bidirectional graph . 10
3.3 A directional graph . 10
3.4 Calculating KPIs from children. 11
3.5 Hierarchical layer connected to data . 12
3.6 Wrong association between a organizational hierarchy and data 12
3.7 Multiple business layers . 13
3.8 Loop in interlayer connections . 14
3.9 Transitive relationships in interlayer connections . 15
3.10 Layers represented as vertecies . 16

4.1 Simple domain model of a business structure . 18
4.2 Graph extracted from the exemplary input files F1, F2 and F3 20
4.3 Visualization of DI . 21
4.4 Visualization of entities extracted based on the normalization sets. 22
4.5 Visualization of entities extracted based on joined normalization sets 22
4.6 Visualization of Continent, Country, City and Shops . 23
4.7 Visualization of Mangers and the Shops they are responsible for 24
4.8 Class diagram of AbstractDataSource and its implementation CSVDataSource 25
4.9 Class diagram of the TypeBuilder . 26
4.10 Visualization of the connections between DomainTypes. 27
4.11 Visualization of the example domain model graph. 28
4.12 Visualization of a domain model graph containing a loop. 28
4.13 Class diagram of the DomainGraph. 29
4.14 Sequence diagram of converting property values to typed objects. 29

5.1 Class diagram of the QueryContainer . 32
5.2 Communication diagram of the graph processing application . 33
5.3 Graph structure relevant for Group2 . 35
5.4 Tree structure processed by the graph processing application. 35

A.1 The depth first algorithm. Taken from Lipschutz & Lipson (2010) 39
A.2 Algorithm for finding a topological sort of a graph. Taken from Lipschutz & Lipson (2010) . . 40

B.1 A graph consisting of 21729 vertecies and 106299 edges . 42
B.2 A graph consisting of 2737 vertecies and 10713 edges . 44

vi List of Figures

C.1 An example tree to be traversed with the BFS-algorithm. 46
C.2 Calculating KPIs from children. 47
C.3 Calculating KPIs from children. 47
C.4 Diagram visualizing the processes in the WorkerActor . 48

D.1 Performance measurements of DFS and parallel BFS . 49

vii

List of Tables

2.1 Example of a business report . 5

4.1 CSV file F1 displayed as a table. 19
4.2 CSV file F2 displayed as a table. 19
4.3 CSV file F3 displayed as a table. 19
4.4 The relations created from the normalization set C . 23
4.5 Excerpt from the joined relation describing managers. 24
4.6 Example of additional data sets contained within F1. 25

viii

List of Code Snippets

1 Defining the field names for F1 . 25
2 Defining the manager with the Domain Specific Language (DSL) 27
3 Defining connections between DomainTypes trough the DSL . 27
4 A query collecting the identifiers of shops with one manager by traversing the graph from Group

to Manager to Shop . 31
5 Code snippet for creating a graph representation for the case discussed in chapter 4 52
6 Code snippet of the CSVDataSource. Some methods omitted. 53
7 Implementation of the Depth-First-Search-algorithm for edge classification 54
8 Source-code of the DomainDefinition class. 60
9 Code snipped of the WorkerActor which is responsible for processing one vertex of the graph. . 67

ix

Acronyms

AWS Amazon Web Services

BFS Breadth-first search

CPU Central Processing Unit

CSV Comma Separated Values

DAG Directed Acyclic Graph

DFS Depth-first search

DSL Domain Specific Language

GUI Graphical User Interface

JSON JavaScript Object Notation

JVM Java Virtual Machine

KPI Key Performance Indicator

SQL Structured Query Language

x

Definitions

Key Performance Indicator : A KPIs is a number for indicating performance of some aspect of a business.

Amazon Web Services : A cloud services provided by Amazon.

Function as a Service A cloud service technology for executing programs without a server.

1

Abstract

This report describes a generalized MapReduce-application for calculating KPIs based on graph representations
of business structures. The graphs used by this application are created by a secondary application which
extracts all relevant data for the calculating KPIs from multiple undefined data sources. For this purpose, the
graph creation application only requires meta information defining the structure of the business in question.
By making use of the Actor model, the generalized MapReduce-application is capable of parallelizing a large
portion of the required steps in calculation KPIs, which results in a great performance increase compared to
sequential processing of the data.

2

Chapter 1

Introduction

This chapter briefly introduces the company traperto and the software project which will be executed in
conjunction with this thesis.

1.1 Company description

traperto is a software company based in Kleve which develops web applications for large companies like
Vodafone, unitymedia, OBI and Deichmann. The companies main product is called trapero campus which
customers use to manage and track the training of their employees. The application allows companies to
manage online courses, seminars and other forms of training. Employees can register their attendance through
the software and track their progress trough a dashboard. In addition to the Learning Management Software,
traperto also offers KPI Cockpit which provides customers Key Performance Indicators (KPIs) for all levels of
their organizational hierarchy. This tool gives customers an overview over the performance of their business
and allows them to detect problematic developments in their organization. In total, nine people work at
traperto of which six are software developers. The CEO of the company and the head of marketing and sales
are responsible for consulting customers and project management.

1.2 What is a Key Performance Indicator

A KPI is a number which indicates the performance of some business aspect. An example for a KPI is Number
of units sold, which describes the how often a products were sold. By comparing this KPI for different products,
a business can make informed decisions about is product portfolio.

1.3 Problem Statement

The project is about improving the back-end of the KPI Cockpit which faces two issues traperto wants to
solve: Firstly, large parts of the software need to be re-implemented in order to be usable for a new customer,
because the organizational structures, the provided data and the KPIs to be calculated are always unique.
Secondly, the application performs poorly because large quantities of data need to be handled and KPIs need
to be calculated for all nodes within complex organizational structures.

3

Chapter 2

Background

This chapter explains the background of the project. First, a problem definition is given which points out the
high level requirements of the KPI Cockpit and the issues of the current implementations of the software. Due
to the abstract nature of the application, the domain model is defined in mathematical terms. In order to
make the structures to be represented more comprehensible, an example of a business structure to be modeled
is given. Additionally, this chapter also describes how the structure of the domain model can be used to reach
the desired performance improvements of the KPI Cockpit.

2.1 Problem description

The KPI tool is an application which aims to provide users easy access to information about how their business
is performing with data they provide on at least a daily basis.

2.1.1 KPI for all levels of a business

KPI1 KPI2 KPI3

Branch

City

State

Country

Region

KPI1 KPI3KPI2

Main StreetSaalweg 12

KPI3KPI2KPI1

California?

?

L.A.PenzaMoskow

??

?

Hagsche Str. 13

Kleve

VolgaNRW

U.S.ARussiaGermany

NAEurope EastEurope West

GlobalCorp

Figure 2.1: Key Performance Indicators (KPIs) for all levels of the organizational structure

4 Background

The main feature of the KPI-Cockpit is to provide quick access to highly generalized but also very specific
business KPIs. Figure 2.1 shows an example of a customer who uses the application to show three KPIs
(indicated by red, blue and green). KPIs of a certain node depend on the KPIs of its children: Kleve’s score
for KPI1 depends on the Branch nodes Saalweg 12 and Hagsche Str.13. NRW’s KPIs depend on its City nodes,
Europe West depends on its Country nodes and global KPIs depend on all Region nodes of the organizational
structure.

2.1.2 Support for any business structure

Independent

A AA

AA

A A

Manager5

Manager4

AA A AA

Small

AAAAAAAAA

31
Large

2Chains

B2BeRetailDirect Retail

Global
Manager1

Manager3

Manager2

Figure 2.2: Complex organizational structure to be represented.

Currently, traperto needs to re-develop large portion of the software in order to provide it to a new customer.
In order to reduce the amount of effort required for adapting the KPI Cockpit for a new customer, the
application must be capable of representing any type of organizational structure. These structures usually
consist of multiple interconnected business dimensions like a hierarchy of managers, regions of the world the
business is active in and sales channels. Figure 2.2 show an example of such an organizational structure which
consist of a sales channels and a managers responsible for nodes within the sales channels. The KPI Cockpit
needs to calculated KPIs for each vertex in this graph. In most cases, the represented structure form trees.
However, there a relationships within a business in which an element has two ore more parents parents. An
example of such a relationship can be seen in Figure 2.2: The vertex marked with the gray outline has two
parents, because the company represented by this vertex is a chain active in direct retail and also has a web-
shop. Another example of such a relationship might be a worker who is supervised by two or more managers.
Relationships like this are unusual but need to be supported in order to assure the flexibility of the application.
For this reason, the business layers to be modeled are graphs and not trees. A more detailed example of a
business structure modeled in the application can be found in section 2.2. Chapter 3 defines the requirements
of the data layer

2.1.3 Performance issues

traperto’s customers are already using older version of the KPI Cockpit which suffer from performance issues.
Loading a page of the web front-end of the application can take up to 20 seconds. In order to improve the
usability of the KPI Cockpit, loading times must be reduced.

2 Background 5

2.1.4 Pre-Calculated Key Performance Indicators (KPIs)

In order to prevent the performance issues from affecting the user experience, traperto has chosen to pre-
calculate all KPIs visible in some versions of the application. While this reduces loading times to a minimum,
it also limits the flexibility of the KPI Cockpit: KPIs can not be calculated for a set of entities defined by a
user defined filter. This limits the quality of the information provided trough the application, because users
can not specify to for which parts of the business they want to view KPIs(e.g Calculating KPIs for all shops
which employ less than four workers). Due to performance issues, the current versions of the KPI Cockpit can
not offer this functionality. If the new system does not face the same issues and achieves acceptable loading
times for calculation KPIs on demand, filtering elements of the business for specific KPIs becomes an option.

2.1.5 Simple maintenance and local use for development

The application needs to be easy to set up and maintain, because of the limited time available for infrastructure
maintenance: The employee responsible for this task is also the lead back-end developer and also involved in
project management. In order

2.1.6 Structure of the provided data

id KPI Static data* Date n-1 Date n
0 A 100 4 5
0 B 50 1 3
0 C 20 2 6
1 A 60 6 9
1 B 20 6 9
1 C 30 6 9
2 A 60 2 7
2 B 40 4 3
2 C 20 1 2

Table 2.1: Example of a business report

At the core of the data model lie the business reports which are provided on a daily basis and contain the
values which will be used to calculate KPIs. Table 2.1 gives an example of a business report containing data
required by the KPI-cockpit.

• id The identification of the business entity the values are for.

• KPI The identification of the KPI to be calculated.

• Static data Static data providing additional information for KPIs. (e.g expected sales for calculating
the KPI Number of Units solds).

• Dates Values required for the calculation of the KPI.

2.2 Representing the structure of a business

This section describes an example of a business structure to be modeled in the KPI Cockpit. Due to the abstract
nature of the KPI Cockpit, this model is not the domain model of the application but rather an example of a
business structure which needs to be represented. Additionally, the calculation of KPIs is explained within the
discussed model. The actual domain model is a multilayer directed acyclic graph which defines the properties
of the model in a mathematical way. This graph and its properties are described in chapter 3.

2.2.1 Modeling a chain for KPI calculation

Ths subsection describes how a chain, which consist of multiple branch stores, is modeled in the KPI Cockpit
and how KPIs are calculated for it.

6 Background

Representing the chain

Figure 2.3: Calculating KPIs from children.

The diagram Figure 2.3 shows how a chain part of the sales channel hierarchy of a corporation to be represented
in the KPI Cockpit. The chain consists of multiple branch stores which are represented by the vertices at
the bottom of Figure 2.3. The arrows pointing from the chain vertex to the branch vertices represent the
relationship between the chain and its branch stores: Stores A, B, C are part of the chain. The part of
relationship between any two vertices is the essential property of the data model.

Calculating KPIs for the chain

The relationships between entities defines how their KPIs are calculated. In order to calculate the KPI
Number of units sold for the branch, the application needs to know the values for that KPI for the branch
stores {A,B,C} which are 16, 20 and 11. In this example, these values of the chain are provided in the business
report provided to the KPI Cockpit. Once these values are available, X can be calculated for the chain which
is the sum of X of {A,B,C} which is 47. In general, the KPI X of any vertex within the data layer can only
be calculated if X is known for all its child vertices. In other words, the part of relationship describing the
relationship from a parent vertex to a child vertex is inversed for the flow of information.

2.2.2 Modeling the entire sales channel hierarchy for KPI calculation

Obviously, large corporation have larger and more complex sales channels which need to be modeled in the
KPI Cockpit. However, if the data model is structured in such a way that for each element the elements which
it is part of can be deduced, the data model works the same as the example of the single chain. The properties
of the required structure are defined in section 3.2.

2 Background 7

Modeling the sales channel

Figure 2.4: Calculating KPIs from children.

Figure 2.4 visualizes the representation of the sales channel hierarchy of a business structure. This hierarchy
splits up the sales channel in directed retail (left halve of the diagram) and e-retail trough third party web-
shops (right halve of the diagram). The direct retail channel consists of three chains, of which one is the chain
modeled in the previous subsubsection (blue sub-graph). e-retail consists of five web-shops which sell products
of the business. The source vertex on top represents the entire sales channel.

Calculating KPIs for the sales channel

Since the sales channel follows the logic of the chain (see 2.2.1), KPIs can be calculated in the same way for
each vertex in the sales channel: In order to calculate the KPI Number of units sold for the root vertex(A),
the KPI needs to known for the vertex representing the direct retail channel(B) and the e-retail vertex(C).
In order to calculate the KPI for direct retail, the KPI of the chains need to be known (D,E,F). In order to
calculate the KPI of the e-retail vertex, the KPI of the web-shops (G,H,I,J ,K) needs to be know and so on.
When the values for all children and children’s children are available, the KPI can be calculated for the entire
sales channel. As in the chain example, the values for the lowest vertices within Figure 2.2.1 are provided in
the business reports.

2.2.3 Adding managers to the data layer

Since trapertos’ customers are large corporations, a single layer representing a sales channel will not be sufficient
for modeling an entire business structure. For example, the company might be interested in KPIs for individual
manager responsible for certain parts of the sales channel. This subsection describes how the the layer of
managers can be connected to the sales channel layer. With the connection to the sales channels, KPIs can be
calculated for managers. In most cases, the graph modeling the customers business structure will consist of
multiple layers in order to allow users to show how different aspect of their business affect their performance.

8 Background

Modeling multiple business layers

Figure 2.5: Multilayer graph representing a do-
main model with two layers.

Figure 2.6: Multilayer graph representing a domain
model with interconnected layers.

Figure 2.5 shows two hierarchies displayed in two layers or dimensions. Two layer on top represents the sales
channels discussed in the previous subsubsection, the layer below represents a hierarchy of managers. The
hierarchy of manager shows that the structure to be represented are not trees but graphs in which any vertex
may have more than one parent. In this case, a vertex connected to two parents means that the represented
manager has two supervisors. Figure 2.6 shows the same two business dimensions which have been connected
by an interlayer graph connection vertices of the manager dimension to the vertices of the sales channel (The
exact properties of the interlayer connections are defined in section 3.4.2). In the context of this domain model,
a connection between a manager vertex and a vertex of the sales channel means: The manager is responsible for
the sub-graph of the sales hierarchy below the vertex he/she connected to. For example, the manger connected
to the chain (blue in layer on top) is responsible for the chain and its branch stores.

2.2.4 Calculating KPIs through multiple business layers

By creating connections between a the managers and the sales channel hierarchy, paths towards vertices
connected to data from a business report are established. Therefor, KPIs can be calculated for managers. In
order to calculate KPI X for the manager vertex connected to the sales channel dimension, the values of the
connected sales channel vertices need to be known. For example, the manager in question is responsible for
the previously discussed chain (blue tree in Figure 2.6). X needs to be know for this vertex in the sales channel
(and the two other subgraphs of the sales channel the manager is connected to) before X can be calculated for
the manager.

2 Background 9

2.3 Solving the performance issues

The current implementations of the KPI Cockpit suffer from performance issues, because no all processes
executed on the data layer are run sequentially. The reason for this is use of trapertos’ default technologies
PHP and MySQL in the application, which have poor support for concurrency. This section describes some
core ideas of the application which will address this problem.

Figure 2.7: Diagram showing a data structure to
be processed.

Figure 2.8: Diagram showing the relational struc-
tures of the current version of the application.

2.3.1 Parallelizing calculations

Figure 2.7 shows a typical structure for which the application needs to calculate KPIs. In this example, the
application needs to calculate a KPI for the vertex on top. The current version reduces the complexity of the
queries to find all values required for this calculation by linking the vertex on top to all vertexes of interest
for the calculation (see Figure 2.8). This reduces the amount processing required, because the data which
needs to be processed does not need to be found. However, this also removes the ability to calculate more
specific KPIs, because the data used for calculating is static. Additionally, the process of extracting the data
is still a sequential process, because the the database does not parallelize the queries involved in executing
the calculation. Since multiple thousands sets of data are required for the calculation, this process takes an
unacceptable amount of time: In one version of the KPI Cockpit, users needs to wait upwards of 20 seconds
until the calculation is finished, in an other version traperto pre-calculates all values and trades in the flexibility
of the application. In order to improve the performance of the data collection process, the business structures
will be created as graphs which can be traversed with a DFS-algorithm, which can be parallelized at each
recursion.

10

Chapter 3

Mathematical definition of the data layer

Since the intention of the KPI Cockpit is to work for any customer, it can not be designed around a static
domain model which represents the exact properties of a specific business structure. Instead, this section
defines the properties of a graph which aims to provided a generalized data structure in which can represent
any business structure.

3.1 Representing the relationship between two elements of a

business structure

B

A

Figure 3.1: A undi-
rected graph

B

A

Figure 3.2: A bidirec-
tional graph

B

A

Figure 3.3: A direc-
tional graph

In order to capture the properties of the relationship between any two elements of a business structure, the
graph representing their relationship needs to be directed: The graph

G = (V,E), V = {A,B}, E =
{

{A,B}
}

can be described as a undirected graph (Figure 3.1) or as bidirectional graph (Figure 3.2), because E is a set
of unordered pairs.

{u, v} ∈ E =⇒ {v, u} ∈ E

since {u, v} = {v, u} | (u, v) ∈ V . Therefor the direction of the relationship between A and B in the graphs
Figure 3.1 can only be deduced from the context of the two vertecies (For example, if it is known that A is a
supervisor and B is a supervised). Since the KPI-Cockpit needs to be as abstract as possible in order to assure
its capability to represent any business structure, making the data-layer context specific is not an option. If
the graph G′ = (V,E′) is directed, meaning that E′ is a set of ordered pairs

E′ = V×V, (α, β) /∈ E′ | α = β

, the direction of the relation can be deduced from the ordering of vertecies within an edge pair: The edge
E1 = (A,B) defines that the relationship points from A to B, the edge E2 = (B,A) defines that the relationship
points from B to A.

3 Mathematical definition of the data layer 11

3.2 Representing a layer of the business structure

The direction of an edge in the graph G modeling the relationship from vertex A to vertex B indicates that B
is part of A. In order to calculate KPIs within complex structures which consist of more than two vertecies,
the KPI Cockpit needs to be able to deduce the part of relationship for all vertecies of a directed graph
GA = (VA, EA). A is a layer of the business structure (e.g sales-channels or managers). VA is a set of vertecies
representing the entities within layer A and EA = {VA×VA | (α, β) /∈ EA α = β} describe the edges between
the vertices VA. Using topological sorting, the part of relationship can be deduced for all vertecies within
GA. The algorithm produces a linear ordering of vertecies of GA where a vertex u appears before a vertex v
if (u, v) ∈ EA . Since topological sorting is only possible in directed graphs containing no cycles, the graph
modeling a layer of a business structure must not contain any cycles:

∃Puv = u1, u2, · · · , v =⇒ ∄Pvu = v1, v2, · · · , u

Figure 3.4: Calculating KPIs from children.

Topological sorting of the directed graph G displayed in Figure 3.4 produces a the order U, V,W,X, Y . This is
the order in which KPIs-calculation must be executed: Since vertecies v and w are part of vertex u, the KPIs
of v and w must be known before the KPIs of u can be calculated. The KPIs for v are available from data
provided in a business report, w is calculated from x and y (The algorithm can be found in A.2).

12 Mathematical definition of the data layer

3.3 Connecting data to the business

Sales
Channels

Data

Figure 3.5: Hierarchical layer connected to data

Level 3

Level 2

Level 1

Level 0

Sales
Channels

Data

Figure 3.6: Wrong association between a organiza-
tional hierarchy and data

Connecting the data from the business reports to a hierarchy enables the KPI Cockpit the calculation of KPIs
for all vertecies within the organizational layer the data is connected to. However, the data must not be
connected a vertex v of layer L where the outdegree d+L > 0: In Figure 3.6, data is provided for vertecies of
the organizational layer on level 2 which have children (d+L > 0). There is no information which would allow
the application to deduce KPIs from these vertices to the vertecies of level 3.

3.4 Representing multiple business layers

In many cases a single hierarchy is not sufficient in order to represent an entire organizational structure. For
example a large corporation will have more complexity than a singular hierarchy of sales channels split up into
retailers and web-shops. The business structures of the companies currently using the KPI Cockpit consist of
roughly ten distinct layers (e.g. areas, manager, business segments etc). Since the companies want information
about the performance of their business from as many view points as possible, all layers of the business need
to be incorporated into the application. This subsection describes describes a graph which consists of multiple
and interconnected single layer graphs as described in section 3.2. This section describes the properties of the
layers and the connections between them.

3 Mathematical definition of the data layer 13

3.4.1 Properties of the multilayer graph

Figure 3.7: Multiple business layers

Let G = (VG, EG, L) be a multilayered graph where L a set of business layers to be modeled in the KPI Cockpit
(De Domenico et al. (2013)). V is the set of all vertecies in G which contains all entities of the business which
are relevant to the KPI Cockpit. VG ⊂ V×L describes the same set of vertecies in which each vertex is
associated with the layer it is part of. Figure 3.7 shows the different layers and their intralayer graphs. Since
each layer l ∈ L models a separate layer of the business, a vertex can only exists on one layer within the Graph:

{(u, Lα) ∈ VG} =⇒ {(u, Lβ)VG} | u ∈ V, {Lα, Lβ} ∈ L

Because of the unique association of vertecies to layers, a graph GD = (VD, ED), VD = (v, d) ∈ VG, D ∈ L with
the properties in described in subsubsection 3.2 can be established for all layers.

3.4.2 Properties of the interlayer graph

In order to enable the KPI Cockpit to calculate KPIs for all layers of the business, the graphs modeling the
disjoint layers of the business structure need to be interconnected. Interconnecting the layers creates paths
from vertecies which are not part of layers adjacent to data to vertecies in layers which are adjacent to data.
If there exists a path to any given vertex of the multilayer network to data from business reports, KPIs can be
calculated for that vertex. This subsection defines that there can not be loops between any two layers and that
there may not be transitive relationships within a graph connecting two layers. Finally, the graph containing
all inter-layer graphs is presented as a simple directed graph in which layers and their inter-layer graphs are
represented by vertecies and edges.

14 Mathematical definition of the data layer

Acyclic interlayer connections

Figure 3.8: Loop in interlayer connections

The interlayer graph GI(A,B) = (VA,B , EAB) connects the layers A,B ∈ L of the business structure where

VA =
{

(u,A) ∈ VG | u ∈ V,A ∈ L
}

VB =
{

(v,B) ∈ VG | v ∈ V,B ∈ L
}

VA,B ⊂
{

VA ∪ VB

}

EAB ⊂
{

VA×VB , ((u,A), (v,B)) ∈ EAB |(u,A) ∈ VA, (v,B) ∈ VB

}

The graph between any two layers A and B allows each vertex v ∈ VA to be connected with any vertex u ∈ VB .
If A is connected to B via an interlayer graph GIA,B, there can not be a interlayer graph GIB,A connecting
layer B to layer A. This rule prevents loops between A and B, which is important because the edge between
any nodes n and m within the graph G implies that m is part of n . An edge from m to n would make this
relation ambiguous.

3 Mathematical definition of the data layer 15

Non-transitive relations in inter-layer graphs

Figure 3.9: Transitive relationships in interlayer connections

G′

DB
= (V ′

B , E
′

B) | V
′

B ⊂ VB , E
′

B ⊂ EB

∃((u, a), (v, b)) ∈ EAB =⇒ ∄((u, a), (w, b)) ∈ EAB | {(v, b), (w, b)} ∈ V ′

B , (u, a)inVA

In order to prevent redundant connections between layers, a vertex (w, b) ∈ VB of layer B must not be connected
to a vertex (u, a) ∈ VA, of layer A if and edge connects (u, a) to another vertex (v, b) ∈ VB which creates a
subgraph (G′

DB
of the layer B’s graph GDB

which both (v, b) and (w, b) are part of. Figure 3.9 visualizes the
redundancy of the edge ((u, a), (w, b)): The edge ((u, a), (v, b)) creates a subgraph which includes (w, b).

16 Mathematical definition of the data layer

3.4.3 Simple directed graph representing layers and their connections

Figure 3.10: Layers represented as vertecies

Since vertecies can only exist within one layer (see subsection 3.4.1) and acyclic nature of the inter-layer graphs
(see subsection 3.4.2), the layers and the edges between them can be interpreted as a single layer directed graph
in which each layer is represent by a single vertex and the set of edges between any two layers by a single edge
(see Figure 3.10). This reduces the complexity of the defining graphs according to the properties described in
this chapter, because the upholdance of the definition can be validated based on the simplified interpretation
of the graph.

17

Chapter 4

Creating graph representations of

business structures

The data processing application needs to model the business structures of customers in order to calculate KPIs
for all entities within their organizations. Since these companies are often large cooperation consisting of tens
of thousands of highly connected entities, manually modeling these structures is not an option. Therefor the
structure of organizations needs to be derived from internal customer data used for business administration.
This chapter describes a program which can creates a graph representation (see chapter 3) from any file
structure which presents data in a logical fashion. For this, the program only requires input contextualizing
the data available in the input files. The mathematics involved in this program are closely related to the
set and relational-theory of the Relational Model(Codd (1970)). In order to ease the reader into the subject,
the first section provides a simple example of a business structure and input data is provided. This section
also visualizes the graph created by the application. The following sections describe how set and relational
mathematics of the Relational Model are used to create graphs from any logically arranged data structure.
Finally, the design and implementation of this program as a Java application is discussed.

4.1 Exemplary business structure, input files and application

output

This section briefly describes a simple business structure and three Comma Separated Values (CSV)-files
providing data about entities within the modeled organization. This example will be used to trough out this
chapter to explain the program responsible for creating multi-layer directed acyclic graphs (Chapter 3) for
arbitrary business structures. However, the reader needs to keep in mind that the application is intended
to work with any file and data structure from which specific values can be extracted. The amount of data
to be processed of the example is negligible, while the actual files to be imported contain information about
thousands of interconnected business entities. Next, three CSV-files are given which form the input data of
the application which produces the graph discussed in the third subsection of this section.

18 Creating graph representations of business structures

4.1.1 Exemplary business structure

StoreType

City

Continent

Country
Group

Manager

ManagerName

Shop 1..* 1..*

1..*

1

1 1..*

1

1..*

1

1..*

1..*
1..*

Figure 4.1: Simple domain model of a business structure

Identifying fields omitted.

Figure 4.1 displays the structure of an imaginary company for which a graph representation needs to be created.
The core of the business are shops, which are managed by one or more managers. Managers are responsible
for one ore more shop and part of different groups of managers. The shops are separated into different types
according to their size. Since the company is active on the global market, each shop is associated with a
location consisting of a city, country and a continent. The domain model (Figure 4.1) also visualizes the meta
information which needs to be provided to the application: The next subsection gives some exemplary input
files for the application, which can only be interpreted if the relationship between different sets of data is
provided. For example, the application needs to know that the column ManagerName and ManagerID are
part of the domain type Manager.

4 Creating graph representations of business structures 19

4.1.2 Exemplary input files

ShopID City Country Continent ShopType
PF11

PF12
PF13

PF14
PF15

PF16

1 London England A-2F Europe Large
2 New York USA B-2A America Large
3 Boston USA B-2A America Medium
4 Tokio Japan B-2A Asia Medium
5 Berlin Germany C-6F Europe Medium
6 Berlin Germany A-5F Europe Large

Table 4.1: CSV file F1 displayed as a table.

ManagerID Group ManagerName
PF21

PF22
PF23

63 Group2 Smith
122 Group3 Johnson
22 Group1 Meier
22 Group2 Meier
22 Group3 Meier
64 Group2 Jansen
88 Group1 Peters

Table 4.2: CSV file F2 displayed as a table.

ShopID ManagerID
PF31

PF32

3 64
4 22
4 64
1 122
5 88
2 22
2 64
1 63
6 88

Table 4.3: CSV file F3 displayed as a table.

Blue rows show meta information provided from an external source. Gray rows indicate set identity. Neither
are part of the file.

The files F1, F2 and F3 provide structural information about the business. Each of these files is well structured
and separate data entries can easily be extracted: Each row in the files provides data about one business entity,
F1 contains data about shops. More specifically, the city, country and continent in which it is located are given
and the type (size) of each shop is provided. F2 provides data about managers by associating each manager
identification number with a name and one ore more groups (The poor normalization of this table is an accurate
representation of the actual input files). F3 associates shops to their managers.

20 Creating graph representations of business structures

4.1.3 Resulting graph

Figure 4.2: Graph extracted from the exemplary input files F1, F2 and F3

Generated with D3js based on the output of the Graph-Extractor. The graph is presented as undirected graph
to reduce visual clutter.

Figure 4.2 visualizes the output of the application in form of an actual graph. The application has removed
all duplicate information from the input data and replaced it with unique edges. For example, Europe is
continent of three shops (1, 5 and 6). This entries are replaced by a single vertex "Europe" by the application
and correctly connected to the vertices "England" and "Germany".

4.2 Mathematical definition of the program

This section describes the processes involved in converting multiple input files to a graph representation of a
business according to the graph definition described in chapter 3.

4.2.1 Accessing values from data sources

In order to increase or allow the usability of the application implementing this program, the data set contained
in the input file are addressed with unique string identifiers in each file. Associating these string identifiers
with the appropriate data sets is the first step in making a file readable for the application (See fist code
snipped, part 1 in Snippet 5). The following sections use the set identifier (e.g PF11

) where necessary and the
string identifier (e.g City) where possible.

4.2.2 Creating a set of property sets from all files

The application needs to import each file from the set of F by producing a set of domain properties SF = {Sx}
where each set contains elements of one attribute type (e.g, the name of a shop, the age of manager, a unique
identifier of a manager). Since the data from all files needs to be considered, the attributes from all files need
to be defined as a single set. There is a property P which defines some aspect of the business structure and
is shared by all business entities of the same type1. The business entities have instances (values) of these
properties which can be extracted from the input files in F . Since there are multiple properties in a file, there
is a set of property accessible in each file I ∈ F :

DI = {PI1 , . . . , PIn |I ∈ F}

1The term Property is equal to the concept of instance variables in object oriented programming: A class defines the the type

of an instance variable and each instance of that class may or may not have an value for this attribute.

4 Creating graph representations of business structures 21

This set represents raw data which can be extracted from each file. The definitions of DF1
,DF3

,DF3
are

provided in their respective tables (see Table 4.1,Table 4.2,Table 4.3, gray rows).

Figure 4.3: Visualization of DI

Color depends on the source file. Labels contain the value of the first column.

Figure 4.3 visualizes all sets in DI . At this point, no meta information is available to the application
and the contents of the input data can not be interpreted. Therefor each line from the input files (Ta-
ble 4.1,Table 4.2,Table 4.3) is seen as seen as an unique entity.

In order to more information from the input file, projections of the sets in DI need to be defined:

EA ⊂ RA | RA =
∏

S∈DA

S,A ∈ F

EA could be interpreted as the normalization set of DA | A ∈ F , since it essentially defines multiple tables
derived from one table. The accuracy in representation and the complexity of the resulting graph depends on
the degree of normalization or amount of sub-tables created from DI . The set of all normalization sets will be
addressed as E (EB ∈ E | B ∈ F).

Defining the normalization set E for the provided example

Since a graph upholding the properties defined in chapter 3 can be defined and verified based on layers and
the connections between them (see subsection 3.4.3), this program requires meta information which defines
the layers present in a business structure. Since each vertex is part of a layer, it can be and connected to other
vertices based on the connections of the its to other layers. In order to create an accurate representation of the
domain model, the seven entity types or layers depicted in Figure 4.1 need to be extracted from the provided
input files. The entity types Shop, City, Country, Continent and StoreType are defined in F1 (Table 4.1,
Manager and Group are contained in F2 (Table 4.2. Therefor the normalization set for these two files are
defined as:

EF1
= {(ShopID), (City), (County), (Continent), (ShopType)}

EF2
= {(ManagerID,ManagerName), (Group)}

F3 does not contain an additional type of the domain level. However, on a mathematical or database level
it contains two entities: The entities defined by the set PF31

(= The ManagerIDs contained in F3) and the
type defined by the set PF32

(= The ManagerIDs contained in F3), Therefor the normalization set for F3 is
defined as:

EF3
= {(ManagerID), (ShopID)}

22 Creating graph representations of business structures

4.2.3 Deriving multiple domain types from DI

Figure 4.4: Visualization of entities extracted based on the normalization sets.
Each entity type resulting from a normalization set has a unique color.

Based on the normalization sets, the entities displayed in Figure 4.4 can be extracted. Since entity instances
are defined by relations on DI producing sets, all redundant information is removed from the data. Because
of this, only one vertex is created for per entity. Because of this the one vertex is created for the continent
"Europe" (see Table 4.1 and one vertex is created for the Manager with ManagerID 22 from F2 (see Table 4.2).
At this point, the application creates two vertices for each manager and shop, because there are two separate
sets defining instances for both types. This issue will be resolved next.

4.2.4 Joining normalization sets

Figure 4.5: Visualization of entities extracted based on joined normalization sets
.

Prefix S for Shops, Prefix M for Managers

Depending on the file structures of the A ∈ F there may be multiple normalization sets in E describing the
same entity. In the given example, Shop and Manager are both defined by two sets of properties(Shop in F1

and F3, Manager in F2 and F3). In order to to combine the information of these property sets, they need to
naturally joined. Formally, a natural join is defined by:

4 Creating graph representations of business structures 23

R ∗ S = {(a, b, c) : R(a, b) ∧ S(b, c)}

In the given example the set identities are provided trough meta information. Since the sets PF21
and PF32

have the same identity, all normalization sets which contain these two set can be joined.

X = (ManagerID,ManagerName) | X ∈ EF2

Y = (ManagerID) | Y ∈ EF3

X ∗ Y = {(ManagerID,MangagerName) : X ∧ Y }

Since the same logic applies to the Shop entity and the relations (ShopID) ∈ PF1
and (ShopID) ∈ PF3

, there is
only one set of Manager and Shop displayed in Figure 4.5. At this point, the join operation does not provide
any additional information about these two entity types, because the two sets contain the same data and are
simply merged. The next subsection describes how join operation are used in order to connect entities.

4.2.5 Connecting entity types

At this point, the program has extracted all unique entities from the three input files. However, the resulting
graph does not represent the business defined in Figure 4.1, because the connections of the structure contained
in the input files are not part of the extracted data. The normalization sets in E defined in 4.2.2 do not
contain information which would allow the program to extract connections between entities. Therefor, the
normalization sets will be adapted to contain unique identifiers of the domain types they are connected to.
Since the principal is the same for all connections, this subsection will only focus on the relationship locations
and shops. Therefor, the normalization set for the data extraction is defined as:

C = {{(ShopID, City), (City, Country), (County, Continent), (Continent)}}

ShopID City
PF11

PF12

2 New York
3 Boston
5 Berlin
6 Berlin
1 London
4 Tokio

City Country
PF12

PF13

New York USA
Boston USA
England England
Berlin Germany
Japan Asia

Country Continent
PF13

PF15

USA America
Japan Asia

England Europe
Germany Europe

Continent
PF15

America
Asia

Europe

Table 4.4: The relations created from the normalization set C

Figure 4.6: Visualization of Continent, Country, City and Shops
.

Colors indicate domain type. Edges are colored according their source vertex.

24 Creating graph representations of business structures

The tables in the tables in Table 4.4 show the data extracted when the normalization set C is used. Each row
of in the tables represent one entity of the business structure for which one vertex is created (See Figure 4.6).
With the information in these tables, the connections between the entities defined in C can be recreated by
resolving the foreign keys in each relation: The foreignkey "Europe" is part of the tuples (England,Europe)
and (Germany,Europe). These two foreign keys are represented by the two edges {Europe,Germany} and
{Europe,England} (see Figure 4.6).

Connecting entity types through join operation

ManagerID Group MangerName ShopID

{PF21
, PF32

} PF22
PF22

PF22

22 Group1 Meier 4
22 Group3 Meier 4
22 Group1 Meier 2
22 Group3 Meier 2
...

Table 4.5: Excerpt from the joined relation describing managers.

Figure 4.7: Visualization of Mangers and the Shops they are responsible for
.

Colors indicate domain type. Edges are colored according their source vertex.

The previous subsection described the process of joining normalization sets based on their primary identifiers.
In case of the Manager and Shop, the relationship between the types is defined in a separate data set. Therefor
the application needs to take two relations into account in order to fully capture the details of the manager type:
The relation (ManagerID,ManagerName) ∈ RF2

and the relation (ManagerID,Group, ShopID) ∈ RF3
.

By joining the two relations on the ManagerID, a relation describing the managers and their shops is created
(See Table 4.5) By merging the tuples of this relation on the primary identifier ManagerID, one set of data is
produced which contains all relevant information of each manager:

ManagerID = {22},Group = {Group1,Group2,Group3},ManagerName = {Meier}, ShopID = {4,2}

This set represent the final structure of the data extracted from the input files. The extracted properties are
sets of strings, because the graph extraction application collects each unique entry found for each property for
each entity and ignores the multiplicity and typing of properties. In order to keep the structure of properties
consistent across all data sets, the application creates singleton sets for properties with single values (e.g
having single strings and sets of strings when processing ShopIDs of the Manager unnecessarily increase the
complexity of interacting with the extracted data).

4.3 Providing meta information

This section describes a DSL used for providing the necessary meta information to the application. First,
the configuration of input files is discussed which allows the application to interpret the data in the source
files. Based on this configuration, DomainTypes and DomainDimensions are established which define the final
normalization sets described in subsection 4.2.5. In order to make the configuration process as fluent as
possible, the DSL is build into Java and uses fluent interfaces for creating the required information.

4 Creating graph representations of business structures 25

4.3.1 Fluent interface for defining data sets

Figure 4.8: Class diagram of AbstractDataSource and its implementation CSVDataSource

The class diagram in Figure 4.8 shows the part of the application responsible for generalizing access to source
files by creating associative arrays which map field names to values. The field names for the example domain
model are defined in the tables 4.1,4.2 and 4.3. The AbstractDataSources provides a fluent interface for
chained linking of set-identifiers to data trough the addField-method (see Figure 4.8):

AbstractDataSource file1 = new CSVDataSource(filePath)

.addField("ShopID", 0)

.addField("City",1)

.addField("Country", 2)

.addField("Continent", 4)

.addField("Type",5);

Code Snippet 1: Defining the field names for F1

4.3.2 Defining multiple data sources from one input file

ShopID City Region Country Continent ShopType
PF11

PF12
PF13

PF14
PF15

PF16
PF17

5 Berlin East Germany C-6F Europe Medium
3 Boston Massachusetts USA B-2A America Medium

Table 4.6: Example of additional data sets contained within F1.

In some cases an input file can contain multiple types of data sets which can not be imported with same logic.
The application needs to import multiple data sets from a file is required, because changes to the business
structure are provided by the customer in form of a updated version of the import files. Manually adapting the
file structure to have a consistent logic is not an option, because the same this process will have to be repeated
for every change in the business structure. An example of an additional data set is displayed in Table 4.6,
which may be part of file F1 (see Table 4.1). This data set can not be imported with the configuration listed
in Figure ??, because the additional Region column changes the indexes of the all columns to its right. By

26 Creating graph representations of business structures

defining an additional CSVDataSource for rows containing the additional column, import errors can be avoided
which relatively low effort.

4.3.3 Defining the structure of data sources with generics

The generics DataType and KeyType define the structure of the data input (See Figure 4.8). They move the re-
sponsibility of defining the concrete nature of the input files to the implementation of the AbstractDataSource.
It is not relevant for the abstract class how input files are structured, because it just assumes that there is
a way to produce a stream of raw data (getSourceStream) which can be transformed to a map linking set
identifiers to appropriate data(convertToMap). This is made possible by the DataType-generic, which defines
the type of data in the stream of raw data (getSourceStream) and the parameter-type of the method respon-
sible for converting its elements (see convertToMap). In case of the CSVDataSource, this generic is a String

because CSV files are read line by line. The key type of the map produced by the convertToMap-method is
defined by the KeyType-generic, which is determined by the method of accessing values within the unspecified
data structure DataType. In case of the CSVDataSource, this generic is an Integer, because each line from
the input file is split on commas, producing an integer-index array. With DataType and KeyType defined, the
CSVDataSource can transform the input files F1 (Table 4.1), F2(Table 4.2) and F3(Table 4.3): By passing the
first line 1,London,England,A-2F,Europe,Large of F1 to the convertToMap-method, which accepts a string due
to the DataType-generic, the following map is produced:

M1 =
{

(0 7→ 1), (1 7→ London), (2 7→ England), (3 7→ A-2F), (4 7→ Europe), (5 7→ Large)
}

With the meta information provided by the user (see Figure ??), the getDataStream-method can transform
the integer keys of this map to the appropriate set identifiers:

MS =
{

(ShopID 7→ 1), (City 7→ London), (Country 7→ England), (Continent 7→ Europe), (ShopType 7→ Large)
}

Finally, the keys of this map can be translated according to the input provided through the DSL (see Figure ??:

MS =
{

(ShopID 7→ 1), (City 7→ London), (County 7→ England), (Continent 7→ Europe), (ShopType 7→ Large)
}

The implementation of the CSVDataSource can be found in Snippet 6.

4.3.4 Fluent interface for defining normalization sets

This subsection describes a fluent interface for defining DomainTypes which implement the normalization set
defined in subsection 4.2.5 with additional typing of entity properties.

dsl::TypeBuilder

+createType(String name): TypeBuilder
+primaryId(String sourceFieldName, AbstractDataSource... sources): TypeBuilder
+secondaryId(String sourceFieldName, AbstractDataSource... sources): TypeBuilder
+addStringSetProperty(String sourceFieldName, AbstractDataSource... sources): TypeBuilder
+<T> addProperty(String sourceFieldName, Class<T> type,
	Function<Stream<String>, T> converter, AbstractDataSource... sources): TypeBuilder
	
+ <T, C<T> >addCollectionProperty(String sourceFieldName, Class<C> collecitonType, Class<T> type,
Function<Stream<String>, C> converter, AbstractDataSource... sources): TypeBuilder

+build(): DomainType

Figure 4.9: Class diagram of the TypeBuilder

With the field names for the files defined, the normalization sets desctibed in subsection 4.2.5 can be created.
Since the normalization sets for the input data depends on the business structure (see Figure 4.1), these sets are

4 Creating graph representations of business structures 27

DomainType manager = TypeBuilder.createType("Manager")

.primaryId("ManagerID",file2, file3)

.addProperty("ManagerName", String.class,

stringStream->stringStream.findFirst().get(),file2)

.build();

Code Snippet 2: Defining the manager with the DSL

defined by recreating the domain model of the business with another fluent interface: The TypeBuilder. This
builder creates DomainTypes consisting of identifier- and property fields, which represent the normalization
sets. This interface also makes it possible to define the type of properties and their multiplicity: Since the
extraction application treats all entities as sets of strings, the user needs to specify how the extracted values for
the property can be transformed to the desired type. This is implemented with the Visitor pattern which uses
Java’s Function as visitor. The TypeBuilder links each property to a Function which consumes a Stream of
Strings and converts each entry to objects of the desired type (see addProperty and addCollectionProperty

in Figure 4.9). The use of the visitor pattern makes it possible to define transformation operations on input
data on the DSL level of the graph extraction application. In case of the Manager, the property ManagerName
is the typed as String (String.class, second parameter of the addProperty-method in in line 3 of Snippet 2).
The value of ManagerName is defined by the lambda implementation of the converter-Function, which returns
the first element from the stream of values extracted for the property(Lines 3-4 in Snippet 2).

Method generics for type enforcement The TypeBuilder guides the user in defining correct data trans-
formations for properties by the means of method generics: If the user sets the type-parameter to Double.class,
the converter-parameter will only accept a Function<Stream<String>, Double as input (See method generic
T in Figure 4.9). The same technique is also used for creating collections for properties which can contain mul-
tiple values: The addCollectionProperty will only accept a conversion Function which produces a Collection

of type C containing the generic type T.

4.3.5 Fluent interface for combining entity types

At this point, the DomainTypes defined in the previous subsection are not connected. The DSL offers yet
another fluent interface for connecting the DomainTypes defined in the previous subsection: The link-type

method of the DomainDefinition, which connects the provided DomainTypes.

DomainDefinition definition =

new DomainDefinition().

linkTypes(type,shop).

linkTypes(group,manager).

linkTypes(manager,shop).

linkTypes(continent,country,

city,shop);

Code Snippet 3: Defining connections be-
tween DomainTypes trough the DSL

Figure 4.10: Visualization of the connections
between DomainTypes.

The code listing Snippet 3 shows the DSL-code for recreating the connections of the domain model displayed
in Figure 4.1. The DomainTypes provided to the linkTypes-method are connected by registering the B as child
of A and A as parent if the are provided ordered alphabetically. The created parent-child relationships between
the DomainTypes of the example business structure can be seen in Figure 4.10, where the source of each edge is

28 Creating graph representations of business structures

the parent type and the sink the child type. The linkTypes-method connects two DomainTypes by adding the
relation containing both primary identifiers of the two types to set of relations to be extracted for each type.

4.3.6 Enforcing the properties of the graph

The graph created by the graph extraction application can be verified based on the meta data provided through
the DSL, since the DomainTypes and their connections are equal to the layers described in section 3.4: If
the graph of DomainTypes and the edges between them do not contain back edges, the graph of business
entities created based on the DomainTypes can not contain any back edges. In order to test for back-edges,
the Depth-first-search-algorithm needs to be executed on the graph. The algorithm can classify the edges of
the graph into the categories tree edge, cross edge, forward edge and back edge (Cormen et al. (2009)).

Figure 4.11: Visualization of the example domain
model graph.

Figure 4.12: Visualization of a domain model graph
containing a loop.

Black: Tree edge, Blue: Cross edge, Red: Back edge, Arrows indicate edge direction

Figure 4.11 and Figure 4.12 show the edge classifications produced by the Depth-first-search for two graphs
consisting of DomainTypes defined with the DSL. The first graph mirrors the domain model depicted in
Figure 4.1 and defines the structure of the graph extracted for the exemplary business structure discussed
in this chapter (see Figure 4.2). In the second graph, an edge pointing from the shop to the continent has
been added. This creates a cycle between the vertices City, Shop, Continent and Country. The edge between
Country amd City is identified as back edge, because the vertices of the graph are processed in lexicographical
order: The algorithm starts at the City-vertex from which it visits the Shop-vertex. Next, the Continent and
the Country are visited. Since all child vertices of City have been visited by the algorithm when the edge
between Country and City is discovered, it is identified as a back edge. If a back edge is detected in the
graph of DomainTypes, the application throws an exception before the actual data processing begins. The
implementation of this algorithm can be found in Snippet 7.

4.4 Creating interconnected vertices

This section describes how the graph extraction application creates vertices from data extracted from the
source files and how the resulting graph can be used.

4 Creating graph representations of business structures 29

dsl::DomainGraph

~definition: DomainDefinition
~input: Map<DomainType, Map<String, TypeVertex»

+getDefinedEntities(): Set<DomainType>
+getInstaces(DomainType definition): Collection<TypeVertex>
+getAllInstances(): List<TypeVertex>
+getGraph(): Map<DomainType, Map<String, TypeVertex> >

dsl::TypeVertex

+TypeVertex(DomainType domainType,
	Map<String,Set<String> > stringStringMap): ctor
+getConnectedInstances(): Map<DomainType, Set<TypeVertex> >
+getDomainType(): DomainType
+getPropertyFields(): Map<String, Object>
+getIdentifier(): String

dsl::DomainType

+getParentDomainTypes(): Set<DomainType>
+getChildDomainTypes(): Set<DomainType>

Figure 4.13: Class diagram of the DomainGraph.

Once the provided meta information is validated, the application executes the data transformation described
in section 4.2. When this process is complete, the application has a map which connects each DomainType with
data sets which each contain all information of one entity of that type. From each of these entity data sets a
TypeVertex is instantiated (See constructor of TypeVertex) and made accessible trough the DomainGraph. The

4.4.1 Converting extracted values to typed properties

Stream<String> values

getFieldValue(p).stream()

[for each p in propertyFields]
loop

converter:
Function<Stream<String>, ?>

valueMap
:Map<String, Object>

domainType
:DomainType:TypeVertex

getPropertyFunction(p)

valueMap

put(p, typedProperty)

Object typedProperty

apply(values)

Function<Stream<String>, ?> converter

Set<String> properyFields

getPropertyFields()

valueMap

«create»

getPropertyFields

Figure 4.14: Sequence diagram of converting property values to typed objects.

The constructor of TypeVertex also requires a DomainType, because the properties of the the vertex are ex-
tracted as sets of strings without information about their type or multiplicity. In order to convert these sets
to the appropriate properties, the TypeVertex requires the meta information provided by the user: For each
property of the TypeVertex, the DomainType has a Function which transforms the set of strings to a collec-
tion of objects or a single objects. The process of retrieving a map containing all properties is depicted in

30 Creating graph representations of business structures

the sequence diagram Figure 4.14: Since the property value sets may contain, identifiers of the TypeVertex

or foreign keys foreign keys to other DomainTypes, the TypeVertex requires information about which of the
extracted data sets contain properties (getPropertyFields() in Figure 4.14). For each property identifier, the
TypeVertex retrieves the user defined conversion Function (getPropertyFunction(p) and applies it to a Stream

of the strings sets containing the raw values of the property(getFieldValue(p).stream() and apply(values)

in Figure 4.14).

4.4.2 Replacing foreign identifiers with references

A subset of the foreign identifiers obtained during the extraction process may not be resolvable, because the
entities they identify were not extracted from the input files. This problem may occur due to inconsistencies in
the input files or because entities were ignored during the input process(For example, closed shops are ignored
because they are not of relevance for KPI calculation, but the associations between managers and shops still
reference the closed shops). For this reason, the foreign identifiers are not a reliable way of inferring connections
between entities. Therefor, the foreign identifiers contained in the TypeVertecies are replaced with object
references to the TypeVertices they identify (see code snipped Snippet ??, lines 274-301). During this process
all foreign identifiers which can not be resolved are ignored and the final data structure only contains valid
connections between entities. This also reduces the amount of operations required for processing the graph
structure, because invalid links are never processed.

4.4.3 Undirected representation of edges

The connections between vertices are represented as undirected edges, meaning that if vertex A is the parent of
vertex B, both vertexes will have a reference to each other. This leads to the situation discussed in section 3.1,
in which the direction of an edge can not be inferred between the two vertices. However, the edge direction
between vertecies is still known, because it is part of the meta information available in the DomainTypes, which
differentiates between parent and child types. This decreases the complexity of the edge representation in
the data structure, because edges to TypeVertecies of child and parent DomainTypes can be stored without
considering the edge direction.

31

Chapter 5

MapReduce graph processing-application

In order to calculate KPIs for all vertices of the business structure, the graphs created with the application
described in chapter 4 need to processed by a graph processing application. This chapter describes and
application, following principals of MapReduce (Dean & Ghemawat (2004)), which navigates the graph though
a user defined path while extracting relevant data from the graph. When the traversal is finished, the collected
values are reduced by a user defined operation in order to calculate KPIs. In order to execute the mapping
process as fast as possible, the graph is traversed with a BFS-algorithm executed in parallel.

5.1 Meta information in model classes

Since the graph extracted by the graph extraction application is a mathematical object, it needs to be con-
textualized in order to be processed. Therefor, the meta information provided by the user in form of the
DomainTypes (see subsection 4.3.4), which describe the entities of the business structure, is persisted in form of
JSON schemas. Theses schemas are used to generate model classes for each graph, which the graph extraction
application uses remove the high level of abstraction of the data structure and offers a domain specific pro-
gramming interface in form of the QueryContainer. This makes it possible to use the same graph processing
application for any business structure while providing an easy to understand way of interacting with the graph.

5.2 Programming the map-reduce process

This section describes the interaction with the graph processing application based on an example query for
the exemplary business structure defined in chapter 4. The following sections will use this QueryContainer

to explain the graph processing application. Additionally, the use of the command pattern enabling the
programming interface is described.

5.2.1 Exemplary query

QueryContainer<Group, Shop, String, List<String>> shopsWithOneManager =

new QueryContainer<Group, Shop, String, List<String>(path(Group.class)

.add(Manager.class)

.add(Shop.class))

.addFilter(Shop.class, shop -> shop.getManager().size()==1)

.defineEntityFunction(Shop.class, shop -> shop.getId())

.defineResult(stringStream -> stringStream.collect(Collectors.toList()));

Code Snippet 4: A query collecting the identifiers of shops with one manager by traversing the graph from
Group to Manager to Shop

Snippet 4 shows the required input for defining a map-reduce operation to be executed by the graph processing
application. The user needs to define the path of model classes to be traversed trough the graph with a fluent

32 MapReduce graph processing-application

interface (path in line 1). In this case, the application will navigate from a Group to Mangers to Shops. Line 3
specifies a filter for the Shop: Only shops which are managed by a single manager must be considered during
the traversal. The next line defines what the extraction process for the Shop: Since the user is interested
in identifiers of shops which have one manager, the application needs to extract identifier of shops. Finally,
the creating of the expected result is defined in line 5, which creates a list of all Shop-identifiers which where
extracted during the traversal.

5.2.2 Command pattern for context specific operations

Start, End,Value,Result

kpicalculation.queryBuilder::QueryContainer

+QueryContainer(QueryPath<Start, End> queryPath): ctor
+addFilter(Class<S> type, Function<S, Boolean> filter): QueryContainer<Start, End, Value, Result>
+addTypeQuery(Class<End> type, QueryContainer<End, T, Value, Result> builder): QueryContainer<Start, T, Value, Result>
+defineEntityFunction(Class<T> t, Function<T, Value> function): QueryContainer<Start, End, Value, Result>
+defineEntityMetaBiFunction(Class<T> t, BiFunction<T, MetaContainer, Value> biFunction): QueryContainer<Start, End, Value, Result>
+defineResult(Function<Stream<Value>, Result> resultFunction): QueryContainer<Start, End, Value, Result>

Figure 5.1: Class diagram of the QueryContainer

This subsection describes how the application makes use of model classes to provide a user friendly program-
ming interface.

Instantiating model classes with vertex data

Since the graph is traversed based on a path defined by model classes, the class representing the data of
any visited vertex is is know. The DatabaseActor provides the WorkerActor with JavaScript Object Notation
(JSON) representation of the vertices, which makes it easy to instantiate the model classes with the data
contained in the vertices (see the instantiate-method of the WorkerActor in Line 200 of Snippet 9). The
QueryContainer links types of the traversed path with Functions for filtering model instances and extracting
values from them. Therefor, the data of each vertex can be applied to those Functions (See line 239 and line
249 of the WorkerActor in Snippet 9).

Extracting typed values from model class instances

Since the application needs to combine multiple extracted values from vertices of the graph, the values to
be processed need to be of the same type (It would not make sense to accept strings, lists or json files as
parameters for a summation of sales data). The generic Value of the QueryContainer is used to enforce the
type of data extracted from the vertices (see defineEntityFunction in Figure 5.1). It also enforce the type
of data consumed by the function responsible for creating the Result of the query: If the user specifies that a
String needs to be extracted from traversed entities, only a function which produce Strings can be supplied
to the QueryContainer (See line 3 of Snippet 4). Since the Result-generic is specified as List of Strings

(see line 2 of Snippet 4), the defineResult-method will only accept a Function which consumes a Stream of
Strings and turns it into a list (See line 4 of Snippet 4).

5 MapReduce graph processing-application 33

5.3 Using actors to execute QueryContainers

GraphNavigationSystem

DatabaseActor

WorkerActorQueryMasterActor

PoisonPill

«creates»

PoisonPill

«creates»

Map<QueryContainer, Result>

DatabaseResponse

DatabaseRequest

PoisonPill

WorkerDone

StartProcessing

«creates»

RecursionControllRequest

RecrusionControllResponse

Exception

WorkerDone

ValueMessage

PoisonPill

StartProcessing

«creates»

Figure 5.2: Communication diagram of the graph processing application

The graph processing application is designed around AKKA, an implementation of the Actor Model (Hewitt
(2010)) for the Java Virtual Machine (JVM). Since the actor model is a computational model which solves
concurrency issues by communication, the interaction between the components is visualized in the commu-
nication diagram displayed in Figure 5.2. This diagram will be used to explain the process of executing a
QueryContainer. The use of the Actor system is justified in Appendix C.

5.3.1 GraphNavigationSystem

In order to execute a QueryContainer, it needs to be provided with the identifier of the initial vertex to the
GraphNavigationSystem, which is the central component of the the processing application. On application
startup, this component initializes the actor system for executing queries and creates a single DatabaseActor

for database operations. The main responsibility of this component is starting the user defined queries and
returning the result of the query to the user when it has been processed. Therefor, the GraphNaviagation

creates a new QueryMasterActor for each QueryContainer and supplies it with a reference to the DatabaseActor.
The result is returned to the outside-world as a CompletionStage.

5.3.2 QueryMasterActor

In order to start the execution of QueryContainer, the QueryMasterActor creates a WorkerActor, providing
it with a reference to the QueryContainer, a reference to the Database-Actor and the identifier of the initial
vertex to be processed . Once this initial child actor is created, the QueryMasterActor starts the execution of
Map process by sending a StartProcessing-message to the WorkerActor. In the progress of the this process
the QueryMasterActor will receive ValueMessages from WorkerActors (See Figure 5.2), which contain the
user defined values extracted from specific vertices of graph (see Figure 5.2.2). When a WorkerDone message
is received from the child actor, the Map-process is complete and all collected values are applied to the
resultFunction in order to produce the result expected by the user. When the result is calculated, it is send
to the GraphNavigationSystem in form of map and the child actor is killed with a PoisonPill.

34 MapReduce graph processing-application

5.3.3 WorkerActor

During the mapping-process of executing a query, the application builds a network of WorkerActors, which
mirrors the structure of tree to be traversed. Due to the complexity of this process, an additional diagram
inspired by the sequence diagram shows the interaction between the WorkerActor and other components is
available in the appendix (Figure C.4).

Requesting data and waiting for processing approval Upon receiving a StartProcessing message,
the WorkerActor sends a DatabaseRequest-message to the DatabaseActor for extracting the data of its vertex
from the database. When it receives the requested data in form of a DatabaseResponse, it checks whether the
vertex has more than one parent of the previous type in the path of the QueryBuilder. If this is the case,
a RecursionControlRequest is send to the QueryMasterActor, which can deny or approve the request (see
section 5.4 for more details). Otherwise the actor approves the request itself and start processing the data of
its vertex.

Filtering the vertex Upon receiving an approved RecursionControlResponse, the WorkerActor starts pro-
cessing the data of its vertex. If the QueryContainer contains a query of for the type of the vertex, it
instantiates the model class with the data of the vertex and applies to the filter Function. When executing
the QueryContainer defined in Snippet 4, each WorkerActor processing a Shop will create a shop instance. If
the shop has more than one manager identifier, it passes the filter. If it does not, the processing of the vertex
is finished.

Extracting values from the vertex If the filter is passed and the QueryContainer contains a mapping
function for the type of the vertex, the data of the vertex is used to instantiate the model class and applied to
it and the created Value is send to the QueryMasterActor.

Creating child actors for child vertices In order to traverse the graph among the user provided path,
the foreign identifiers pointing towards the next type in the path need to be processed as well. Therefor, the
actor extracts the identifiers of the next type in the path from the data of its vertex. If no identifiers are found,
the processing is finished. Otherwise, the WorkerActor creates a new actor for each of the child vertices and
parallely starts their execution with StartProcessing messages (See line 321 of Snippet 9). The benefits the
parallel execution is clearly visible in performance test discussed in Appendix D, which compares the execution
time of sequentially executing the traversal versus doing it in parallel.

Waiting for all children to finish The WorkerActor keeps track of the state of its children by keeping
references two those actors which have not sent a WorkerFinished-message. Upon receiving such a message,
the WorkerActor kills it child with a PoisonPill and removes the reference to that actor. If no actor references
remain, the WorkerActor knows that all children of its vertex have been processed and sends a WorkerFinished-
message to its parent, which may be another WorkerActor or the QueryMasterActor.

5.3.4 DatabaseActor

The DatabaseActor is responsible for interacting with the database. In order to assure the integrity of the
database connection, only one DatabaseActor can exist in the application: If the WorkerActors were to be
responsible for executing queries them selfs, an indeterminable amount of threads would simultaneously try
to use the database connection. By delegating the responsibility to singleton DatabaseActor, the database
connection is always used once at any given point int time. Since the queries are executed asynchronically, the
process of handling a DatabaseRequest never blocks and is executed almost instantaneously. Since the there is
only once actor using the database connection, it is easy to react to database exception and reschedule failed
queries without involving the WorkerActor, who remains unaware of the details of the database interaction.
For example, it is likely that a database can not keep up with tree traversal process and suffer a queue overflow.
When the callback of a query returns such an exception, the query can simply be executed again until it is
completed. During this time, the WorkerActor sleeps and does not use any threads. The results of successful
queries are send to the WorkerActors in form of DatabaseResponses, which encapsulate the query result as
JSON string.

5 MapReduce graph processing-application 35

5.4 Recursion control

Figure 5.3: Graph structure relevant for Group2
Figure 5.4: Tree structure processed by the graph pro-
cessing application.

In order to calculate KPIs for any given entity of the business, all data relevant for the calculation needs
to be discovered at most once (see Figure 2.2.2) during the calculation process. This issue is visualized in
Figure 5.3 and Figure 5.4: Assuming that the data relevant for the calculation of KPIs is contained in the
shop vertices, the vertices Shop:1,Shop:2,Shop:3 and Shop:4 need to be considered. Because, Shop:2 and
Shop:4 are managed by the managers Meier and Jansen , they will be discovered twice. This invalidates the
calculation, because the the values associated with these two shops will also be considered twice. The simplest
way of assuring correct calculations is removing duplicates when calculating the result. By using this method,
the algorithm can run completely parallelized. However, this also means that many of the extracted values
are discarded, because the entire sub-tree below a vertex with more than one parent is processed for each
parent. Depending on the size of the sub-tree at such a vertex, this can greatly increase the running time of
the data collection process. Another way of assuring that each vertex is only considered once, is to assure that
the extraction process of each vertex is only started once. However, this would prevent the graph processing
from being executed in parallel, because the information about which vertices have been visited needs to be
stored in a centralized and synchronized way to prevent race conditions. In order to minimize the processing
time and assure the tree-structure of the processed sub-graph, the application combines the two approaches:
Vertices which have more than one parent vertex of the previous type in the query path use recursion control.
All other vertices are processed without recursion control, because the number of invocation of the extraction
process for any vertex is equal to the number of its parent vertices. This enables the application to process
the sub-graph below the vertex Group2 displayed Figure 5.3 as a the rooted sub-tree displayed in Figure 5.4:
Only the edges from the manager Meier to the shops Shop:2 and Shop4 were processed.

36

Chapter 6

Quality Control

This chapter briefly describes how the quality of the application developed during this project is assured.

6.1 Unit tests

The graph creation application has been fully unit tested by creating the graph of the example business
discussed in chapter 4 and validating the connections created between the vertex types. In order to prove its
functionality, multiple graphs have been produced with the application (some are visualized in (see Figure B.1
and Figure B.2) and have been used to correctly calculate KPIs for the business modeled by the graphs. The
implementation of the DFS-algorithm (see Snippet 7) has also been fully unit tested. The graph processing
application has been tested and is proven to always produce the same output for the same QueryContainer

and same starting vertex. Since the unit test uses the query described in section 5.4 as test case, in which
recursion control is required, the recursion control also proven to work. Additionally, the application has been
manually tested by confirming the results of an accumulation of sales based on the input files of the graph.

6.2 Code quality

In order to assure the readability of the code, all methods within the graph creation application and the graph
processing application are documented with JavaDoc and the more complex operations within the application
have additional code comments in order to explain the processes. Especially the DomainDefinition has been
extensively documented, since numerous complex data structures are processed with interconnected stream
operations in order to extract graph structures from input files.

37

Chapter 7

Conclusion

At the beginning of my thesis I was presented with a simple problem: My employer needed an application for
quickly calculating KPIs which was easy to adapt for new customers, because the current version of the software
required large amounts of efforts to be adapted for a new customer and took a long time to calculate KPIs.
The issues of the software began at modeling the business structures of the often large corporations, which
could only be deduced from more or less logical input files which often include small error which make them a
nightmare to process. Since there is no way to prevent additional development effort for these issues, I decided
to build an abstract application which offers a programming interface for quickly defining multiple logical sets
from input files and import them: The AbstractDataSource (see subsection 4.3.1). This programming interface
powers the graph extraction application, which can generate a complex (and beautiful) graph representation of
business structures. With this application, a lot of development effort can be avoided for future version of the
KPI Cockpit, because the logic of the application works for all input files. The next major issue to be solved
were the performance problems of the KPI Cockpit, which is implemented in PHP using a Structured Query
Language (SQL) database and is based on code developed during the past 10 years. Because of the complexity
of the code base, I decided against analyzing the current version of the software in any depth in order to focus
on building an improved version. The resulting application can process 10000 vertices in 500 milliseconds and
can be sped up even further by increasing the throughput of the database. Due to the complexity of the two
application, the deployment of the application was not tackled. However, the graph processing application is
designed to be deployed as a distributed application. traperto is pleased with the speed of the application is
especially interested in the graph representation of their customers.

38

Bibliography

Codd, E. F. (1970), ‘A relational model of data for large shared data banks’, Communications of the acm .

Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. (2009), Introduction to Algorithms, Third Edition,
3rd edn, The MIT Press.

De Domenico, M., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M. A., Gómez, S. & Arenas,
A. (2013), ‘Mathematical formulation of multilayer networks’, Physical Review X 3(4).

Dean, J. & Ghemawat, S. (2004), Mapreduce: Simplified data processing on large clusters, in ‘Proceedings of
the 6th Conference on Symposium on Opearting Systems Design & Implementation - Volume 6’, OSDI’04,
USENIX Association, Berkeley, CA, USA, pp. 10–10.
URL: http://dl.acm.org/citation.cfm?id=1251254.1251264

Hewitt, C. (2010), ‘Actor model for discretionary, adaptive concurrency’, CoRR abs/1008.1459.
URL: http://arxiv.org/abs/1008.1459

Lipschutz, S. & Lipson, M. (2010), Schaum’s Outlines of Theory and Problems of Discrete Mathematics Third
Edition, McGraw-Hill.

39

Appendix A

Graph algorithms

A.1 Depth-first search

Figure A.1: The depth first algorithm. Taken from Lipschutz & Lipson (2010)

40 Graph algorithms

A.2 Topological sorting

Figure A.2: Algorithm for finding a topological sort of a graph. Taken from Lipschutz & Lipson (2010)

41

42 Graphs produced with the graph extractor

Appendix B

Graphs produced with the graph

extractor

Figure B.1: A graph consisting of 21729 vertecies and 106299 edges
.

B Graphs produced with the graph extractor 43

In Figure B.1, green edges show associations separate the shops into types, red elements represent managers
and the shops they are responsible for, blue elements separate the business into regions and cities and associate
them with shops, orange elements represent group of managers. Generated with D3js.

44 Graphs produced with the graph extractor

Figure B.2: A graph consisting of 2737 vertecies and 10713 edges
.

B Graphs produced with the graph extractor 45

In Figure B.2 the small black dots represent shops which are managed by mangers (green elements).
Both shops and managers are associated to areas (orange). Blue elements associate into retailers or shop
types. Purple and red elements separate the business into retail types (e.g e-commerce, normal retail, chains).
Generated with D3js.

46

Appendix C

Using the actor model

This chapter justifies the use of the actor system for the graph processing application in order to parallelize
BFS-algorithm for the required tree traversal. First, the traversal is described when using a recursive and
sequentially executed BFS

C.1 Sequential traversal

The key issue of parallelizing the tree traversal within the graph structures is maintaining the state of each
invocation of the traversal. When executing the traversal sequentially, one can rely on the call stack to handle
the correct ordering of recursive executions of the tree traversal.

C

H

G IF

E

D

B

A

Invocation

Figure C.1: An example tree to be traversed with the BFS-algorithm.

Vertices are visited in alphabetical order

For example, in the tree displayed in Figure C.1, the BFS starts at vertex A and recursively invokes the
traversal for B and C. Next, D, E and F are visited from B. After the children of B are visited, the sub-tree
below C is discovered. Next text traversal is started for the vertices D, E and F . Since they have no child
vertices, the traversal stops at these vertices. Therefor, the traversal of the the sub-tree below B is completed.
The same happens below the vertex C: The traversal is started recursively for the vertices G, H and I. Since
none of them have child vertices for which another recursion is invoked, all vertices of the sub-tree below
C have been visited. Now all recursive invocation which could have been started by the children of A are
completed and the traversal of the tree starting a this vertex is finished.

C Using the actor model 47

C.2 Parallel traversal

B

E

C IH

G

F

D

A

Invocation

Figure C.2: Calculating KPIs from children.

Vertices are visited in alphabetical order

The BFS-algorithm can easily be parallelized by starting each recursive invocation of the traversal process in
parallel. However, this means that the call stack can no longer be used to maintain the state of the traversal,
because each parallel invocation of the traversal has its own call stack. This means that the traversals finish
in a indeterminable order: In the example given in img:bfs2, the vertex C has been processed before vertex
D, besides the fact that D is the child of the initial vertex. Since, traversals finish in random order and the
application needs to update the state of the parent traversal when a child traversal has completed. The easiest
way of maintaining the state of the traversal invocations is to recreate the structure of the tree to traversed
with the states of the invocation and their dependency to states of other invocations.

C.3 Using the actor model to keep track of a decentralized state

B

E

C IH

G

F

D

A
FinishMessage

Invocation

Figure C.3: Calculating KPIs from children.

Vertices are visited in alphabetical order

The structure of maintaining the decentralized state of multiple processes can be model with the Actor model

(Hewitt (2010)), which solves concurrency issues with stateful -actors which run in parallel and communicate
using messages. By creating a new actor for each invocation of the BFS traversal, the state of each traversal
can be tracked independently and communicated to the traversal it was started by. This is visualized in
Figure C.2: Each vertex is aware of the traversals it started and only changes its state to finished when all of
its child processes have finished. This means that traversal can be started in random order while being able
to assure that each vertex is processed correctly.

48 Using the actor model

[for child in children]loop

[for childId in childIds]loop

ref

ExtractValues

[parent == qm]

[else]

alt

[children.isEmpty()]alt

[else]

[permitted]alt

[else]

[parentIds.size() > 1]
alt

WorkerActorqm :QueryMasterActor

«create»

ext

 ResultMessage
ResultMessage(result)

calculateResult

storeResult

children.add(child)

actorRef child

ValueMessage

InitMessage

«create»

Set<String> parentIds

actorRef child

Set<String> childIds

getChildIds(json)

children.remove(sender)

WorkerFinished(this)

startRecursion()

WorkerFinished(a)

finished()

handleRecursionControlResponse
RecursionControlResponse

(processed)

Boolean
permitted

RecursionControlResponse(true)
«self-message»

getParents(json)

handleDatabaseResult(json)

RecursionControl
Request(id)

DatabaseResult(json)

DatabaseRequest(id)

InitMessage

«create»

Figure C.4: Diagram visualizing the processes in the WorkerActor

.

49

Appendix D

Performance comparison between

sequential DFS and parallel BFS

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5 6 7 8 9 10

E
st

im
a

te
d

 J
V

M
 C

P
U

 U
ti

li
za

ti
o

n

R
u

n
n

in
g

 t
im

e
 in

 m
s

Runtime and JVM CPU Utilization of sequential DFS and parallel BFS

i7 BFS Runtime i7 DFS Runtime R1700 BFS Runtime R1700 DFS Runtime

i7 BFS CPU Util i7 DFS CPU Util R1700 BFS CPU Util R1700 DFS CPU Util

Figure D.1: Performance measurements of DFS and parallel BFS

Figure D.1 displays the performance of the sequential DFS-algorithm and a parallelized version of the BFS-
algorithm for processing 10798 vertices for calculation 14 KPIs for the highest point of the business structure
graph displayed in Figure B.2. In both cases, the graph is stored in a MongoDB -database on the Solid State
Drives of the system, which needs to be considered when interpreting the results of the performance test. The
used Intel Core i7 has 4 cores running at 2.5 gigahertz (which can be boosted to 4 gigahertz) which can run 8
threads in parallel. The AMD Ryzen R7 1700 has 8 cores running at 3 gigahertz (which can be boosted to 3.7
gigahertz) which can run 16 threads in parallel. Both system have 16 gigabytes of memory. The graph shows
the first 10 executions of the same query after the initialization of the graph processing application is completed.
The reason for the higher Central Processing Unit (CPU) usage at beginning of test is the initialization of a
pool 100 connections to the database. Because of this, the measurements of the first execution are ignored.
The estimated JVM CPU utilization shows that the DFS-algorithm is executed sequentially and uses a single
thread to process the graph (Roughly 13% CPU utilization of the i7 and about 7% utilization of the r1700).
The BFS-algorithm, which can traverses the graph in parallel, clearly out-performs the DFS-algorithm: With
th i7, which has better single-core performance, the average performance increase factor is 2.6 when using
BFS. On the r1700 this factor is 6.9. The CPU utilization of the JVM of 61% is the result of the database
running on the same system, since the estimated CPU utilization of the system is 99% during the test. It is
likely that the application would see a performance increase on the i7 system, if the database was located on
a different machine. On the r7 system however, the estimated CPU utilization of the system remains at about
50%. The most likely reason for this is the database performance, which is limited by a connection pool of

50 Performance comparison between sequential DFS and parallel BFS

a 100 connections. Therefor it is likely that the performance of the BFS-algorithm could be increased even
further on r1700 system by increasing the throughput of the underlying database system.

51

Appendix E

Code snippets

1 /*

2 ------1.-------

3 Define data to be imported from all files.

4 */

5 //Note that index 3 of file1 is ignored.

6 Path filePath = Paths.get("testInput1.txt");

7 AbstractDataSource file1 = new CSVDataSource(filePath)

8 .addField("ShopID", 0)

9 .addField("City",1)

10 .addField("Country", 2)

11 .addField("Continent", 4)

12 .addField("Type",5);

13

14 Path filePath2 = Paths.get("testInput2.txt");

15 AbstractDataSource file2 = new CSVDataSource(filePath2)

16 .addField("ManagerID", 0)

17 .addField("Group",1)

18 .addField("ManagerName", 2);

19

20 Path filePath3 = Paths.get("testInput3.txt");

21 AbstractDataSource file3 = new CSVDataSource(filePath3)

22 .addField("ShopID", 0)

23 .addField("ManagerID",1);

24 /*

25 ------2.-------

26 Define domain types based on input data

27 */

28 DomainType shop = TypeBuilder.createType("Shop").primaryId("ShopID",file1,

file3).build();→֒

29 DomainType type = TypeBuilder.createType("Type").primaryId("Type", file1).build();

30 //Multiple dataSources for ManagerID since the manager is defined in file2 and file3.

31 DomainType manager = TypeBuilder.createType("Manager")

32 .primaryId("ManagerID",file2, file3)

33 .addProperty("ManagerName", String.class,

34 stringStream -> stringStream.findFirst().get(), file2).build();

35 DomainType city = TypeBuilder.createType("City")

36 .primaryId("City", file1).build();

37 DomainType group = TypeBuilder.createType("Group")

38 .primaryId("Group", file2).build();

39 DomainType country = TypeBuilder.createType("Country")

40 .primaryId("Country",file1).build();

52 Code snippets

41 DomainType continent = TypeBuilder.createType("Continent")

42 .primaryId("Continent",file1).build();

43 ------3.-------

44 Define graph structure.

45 */

46 DomainDefinition definition = new DomainDefinition().

47 linkTypes(type,shop).

48 linkTypes(group,person).

49 linkTypes(person,shop).

50 linkTypes(continent,country,city,shop);

51 /*

52 ------4.-------

53 Extract graph based on DomainDefinition and all associated DataSources.

54 */

55 DomainGraph graph = definition.createGraph();

56 /*

57 Use data. In this case: Create a json containing all entities and

58 edges for a three dimensional graph representation.

59 */

60 AbstractVertexD3Creator jsonCreator = new D33DJsonCreator(graph);

61 jsonCreator.createJson("data.json");

Code Snippet 5: Code snippet for creating a graph representation for the case discussed in chapter 4

1 public class CSVDataSource extends AbstractDataSource<Integer,String>{

2

3 private final Path filePath;

4

5 public CSVDataSource(FieldNameMapper fieldNameMapper, Path filePath) {

6 super(fieldNameMapper);

7 this.filePath = filePath;

8 }

9

10 @Override

11 protected Map<Integer, String> convertToMap(String sourceRow) {

12 String[] split = sourceRow.split(",");

13 Map<Integer, String> rowMap = new HashMap<>();

14 for (int i = 0; i < split.length; i++) {

15 String s = split[i];

16 rowMap.put(i , s);

17 }

18 return rowMap;

19

20 }

21

22 @Override

23 protected Stream<String> getSourceStream() {

24 try {

25 return Files.lines(filePath, Charset.forName("UTF-8"));

26 } catch (IOException e) {

27 e.printStackTrace();

28 }

29 throw new IllegalArgumentException("Could not open the file "+filePath.toString());

30 }

31

32 @Override

E Code snippets 53

33 protected String onEmptyField(String fieldName) { return "-";}

34 }

Code Snippet 6: Code snippet of the CSVDataSource. Some methods omitted.

E.1 Depth-first-search algorithm

1 public class DepthFirstSearch<VertexType> {

2 /**

3 * Container containing the graph.

4 */

5 private final GraphContainer<VertexType> container;

6 /**

7 * Stores which vertecies have been visited by DFS.

8 */

9 private Set<VertexType> visited = new HashSet<>();

10 /**

11 * Stores the predecessor for each vertex from which parent vertex it was visited.

12 * (Some vetertecies may have multiple parents. DPS processes each vertex once.

13 This stores from which of the parents the vertex was visited).

14 */

15 private Map<VertexType, VertexType> predecessorMap = new HashMap<>();

16 /**

17 * Stores the timestamp on which each vertex was visited.

18 */

19 private Map<VertexType, Integer> startTimes = new HashMap<>();

20 /**

21 * Stores the timestamp on which the DPS-tree was finished for each vertex.

22 */

23 private Map<VertexType, Integer> finishTimes = new HashMap<>();

24 /**

25 * Stores the current timestamp.

26 */

27 private int time = 0;

28 public DepthFirstSearch(GraphContainer<VertexType> container) {

29 this.container = container;

30 }

31 public Map<GraphEdge<VertexType>, EdgeType> classifyEdges(){

32 /*

33 Starts the execution for each vertex which has not been visited before.

34 The check is required, because a vertex may have been visited by a previous invocation

35 of the recursion method.

36 */

37 container.getVertexMap().values().stream().forEach(vertexTypeVertexAdapter -> {

38 if(!visited.contains(vertexTypeVertexAdapter)){

39 recursion(vertexTypeVertexAdapter, null);

40 }

41 });

42 /*

43 Classify all edges of in the graph by comparing the start and finish times

44 of all parent vertices to their children.

45 */

46 return container.getVertexMap().values().stream()

47 .map(vertex -> container.getChildren(vertex).stream()

48 .map(child -> {

54 Code snippets

49 int parentStart = startTimes.get(vertex);

50 int parentFinish = finishTimes.get(vertex);

51 int childStart = startTimes.get(child);

52 int childFinish = finishTimes.get(child);

53

54 EdgeType edgeType = EdgeType.CROSS_EDGE;

55 if (parentStart < childStart && parentFinish > childFinish) {

56

57 if (predecessorMap.get(child).equals(vertex)) {

58 edgeType = EdgeType.TREE_EDGE;

59 } else {

60 edgeType = EdgeType.FORWARD_EDGE;

61 }

62 }

63 if (parentStart > childStart && parentFinish < childFinish) {

64 edgeType = EdgeType.BACK_EDGE;

65 }

66

67 return Map.entry(new GraphEdge<>(vertex, child), edgeType);

68 })).flatMap(classifiedEdgeStream -> classifiedEdgeStream)

69 .collect(Collectors.toMap(o -> o.getKey(), o -> o.getValue()));

70 }

71

72 public void recursion(VertexType vertex, VertexType parent) {

73 time++;

74 startTimes.put(vertex,time);

75 visited.add(vertex);

76 Set<VertexType> children = container.getChildren(vertex);

77 for(VertexType childVertex : children){

78

79 if(!visited.contains(childVertex)){

80 predecessorMap.put(childVertex, vertex);

81 recursion(childVertex, vertex);

82 }

83 }

84 finishTimes.put(vertex, time);

85 time++;

86 }

87 }

Code Snippet 7: Implementation of the Depth-First-Search-algorithm for edge classification

E.2 Graph Extraction application

1 public class DomainDefinition {

2 private Set<DomainType> domainTypes = new HashSet<>();

3 /**

4 * @param types

5 * @return

6 */

7

8 public DomainDefinition linkTypesRequiredConncetion(DomainType... types){

9 return innerLinkTypes(true,types);

10

11 }

E Code snippets 55

12

13 public DomainDefinition linkTypes(DomainType... types) {

14 return innerLinkTypes(false,types);

15 }

16

17

18 private DomainDefinition innerLinkTypes(boolean required,DomainType... types){

19 /*

20 The target DomainType needs to contain the identifying field(s) of the source DomainType.

21 This makes it possible to establish which instances of the target-DomainType are

connected to→֒

22 the source-DomainType:

23 source.UniqueName (id) = ABC,

24 targetA.UniqueName (attribute) = ABC,

25 targetB.UniqueName (attribute) = ABC,

26 targetC.UniqueName (attribute) = XYZ,

27 ...

28 */

29 Arrays.stream(types).forEach(type -> domainTypes.add(type));

30

31 for (int i = 1; i < types.length; i++) {

32 types[i - 1].addChildType(types[i], required);

33 }

34 return this;

35 }

36

37

38 /*

39 Checks whether the graph structure is valid.

40 */

41 protected void validateGraph() {

42 GraphContainer<DomainType> graphContainer = new DomainTypeVertexAdapterFactory().

43 createGraphAlgorithmContainer(getAllEntityDefinitions());

44 AbstractVertexD3Creator error = new DPSD3Creator(graphContainer);

45 error.createJson("test.json");

46

47 DepthFirstSearch<DomainType> domainTypeDepthFirstSearch = new

DepthFirstSearch<>(graphContainer);→֒

48

49 Map<GraphEdge<DomainType>, EdgeType> graphEdgeEdgeTypeMap =

domainTypeDepthFirstSearch.classifyEdges();→֒

50

51

52 if (graphEdgeEdgeTypeMap.values().contains(EdgeType.BACK_EDGE)) {

53 throw new IllegalArgumentException("The graph contains back edges: " +

graphEdgeEdgeTypeMap);→֒

54 }

55

56 }

57

58 /**

59 * Creates a graph based on the DomainTypes.

60 * @return

61 */

62 public DomainGraph createGraph() {

63

56 Code snippets

64 validateGraph();

65

66 prepareDataSource();

67

68 /*

69 Extract entities from the data sources.

70 */

71 Map<DomainType, Map<String, TypeVertex>> entityDefinitionListMap = GetEntities();

72

73

74 return new DomainGraph(this, entityDefinitionListMap);

75 }

76

77

78 /**

79 * Prepares the data sources for extraction by setting the fields from the

80 * sources which need to be extracted.

81 */

82 protected void prepareDataSource() {

83 Map<AbstractDataSource, Set<DomainType>> dataSourceToDomainTypesMap =

getDataSourceToDomainTypesMap();→֒

84 dataSourceToDomainTypesMap.keySet().parallelStream().forEach(dataSource -> {

85 Set<String> values = dataSourceToDomainTypesMap.get(dataSource).stream()

86 .map(entityDefinition -> entityDefinition.getSourceFieldNames())

87 .flatMap(strings -> strings.stream()).collect(Collectors.toSet());

88

89 dataSource.setRelevantFieldNames(values);

90

91 });

92 }

93

94 public Set<DomainType> getAllEntityDefinitions() {

95 return domainTypes;

96 }

97

98 /**

99 * Returns a map mapping each relevant data source to all domain types extracted from it.

100 *

101 * @return

102 */

103 protected Map<AbstractDataSource, Set<DomainType>> getDataSourceToDomainTypesMap() {

104 return getAllEntityDefinitions().stream()

105 .map(type -> type.getDataSources().stream()

106 .map(source -> new AbstractMap.SimpleEntry<>(source, type)))

107 .flatMap(entryStream -> entryStream)

108 .collect(Collectors.groupingBy(o -> o.getKey(),

109 Collectors.mapping(o -> o.getValue(), Collectors.toSet())));

110 }

111

112 /**

113 * Extracts all tuples of the normalization relations for each DomainType from all

datasources.→֒

114 * The maps represent tuples of each relation, the set contains all relations defining the

DomainType.→֒

115 *

116 * @param dataSources

E Code snippets 57

117 * @return

118 */

119 protected Map<DomainType, Set<Map<String, String>>>

extractDomainTypeData(Map<AbstractDataSource,→֒

120 Set<DomainType>> dataSources) {

121 /**

122 * Extract unique data sets of each DomainType from all datasources.

123 */

124 Stream<Stream<Stream<AbstractMap.SimpleEntry<DomainType, Map<String, String>>>>> data =

125 dataSources.entrySet().parallelStream().map(sourceToTypes -> {

126 Stream<Map<String, String>> dataStream = sourceToTypes.getKey().getDataStream();

127 return dataStream.map(dataRow -> {

128 /*

129 Per line for each DomainType to be extracted:

130 */

131 return sourceToTypes.getValue().parallelStream().map(entityDefinition -> {

132 /*

133 * Read the fields of to the domaintype to be read from the datasource from

the current data row.→֒

134 * Return <EntiyDefinition, Map<String,String> mapping the definition to

135 * a map of entity data.

136 */

137 Map<String, String> entityData =

entityDefinition.fieldToReadFrom(sourceToTypes.getKey())→֒

138 .stream().map(entityFieldName -> dataRow.entrySet().stream()

139 .filter(dataFieldName ->dataFieldName.getKey().equals(entityFieldName))

140 .findFirst())

141 .filter(stringStringEntry -> stringStringEntry.isPresent())

142 .map(dataFieldNameOptional -> dataFieldNameOptional.get())

143 .collect(Collectors.toMap(o -> o.getKey(), o -> o.getValue()));

144 if (entityData.containsKey(entityDefinition.getIdField())) {

145 return new AbstractMap.SimpleEntry<>(entityDefinition, entityData);

146 }

147 return null;

148 }).filter(domainTypeMapEntry -> domainTypeMapEntry != null);

149 });

150 });

151 /*

152 Flatten the stream into on stream map entries

153 */

154 return data.flatMap(keyValuePairStream -> keyValuePairStream.flatMap(simpleEntryStream

-> simpleEntryStream))→֒

155 .filter(entityDefinitionMapKeyValuePair ->

156 entityDefinitionMapKeyValuePair != null &&

157 /*

158 If there is only one entry in the data set, it can only be an

identifier→֒

159 which is worthless on its own.

160 */

161 entityDefinitionMapKeyValuePair.getValue().size() > 1)

162 /*

163 Make entries unique -> key to succsess!

164 */

165 .distinct()

166 /*

58 Code snippets

167 Group the entries based on their DomainType and put the relations of the type

into a set.→֒

168 */

169 .collect(Collectors.groupingByConcurrent(o -> o.getKey(),

170 Collectors.mapping(o -> o.getValue(), Collectors.toSet())));

171

172 }

173 /**

174 * Joins the extracted dataset on the primary id of their type.

175 * T

176 *

177 * @param rawTypeData

178 * @return

179 */

180 protected Map<DomainType, Set<Map<String, Set<String>>>> joinDataSetsOnID(Map<DomainType,

181 Set<Map<String, String>>> rawTypeData) {

182 /*

183 Combines raw dataset into List based on each id of each domainType.

184

185 e.g typeA = {

186 {tid: 1,val1 : A, val2:B, val3:C},

187 {tid: 2,val1 : W, val2:X, val3:Y},

188 {tid: 1,val4: Z}, {tid: 1,val4: D}

189 }

190 ---> typeA : { [1] : {{tid: 1,val1 : A, val2:B, val3:C},

191 {tid: 1,val4: D}, {tid: 1,val4: Z},

192 [2] : {{tid: 2,val1 : W, val2:X, val3:Y}}

193 */

194 Map<DomainType, Map<Set<String>, List<Map<String, String>>>> entityData =

rawTypeData.entrySet().parallelStream()→֒

195 .map(entityDefinitionSetEntry -> {

196

197

198 Map<Set<String>, List<Map<String, String>>> collect1 =

entityDefinitionSetEntry.getValue()→֒

199 .parallelStream().collect(Collectors.groupingByConcurrent(o ->

200 entityDefinitionSetEntry.getKey().getIdFields().stream()

201 .map(idField -> o.get(idField))

202 .collect(Collectors.toSet())));

203

204 return new AbstractMap.SimpleEntry<>(entityDefinitionSetEntry.getKey(),

collect1);→֒

205

206

207 }).distinct().collect(Collectors.toMap(o -> o.getKey(), o -> o.getValue()));

208

209 /*

210 Merge the previously combined set containing the same ids

211 { [1] : {{tid: 1,val1 : A, val2:B, val3:C}, {tid: 1,val4: D}, ,

212 [2] : {{tid: 2,val1 : ,W val2:X, val3:Y}, tid: 1,val4: Z}}

213 --> {tid: [1],val1 : [A], val2:[B], val3:[C],val4: [C,D]},

214 {tid: [2],val1 : [W], val2:[X], val3:[Y], val4: []}

215

216 */

217 return entityData.entrySet().stream().map(domainTypeMapEntry ->

domainTypeMapEntry.getValue().entrySet()→֒

E Code snippets 59

218 .parallelStream().map(entityDescriptor -> {

219

220 Map<String, Set<String>> collect =

entityDescriptor.getValue().parallelStream()→֒

221 .flatMap(entityProperties -> entityProperties.entrySet().stream())

222 .collect(Collectors.groupingBy(o -> o.getKey(),

223 Collectors.mapping(o -> o.getValue(), Collectors.toSet())));

224

225 /*

226 Make sure that all properties are contained!

227 Otherwise ignore the data set.

228 */

229 boolean propertyMissing = domainTypeMapEntry.getKey().getPropertyFields()

230 .stream().anyMatch(property -> !collect.containsKey(property));

231

232 if (!propertyMissing) {

233 return new AbstractMap.SimpleEntry<>(domainTypeMapEntry.getKey(),

collect);→֒

234 }

235 System.out.println("Ignoring: " + domainTypeMapEntry.getKey()+" - "

236 +domainTypeMapEntry.getKey().getPropertyFields() +" ---" + "-" +

collect);→֒

237 return null;

238

239 })).flatMap(entryStream -> entryStream).filter(domainTypeMapEntry ->

domainTypeMapEntry != null)→֒

240 .collect(Collectors.groupingBy(o -> o.getKey(),

241 Collectors.mapping(o -> o.getValue(), Collectors.toSet())));

242

243

244 }

245 /**

246 * Creates TypeVerticies from the each Map contained contained within the set of each

DomainType.→֒

247 * @param instanceData

248 * @return

249 */

250 private Map<DomainType, Map<String, TypeVertex>> createTypeVertecies(Map<DomainType,

251 Set<Map<String, Set<String>>>> instanceData) {

252 return instanceData.entrySet().parallelStream().map(domainTypeSetEntry ->

253 domainTypeSetEntry.getValue().stream().map(stringSetMap ->

254 {

255 try {

256 return new TypeVertex(domainTypeSetEntry.getKey(), stringSetMap);

257 } catch (TypeVertex.InvalidDataSetException e) {

258 System.err.println("Could not create entity for data set :"+e);

259 }

260 return null;

261 }))

262 .flatMap(typeVertexStream -> typeVertexStream)

263 .filter(typeVertex -> typeVertex != null)

264 .collect(Collectors.groupingBy(o -> o.getDomainType(), Collectors.toMap(o ->

o.getIdentifier(), o -> o)));→֒

265 }

266

267

60 Code snippets

268 /**

269 * Extracts unique entries from the data source based on the identifier of

270 * each entityDefinition.

271 *

272 * @return

273 */

274 private Map<DomainType, Map<String, TypeVertex>> GetEntities() {

275 Map<AbstractDataSource, Set<DomainType>> dataSources = getDataSourceToDomainTypesMap();

276 long t = System.currentTimeMillis();

277 Map<DomainType, Set<Map<String, String>>> domainTypeData =

extractDomainTypeData(dataSources);→֒

278 Map<DomainType, Set<Map<String, Set<String>>>> joinedDomainTypeDataSets =

joinDataSetsOnID(domainTypeData);→֒

279 Map<DomainType, Map<String, TypeVertex>> entities =

createTypeVertecies(joinedDomainTypeDataSets);→֒

280

281 /**

282 * Connect instances.

283 * Note: It may occure that specific entities have not been created because their data

was ignored at input level.→֒

284 * E.g if rows defining shops are ignored if the shops are "closed", foreign keys

referencing this shop can not be→֒

285 * resolved.

286 */

287 entities.entrySet().stream().forEach(entityDefinitionMapEntry -> {

288

289 entityDefinitionMapEntry.getValue().entrySet()

290 .parallelStream().forEach(instanceEntry -> {

291

292 instanceEntry.getValue().getForeignIds().entrySet()

293 .stream().forEach(foreignKeyEntry -> {

294 foreignKeyEntry.getValue().stream().forEach(foreignKey -> {

295 TypeVertex connected = entities.get(foreignKeyEntry.getKey()).get(foreignKey);

296 if (connected != null) {

297 connected.addConnectedInstance(instanceEntry.getValue());

298 instanceEntry.getValue().addConnectedInstance(connected);

299 } else {

300 System.err.println(" Failed to find " + foreignKeyEntry.getKey() + "--->" +

foreignKey);→֒

301 }

302 });

303 });

304 });

305 });

306 long t1 = System.currentTimeMillis();

307 System.out.println("Graph creation finished: " + (t1 - t));

308 return entities;

309 }

310

311

312 }

Code Snippet 8: Source-code of the DomainDefinition class.
Snippet ?? shows the source code of the DomainDefinition which is responsible for extracting graphs from

source files based on the meta information provided by the users. Since this is the core part of the graph
extraction application, it has been extensively tested (95% test coverage). Since it makes use of Java’s parallel

E Code snippets 61

streams for transforming the input files to vertexes representing business entities, the application scales well
with additional CPU-cores (Extracting 18772 vertecies and 342578 edges between them takes about 8 seconds
on an Intel Core i7 with 2.5ghz and 4 cores).

E.3 WorkerActor implementation

1 public class WorkerActor<Value> extends AbstractActor {

2 /**

3 * The Query to be executed. Contains all required meta information.

4 */

5 private final QueryContainer<?, ?, Value, ?> builder;

6 /**

7 * The current index in the query path.

8 */

9 private final Integer currentIndex;

10 /**

11 The id of the vertex to be processed.

12 Parent id for giving information about the traveresed sub-tre.

13 */

14 private final String id, parentId;

15 /**

16 Reference to the parent actor.

17 */

18 private final ActorRef parent;

19 /**

20 * Reference to the QueryMasterActor.

21 */

22 private final ActorRef master;

23 /**

24 * Reference to the DatabaseActor

25 */

26 private final ActorRef databaseActor;

27 /*

28 Set of all references to child WorkerActors.

29 */

30 private Set<ActorRef> children;

31 /**

32 * The current type of the queryPath

33 */

34 private final Class currentType;

35 /*

36 The JSON containing all data of the current vertex.

37 */

38 private JsonNode document;

39

40 public static <Value, Result> Props props(ActorRef master, ActorRef parent, ActorRef

databaseActor, QueryContainer<?, ?, Value, Result> builder, Integer currentIndex,

String id, String parentId) {

→֒

→֒

41 return Props.create(WorkerActor.class, databaseActor, builder, currentIndex, id,

parentId, parent, master);→֒

42 }

43

44 public WorkerActor(ActorRef databaseActor, QueryContainer<?, ?, Value, ?> builder, Integer

currentIndex, String id, String parentId, ActorRef parent, ActorRef master) {→֒

45 this.databaseActor = databaseActor;

62 Code snippets

46 this.builder = builder;

47 this.currentIndex = currentIndex;

48 this.id = id;

49 this.parentId = parentId;

50 this.parent = parent;

51 this.master = master;

52 this.currentType = builder.getPath().get(currentIndex);

53 }

54

55 /**

56 * Defines the behaviour of the actor for received Messages

57 * @return

58 */

59 @Override

60 public Receive createReceive() {

61 return receiveBuilder()

62 .match(StartProcessing.class, this::handleStartProcessing)

63 .match(DatabaseResult.class, this::handleDatabaseResult)

64 .match(WorkerFinished.class, this::handleWorkerFinished)

65 .match(RecursionControlResponse.class, this::handleRecursionControlResponse)

66 .build();

67 }

68

69 /**

70 * Handles StartProcessing message.

71 * Tells the DatabaseActor to extract the entity associated with the id

72 * provided in the constructor.

73 *

74 * @param message

75 */

76

77 private void handleStartProcessing(StartProcessing message) {

78 String typeName = currentType.getSimpleName();

79 String nextIdField = null;

80 if (currentIndex + 1 < builder.getPath().size()) {

81 nextIdField = builder.getPath().get(currentIndex + 1).getSimpleName();

82 }

83

84 databaseActor.tell(DatabaseRequest.create(typeName, id, nextIdField, getSelf()),

getSelf());→֒

85 }

86

87 /**

88 * Handles DatabaseResults.

89 * If the result is empty, the actor is finished.

90 * If the entity wrapped in the retrieved json files has multiple parents of

91 * the previous type in the query path, the actor send a RecursionControlRequest

92 * to the QueryMaster who decides whether the entity must be processed.

93 * Otherwise, this actor send a self message to start processing.

94 *

95 * @param

96 */

97 private void handleDatabaseResult(DatabaseResult message) {

98 String json = message.getDocument();

99 final JsonNode jsonDoc;

100 if (json == null) {

E Code snippets 63

101 finished();

102 return;

103 }

104 try {

105 jsonDoc = Util.MAPPER.readTree(json);

106 } catch (IOException e) {

107 e.printStackTrace();

108 master.tell(e, getSelf());

109 return;

110 }

111 if (jsonDoc == null) {

112 finished();

113 return;

114 }

115 this.document = jsonDoc;

116 List<String> parentIds = getParentIds(document);

117

118 /**

119 * Ask the recursion controller for permission to start recursion if the

120 * vertex has multiple parent vertecies of the previous type in the query path.

121 * The RecursionController will deny the processing of this vertex if it has been

122 * processed before.

123 */

124 if (parentIds.size() > 1) {

125 master.tell(new RecursionControlRequest(builder.getPath().get(currentIndex), id,

self()), getSelf());→֒

126 } else {

127 self().tell(new RecursionControlResponse(true), getSelf());

128 }

129

130 }

131

132 /**

133 * Handles WorkerFinished messages.

134 * If all children are finished, the actor send a WorkerFinished message to its parent.

135 *

136 * @param message

137 */

138 private void handleWorkerFinished(WorkerFinished message) {

139 getContext().stop(getSender());

140 if (children.isEmpty()) {

141 finished();

142 return;

143 }

144 children.remove(message.getRef());

145 Optional<ActorRef> first = children.stream().findFirst();

146

147 if (!first.isPresent()) {

148 finished();

149 return;

150 }

151 //ENABLE FOR SEQUENTIAL DFS !!!!

152 // children.stream().findFirst().get().tell(new StartProcessing(), getSelf());

153 }

154

155 /**

64 Code snippets

156 * Handles RecursionResponses.

157 * If the request is denied, the recursion must not start. Since there is nothing

158 * to do, the actor is finished.

159 * @param message

160 */

161 private void handleRecursionControlResponse(RecursionControlResponse message) {

162 if (message.permitted()) {

163 startRecursion();

164 } else {

165 finished();

166 }

167

168 }

169

170 /**

171 * Tells the parent actor that the work of this actor is complete.

172 */

173 private void finished() {

174 parent.tell(new WorkerFinished(getSelf(), builder, id), getSelf());

175 }

176

177 /**

178 * Returns a list of string foreign ids contained in the idField of the provided document.

179 *

180 * @param document

181 * @param

182 * @return

183 */

184 private List<String> getChildIds(JsonNode document, String idField) {

185 if (document.has(idField)) {

186 List<String> ids = new ArrayList<>();

187 ArrayNode array = (ArrayNode) document.get(idField);

188 array.forEach(jsonNode -> ids.add(jsonNode.asText()));

189 return ids;

190 }

191 return Collections.emptyList();

192 }

193

194 /**

195 * Instantiate an object of the provided model class from the JsonNode.

196 *

197 * @param document

198 * @param type

199 * @return

200 * @throws IOException

201 */

202 static Object instanciate(JsonNode document, Class type) throws IOException {

203 return Util.MAPPER.readValue(document.toString(), type);

204 }

205

206 /**

207 * Returns the foreign ids of the parent vertecies from the previous

208 * index of the path.

209 *

210 * @param document

211 * @return

E Code snippets 65

212 */

213 private List<String> getParentIds(JsonNode document) {

214 if (currentIndex == 0) {

215 return Collections.emptyList();

216 }

217 List<String> ids = new ArrayList<>();

218 ArrayNode array = (ArrayNode) document.get(builder.getPath().get(currentIndex -

1).getSimpleName());→֒

219 array.forEach(jsonNode -> ids.add(jsonNode.asText()));

220 return ids;

221 }

222

223 /**

224 * Executes user provided filters on vertices of a the currentType (if available)

225 * @param document

226 * @param currentType

227 * @return True if no filter is available or the current vertex passes the filter test.

228 */

229 private boolean executeFilter(JsonNode document, Class currentType) {

230 Object model = null;

231 Function<Object, Boolean> documentBooleanFunction = builder.getFilter(currentType);

232 if (documentBooleanFunction == null) {

233 return true;

234 }

235 try {

236 model = instanciate(document, currentType);

237 } catch (IOException e) {

238 master.tell(e, getSelf());

239 return false;

240 }

241 return documentBooleanFunction.apply(model);

242 }

243

244 /**

245 * Applies the Function or BiFunction for the current type on the extracted entity.

246 */

247 private Value executeValueFunctions() throws IOException {

248 Function<Object, Value> documentValueFunction =

builder.getDocumentValueFunction(currentType);→֒

249 if (documentValueFunction != null) {

250 Object model = instanciate(document, currentType);

251 return documentValueFunction.apply(model);

252 }

253 BiFunction<Object, MetaContainer, Value> biFunction =

builder.getEntityBiFunction(currentType);→֒

254 if (biFunction != null) {

255 Object model = instanciate(document, currentType);

256 MetaContainer metaContainer = null;

257 if(currentIndex > 0){

258 Class parentClass = builder.getPath().get(currentIndex-1);

259 metaContainer = new MetaContainer(parentClass,parentId);

260 }

261 return biFunction.apply(model, metaContainer);

262 }

263

264 return null;

66 Code snippets

265 }

266

267 private void startRecursion() {

268 /*

269 Filter

270 */

271 if (!executeFilter(document, currentType)) {

272 finished();

273 return;

274 }

275 /*

276 Extract value

277 */

278 try {

279 Value value = null;

280 value = executeValueFunctions();

281 if (value != null) {

282 master.tell(new ValueMessage<>(builder, id, value), getSelf());

283 }

284 } catch (IOException e) {

285 e.printStackTrace();

286 }

287

288 /*

289 Check for sub-query

290 */

291 if (currentIndex == builder.getPath().size() - 1) {

292 Set<? extends QueryContainer<?, ?, Value, ?>> childQueries =

builder.getSubQueries(currentType);→֒

293

294 if (childQueries != null) {

295 /*

296 Get the next type to be extracted from the the paths of each sub-query.

297 Create new actors with the sub-query as argument for each child id.

298 */

299 children = childQueries.stream().map(subQuery -> {

300 Class nextType = subQuery.getPath().get(1);

301 List<String> childIds = getChildIds(document, nextType.getSimpleName());

302 return childIds.stream().map(childId ->

303 getContext().actorOf(WorkerActor.props(master, self(),

304 databaseActor, subQuery,

305 1, childId, id)));

306 }).flatMap(actorRefStream -> actorRefStream).collect(Collectors.toSet());

307 }

308 } else {

309 /*

310 Create actors for a children of the next type in the query path.

311 */

312 List<String> childIds = getChildIds(document, builder.getPath().get(currentIndex +

1).getSimpleName());→֒

313 this.children = childIds.parallelStream().map(nextId -> {

314 ActorRef recursion = getContext().actorOf(WorkerActor.props(master, self(),

databaseActor,→֒

315 builder, currentIndex + 1, nextId, id));

316 return recursion;

317 }).collect(Collectors.toSet());

E Code snippets 67

318 }

319 if (children == null) {

320 finished();

321 return;

322 }

323 children.parallelStream().forEach(actorRef -> actorRef.tell(new StartProcessing(),

getSelf()));→֒

324 //switch to use sequential dfs:

325 // children.stream().findFirst().get().tell(new StartProcessing(), getSelf());

326 }

327 }

Code Snippet 9: Code snipped of the WorkerActor which is responsible for processing one vertex of the graph.

	Statement of Authenticity
	Introduction
	Company description
	What is a Key Performance Indicator
	Problem Statement

	Background
	Problem description
	Representing the structure of a business
	Solving the performance issues

	Mathematical definition of the data layer
	Representing the relationship between two elements of a business structure
	Representing a layer of the business structure
	Connecting data to the business
	Representing multiple business layers

	Creating graph representations of business structures
	Exemplary business structure, input files and application output
	Mathematical definition of the program
	Providing meta information
	Creating interconnected vertices

	MapReduce graph processing-application
	Meta information in model classes
	Programming the map-reduce process
	Using actors to execute QueryContainers
	Recursion control

	Quality Control
	Unit tests
	Code quality

	Conclusion
	Appendix
	Graph algorithms
	Depth-first search
	Topological sorting

	Graphs produced with the graph extractor
	Using the actor model
	Sequential traversal
	Parallel traversal
	Using the actor model to keep track of a decentralized state

	Performance comparison between sequential DFS and parallel BFS
	Code snippets
	Depth-first-search algorithm
	Graph Extraction application
	WorkerActor implementation

