Daniel Wahyudi

Fully Automated Test Environment (FATE)

Final Report, Graduates 2012

[image: image6.png]Peter
Bentvelsen

Ton Kostelijk

Robert
Jochemsen

Erik Moll
Paul Thijssen
Rian Wouters

Janv
Wijgerden

Software
Systems
Integration

Ralph Holdorp

Wilmav Dinten-
Habraken

Project
management

Jeroenv Agt
Daan de Beer
Aad Rijnberg

Bartv/d
Velden

Paul Zander
Yuchen Zhang
Ciprian Cornea
Bart Golsteijn
Cristian Cristea

Roxana Frunza

Patrick Bonne

Joost
Con Bracke Kamerbeek
Maurice Alex Merck

Hebben
Leon Ingenhut
Hans Spanjers

Standardizations

Wiebe de Haan

Charles
Knibbeler

FATE

(Fully Automated Test Environment)

FINAL REPORT
Daniel Wahyudi

2137561

Graduation project Thesis

Fontys University ,Eindhoven
[image: image7.png]GM Research
Henk van Houten

Controller HRI Strategy &
Tineke van den | [Business Development|
Maarten van Neerven
Heuvel John Bell

PGM Healthcare
Henk van Houten

PGM Lifestyle
Fred Boekhorst

PGM Lighting
Aart van Gorkum

Head of Research Asia &

H CTO Asia

Frans Greidanus

Head of Research
H North America
Franklin Sch

9

Head of Research Netherlands
Research Germany, and

Systems
Paul Put

Head of Research UK &

jon Head Devices and

- Electronics

Jeroen Sluijter

 GRADUATION INTERSNHIP REPORT

FONTYS UNIVERSITY OF APPLIES SCIECNES

HBO-ICT: English Stream
	Data Student:
	

	Name
	 Daniel Wahyudi

	Student Number
	2137561

	Course
	Information Communication and Technology

	Internship Period
	From 1 February 2012 till 29 June 2012

	Data Company:
	

	Name Company
	Philips

	Department
	Research

	Address
	

	Company Tutor:
	

	Name
	Con Bracke

	Position
	

	University Tutor:
	

	Name
	Rien Hamers

	Final Report:
	

	Title
	Fully Automated Test Environment System

	Date
	

Approved and Signed by the company tutor

Date:

	

Signature:

Preface

The final report is written for my final assignment of the bachelor study Information and Communication Technology department at Fontys University of Applied Science. This report is based upon a graduation internship project assignment conducted during the period of February 2012 till June 2012 at Philips Research Eindhoven, located in Eindhoven, the Netherlands.

This report mainly contains the process that I went through when doing my graduation internship project, based on its time line, as well as the tasks that I have to do and the issues that I encountered when completing the tasks. The process will be described as what I need to do to complete the tasks, how I do it, and what the result is.
The target audiences of this report are my university tutor, company tutor, the final presentation juries, and the colleagues in Philips Research

Finally I would like to express my deepest gratitude to all the people who helped me and gave me their support during this internship period. First of all I would like to thank God for His blessing and guidance that made me able to do what I have achieved until the end of this graduation internship period. I would like to thank my family because they are so special .Next I would like to many thanks my company supervisor, Mr.Con Bracke, who supported, reviewed, and guided me throughout the project, also gave me valuable comments and suggestion to improve my graduation internship progress. Thanks to Mr.Rien Hamers, my university mentor from Fontys University of Applied Science, for being a understanding supervisor, for the guidance and enthusiastic response on my internship.

 Daniel Wahyudi
Eindhoven, June 2012
Table of Contents

3Preface

6Summary

7Glossary

91. Introduction

102. About the Company

112.1 Organizational chart

133. Assignment Overview

133.1 initial Situation

133.2 Description of the assignment

133.3 Conceptual view of the assignment

154. Research

154.1 Methodology

154.1.1. Agile

154.2 Techniques

154.2.1 Model Based testing

164.2.2 Keyword driven testing

164.3 Tools

164.3.1 RobotFramework

194.3.2 robomachine

194.3.3 TEMA tool

204.3.4 Comparison between tools

214.3.5 Selection Tool

225. FATE Execution process

225.1 The Conceptual FATE

225.1.1 FATE

255.1.2 Overview test “Boiling Egg” with RobotFramework

265.2 Experimenting with Calculator

295.3 Test Case Generator

305.3.2 Design

325.3.3 Implementation

355.4 The works need to do to test different kind of SUT

366. Encountered and Solution

377. Conclusion and Recommendation

377.1 Conclusions

377.2
Recommendations

388. Evaluation

399. References

40Appendices

40Appendix A1. Iteration

52Appendix A2. User Story

61Appendix A3. Project Plan

78Appendix A4. User Requirements Specification Document

85Appendix A5. Design Document

92Appendix A6. Installation Manual

95Appendix A7. Question and Answer

96Appendix A8. Known Problem Document

103Appendix A9. Implementation

Summary

This report describes the graduation internship by Daniel Wahyudi, student of the ICT department of Fontys University, Eindhoven. It is carried out at Philips Research, Eindhoven.

Software based systems are getting more important. Complexity is growing and complete testing is impossible. Philips Research wants to have a test environment that can do testing in a fully automated way using a test strategy to find important problems as soon as possible and as many of these problems as possible.

The main task of this project is set up the test environment into a Fully Automated Test Environment (FATE). The test environment is able to generate and execute many test cases and evaluate the results automatically.

To ensure its success, Agile methodology is used for the development of this assignment project. This methodology is used to empower the developer to respond with changing requirements. Research is held to find out tools and techniques that can be applied in helping to develop test environment.

The final test environment has not been completed yet. Implementation couldn’t do a test with different kind of software and evaluating the test result. The software system that has been tested by test environment is Calculator. RobotFramework is a tool that used to execute many test cases. The implementation of Test Case Generator has been done to generate many test cases. Hopefully the resources that have been found will help
 As the recommendation for further development, it would be good to use RobotFramework as execution and reporting tool.

Glossary

	1
	CMD
	The Command definition statement specifies the prompt text for the command being created

	2
	CSV
	A comma-separated values ,file stores tabular data (numbers and text) in plain-text form

	3
	Defect
	A flaw in a component or system that can cause the component or system to fail to perform its required function, e.g. an incorrect statement or data definition. A defect, if encountered during execution, may cause a failure of the component or system. [1]

	4
	Error
	A human action that produces an incorrect result. [1]

	5
	Expected Result
	The behavior predicted by the specification, or another source, of the component or system under specified conditions. [1]

	6
	Failure
	Deviation of the component or system from its expected delivery, service or result[0]

	7
	Framework
	An abstract design which can be extended by adding more or better components to it. An important characteristic of a framework that differentiates it from libraries is that the methods defined by the user to tailor the framework are called from within the framework itself. The framework often plays the role of mean program in coordinating and sequencing application activity

	8
	Fault
	See defect

	9
	HTML
	The main markup language for web pages. HTML elements are the basic building-blocks of webpage.

	10
	Keyword-Driven Testing
	A test automation approach where test data and also keywords instructing how to use the data are read from an external data source. When test cases are executed keywords are interpreted by a test library which is called by a test automation framework.

	11
	Keyword
	A directive that represents a single action in keyword-driven testing. Called actions words

	12
	Library
	A controlled collection of software and related documentation designed to aid in software development, use, or maintenance.

	13
	Pattern
	Anything designed to serve as a model or guide for something to be made.

	14
	Script
	A simple program in a utility language or an application's proprietary language

	16
	SUT
	System Under Test, The entire system or product to be tested.

	17
	Test case
	A set of inputs, execution preconditions and expected outcomes developed for a particular objective, such as to exercise a particular program path or to verify compliance with a specific requirement.

	18
	TSV
	The Tab Separated Values has been officially registered as an Internet media type under the name text/tab-separated-values.

1. Introduction
This report is written to describe experiences of the author during the graduation internship at Philips Research Eindhoven.

Software systems are become more complex, therefore the quality of the software also getting more important due to meet desired end results. Testing phase is an important part in process life cycle. Project cannot afford to get unexpected delays due to serious problems found late in the process life cycle. Software failures have caused loss of huge sums of money and even human lives. This means the test strategy should aim for finding important problems as soon as possible.

The project is developing Fully Automated Test Environment (FATE). The aim behind this development is to setup the testing components into one environment, make the environment work in fully automated way and also within test strategy to find important defect as soon as possible and find as many defects as possible. To finish this project required research, analyze the tools, gathering requirements from the stakeholders, design, implementing, testing and evaluation.

The second chapter is dedicated to describe brief information about the company including history of company, general background information, organizational structure of the company and organizational structure of internal project.

The third chapter describes the assignment overview, which covers initial situation, description of the assignment, purpose of the assignment, context diagram of the project and the desired end situation.

The fourth chapter is dedicated to describe overview the research over the tool, the methodologies, techniques and detailed explanation of concept and reasons decision that have been found and used. The explanations over them are described briefly.

The fifth chapter is explained detail component of FATE, do FATE with Calculator and create test case generator includes design and implementation.

The Sixth chapter is dedicated to tell the problem that have been faced and also with the solution to fix the problem. The conclusion followed by recommendation is covered in the report .An evaluation of the internship is presented. It covers the learning points of the author and the experienced that gained by the author.

The Last chapter is described references list and followed with appendices, includes all the documentations of the project

 2. About the Company

The foundations of Philips were laid in 1891 when Anton and Gerard Philips established Philips & Co. in Eindhoven, the Netherlands. Stimulated by the industrial revolution in Europe, Philips’ first research laboratory was established in 1914 and the company started introducing its first innovations in the x-ray and radio technology. Over the years, the list of inventions has only been growing to include many breakthroughs that have continued to enrich people’s everyday lives. Philips had become one of the largest producers in Europe. [2]
Moving into the 21st century, Philips continued to change and grow. Long aware that for many people Philips was no more than a consumer electronics producer the company started projecting a new image that better reflected its products in the areas of Healthcare, Lifestyle and Technology. Philips As a world leader in healthcare, lifestyle and lighting, Philips integrates technologies and design into people-centric solutions, based on fundamental customer insights and in 2004 unveiled its new brand promise of “sense and simplicity”. [3]
Headquartered in the Netherlands, Philips employs over 122,000 employees with sales and services in more than 100 countries worldwide. With sales of EUR 22.6 billion in 2011, the company is a market leader in cardiac care, acute care and home healthcare, energy efficient lighting solutions and new lighting applications, as well as lifestyle products for personal well-being and pleasure with strong leadership positions in male shaving and grooming, portable entertainment and oral healthcare. [4]

Philips Research Eindhoven is located on the High Tech Campus (HTC) Eindhoven, which is the center for technology enabled innovation in The Netherlands. It is an open campus, targeted at fostering open cooperation between different companies and institutes. Over 8000 researchers, developers, and entrepreneurs work closely together at the HTC, developing the technologies and products of tomorrow. [5]

[image: image8.png]

Figure.1: Philips Eindhoven[13]

2.1 Organizational chart
[image: image9.png]

Software systems integration is a division from Research Division Head Information and Cognition. Carel-Jan van Driel is head of this department. This department is one of part from Philips research branch. Henk van Houten is general manager of Philips Research. Figure below show the Organization structure of Philips research.

Figure 2: Philips Research Organizational Chart

An organizational chart is given on the figure below for further detail on the internal structure. Mr.Ralf Holdorp is the leader in this internal organization. Mr.Con Bracke is assigned as a company mentor. Mr.Hans Spanjers is assigned as supporting company mentor. Both of them are test architect. Picture below shows internal structure organization of software system integration.
[image: image10.png]

[image: image11.png]Patrick Bonne
ConBracke.

Maurice
Hebben

Leon ngenhut
Hans Spanjers

[image: image12.png]

[image: image13.png]

[image: image14.png]

[image: image15.png]

[image: image16.png]Test Case generator

Figure 3: Philips Research, internal structure organization of software system integration.
3. Assignment Overview
This chapter presented to describe the assignment from the project in terms of the initial situation, description of the assignment, conceptual view of the assignment.
3.1 initial Situation
Software based systems are getting more complex. Complete testing is impossible, testers have to make decisions, e.g. to choose which parts of the software have to be tested in which way and the domain of possible inputs of a program is too large to be completely used in testing a system.

Test automation is widely used in the company. But it doesn’t work in a fully automated way. When the product is being tested, there are still human interventions during the process. Example of intervention is human still work on writing test cases, writing test scripts, evaluating and saving the result of the test. Fully automated test means no human intervention is needed in either to run the program or to check the expected results.

3.2 Description of the assignment

The assignment of this project is divided into two parts. The first part is needed to be able to start with the second part of the assignment. First part is to create a test environment that can generate and execute many test cases and evaluate the results automatically. The second part is experiment generating the test cases with existing algorithms. Give recommendations and guideline for choosing good candidates that can be used to test case generation related to the problems to be found with the testing.

Fully Automated Test Environment (FATE) is the desired end situation. The test environment shouldn’t do unintended intervention because one part of the environment works in manually such as saving the test case.

The purpose of this assignment is to set up environment into FATE, makes it possible to test 24 hours a day, seven days a week. Instead of executing 100 of tests, it now becomes possible to execute 10.000 of test or more in the same time.

3.3 Conceptual view of the assignment

Figure 4 shows the conceptual view. The test case generator generates test cases using input the algorithm. The algorithm should be easily replaceable. Test script generator composes the test cases to test scripts. Test scripts consist of a number of steps (commands), which implement the test case for the SUT. The Execution tool sends these commands to the SUT and receives the result. The results are evaluated by using verdict strategies and the verdict pass or fail is given. The results can be reported back to the algorithm to generate another test case set.

[image: image17.png][import random

|def run(setn):
fori in xrange(10):
testcasename =[Addition’,'Substraction’, Multplication’]
‘a=choice(testcasename)
b=random.randrange(0,10)
‘c=random.randrange{0,10)

[image: image18.png]Test Statistics

Total Statistics Total | Pass | Fail Graph
Critical Tests 2 | o [2 [ee——
All Tests 2 | 0 [2 [ee—
Statistics by Tag Total | Pass | Fail Graph
No Tags [E——
Statistics by Suite Total | Pass | Fail Graph
TestCaseFile 2 | 0 [2 [ee————
Tescaere Change Csv To Tsv 0 [1 | —
TesCarie Crang CaTota Testcasegen 0 [1 | —
Tescorie Egs 0 [1 | —
Test Execution Log
CITEST SUITE: TestCaseFile
Full Name: TestCaseFile
Source: C:\Daniel Wi12march
Start/ End / Elapsed: 20120312 13:56:31.400 / 20120312 13:56:46.032 / 00:00:14.632
Status: 2 critical test, 0 passed, 2 failed
2test total, 0 passed, 2 failed
 TEST SUITE: Change Csv To Tsv
CITEST SUITE: Eggs
TestCaseFile Eggs
C-\Daniel W\12marchleggs tsv
Start/ End / Elapsed: 20120312 13:56:37.647 / 20120312 13:56:46.027 / 00:00:08.380
Status: 1 critical test, 0 passed, 1 failed
1 test total, 0 passed, 1 failed
SETUP: calculator_keywords. Start Calculator
TEARDOWN: calculator_keywords.Stop Calculator
CITEST CASE: Calculations
Full Name: TestCaseFile Eggs Calculations
Start / End / Elapsed: 20120312 13:56:41.716 / 20120312 13:56:44.745 / 00:00:03.029
Status: FAIL (critical)
Message: 001=60
'SETUP: calculator_keywords.Clear Calculator
KEYWORD: Calculations.Substraction 8, 8, 0
KEYWORD: Calculations.Multiplication 3, 2, 6

Figure 4: Conceptual View FATE
4. Research
This chapter is presented to describe overview of the research over methodologies, techniques and tools that have been found.

4.1 Methodology

This section describes the methodology approach of the process to get costumer demands.

4.1.1. Agile
The agile project methodology used. Agile methodology is really good way to meet the final result with small steps. Small steps are taken by dividing amount of work into iterations every week. In iteration, it tells the task that need to be done at that week and the time in hour to complete every task.
At the end of iteration, release documents or products will be reviewed by the client to obtain the desired end product. Agile methodology is suitable to empower the developer to confidently respond to the changing for next iteration
4.2 Techniques

The researched technique, Model based testing is used to help in setting up complete test environment and Keyword driven testing is an approach to generate test case. The explanation over these techniques will be explained.

4.2.1 Model Based testing
Model Based Testing (MBT) is widely used technique in automated testing. This technique has process steps as follow: Design a test model, generate the tests from the model, and execute the tests.
Design test model- The model represents the expected behavior of the SUT. Standard modeling languages such as UML are used to formalize the control points and observation points of the system. Model must be precise and complete enough to allow automated tests. [6]

Generate the tests-This is fully automated process that generates the required number of test cases from the test model. The test model allows computing the expected results and the input parameters for a test case. [6]

Execute the tests –the result is that the tests are executed on the SUT, and we find that some tests pass and some tests fail. The failing tests indicate a discrepancy between the SUT and the expected results designed in the test model, which then needs to be investigated to decide whether the failure is caused by a bug in the SUT, or by an error in the model and/or the requirements. [6]

From the conceptual view structure of FATE, the complete works of conceptual FATE almost resembles with Model Based Testing technique. But the big difference point is FATE generates test cases by using algorithm and this technique using design test model to generate test case instead of algorithm. Moreover, this technique is helping out to give theoretical idea for setting up the test environment.

4.2.2 Keyword driven testing
Keyword driven testing is an approach in testing .Keyword is used to represent an action in a test case. Such as: pressing keys, typing, reading text, Multiplication and Division. The tests are built as sequences of keywords, and keywords are automatically translated into concrete low-level commands. [7]

The advantages are the reduced amount of maintenance work related to tests and the fact that the tests are easier to build. Understanding and creating tests do not require programming experience since keywords are understandable, because they are not low-level system commands, but rather general commands familiar from everyday usage.

The conceptual view of FATE has Test case Generator component. Keyword driven testing is used by this component for an approach to generate test case. This technique is researched because this is very useful technique and the given keywords in test case are easy understandable.

4.3 Tools

The researched tools, RobotFramework is used to be a test execution tool in test environment, robomachine is tool generates test cases in RobotFramework format from robomachine model and TEMA tool has complete architecture and support to test different kinds of SUT. The explanation over these tools will be explained.

4.3.1 RobotFramework

Robot framework is a generic test automation framework. It is open source software released under the ApacheLicense2.0. It’s developed and owned by Nokia Siemens Networks. [8]

 It provides easy to read result reports and logs in HTML format. Its testing capabilities can be extended by creating customized test libraries which can be implemented either with Python or Java. It enables easy to use tabular test data syntax.

Robotframework has a highly modular architecture illustrated in the picture below.

[image: image19.png]Algorithm NumberOfRepeats NumberOfTestcase
Random 2

Figure.5: High Level Architecture RobotFramework[9]

The test data is in simple easy to edit tabular format. When Robotframework is started, it processes the test data, executes tests cases and generates log and report.

New libraries can be implemented with Java or Python. There are two types of libraries: standard and external. The standard libraries are in Robotframework package and the external libraries are released in separate packages. The table below show example from both libraries:

	Standard Libraries
	

	BuiltIn
	Keywords for generic testing needs, such as variable veriﬁcation, conversions and delays

	OperatingSystem
	Keywords for operating system tasks, such as ﬁle system operations and executing commands

	Telnet
	Keywords for Telnet connection handling.

	Collections
	Keywords for handling lists and dictionaries

	Strings
	Keywords for handling lists and dictionaries

	External Libraries
	

	Swing
	Keywords for Java Swing GUI handling

	SSH
	Keywords for executing commands over an SSH connection.

	Selenium
	Keywords for database handling.

Table 1: Standard Libraries and External Libraries
 More detail information about Robotframework can be found in Robotframework documentation and also includes the user guide. [10] In user guide it tells how to creating test data, executing test case, Extending RobotFramework. For more information in order to install setup Robotframework can be found in appendix installation manual. [11]
· Testing “Hello World” with RobotFramework

The basic Idea this testing is to get acquainted with Robotframework. To make a testing with Robotframework the tester should know important things such as: 1. Creating test data, 2.Execute test data 3.Creating test Library.

Creating test data- Before start creating test data, the format file of test data should be known. RobotFramework recognize TSV, HTML, TXT format. The style to write data for each format is different. RobotFramework provide table to create test data in HTML format but in this case we want to create test data in TSV format.
[image: image20.png]restCase Generator Class Diagram

The TSV format has different syntax to create test data .For example Example test case

This example show simple test case , Test data table are recognizes by asterisk (code : *), followed by a normal table name(“Test Cases”) an closing again by this sign(*). “TestHelloWorld” is the name of the test case and “Hello world” is the test data that is wanted to test, and “ *** Test Cases*** “ is the table name.

Executing test data- to executing the test data it can use the executable or script called “jybot.bat” or “pybot.bat” provided by RobotFramework. Since this testing only tested with python environment so pybot.bat is used. pybot.bat should in one folder with test case file to run the execution. The way to run the execution there is two ways, 1.by dragging the test case file into pybot.bat 2. Give command to command prompt (.cmd). The following command is “pybot HelloWorld.tsv”. After the command is executed the output should be something like this:

[image: image21.png]

Figure.6: Fail Result Test

RobotFramework provide log and report result in html format. Those results can be seen in same folder.

The reason why show fail result is the RobotFramework doesn’t understand the test data “Hello World”. In order to make the RobotFramework understand it, a library should be created.

Creating test Library- The test library can be implemented in java or python. The library should save in “HelloWorld.py”, to use this library in test case file should add “ *** Settings*** “ and below it put” HelloWorld.py”.

This following pictures show the test case file, the library, and the providing files in same folder:

[image: image22.png]

[image: image23.png]

[image: image24.png]e] o o
HEEER
nnono
nnnnm
nans
Co I Jed

[image: image25.png]\Daniel U\25 april\test hello world>pybot Hellollorld.txt

le1loWior1d

restHellotlorld

le1loWlor1d
oritical test, 1 passed, @ failed
L test total, 1 passed, 8 failed

utput \Daniel IN25 \test hello world\output.xnl
og NDaniel UN25 \test hello world\log.htnl
teport: C:\Daniel WN25 aprilstest hello worldsreport.html

Figure .7: test case, the library, and the providing files in same folder

The test execution is done one more time .Same command is given again into command prompt and it show the pass result The following output is coming out like this:

[image: image26.png]def hello world():
print "HELLO WORLD"™

Figure.8: Pass Result Test

4.3.2 robomachine

robomachine is a test data generator for RobotFramework. This tool is not part from RobotFramework tool package .This tool gives the ability to generate a huge number of tests that can go through a very vast number of similar test scenarios. robomachine also contains algorithms that can be used to generate real executable Robot Framework tests from a robomachine model. [12]
In robomachine package there are number of examples of robomachine model. The model has certain suffix “.robomachine”. The works of robomachine, Robomachine generates test case “.txt” file from a “.robomachine model. After that RobotFramework is used to execute the generated test cases.

The robomachine can generate infinite number of test sequences. In command prompt, we can give commands to setting robomachine. The setting process is to constraint the generation. The example command:” robomachine --do-not-execute --tests-max 1000 --generation-algorithm
random infinite. robomachine “ from this command it show it doesn’t generate infinite number but generate 1000 numbers of test case. The default algorithm used by robomachine is DepthFirstSearchAlgorithm but from this command it use algorithm random. robomachine model has its own syntax rules. For installation of robomachine described at appendix installation.

The advantage of this tool there are 2 algorithms in this tool (Random and Depth first Strategy) and it can generate test case file from robomachine model into RobotFramework syntax. Disadvantage of this tool is difficult to follow the syntax rule of robomachine model to get the desired test case.
4.3.3 TEMA tool

TEMA tool set is a set of model-based testing tools, which executes test on the basis of keywords The TEMA tool provides a complete set of model-based testing tools from modeling to test generation. TEMA architecture has been design to support different kinds of SUT. [20] The components of TEMA architecture are the following: [13]

1. Model Design: Creating and maintaining models of the SUT

2. Test Control: Setting up tests

3. Test Generation: Generating and Executing test

4. Keyword Execution: Execution tool

TEMA tool set has documentations in the package. [14] In the package there is test engine tool for test generation. In test engine package there are some examples. These examples use the online library to do testing such as swing library and selenium library. RobotFramework is used to execute the example.

In the package there is adapter. This adapter has been implemented to handle the communication between online library and Test Engine.
Installing the adapter has been successful. The examples had been tried many times to make it work. But it did not come out in correct way. The adapter seems the problem. Because it is a modification of the TEMA adaptation made for Linux GUI applications. In appendix known problem document there are email from TEMA developer. The conclusion from him was to test the TEMA tool in Linux environment. [15]

4.3.4 Comparison between tools
The purpose of this section is to compare the tools that have been researched such as TEMA tool, RobotFramework and robomachine. The comparison between each tool doesn’t mean looking for the best one. Because every tool has their own advantage and disadvantage. Hereby below is the explanation about them.

	
	Advantages
	Disadvantages

	TEMA tool
	-It has the most complete architecture

-It has Test Engine to generate test case from model

	-It doesn’t have complete documentation

-It has been tested only in Linux Environment

-It needs knowledge around modeling to create model for test generation

	robomachine
	-It have two Algorithms for test case generation

-Test cases are generated in RobotFramework format
	-It difficult to follow the syntax rule of robomachine model to get the desired test case

	RobotFramework
	– It has complete documentations

- It capable of in execution test case and reporting the test result
	

Table 2: Advantages and Disadvantages

Refer to table 3, If it is seen from the conceptual view of fate only robomachine has role in one component. The TEMA tool has role as test case generator and adapter component The RobotFramework as execution tool and verdict meanwhile robomachine as test case generator component. robomachine and TEMA tool has similarity has role at test case generator. The technique is using also the same which is Model Based Testing. But the way of these two components in generating test case are different. TEMA tool use activity state diagram model to generate test case . robomachine used robomachine model that contain robomachine format. The test case that generated from both tools is generated into RobotFramework syntax.

RobotFramework is totally different with the other tools. RobotFramework is execution tool executing the test cases. robomachine and TEMA tool are depending on RobotFramework to execute their test case.
The three tools have been tried to be installed and tested, but only robomachine and RobotFramework are worked successfully. TEMA is not working because it only showed error message. TEMA tool only tested in Linux environment and the installation document has instruction in Linux environment. The tool should be set up in windows environment. Effort has been done to make the tool work in windows environment. But it only showed error message again.
	
	Tool

	
	TEMA Tool
	robomachine
	Robotframework

	Role in FATE component
	1. Test case generator

2. Adapter
	Test case generator
	1.Test Execution tool

2. Verdict

	Technique
	Model Based Testing
	Model Based Testing
	-

	End Result
	Test case in Robotframework format
	Test case in Robotframework format
	Log & Report Test Result

	Work
	No
	Yes
	Yes

	Used
	No
	No
	Yes

Table 3: Tools Comparison
4.3.5 Selection Tool
This section is to tell which tool is chosen and also follow with the reasons why they are used and not used. The reason from each tool why they are used and not used:
1. TEMA tool (not used)
· The TEMA tool still has problem with the installation. TEMA tool had been tried to install in Linux environment but it still didn’t work.

· The documentation is not complete. There are some instructions in the documentation but the steps that are given are not clear and not complete.
2. robomachine (not used)
· The robomachine model needs to be created in manually and must follow rule to create robomachine model. it’s hard to follow the rules to get the desired test case.
3. RobotFramework (used)
· It has complete documentation .RobotFramework is already tested. The instructions to set up and use the tool are really clear.
· It has capability in execution and reporting tool. This tools can take role as Execution tool and verdict
Finally, TEMA tool and robomachine are not chosen. Robotframework is chosen tool.

5. FATE Execution process
This section is presented to describe FATE by testing calculator as System Under Test (SUT) and implementation of test case generator to generate test case in automate way.

5.1 The Conceptual FATE

This section chapter presented to tells briefly the detail information of FATE. The explanation from each component and the decision that have been made to complete FATE structure are also presented.

5.1.1 FATE

[image: image27.png]", Settings "7
Library Helloworld.py

wxs Test Cases &
TestHel Towor 1d
Hello world

Figure.8 Conceptual View FATE

The Figure 8 shows the conceptual view of test environment in Fully Automated Test Environment (FATE). The test environment consists of several components: Algorithm, Test Case Generator, Test Script Generator, Test Execution Tool and Verdict. In order to help in understanding the concept of FATE an example of boiling eggs will be used.

We want to boil a hard-boiled egg (See figure 9). In the FATE concept this could go in the following way:

Algorithm

The algorithm calculates the boiling time. The input is given to algorithm by the user. As input it receives the required types of egg (Raw, Soft, Medium, and Hard). Using this input to calculate the boiling time.

Test Case generator

Test Case Generator Generates Test Case file. Test case file contains number of cases that want to be tested. “Boil egg” is one of case name. In each case the expected result could be given. “Hard-boiled egg” is the expected the result from this case name. In order to get the test result same as the expected result, receive the calculated boiling time from algorithm. When the “X” is defined in test case, the boiling time from algorithm will be used to replace the “X”.

Test Script Generator

Test Script Generator generates Test Script file. The test script file convert test case to commands SUT understands. The case name “Boil egg” is converted to commands (Steps).

Test Execution tool
Execute the commands from Test Script on the SUT.
Verdict

Receives the test result from execution tool .If the tests result (actual result) is not same as expected result “Hard-boiled egg” the test result fails. Verdict will give input to the algorithm.

Summary
Algorithm
Algorithm is calculates values for the input of test case generator
Test Case generator

Test Case Generator generates test cases in file, Each test case contains expected result and inputs generated by the algorithm
Test Script Generator

Test Script Generator generates Test Script file.
Test Execution tool

Execute the commands from Test Script on the SUT.
Verdict

Verdict gives test result pass or fails by comparing actual result and expected result. Verdict reports feedback to algorithm.

[image: image28.png][2 HelloWorld
& Heloworid
] Helloworid
Elleg

output
pybot
B report

Figure.9 Boiling Egg

5.1.2 Overview test “Boiling Egg” with RobotFramework
[image: image29.png]HelloWorld.py

[image: image30.png]:\Daniel W\25 april\test hello world>pybot HelloWorld.txt
[CR00% 1 Error dn File Ci\Daniel UN25 april\test helio world\HelloWorld.txt’ il
table ‘settings’: Test library ’HelloWorld.py’ does not exist

o keyword with name ’Hello world’ Found

critical test. 8 passed, 1 failed
test total, B passed, 1 failed

aprilitest hello worldsoutput.xnl
aprilitest hello world\log.htnl
aprilitest hello worldreport.html

Figure.10 Boiling Egg with RobotFramework
“TestCase.txt” contains test case that want to be tested. “TestCase1” is the name of first test case. This test case contains number of keywords. “TestCase.txt” imports “Algorithm.txt”, “TestScript.txt” and “Verdict.txt” to translate these keywords.

 “TestScript.txt” translates “Boil egg”. Keyword into commands SUT Understands such as “WaitTheEgg” and “GetEggOutside“. “BoilingEggScript.py” contains the implementation of these commands. This file is imported by “TestScript.txt”

“Algorithm.txt” translates TimeCalculated keyword into “calculatetime”. Algorithm.py has implementation of “calculatetime”. This method calculates boiling time egg and the result of calculation is use for input in “TestCase.txt”.
“Verdict.txt” translates “Verdict” keywords. “HardBoiledEgg” is set up into expected result and check if the expected result is equal with actual result. If it is not equal “inputToalgorithm” method is called and actual result is taken by this method. “Strategy.py” has the implementation of this method.
“Strategy.py” gives feedback to algorithm.py by giving actual result. “Algortihm.py” receives the actual result feedback and uses this feedback as input to calculate again the boiling time.

RobotFramework executes the test case into commands on SUT and gives test result. RobotFramework may executes this test case in one hundred (100) times. If test result keeps fail,” Algorithm.py” will receive input to calculate the boiling time until get the most accurate boiling time and at the end get the pass result.

5.2 Experimenting with Calculator
This section tells detail information to make Fully Automated Test Environment with Calculator. The detail explanation can be seen at Appendix in iteration (iteration 1). [20]
5.2.1 Experiment testing with calculator

There are several reasons doing Fully Automated Test Environment (FATE) with Calculator:

1. Getting more overview about FATE

We need to know how the work with the test environment by testing the Calculator .If the calculator can be tested in FATE way, it will gives some guidance to test other kinds of Systems

2. Well known used and simple functionality

Calculator is a well known application and it has simple functionalities such as addition, subtraction, and multiplication

3. Finding suitable item for FATE

Several items has been researched and found. They might have capabilities to complete the test environment.

Table below shows what items and followed the role from each items:

	NO
	Items
	Role

	1
	RobotFramework
	Test Execution tool & Verdict

	2
	AutoItLibrary
	Provide library to help translate the keyword in test script

[image: image31.png]«x% Test Cases ***
restel Towor 1d
Hello world

Table 4: items and role

5.2.2 Overview Fate with Calculator

 Figure.11 FATE with calculator

1. GoAutomated batch file.

[image: image32.png]Test Data

Robot Framework

Test Libraries

Test Tools

System Under Test

Test data syntax

Test library API

Application interfaces.

When GoAutomated batch file is executed, it will start the entire process from beginning till the end. This batch file contains 2 commands. First command is to call python to execute python file “TestcaseGenerator.py”. Second command will be explained in step 3.

Figure.12 GoAutomated batch file
2. [image: image33.png]PHILIPS

“TestCaseGenerator.py “is executed and generate test case in Test case file.

Figure.13 TestCaseGenerator.py
TestCaseGenerator.py is for generating number of test cases to test case file. This file contain algorithm to calculate number range and number of list in random way.

[image: image34.png]

All data that are generated in this test case file comes from “TestCaseGenerator.py”. User defines the output that he wanted to produce and uses algorithms to help calculate the output. The data contains keywords and need help from Test Script File to translate this keywords. The technique used in this test case is Keyword Driven Testing.
Figure.14 Test Case file[16]
3. GoAutomated has another command.

The commands are calling pybot and also with the name of test case file that later want to be executed. This batch file is calling pybot.

4. Pybot batch file.

Pybot batch file contains command to call RobotFramework to execute test case file.

5. RobotFramework is executed the test case file

RobotFramework tool is the execution tool to execute test case file. RobotFramework is executed the test case file that has same name defined in GoAutomated .

6. Test case file import Test Script files

[image: image35.png]Algorithm

Test Case

Test Case Generator

Test Script T

Test Script Generator

Test Result |

Execution Tool

O

SUT

Verdict

.

Pass or Fail

[image: image36.png]¢

Feedback ("ActualResult)"

Algorithm.p

BoilingEggScript.p

+calcuiatetime()- int()

[+WaitTheEgg(Time): void()
+GetEggoutside
+

[+inputToaigorithm() - String()

Import
Testscript it Verdict bt
Aigorithm.txt Setngs = s
[BoilingEggScriptpy starteqy py
Fesetings [Aigorithm.bt e
lAgorithm.py S o Koo
[Boileag
[~ Keywords == Expectedresult HardBoiledEgg
[TimeCalculated G ‘ShoulbeEqual {erpectedResult {ActualResult
calculatetime:
—
TestCase mj Import
SeHmgs @
|Atgoritam bt Execule
[TestScript bt RobotFramework SUT
|Veraictot
le-" Executipn Tool
[+ Testcase =
[TestCaset
Boilegg TimeCalculated HardBoiledEqg
Veraict QZ
Test Result 1
&

Pass Or Fail

Test case file import Test Script files to convert the keyword in test case to commands SUT.

 Figure.15 calculator_keywords(left) and Calculations (right)[17]
There are 2 test script file, calculator_keywords and Calculations are the test script file.

Both of this file work on translate keywords in test case to commands SUT understands.

“_init_.py” contain library for commands SUT. “CalculatorGUIMap.py” used to map Windows calculator GUI object names (such as the keypad button keys) , so the button keypad from calculator can be recognized.

init.py , CalculatorGUIMap.py and calculator_keywords is part from AutoItLibrary package.

7. RobotFramework execute all the commands given on the SUT.

8. RobotFramework gives test result.

[image: image37.png]#Get strategy name from StrategyFactory.py and return Strategy Class Name.
Gef myclass (Mystrategy) :

myclass = getattr (sys.modules[_name_], Mystrategy)

return myclass

Log and Report Result provide by RobotFramework. Contain result Pass or Fail with the detail log Date and Timestamp.

Figure.16 Test Result

5.3 Test Case Generator

This section tells detail about test case generator including design and implementation decisions.
The capabilities of test case generator are explained below:
1. Read User Input: The user defines the input he wants into user input file. There are 3 name categories input such as Algorithm, NumberofTestcase, NumberOfRepeats.

[image: image38.png]AGILE DEVELOPMENT

adaptability

— transparency

Agility is.. & . simplicity
- STRATEGY. 5%

estimston unity

CoNTINUOUS

efactoring

P voring
3 /\Sozare

burdosn

Figure 17.User Input file
Algorithm is to give the name of algorithm that will be used.

NumberofTestcase is to tell how many numbers of test cases want to generate into test case file.

NumberOfRepeats is to tell how many times of repetition test cases are generated.

Test case generator is read the user input that given in this user input file. The test case generate uses this input to be values that will be used for next process. This user input file is saved in excel (.xls) format.

2. [image: image39.png]Ready - fire - aim - aim - aim

~T>

VERSUS

[image: image40.png]

Chosen and Replaceable algorithm:
Figure 18.choose and replace algorithm
User select an algorithm by defining algorithm name in user input like explained in”Read User Input”. Test Case Generator is able to choose the selected algorithm. In another test when the user is selecting different algorithm. The test case generator is able to replace previous selected algorithm and chose new selected algorithm.
3. Write into test case file :
Test case generator writes the data into test case file. The data comes from algorithm. Test Case generator writes number of data and the repetition based on input defined in user input file.
5.3.2 Design
In this section design of class diagram and sequence diagram will be explained.
The user story is created to help the user to create design and implementation. There are 8 user stories in total. [21] The detail explanation of user story also explained. [22]
· Class Diagram

Class diagram shown in figure has designed for test case generator to fulfill requirements. Which are: Read User Input, Chosen and Replaceable algorithm and write into test case file.
1. Read User Input: Class FunctionParameterGenerator is responsible to read user input and give the value to class TestCaseGenerator.

2. Chosen and Replaceable algorithm: There are two design pattern used. They are Strategy and Factory pattern.[18] The strategy pattern is used by NameStrategy class to inherited many kinds of algorithm and makes the algorithm easy replaceable. Class NameStrategy is interface between the TestCaseGenerator and different types of algorithm. The algorithm class must be created by combine algorithm name and interface name. Such as:ConstantNameStrategy, RandomNameStrategy,EvolutionaryNameStrategy.
 The algorithm class must have function method GetOutput() . All the output that want to be written in test case file are given into GetOutput() function. The return value from this function is the output of algorithm class.
The factory is second pattern by help in choosing the chosen algorithm. The chosen algorithm is found out by looking the algorithm name that given in user input. After that Strategy factory class gives name which algorithm class is chosen.

3. [image: image41.jpg]1.0 Automated Test

Environment

3 Wesks 2 weeks

Additional Information:
1. Total weeks = 17 weeks (1 February 2012 - 31 May 2012)
2. Deadline Delivery Final Graduation Document = 8 June 2012
3. The Project methodology is AGILE Method
4. Tutor(Client) give help in Feedback Review
5. Tutor{client) will give acceptance release Source code
n can be seen in lteration Log

Write into test case file:Class Testcasegenerator writes data into test case file by writetotsv() function. Inside writetotsv() function call GetOutput() function. Test case generator writes number of test case and number of repetition that defined from user input. Return value from GetOutput() function is the data that will be written to test case file.

 Figure 19.Class diagram Test Case Generator
· Sequence diagram
[image: image1.png]‘sd Test Case Generator

g .. B = ==

1.2: ValueName
1.3 getStrategyname()

1.4; classname !

1.5 myclass(Mystrateqy)

1.7: outpuata

2 wite oupuDatato fle

Figure.20: Sequence Diagram Test Case generator

The sequence diagram shows in figure 16 describes how various class work together to get certain functionality. The algorithm name in this sequence diagram is Random so, there exists a class named RandomNameStrategy class. The explanation over this sequence diagram:

1. Actor execute the writetotsv() function in TestCaseGenerator class

1.1 TestCaseGenerator class gives instruction to FunctionParameterGenerator class to call getValuedownAfterheadingName(MyheadingName) funtion. This function finds the heading name in user input file and gets value after one row.

1.2 Return value name to TestCaseGenerator class

1.3 TestCaseGenerator use this value for example the return value is algorithm name “Random”.

Algorithm name that has been received is used to get the algorithm class name. getStrategyname() function is responsible to get the algorithm class by combining algorithm name(“Random”) with interface(NameStrategy) in Strategy Factory class. So it will get algorithm class name “RandomNameStrategy”.

1.4 Return class name (“RandomNameStrategy) to TestCaseGenerator class.

1.5 Test case generator process class name to get the class “RandomNameStrategy”

1.6 After Test case generator know Class “RandomNameStrategy”. Test case generator call GetOutput() to get the output data from “RandomNameStrategy”.

1.7 The Output data is return to TestCaseGenerator.

2. TestCaseGenerator writes the output data to test case file.

In appendix, design document contained the detail description. There are design of class diagram, high level architecture, sequence diagram and responsibility of each class. The version of each design is explained. [19]

5.3.3 Implementation

1. Read User Input

Decision has been made ​​about the format of the user input file. Excel file is chosen as format of user input file. It is required to have a function that can read user input that defined in excel sheet. Research library or tool is done to find the tool who can read excel data. The tool called pyExcelator is found. This tool is open source and has library to read and write data in excel sheet. The library to read data is xlrd and write data is xlwt. Since the requirement only reading the data, so only xlrd is concerned.

	Class
	FunctionParameterGenerators

	Precondition
	1. The user input file is exist with three heading name

2. The input value is located one row below every heading name

	Works
	1. Read data in excel sheet and check who has same heading name (Algorithm , NumberofTestcase, NumberOfRepeats)
2. Get Number row and column and go down one row to get the value.
3. Read the value in excel sheet as Unicode type and Change the type from Unicode to string or integer

	Post Condition
	1. Return value is in string type or integer type

Table 5: FunctionParameterGenerators class pre and post condition
In excel sheet, there are 3 heading name which are Algorithm, NumberofTestcase, NumberOfRepeats. User defines his input one row below these heading names. These inputs are used later as value. All data that defined in excel sheet are Unicode type or float type.

[image: image42.png]Backlog

Project plan

User requirement document

Final Report

[Known problem document

Design document

|Generate test case according algorithm

|Generate test case translate into test script

|Create interface between test case generators with test script generator

|Generate Test script to give command for SUT

|Generate Test script to do testing

|Create interface between test script generators with test execution tool

|Create interface (adapter) between test execution tool and SUT

Execution tool send the command to SUT

Execution tool receive the result and pass to verdict

|Create interface (strategies) between test execution tools with Oracle

| With Oracle give verdict to the result pass or fail, by using strategies to compare the expected result with result that given from SUT.

Dependent on the chosen algorithm the Test case generator use the result to generate another test case set.

Log relevant data(such as :Date &time stamp, the result pass or fail, the action, the given input) (20)

[selecting better candidate for algorithm

[selecting the strategies for result evaluation (oracle)

User manual & installation manual

Total point

Iumummmmmmmummuumb.uub g

In class FunctionParametersGenerators , to read user input getValuedownAfterheadingName function is implemented. This function read all data in excels sheet and check if there is a data has same name as heading name. After it has found the same name, row and column number are given to get location of the heading name. The location of the value is located one row below heading name.

[image: image43.png]Pass or Fail

v

TestCaseGenerator class calls the getValuedownAfterheadingName function to get the value. Table 5 shows how this function is called. TestCaseGenerator class defines “Algorithm” to get algorithm name, so it will look up in excel sheet to find heading name algorithm and return value from this function is the input that defined one row below heading name algorithm.
	AlgorithmName = FunctionParameter.getValuedownAfterheadingName("Algorithm")

Table 6: Function to read user input

[image: image44.png]Assistance Company Supervisor

Hans Spanjers
Rian Wouters
Bart Golsteijn

The data that are defined in excel sheet is in Unicode type or Float type. Before the value is given to test case generator the type of the value should be in String type or Integer type. In getValuedownAfterheadingName function is added few more line code to translate the value into String or Integer Type.
2. Chosen and Replaceable algorithm
 The user chooses the algorithm he wants to use in user input. Test case generator generates data using the defined algorithm. The reason user chooses algorithm is to calculate the input in test case.
In class diagram is explained there are two types design pattern used. Strategy pattern is applied in implementation by creating NameStrategy class. This class is act as interface and inherited different type of algorithm.
	Class
	NameStrategy

	Precondition
	The user define the algorithm name in user input

	Post Condition
	 NameStrategy call StrategyFactory class to get the algorithm class name

Table 7: NameStrategy class pre and post condition
The Strategy pattern is used can been seen by looking at all the algorithm that inherited with NameStrategy class, these algorithm class name ended with”NameStrategy”. If the user is not define any algorithm name in user input file. The return value from NameStrategy class will be used.
The algorithm that has been implemented is Random, Constant, and Genetic algorithm. Genetic algorithm is taken from outside resource.
RandomNameStategy class contains Random algorithm to calculate random data. Every algorithm must have function getOutput. The return value from this function to give what kind of output will be written into test case file.

The Factory Pattern is another pattern that used beside strategy pattern. The useful idea for using this pattern is referring to algorithm name in user input file. It makes a decision to choose which class to instantiate. Strategyfactory class uses this pattern. The return value from this class is the name algorithm class by combining the algorithm name with NameStrategy class name. For example, the user defined random algorithm in user input file, so the factory pattern instantiates to call class algorithm name with the name “RandomNameStrategy”.

	Class
	StrategyFactory

	Precondition
	User define algorithm name Avaliable and NameStrategy class is exist

	Post Condition
	 The combination name of Algorithm name and NameStrategy class in String type

Table 8: StrategyFactory class pre and post condition
Below shows the StrategyFactory
[image: image45.png]Q1-"ontys

The return value form StrategyFactory is returned back to Test CaseGenerator. The return value is in the string type because the combination between Algorithm name and NameStrategy in string type.

TestCaseGenerator class received the algorithm class name in string type. TestCaseGenerator class can choose the algorithm class in class type not in string type. To convert from string to class type it use gettattr(). Return class name for my class function is the name of chosen algorithm class.

[image: image46.png]

3. Write to test case file

TestCaseGenerator class has chosen algorithm name. The algorithm class has getOutput() function and TestCaseGenerator class call this function to get the output that are given from chosen algorithm class. TestCaseGenerator class writes the output data to test case file.

The number output data and repetition in test case file is depend on the number of test case and number of repetition that are defined by the user in user input file.
5.4 The works need to do to test different kind of SUT
Every time the user wants to test another SUT, the user needs to make new test case, test script or strategy. The reason is because each SUT has different functionality and behavior. There are some explanations about work need to do to test different kind of SUT .Test case generator that has been implemented and Robotframework can be used.

The works need to do are:

1. Be Familiar with Functionality and behavior of SUT

2. Define and Implement the component

Algorithm:

· Implement the algorithm:

Test case generator uses algorithm as input to generate test case. Implement algorithm to calculate this input to find problem in SUT.

 Test Case Generator:

· Define the test case that want to be tested and which test cases require input from algorithm.

· Use Test case generator to generate output similar as test cases that have been defined

Test Script Generator:

· Define the test script that has command to translate each test case.

· Create Test script generator to generate output similar as test scripts that have been defined

· Implement the commands: The command of SUT need to be implemented, so Test Execution tool is able execute this command on SUT

Test Execution tool:

· Use RobotFramework

Verdict:

· Implement the Test Strategy :

Strategy used to give test result if there isn’t any prediction of expected result and help verdict to report feedback to algorithm.

3. Create Batch file to start the entire process

6. Encountered and Solution

During the project many problems are faced but fortunately there are ways to solve them.

	No
	1

	Problem
	Communication & Requirements

	Description
	Communication towards client to understand the client needs and The client found unsatisfied because the document didn’t fulfill all the requirements

	Solutions
	Many discussions were arranged to get clients demands and The client needs are written down in user requirement document with the priority

	No
	2

	Problem
	Research Tools and Techniques followed by the installation

	Description
	Finding the tool and learning the theory of the tool are action to get idea which candidate can be used for the project. To make sure the candidates are useful. The effort is made to install and test candidates. There are several problems during installation of candidates shows in appendix Known Problem Documents

	Solutions
	The information of solution also shown in appendix Known problem documents

	No
	3

	Problem
	Understanding more deeply with FATE

	Description
	Each components of FATE has different meaning and usability .Learn the theory of each component to get familiar with it.

	Solutions
	Experimenting with calculator

	No
	4

	Problem
	User Story & Test Case Generator

	Description
	The steps were taken before implementing test case generator are create user story and design. The problem user story was dissatisfaction with the given steps which are too much implementation detail. The pattern of design wasn’t good.

	Solutions
	Tutor gave the example solution to solve one case in user story. The solution of design was by using Strategy pattern and Factory Pattern

7. Conclusion and Recommendation

This section tells about the conclusion and recommendation of the project.
7.1 Conclusions

1. RobotFramework tool is suitable for Test Execution Tool and executes many test cases

RobotFramework is used for Test Execution Tool. This tool works by executing the test case and provides log and report result. The report contains result pass or fail. The pass or fail is given by comparing the expected result that defined in test case and actual result that given from System under Test (SUT).

RobotFramework can be used to execute many numbers of test cases in one test case file.

2. Test Case Generator has been implemented and generates many test cases

Test case Generator that has been implemented generates number of test cases with the help algorithm and also depending on user input.

The algorithms that have been implemented are responsible for the output of test case in test case file.

Test Case generator chooses the chosen algorithm and the number of test case generated depends on user input.

3. The final test environment has not been completed yet

The test environment hasn’t been set up into Fully Automated Test Environment (FATE) and the test environment couldn’t do a test with different kind of SUT.

From all the components in test environment, only test case generator and test execution tool convinced to be used. The algorithm component still couldn’t find problem in SUT, Test Script generator couldn’t generate test script and verdict couldn’t evaluate test result and report feedback to algorithm.

7.2 Recommendations
 1. Use RobotFramework tool as a test execution tool.
2. Model based testing is good technique for generating test case from model. The test case generator that had been implemented is using algorithm instead of model. This technique had been researched (look at Part 4.2.1) and had given idea in theoretical to set up test environment.

3. Do research with verdict for completing the test environment structure and algorithm to find problem in SUT.

8. Evaluation

I’m really glad to have the opportunity to do graduation internship at Philips Research Company. This graduation internship is internship that I must complete to get my bachelor diploma.

There were many valuable experiences and processes that I have learned. I have learned a lot about how to communicate with the client, project management, IT knowledge and documentation during the graduation project.

The weekly meeting with company tutor is really helpful to control project management and communication with client. Knowledge about basic software testing, design pattern, Python programming language is an improvement that I got to increase my IT knowledge. Company tutor also gave feedbacks to my documents so it helped me to improve the document quality.

Finally, I have learned many new things and the experience that important for me. This internship definitely increased my skills. I hope all of my personal gains that I have mentioned above will help me to find opportunities for getting a job

9. References

[1] http://www.astqb.org/educational-resources/glossary.php
[2]http://www.philips.com/about/company/history/index.page
[3]http://www.philips.com/about/company/history/ourheritage/index.page
[4]http://www.philips.com/about/company/companyprofile.page
[5]https://pww.research.philips.com/home-page/organization/research-sites/eindhoven

[6]http://drops.dagstuhl.de/opus/volltexte/2010/2620/pdf/10111.LegeardBruno.Paper.2620.pdf
[7] http://www.cs.umd.edu/~atif/testbeds/TESTBEDS2011-papers/Pajunen.pdf
[8]http://code.google.com/p/robotframework/
[9]http://robotframework.googlecode.com/hg/doc/userguide/src/GettingStarted/architecture.png
[10] http://robotframework.googlecode.com/hg/doc/quickstart/quickstart.html

[11]Appendices, Appendix A6. Installation Manual, No 4

[12]https://github.com/mkorpela/RoboMachine/blob/master/README.rest
[13] http://www.cs.umd.edu/~atif/testbeds/TESTBEDS2011-papers/Pajunen.pdf

[14] http://tema.cs.tut.fi/downloads.html
[15] Appendices, Appendix A8, Known Problem Document, No.1

[16] Appendices, Appendix A9, Implementation, TestcaseFile.txt

[17] Appendices, Appendix A9, Implementation,Calculations.txt ,calculator keywords.txt

[18] Gamma, E., Helm, R., Johnson ,R. & Vlissides, J. Design Patterns , Elements of Reusable Object-Oriented Software. ADDISON-WESLEY
[19] Appendices, Appendix A5 ,Design document

[20] Appendices, Appendix A1 iteration , iteration 1

[21] Appendices Appendix A2 User Story.

[22] Appendices Appendix A1 iteration, Iteration 2 and iteration 3

Appendices
Appendix A1. Iteration

Iteration

This chapter tells the activities of iteration in every week.

Iteration 1

12 March-16 March 2012

In Iteration 1, do the work as simple as possible for understanding the complete system of automation test. Test case file has to be created to test the SUT. Calculator is the simple example of SUT because is well known used and have simple function that could be tested such as: Multiplication, Division, Addition and Subtraction. There is already also existing library script for this SUT. The name of this library is AutoItLibrary. The process execution is required execution tool to execute the test case file. RobotFramework is the name of the execution tool. This tool also is able to give the result and log file. Another case is to create batch file, inside the batch file contain commands to create and execute test case until get the final result.

[image: image47.png]

[image: image48.png]TestCaseGenerator

[strategyAlgorithm

+GenerateTestCase(jvoid

[®witetotsv(void

+selectalgorithm(Algorithm)

FunctionParameterGenerator

ReadFile()
GetFunction()

Get Parameter()
GetParamentertiintiax)
GetParameteralgorithm

Algortihm

+getValue()
+getFunction()
+setvalue()
+setfunction)
+sethumberofValue()
|+SetRangeValue()

Random Algorithm

+GenerateData()

‘OperationalProfile
Algorintm

Evalutionary Algorithm

+GenerateData()

+GenerateData()

[image: image49.png]|

3| X(Minutes)
Test Case
No| TestCase Time(Minutes) | Expected Result
1 | Boilege x Hard-boiled egg
v
Test script
No| steps
1 | Boileggin X minutes
2 | Geteggoutside
3 | OpenandCheckThe egg
Soft-cooked egg Runnyyolk Comletely cooked
Medium-cooked egg Semi-runny Comletely cooked
Hard-boled ege Comletely cooked Comletely cooked
4 | Reporteggcategory
Egg
category
« >

suT

Pass | . w| Fail

Create test case file is the first requirement that need to be done. Before start creating test case file, the chosen execution tool should be known. The execution tool should understand the format of this file and the syntax data in this file. This execution tool currently only understands HTML, TSV, TXT format. This tool includes the library to make the data in the test case file are understandable for SUT.

Test case file is created in TSV format.

[image: image50.png]

Figure above show the implementation to create test case file in TSV format. It needs to import csv library, give the name file with .tsv after the filename and setting up the format data. The important setting format is delimiter in tab(‘\t’). Each data should separate in one tab character. Next step is deciding what data want to generate in this file.

[image: image2.png]FEEserting* ¥
suite setup

Test setup
Resource
Resource
FreTest Casexwr
calculations
Addition
Multiplication
Addition
Aaddition
Multiplication
substraction
Multipiication
Multiplication
Multiplication
Multiplication

INTNPINEYVe

start calculator
Suite Teardown Stop calculator
Clear Calculator
calculator_keywords. txt
calculations. txt

NNNWNLWoo®

crmpumonop

Figure above show example of test case file, it has one name of test case called Calculations. Inside the test case, it tells what case from SUT function will be tested. It required at least one of the test case names. The technique used in test case is keyword driven testing

AutoItlibrary is python keyword library provided keywords based on the COM interface, a freeware tool for automating the windows GUI. Start calculator is one of example keyword used for starting the calculator. The case name “Addition”is defined, it doesn’t mean the keypad addition (+) button will be clicked automatically. The AutoItlibrary contains the script CalculatorGuiMap.py. It defines a python dictionary variable “GUIMAP” used to map Windows calculator GUI object names (such as the keypad button keys). This script makes the calculator recognize the meaning of case name. The script translates the case name “Addition” and make calculator recognize it as addition (+) button.

[image: image51.png]

[image: image52.png]

[image: image53.png]import csv #For Create CSV or TSV format

des uriteTotsv():
open_file= open('C:/Daniel W/2 april/TestcaseFiledd.tsv', 'w')

FunctionParameter = FunctionParameterGenerator ('C:/Daniel W/2 april/belajar/userstory2.xls’,’Sheetl’)
spamiiriter = csv.writer(open_file, delimiter='\:t’,
quotechar='"", quoting =csv.QUOTE MINIMAL ,doublequote = 1,
skipinitialspace = 0 ,lineterminator = '\r\n', escapechar = None) # Setting up the Format

[image: image54.png]

Robotframework execute the test case file, figure below show how the calculator is tested

[image: image55.png]

After every case is tested, Robotframework log date and timestamp, test result (fail or pass). The log file is stored in HTML format.

Create Batch file - In User Requirements Specification (URS) , there is Command requirement name is User_start, to start with following command: GoAutomated. The GoAutomated batch file is created to start the FATE in command prompt (.cmd). When GoAutomatead Batch file is executed ,it will automatically create test case file, execute test file and give the result.

[image: image3.png]icrosoft Yindows LUersion 6.1.76011
opyright (o> 2009 Microsoft Corporation. A1l rights resel

dez
s\>cd “C:\Daniel UNiZmarch”

\Daniel W\i2march> Gofutomated.hat

Actually In iteration one, It has already done the process in complete way. But the script from the test case generator is not well structured. At this iteration only could provide one type of test case. The next iteration is required to design test case generator and make test case generator more flexible. The meaning of flexible in here is the user can give the name of function from SUT that he want to test, the input data that he want to test.

Company tutor gave recommendation to create good design by making user story. The user story tells give the example of case and how the user does or needs to do to test every case. User story and design is the next steps that are need to do in next iteration.
Iteration 2

19 March-23 March 2012

In this iteration start focusing on developing test case generator. In order to create test case generator design is required. Before start make the design, user story need to be created to have idea and story to solve the case. User story contain number of case and the step user need to do to solve the case. The first step is creating number of cases to create test case generator. User story in appendix, There are 8 numbers of cases. One example case of user story:

1. Test divide function c=a/b.
a is a random constant value [0..100]
b is a random floating value [-10.0..5.0]
TSV:
divide
5
1.0
5.0
divide
35
0.5
70.0
divide
88
0.0
error

User story step:

1.Daniel create batch file

2. Daniel writes in command prompt (.cmd). “Algorithm -Random ,Parameter 2 –random ,GoAutomated.Bat .

The mistake is made in this iteration, because it’s just not only give command to batch file and everything going to be solved. This is not what client wanted.

After fixed user story steps, it showed the steps to call what functions is needed. This is next version of user story steps.

User story step:

1. Daniel create tetscasegenerator.py .

2. Generatetestcase() function from test case generator class call getvalue() and get function() function from algorithm class.

3. The random generatedata() from 0 to 100 random generated constant from -10.0 to 5.0 and function “Divide”

4. Call function detectZeroDivide() to get error

5. Algorithm class set the value ,function, and number of value

6. Generatetestcase() start generate test case

7. Openfilename() and write to tsv()

Based on this user story steps, class diagram is made, the class diagram included the methods and class name. Class diagram is designed by following the chosen design pattern. The pattern used is strategy pattern. The reason using strategy pattern is there are many algorithms and use strategy to easy replace the algorithm. This is the class diagram using strategy pattern.

[image: image56.jpg]

Tutor gave comment, “don’t go into implementation first. First do the design until meet good design, if the design is good the implementation is easier to make”. Tutor also gave feedback to this class diagram and user story steps. The class diagram was good enough and user story steps need to be changed again, because this user story steps have too much implementation detail. Tutor suggested in next iteration focus on only one user story until get a good user story steps.

Iteration 3

26 March – 30 march 2012

Iteration 3, the work is most same like iteration before. Brainstorming is held to get desired user story steps and improved good class diagram. The solution for user story steps made in this iteration is included the Model Based Testing (MBT) but, the client still didn’t satisfy with it. Since, this iteration too focused with user story, research on new tool is done here. The tool name is TEMA tool. TEMA tool has TEMA-test engine to do the test based on MBT design ,but the problem with this tool have no complete documentation so it took more time to make this tool able to work. But this tool only tested in Linux environment. There are more explanations about TEMA tool at research chapter.

Tutor asked me to have brainstorming together to finish the user story steps. Tutor leaded me how to make a good user story steps. The result from brainstorming is we made better user story steps. In below show correct user story steps.

1) FATE
Define Function = Divide

Define Number_Of_Parameter = 2

Define Parameter [1] range [0,100]

Define Parameter[1] type = Int

Define Parameter [2] range [-10.0 ,5.0]

Define Parameter[2] type = float

Select parameter(1) algorithm =random

Select parameter(2) algorithm = random

Select Function Algorithm = none

Define expected result(1) type = float

Define expected result(1) threshold = 0.000001

Define verdict

If parameter(2) == 0 then expected result(1)= error

Else expected result(1) = parameter(1) /parameter(2)

2) Start FATE

3) FATE will generate TSV file with a certain size. If this size is not given, then a default value will be used. After the first generated TSV is executed completely Fate generates again a new TSV file and continues with this until the user stops FATE

The Client quite satisfied with this user story. The main difference with user steps before is it has no implementation detail, shows what user needs to do and user can define what he wants. The tutor gave solution for the user story steps by using excel file. In excel file the user define what data he want to generate into test case file. The class diagram is improved again. The next iteration does implementation of test case generator.
Iteration 4

2 April -6 April 2012

Reading data defined by user in excel sheet and use test strategy to write data into .TSV file are the main points in Iteration 4. Research library or tool is conducted to complete both of them. The tool called pyExcelator is found. This tool is open source and have library to read and write data in excel sheet. The library to read data is xlrd and write data is xlwt. Since the requirement only reading the data only concerned in xlrd. Writing into tsv file required library called CSV library, this library is part from python library packages.

The first version implementation can be found in appendix. This version is not well structured but this code completes the main points.Reading data by using xlrd , it can read all the data from the sheet. But to get the defined data finding row number and column number is needed. The user is defining data in excel sheet such as Function Name, Function Algorithm, Parameter Number, and Parameter Range. Generate data into tsv file required strategy. There are numbers of strategy such as Random , Constant, Evolutionary, and etc. Those strategies can be called algorithm. By using different algorithm the data is generated in different way. This iteration focused with random algorithm. Random algorithm is easy part. The user is defined algorithm in function algorithm and parameter algorithm. This algorithm is taking a function from function list in random way and a number between the given ranges.

In excel sheet, if xlrd read string data it will return Unicode type and if read number data it will return type float.

The interesting part in this implementation is finding the parameter minimum range and maximum range. First step need to do to find the heading name with “Parameter”. Next is finding total number of parameter, put the parameter in list with the algorithm and last is split the string to get the minimum and maximum number. The code can be found in appendix.

This implementation is not good enough, because it didn’t follow the structure with class diagram. The next point in the next iteration is structuring the test case generator.
Iteration 5

10 April -13 April 2012

Iteration 5 worked on structuring code according class diagram. Last implementation only implemented in one class. This class is should divided into three classes (AlgorithmStategy, FunctionParameterGenerator, TestcaseGenerator) , each classes have own responsibility. More detail responsibility for each class can be found in design document. The structure of the design is extension from class diagram in iteration 2. Besides using strategy pattern, it used another design called factory pattern. The useful idea for using this pattern is this method lets a class defer instantiation to subclasses .Referring to algorithm it makes a decision to choose which class to instantiate. For example the user defined random algorithm, so the factory pattern instantiate to call class name with the name “RandomNameStrategy.py”.

Another algorithm is implemented. The name of this algorithm is evolutionary algorithm. The works of this algorithm is evolutionary mutate the source till get the same name as the target. The detail explanation about this algorithm can be found in clever algorithm chapter.

Client gave feedback about the implementation. The found problem is the algorithm still located in same class. For example the RandomNameStrategy class, EvolutionaryNameStrategy class, both of them still in one class called AlgorithmStrategy.py. The client wants each algorithm separated into different class name so these algorithms have their own class. When fixing this implementation another problem is found with factory pattern. Factory pattern has a strategy. This strategy has return value to tell which class should work based on algorithms. This picture below show the strategy

class StrategyFactory():
 @staticmethod
 def getStrategyName(algorithmname):

The class name of the strategy is defined as the name of the FunctionStrategy class prefixed by the algorithm name
 className = algorithmname + NameStrategy.__name__
 print className # Convert string into class type.
 StrategyClass = getattr(module(), className)
 print StrategyClass
 return StrategyClass(0,0,0)
It shows it return strategy class. But to get the strategy class it needs to know the class name. The class name should be in class type not in the string type. To convert from string to class type it use gettattr().

It combines the module name with class name to get the strategy class. The problem is every class has different module name .Another problem, when the algorithm is separated this strategy couldn’t return the strategy class because of the module name.

Another feedback from client according user input in excel sheet. The client wants simple user input. The user input like show in appendix, client found is difficult to understand. So the client told what he wanted. He wanted have only three columns. The first column user can give input for the algorithm, the second column give the number of the test case, and the third column the number of repetition. The number of repetition is for evaluating the result every one repetition.

The plan for next iteration is to get the module name from outside classes, fix the user input in excel sheet and restructuring the code to make it work with new condition such as when the algorithm is separated.

Iteration 6

16 April – 20 April 2012

Based on client feedback on iteration 5, the simplest thing to do is fix the user input in excel sheet. In appendix is show new version of user input. The effect after the user input is changed. Some of code didn’t use anymore because the user defining the user input in another way. The main part in this iteration is restructuring the code. The code should be able to use the algorithm in different partition class.

Restructuring the code by getting the input from excel sheet and separating and fix the algorithm. Getting the input from excel , it already done before this iteration. To get the user input name such as algorithm,Numberoftestcase, number of repetition, just tell the heading name and it will get the value below that heading name. Example

AlgorithmName = FunctionParameter.getValuedownAfterheadingName("Algorithm")

Next step is separate the algorithm into different classes. Creating class name also based the algorithm, example RandomNameStartegy is for random algorithm. Every algorithm must have function class getOutput(). The algorithm class can give many functions but it class needs to decide what kind of output will be write into .TSV file and test case generator call function getOutput () to get the output and just have responsibility to write the output into.TSV file.

The problem faced in this iteration the StrategyFactory.py couldn’t return the algorithm class name and can’t recognize the module name of algorithm class outside it class.

The next iteration make the module name is recognize outside class
Iteration 7

23 April – 27 April 2012

This iteration is looking for the solution to solve the problem in iteration before. The purpose is making the StrategyFactory.py recognize module name of algorithm outside his class. The way to get the module name is by importing the class name. In the StrategyFactory.py class imported the algorithm class but it still didn’t know the module name.

There is solution to solve this problem. Keep using the StrategyFactory.py but it return only strategy name and create new function in TestCaseGenerator.py to return the strategy class name. This new function work by getting the strategy name from StrategyFactory.py and get module name of algorithm class by importing its class. The things that need to be added in TestCaseGenerator.py like as follow:

#import the algorithm class to get module name from its class

from RandomNameStrategy import RandomNameStrategy

from ConstantNameStrategy import ConstantNameStrategy

from GeneticAlgorithmNameStrategy import GeneticAlgorithmNameStrategy

#Get strategy name from StrategyFactory.py and return Strategy Class Name.
def myclass(Mystrategy):
 myclass = getattr(sys.modules[__name__], Mystrategy)
 return myclass

In this iteration, the program can be used already for test case generator. The tester can add his new algorithm and give the output he wanted inside that algorithm. But there are several rules need to be followed such as:

In this case the tester wants to create “Searching” algorithm

1. When create new algorithm class ,he should create name like following order “Algorithm” +NameStrategy example for it is SearchingNameStrategy.py

2. Create new class name in that class with same name ,example “class SearchingNameStrategy()”

3. Put function getOutput() inside SearchingNameStrategy.py to return what kind of data he want to write into .TSV file

4. Import Algorithm class in TestCaseGenerator.py example “ from SearchingNameStrategy import SearchingNameStrategy”

5. Change the file name for user input (excel) and output file (.tsv) in TestCaseGenerator.py

Iteration 8

1 May – 4 May 2012

Iteration 8 tried working on unit testing. Python offer library for unit testing, the name of library is “unittest.py”. In unit testing the things that really have to be noticed is the function that will be tested should be known and the return value or result from that function can be expected. The name of the function should be initiated with “test” otherwise it can’t be tested. One function is representing one test.

import unittest
from TestCaseGene.RandomNameStrategy import RandomNameStrategy
class StrategyTestCase(object):
 #Test the function from RandomNameStartegy and verify the result.
 def test_get_Name(self):
 a = RandomNameStrategy(0,0,0)
 b = a.getName(0)
 self.assertEqual('Random', b)
class RandomStrategyTestCase(StrategyTestCase, unittest.TestCase):
 strategy_class = RandomNameStrategy
if __name__ == '__main__':
unittest.main()

First try testing RandomNameStrtategy.py to be familiar with unit testing like show in figure above. The function in class StrategyTestCase is defining test methods whose names start with test. The test methods perform getting the result from another class and calls assert methods to verify the expected results. There is “unittest.TestCases” in Class RandomStrategyTestCase. This class is representing for class StrategyTestCase. The block at the end of the figure above calls

Appendix A2. User Story
8 user stories for test case generator

1. Generate random a numerical key. Key value between [0..9]
Result TSV for example :
numkey 3
numkey 0
numkey 7

User Story:

Function

Parameter

Numkey

Int [0,9] random

1) Test design : What kind of tests should be generated?

2) FATE
Define Function = Numkey

Define Number_Of_Parameter 1

Define Parameter [1] range [0,9]

Define Parameter[1] type = Int

Select Function Algorithm = none

Select parameter[1] algorithm = random

3) Start FATE

FATE will generate TSV file with a certain size. If this size is not given,then a default value will be used.After the first generated TSV is executed completely Fate generates again a new TSV file and continues with this until the user stops FATE

2. Test divide function c=a/b.
a is a random constant value [0..100]
b is a random floating value [-10.0..5.0]
TSV:
divide
5
1.0
5.0
divide
35
0.5
70.0
divide
88
0.0
error

User story:

Function

Parameter 1

Parameter 2
 Expected result

Divide

 Int [0,100] random
float [-10.0, 5.0] parameter1/parameter2

4) Test design : What kind of tests should be generated?

5) FATE
Define Function = Divide

Define Number_Of_Parameter = 2

Define Parameter [1] range [0,100]

Define Parameter[1] type = Int

Define Parameter [2] range [-10.0 ,5.0]

Define Parameter[2] type = float

Select parameter(1) algorithm =random

Select parameter(2) algorithm = random

Select Function Algorithm = none

Define expected result(1) type = float

Define expected result(1) threshold = 0.000001

Define verdict

If parameter(2) == 0 then expected result(1)= error

Else expected result(1) = parameter(1) /parameter(2)

6) Start FATE

7) FATE will generate TSV file with a certain size. If this size is not given,then a default value will be used.After the first generated TSV is executed completely Fate generates again a new TSV file and continues with this until the user stops FATE

3. Initialise a stack with a random number of n push commands. n is a constant [1..1000]
Generate 2*n pop functions

TSV

Push A

Push A(total of n times push A)

Pop

Pop(total of 2 *n pop)

When n+1 times pop expected stack error

a. Test design : What kind of tests should be generated?

b. FATE

Define function (1) push

Define Parameter n range [1,1000]

Define Parameter n type = Int

Select parameter n algorithm = random

Setfunctionrepeat(1) to n

Define Funtion(2) pop

Setfunctionrepeat(2) to 2* n

Define verdict:

If>n times pop then expected result(1) = stack error

c. Start FATE

FATE stops after executing all push and pop functions

4. Generate 300 random values [-10000..9999]. Use the highest generated value as a new seed for the random generator to generate again 300 random values. Continue this process indefinitely.

Parameter 1

 number values (I)

new seed

int random [-1000 ,9999]

300

new seed = max[i]

TSV1

1 893

2 8989

3 9998

… ….

300 9992

TSV2

1 9998 (max number from last tsv

2 859

3 932

… ….

300 933

1 Test design : What kind of tests should be generated?

2 FATE

Define Number_Of_Parameter 1

Define Parameter [1] range [-1000,9999]

Define Parameter[1] type = Int

Select parameter[1] algorithm = newseedrandom

Define numbervalues(i) = 300

Define repeat indefinitely

3 Start FATE

FATE generates number only with 300 numbers, Generate continuously until get stop command from user. FATE stops after user gives command to stop the test

5. Test the following email functions according to the given probability.
20 % of the time “write email”. Content is defined in wemail.txt
14% of the time “send written email”.
46% of the time “Read email”
10% delete email
10% scroll email list for x seconds.

This is called an operational profile. An operation profile is a set of independent operations that a software system performs and their associated probabilities.

Operation profile (OP):

Function

percentage number(user input)

Write email
20

Send written email

 14

Read email

 46

Delete email

 10

 Scroll email list for x seconds.
 10

1 Test design: What kind of tests should be generated?

2 FATE

Define algorithm=operational_profile

Define operational_profile=OP_definition_file

3 Start FATE

FATE Generate functions according to the operational profile.

6. Generate random choice from calculator functionality, random number value[0…100], and depended number parameter with functionality name .
Result TSV for Example:

Multiplication
5 80
Division
 7 2
addition
3 8
SquareRoot
25
Power

9

Function
 Parameter 1
 Parameter 2
 expected result

Multiplication
Int[0,9] random Int[0,9] random parameter1 * parameter2

Addition
Int[0,9] random Int[0,9] random parameter1 + parameter2

division
Int[0,9] random Int[0,9] random parameter1 / parameter2

SquareRoot
Int[0,9] random

Parameter 1 1/2
Power

Int[0,9] random

Parameter 1 2
1. Test design : What kind of tests should be generated?

2. FATE
Define Function = Action

Define Number_Of_Parameter = 2

Define Parameter [1] range [0,9]

Define Parameter [1] type = Int

Select Parameter [1] Algorithm = random

Define Parameter [2] range [0,9]

Define Parameter [2] type = Int

Select Parameter [2] Algorithm = random

Select Function Algorithm = Random

Define verdict:

If function == multiplication expected result = parameter1 * parameter2

Else

If function == addition expected result = parameter1 * parameter2

Else

If function == squareroot expected result = Parameter 1 1/2

If function == power expected result = Parameter 1 2
If function == division and parameter(2) not equal 0

Expected result = parameter1 / parameter2

Else
expected result = error

Start fate

FATE will generate TSV file with a certain size. If this size is not given,then a default value will be used.After the first generated TSV is executed completely Fate generates again a new TSV file and continues with this until the user stops FATE

7. Only looking for the first action and the first value from the test case. Using depth first strategy. Focusing only on First action.

Action 1 = Multiplication
Action 2= Addition

Action 3 = Division

Result in tsv file :

Multiplication 4 9

Multiplication 8 1

Multiplication 3 7

Multiplication 8 0

Multiplication 1 1

Multiplication 1 3

Multiplication 4 5

……

Multiplication 8 9

Function
 number
Parameter 1
 Parameter 2
expected result

Action(multiplication)
i
Int[0,9] random Int[0,9] random parameter1 * parameter2

Action(Addition)
i
Int[0,9] random Int[0,9] random parameter1 + parameter2

Action(division)
i
Int[0,9] random Int[0,9] random parameter1 / parameter2

1) Test design : What kind of tests should be generated?

2) FATE
Define Function = Action

Define Number_Of_Parameter = 2

Define Parameter [1] range [0,9]

Define Parameter [1] type = Int

Select Parameter [1] Algorithm = random

Define Parameter [2] range [0,9]

Define Parameter [2] type = Int

Select Parameter [2] Algorithm = random

Define number (i) = int

Select Function Algorithm = depthfirstSearch

Define verdict:

If function == multiplication expected result = parameter1 * parameter2

Else

If function == addition expected result = parameter1 * parameter2

Else

If function == division and parameter(2) not equal 0

Expected result = parameter1 / parameter2

Else
expected result = error

3) Start FATE

FATE will generate TSV file with a certain size. If this size is not given,then a default value will be used.After the first generated TSV is executed completely Fate generates again a new TSV file and continues with this until the user stops FATE

8. Generate test case with evolutionary algorithm until get the correct result.
example : Source =”jiKnp4sjasdas” ; Target = “Hello World”
Result Tsv for example :
 1 jiKnp4sjasdas
 2 jiKnp4sjDsHas

3 jiKSp4HsjDsdas

4 jiKnSp345das

5 jiKnpSSDDdas

…..

1000 Hello as3q

…
2192 Hello World

User story:

User Story:

Number

Source

Target

1

 jiKnp4sjasdas

 Hello world

1) Test design : What kind of tests should be generated?

2) FATE
Define Source = jiKnp4sjasdas

Define Target = Hello World

Select Source Algorithm = evolutionary algorithm

3) Start FATE

FATE generate TSV file contain source.

FATE stops after source reach similarity with target

Appendix A3. Project Plan

FATE

Project Plan
Author
: Daniel Wahyudi

Version
: Final

Date
: 27 March 2012

[image: image57.png]Test Statistics

Total Statistics Total | Pass | Fail Graph
Critical Tests 2 | o [2 [ee——
All Tests 2 | 0 [2 [ee—
Statistics by Tag Total | Pass | Fail Graph
No Tags [E——
Statistics by Suite Total | Pass | Fail Graph
TestCaseFile 2 | 0 [2 [ee————
Tescaere Change Csv To Tsv 0 [1 | —
TesCarie Crang CaTota Testcasegen 0 [1 | —
Tescorie Egs 0 [1 | —
Test Execution Log
CITEST SUITE: TestCaseFile
Full Name: TestCaseFile
Source: C:\Daniel Wi12march
Start/ End / Elapsed: 20120312 13:56:31.400 / 20120312 13:56:46.032 / 00:00:14.632
Status: 2 critical test, 0 passed, 2 failed
2test total, 0 passed, 2 failed
 TEST SUITE: Change Csv To Tsv
CITEST SUITE: Eggs
TestCaseFile Eggs
C-\Daniel W\12marchleggs tsv
Start/ End / Elapsed: 20120312 13:56:37.647 / 20120312 13:56:46.027 / 00:00:08.380
Status: 1 critical test, 0 passed, 1 failed
1 test total, 0 passed, 1 failed
SETUP: calculator_keywords. Start Calculator
TEARDOWN: calculator_keywords.Stop Calculator
CITEST CASE: Calculations
Full Name: TestCaseFile Eggs Calculations
Start / End / Elapsed: 20120312 13:56:41.716 / 20120312 13:56:44.745 / 00:00:03.029
Status: FAIL (critical)
Message: 001=60
'SETUP: calculator_keywords.Clear Calculator
KEYWORD: Calculations.Substraction 8, 8, 0
KEYWORD: Calculations.Multiplication 3, 2, 6

[image: image58.png]

	Name Reviewer(s):
	Version
	Review date:
	Signature:

	Con Bracke
	Project plan Version Final
	27 March 2012
	

	
	
	
	

	
	
	
	

	
	
	
	

	Name Approver
	Version
	Approval date:
	Signature:

	Con Bracke
	Project plan Version Final
	27 March 2012
	

Approval Form
The people whose name mentioned below hereby agreed to approve this project plan:
_____, ___ ______ 2012

 Company Tutor University Tutor

 Con Bracke

 Rien Hamers
Table of Contents

661. Introduction

661.1 Project Description

661.2 Current Situation

661.3 Project Justification

672. Statement of Work

672.1 Period of Performance

672.2 Client & Company Tutor

672.3 University Tutor

672.4 Location of Work

682.5 Scope of work

692.6 Project Deliverables

692.7 Acceptance criteria

703. Management / Technical

703.1 Management Objectives

703.1.1 General Objectives

703.1.2 Assumptions

713.1.3 Management Constraints

713.1.4 Technical Constraints

713.2Project Controls

713.3Project risk

723.5 Project Staffing – Organizational Chart

723.6
Information

733.7 Skills

733.8 Technical Processes

733.8.1 Project Methodology

743.8.2 Project Software

753.9 Communication Plan

765.
Project Phasing

77Appendix A- Work Breakdown Structure (WBS)

1. Introduction

1.1 Project Description
Philips Research is a global organization that helps Philips introduces meaningful innovations that improve people lives. Philips Research Eindhoven works for all innovation areas in three Philips market sectors of Healthcare, Lighting and Consumer Lifestyle.

The assignment of this project is divided into two parts. The first part is needed to be able to start with the second part of the assignment. First part is to create a test environment that can generate and execute many test cases and evaluate the results automatically. The second part is experiment generating the test cases with existing algorithms .Give recommendations and guideline for choosing good candidates that can be used for test case generation related to the problems to be found with the testing.

1.2 Current Situation
Software based systems are getting more important and complex. Complete testing is impossible.

Test automation is widely used in the company. But it doesn’t work in a fully automated way. When the product is being tested, there are still human interventions during the process. Example of intervention is human still work on evaluating and saving the result of the test. Fully automated test means no human intervention is needed in either to run the program or to check the expected results

1.3 Project Justification
An automated testing environment increases the effectiveness and efficiency of the test, and reduces the overall development costs. Fully automated testing process makes it possible to test 24 hours a day, 7 day a week. Instead of executing 100’s of tests, it now becomes possible to execute 10.000’s of test or more in the same time.

Test results are used as input for algorithms to generate new test case sets. By choosing suitable algorithms for test case generation, this approach could be a valuable addition to current test approaches.

2. Statement of Work

2.1 Period of Performance

Start date: 1 February 2012.
End date : 29 June 2012.

2.2 Client & Company Tutor

Name: Con Bracke

Test Architect Philips Research

Building HTC37-2.045 High Tech Campus 37, 5656 AE Eindhoven The Netherlands

Phone: +31 40 2740130

E-mail: con.bracke@philips.com

2.3 University Tutor

Name : Rien Hamers

Fontys Hogeschool ICT ,building R1, room 4.07 Rachelsmolen 1, Eindhoven, The Netherlands
Phone: +31 (0)885 070
E-mail: z.hamers@fontys.nl

2.4 Location of Work
Location of work: Building HTC37-2.045 High Tech Campus 37, Eindhoven

The meetings with company supervisor will be held also at the workplace.
2.5 Scope of work

[image: image59.png]CONCEPTUAL VIEW FATE

Interface

v

Figure1.Conceptual View

Figure 1 shows, the test case generator generates test cases according the algorithm. it should be easily replaceable the algorithm. Test script generator composes the test cases to test scripts. Test scripts consist of a number of steps (commands), which implement the test case for the SUT. The Execution tools send these commands to the SUT and receive the result. The results are evaluated and the verdict pass or fail is given. The results can be reported back to the algorithm. The algorithm uses the results to generate another test case set.

To do complete testing can use as much existing tool as possible and that interesting tool will be described shortly in deliverable document.

2.6 Project Deliverables

Deliverables to be handed out to the client at the end of the project:

· Documents related in the process of development
· Project Plan Document

· User Requirement specification Document

· Design Document

· Final Graduation Report Document

· User manual and Installation manual

· Release report document

· Known problem and to do list document

· Test Specification and Test Report

· List of interesting tool, test behavior

· The Source code

2.7 Acceptance criteria

The project will be deemed as a success within these criteria:

-All documents available (could be also in one file with final graduation report)

-Source Code available

-all deliverables place on data DVD

-System can be installed and demonstrated on another PC using the DVD

-The Description of what is implemented and what is not implemented

3. Management / Technical

3.1 Management Objectives

The following section describes the project object, assumptions, and constraints in both managerial and technical.

3.1.1 General Objectives

Document and tested system is delivered and the system fulfill the acceptance criteria
3.1.2 Assumptions

Resource assumptions:
· The company provides the computer to be used at work.

· The company supervisor and or school tutor will give assistance and guidance when absolutely needed.

· The company supervisor will be available in most of the working days to answer the risen questions during development in the agreed time.

Release:
· Project deliverable will be handed over the client in DVD
3.1.3 Management Constraints

-The project team only consists of those who are mentioned on the organizational chart in this project plan.

- The project must fill the minimum system requirements as agreed by both the client and tutor.

3.1.4 Technical Constraints

-The program runs with python environment & version python 2.7

3.2Project Controls

Every the end of month the release version of final graduation report will be handed over the tutor.
3.3Project risk

-Project not finished on time

 (asks for extended time, limit functionality
-The client is not satisfied with the end product
 (regular meeting
 -Lack of knowledge required for the project
 (seeks for help from experienced developer.

3.5 Project Staffing – Organizational Chart

[image: image60.png]# This Class responsible to return algorithm class name
fzon Algorichustarcegy impor: 4
class StrategyFactory(:
eatacicnetnon
et gecStracegyane (algorstamnane) :
% The class name of the strategy is defined as the
% name o tne FunctionScracegy class prefixed by The algorithm name
Classvame = algorithmname + NameStrategy. name
pront classame
Zeturn className

[image: image4.png]Formal Client
Company Supenisor

Con Bracke

University Tutor

Rien Hamers

Assistance
‘Company Supenisor

Hans Spanjers.

Trainee

Daniel Wahyudi

3.6
Information

	
	Project Plan
	Project report
	Other Deliverables

	Company Tutor
	Di , A
	A
	R , A

	Trainee
	Dr , Di , Ar
	Dr , Di , S , Ar
	S

	University Tutor
	 R,A
	 R,Di,A
	Dr

Legends:
Dr
Draw up

S
Send

Di
Discuss

 R
Receive

A
Approve

Ar
Archive

3.7 Skills

During this project we need several skills and knowledge that should be known, such as the following:

1. Programming skill in python programming language

2. Working in team.

3. Algorithm Mathematics

4. Microsoft Word and Excel.
3.8 Technical Processes

3.8.1 Project Methodology

The customer it’s self will also take part in development team. It is decide to use agile method. The communication between developer and client very important because the client knows the best about what the project should be made.

Figure 3 shows agile development. Agile is Project management in software development. Every aspect from the development, such as requirement design, etc is revisited throughout the lifecycle. It’s allowing the developer to take advantage of what was learned during development of earlier version and every release will be empowered. Each new version on built features will be demonstrated to the client so that he can give the review quickly about what should be corrected and which way.
[image: image61.png]if (noFound == False)
MyName= (self.worksheet.cell (int (functionrow +1), int(Functioncolumn)).value)
if (cype(MyName) is float): § if you put number in excel, xlrd will read float value
‘ValueName=MyName
else:
1f you put string in excel, xlxd will read unicode value ,so change from unicode to string
ValueName= (self.worksheet.cell (int (functionrow +1), int (Functioncolumn)).value).encode('ucf-2')

print "No found heading name " +" ("+ UnicodeHeadingName +") "

[image: image62.png]UnicodeHeadingName =MyheadingName.encode ('utf-8')
noFound = False
While excelrownumber<num _rows:
while excelcolnumber<num cells:
zow = self.worksheet.row (excelrownumber)
£ rowlexcelcolnumber].value == UnicodeHeadingName
Functioncolumn = excelcolnumber
functionrow = excelrownumber

excelrownumber = num_rows
excelcolnumber = mum_cells

Figure 2.Agile deal with change

[image: image63.png]def getValuedownAfterheadingName (self ,MyheadingName)

Figure 3.Agile development(http://en.wikipedia.org/wiki/Agile_software_development)

3.8.2 Project Software

· Python 2.7

· Python command line

· Python IDLE GUI

· Microsoft

· Microsoft Word

· Microsoft Excel

· Command prompts(CMD)

· Notepad

· Eclipse 3.7.1

· Pydev
3.9 Communication Plan

Communication plan is use in order to achieve the good communication for the project. We must assure timely and effective communication to the individuals and teams who is involved with the project. Furthermore, it can handle internal and external communication processes with those who are affected by the project.
	Name And Role
	Contact details
	Responsibilities
	Communication Way & Time

	Con Bracke

Role : Company Mentor
	+31 402740130
@ con.bracke@philips.com
	Give guidance to trainee student as supervisor and give requirements and feedback as clients
	Meeting every workday start at 09:00 till 09:30 AM or after lunch at the working place.

Can be contacted by phone in term of urgency

	Hans Spanjers

Role : Assistance Company mentor
	+31 40 2792907
@hans.spanjers@philips.com
	Give assist guidance to the trainee student
	Meeting will be conducted in order the company mentor is not available

Can be contacted by phone in term of urgency

	Rien Hamers

Role: University Mentor
	+31 885 070 909
@ z.hamers@fontys.nl
	Give assistance to trainee student and feedback as tutor
	Available at working hours. Will visits the working place twice to discuss the project with developer and supervisor

	Daniel Wahyudi

Role: Trainee
	+ 31 6552103
@ daniel.wahyudi@philips.com
	Researching, developing, testing, evaluating Fully automated environment
	Available at working hours at the working place.

Available all the time in term of urgency

5. Project Phasing
The back log is the whole tasks that will be delivered and demo to the client. The point is representing the important level of each task.
Back Log
[image: image64.png]Selecting an Algorithm

Test Case Generator

Algorithm

Work Breakdown Structure (WBS)
[image: image65.png]Selecti Igorithm

Test Case Generator

Algorithm

The project is divided into nine iterations. For one of iteration will be conducted in 2 weeks (except Iteration 1) .in every of iteration demo and test also will be performed.
Appendix A4. User Requirements Specification Document

FATE

User Requirement Specification
Author
: Daniel Wahyudi

Version
: Final

Date
: 27 March 2012

[image: image66.png]e
T A
) Gonvonses 3 Tesconcensar
e B T e —
ke
3 2
[—
- Tecnsie
- — T
coons
5

[image: image67.png][**setting™**
lLibrary ~ AutoltLibrary

[***Keywords™
|Clear Calculator

	Name Reviewer(s):
	Version
	Review date:
	Signature:

	Con Bracke
	Final Version
	27 March 2012
	

	
	
	
	

	
	
	
	

	
	
	
	

	Name Approver
	Version
	Approval date:
	Signature:

	Con Bracke
	Final Version
	27 March 2012
	

Table of Contents

811. Introduction

811.1 Purpose of this document

811.2 Purpose of the Automated test environment system

811.3 Moscow

812. Requirements

812.1
Requirements

812.1.1 Logging Requirement

822.1.2 Command Requirement

832.1.3 Generator Requirement

842.1.4 Verdict Requirement

842.2 Non Functional Requirements:

1. Introduction

1.1 Purpose of this document

This document specifies the requirements of automated test environment system

1.2 Purpose of the Automated test environment system

The purpose is to create a test environment that can automatically generate and execute test cases, log the relevant data , evaluate results automatically and, use result as feedback for new test case generator

1.3 Moscow

Moscow: Represent the priorities of the requirements
Note:
M - MUST have this.

S - SHOULD have this if at all possible.

C - COULD have this if it does not affect anything else.

W - WON'T have this time but WOULD like in the future.
2. Requirements

2.1 Requirements

2.1.1 Logging Requirement

	ID
	R1

	Name
	Log_DateTimeStamp

	Description
	Test environment system should be able to log date time stamp

Example: 20120209 12:23:34

	MoSCoW
	M

	ID
	R2

	Name
	Log_ExecuteTestCase

	Description
	Test environment system should be able to log executed test case and given data

Example: Execution started, Test case input add , 9 Test case executed

	MoSCoW
	M

	ID
	R3

	Name
	Log_SUTresult

	Description
	Test environment system should be able to log result form SUT

	MoSCoW
	M

	ID
	R4

	Name
	Log_PassFail

	Description
	Test environment system should be able to log pass or fail given

	MoSCoW
	M

	ID
	R5

	Name
	GOusermanual

	Description
	Usage of GOAutomated is described in an user manual

	MoSCoW
	M

	ID
	R6

	Name
	GOinstalation manual

	Description
	Installation of GOAutomated is described in an installation manual

	MoSCoW
	M

2.1.2 Command Requirement

	ID
	R7

	Name
	User_start

	Description
	User should be able to start the test environment system with command line(cmd). With the following command : GOAutomated

	MoSCoW
	M

	ID
	R8

	Name
	User_Stop

	Description
	User should be able to stop the test environment system with command line(cmd).With thefollowing command : STOPautomated

	MoSCoW
	M

2.1.3 Generator Requirement

Test Case Generator

	ID
	R9

	Name
	Generate_Test_Case

	Description
	Generate test case in Tab Separated values(TSV)Format

	MoSCoW
	M

	ID
	R10

	Name
	Test_Case_interface

	Description
	Offer interface to different algorithm (example random algortithm)

	MoSCoW
	M

	ID
	R11

	Name
	Use_feedback

	Description
	Algorithm use feedback of results

	MoSCoW
	M

	ID
	R12

	Name
	Model_tetscase

	Description
	Generate test case using model and choose Model based testing (MBT)

	MoSCoW
	S

	
	

Test Script Generator

	ID
	R13

	Name
	Generate_Test_Script

	Description
	Test environment system should be able to transform the test case into test scripts for SUT

	MoSCoW
	M

	ID
	R14

	Name
	Test_Script_Interface

	Description
	Test script generator offer a well defined interface

	MoSCoW
	M

Test Execution tool

	ID
	R15

	Name
	Execute_Test_Case

	Description
	Test environment system should be able to Execute and run test cases

	MoSCoW
	M

	ID
	R16

	Name
	Create_adapter

	Description
	Test environment system should be able to create the adapter to adapt test automation infrastructure with System Under Test (SUT). Test environment system should be descent the setup of an adapter.

	MoSCoW
	C

2.1.4 Verdict Requirement

	ID
	R17

	Name
	Evaluate_Result

	Description
	Test environment system should be able to evaluate the result from the verdict (oracle)

	MoSCoW
	M

	ID
	R18

	Name
	Support_Strategies

	Description
	The verdict(oracle) support implementation of different strategies

	MoSCoW
	S

2.2 Non Functional Requirements:

	ID
	Nf1

	Name
	Run_24hours

	Description
	Test environment system should run without any problem in 24 hours

	MoSCoW
	S

Appendix A5. Design Document

[image: image68.png][**setting™*
Resource calculator_keywords.txt

[***Keywords®
[Muttipiication

FATE
Design Document
Author
: Daniel Wahyudi
Version
: Final

Date
: 27 April 2012
[image: image69.png][**setting™*
|Suite Setup
|Suite Teardown
[Test Setup
Resource
[Resource

["*Test Case

[calculations
Addition
Muitiplication
Substraction

StartClaculator
StopCalculator

Clear Calculator
calculator_keywords.txt
Calculations.txt

5 8 13
5 0 0
7 2 5

[image: image70.png][@echooff
[python TestCaseGenerator.py
|call pybot —name TestCaseFile” ~noncritical ExpectedFail —outputdir results

	Name Reviewer(s):
	Version
	Review date:
	Signature:

	Con Bracke
	Final Version
	27 April 2012
	

	
	
	
	

	
	
	
	

	
	
	
	

	Name Approver
	Version
	Approval date:
	Signature:

	
	
	
	

1. Introduction

Fully Automated Test Environment (FATE) has been initiated by Philips Research. The purpose research is to setting up the environment in fully automated way. The components of environment need to be integrated to get complete environment. Each component has different behavior. Some of components need external tool and algorithm. Designing will help to understand the interaction of components between component, external tool, or algorithm.

2. Purpose of this Document

Purpose of this design document it describing the design of FATE.

The Design is described using:

1. Class Diagram

2. Sequence Diagram

3. CRC Card Layout

3. Architecture Design Overview

This section describes the Concept View of the FATE. It describes how the different components have connected to each other. The context diagram can be seen in project plan at section scope of work.
4. Use Case:

The use case of FATE as following:
[image: image71.png]IfNotEqual inputToalgorithm {Actual Result}

Figure 1. FATE Use Case

1. Test Case Generator generates Test Case with the help of Algorithm

2. Test Script Generator generates Test Script translate Test Case into real command of SUT

3. Execution tool execute all the commands(Test Script) and receive the response from SUT and Create Test Result

4. Verdict gives verdict if the tests pass or fail by comparing Actual Result (test result) with Expected Result. Verdict gives input to algorithm (the input for improving the algorithm).
5. Design Details
5.1 Test Case Generator

5.1.1. High Level Architecture

Figure 2. Test case Generator High Level Architecture
Figure above shows the first version of test case generator high level architecture. There are 4 components and 3 interfaces. The interface is used by components to communicate with each other. Component algorithm offer interface algorithm Info. Function Provider and Parameter Provider used this interface to provide their data. Function and Parameter provider offer interfaces .The interface provide information data from both component and used by Test case generator component.

Figure 2.1 Test case Generator High Level Architecture

Figure above shows the second version of test case generator. The test case generator work by get the data from function parameter generator and use the algorithm that provide by interface algorithm info.
The difference between first versions is the algorithm is chosen by test case generator. The function parameter generator just provided the data. The interface offer capability to replace different kind of algorithms.

5.1.2.. Class diagram
Figure 3 . Class diagram version 1
In this class diagram, Algorithm class is interface for test case generator class. The pattern use is strategy pattern .This pattern is used by the algorithm class to inherited many kinds type of algorithm and makes the algorithm easy replaceable.

The function parameter generator class is work to get function and parameter value from user input and returns the data to test case generator. Test case generator select the algorithm and the chosen algorithm are calculate that data. The calculated data are returned back. At last the test case generator writes data into file.

Figure 4 . Class diagram version 1

This class diagram is the extension from class diagram before. This class diagram still use strategy pattern .Another pattern is added, the pattern is factory. Factory pattern is work on by helping find out the algorithm. The way of doing it is by combining algorithm name and the interface name. The algorithm name is work as a prefix and the interface name as suffix.

The function parameter generator is only return value with same heading name with user input. Name strategy class now is the interface between test case generator and algorithm. The algorithm class is giving out the output data to test case generator. And test case generator generates the output data.
6. CRC Cards (Class-Responsibility-Collaboration)

6.1. FunctionParameterGenerator
	FunctionParameterGenerator

	RESPONSIBILTIES
	COLLABORATORS

	· Return value from user input

· Get The Value from the user input
	TestCaseGenerator

6.2 TestCaseGenerator
	TestCaseGenerator

	RESPONSIBILTIES
	COLLABORATORS

	-Get Algorithm Name

-Get Number of Repetition

-Get Number of test case

-Give the algorithm class name

-Write data output into file
	User

6.3. NameStrategy
	NameStrategy

	RESPONSIBILTIES
	COLLABORATORS

	-Interface between test case generator and different kinds of algorithm
	TestCaseGenerator

6.4. Strategy Factory
	ConstantNameStrategy

	RESPONSIBILTIES
	COLLABORATORS

	-Get Algorithm name

-Return Class name with Strategy Name
	TestCaseGenerator

6.5. RandomNameStrategy
	RandomNameStrategy

	RESPONSIBILTIES
	COLLABORATORS

	· It has Random Algorithm for the output.

· Give output for test case generator
	TestCaseGenerator
NameStrategy

7. Sequence diagram

[image: image5.png]‘sd Test Case Generator

g .. B = ==

1.2: ValueName
1.3 getStrategyname()

1.4; classname !

1.5 myclass(Mystrateqy)

1.7: outpuata

2 wite oupuDatato fle

Figure 4 . Sequence diagram Test Case Generator
1. TestCaseGenerator class give instruction to FunctionParameterGenerator class to get algorithm name in user input file.

2. algorithm name that has been received is used to get the algorithm class name.

3. TestCaseGenerator class is finding who has same name with this algorithm class name.

4. TestCaseGenerator class gives command to get output from this algorithm class name. This class name is giving back the output data.

5. Finally TestCaseGenerator class writes output data to test case file.

Appendix A6. Installation Manual

Installation Manual

1. Introduction

This document describes the installation manual of tools and libraries that have been researched. These tool and library already installed and tested with windows 7 64 bit environment.
TestCaseGenerator is the deliverable product. To be able to work with this product please do the installation no 1, 2, 3 and 4.

Environment

· Windows 7 64 bit

	No
	1

	Install
	Installation python

	Steps
	· Python 2.7.3 or python 2.7 version

· Download from this link http://www.python.org/download/
· There will be IDLE to make new or edit test

· C:/ Python directory will be existed

	No
	2

	Install
	Install eclipse

	Steps
	· Download eclipse classic 3.7.2 64 bit http://www.eclipse.org/downloads/
· Run and install the program

	No
	3

	Install
	Install the PyDev plug in for eclipse

	Steps
	· Launch Eclipse

· Download Pydev from within eclipse

· Go to Help(install New Software

· And copy this link http://pydev.org/ into text boxt label work with .

· After several seconds,two options should apper. Select the pydef for eclipse option .Do not select the PyDev Mylyn Integration flag

· Click Next and Ok to continue installing PyDev

· Select “I accept the terms of the license aggrement ,then click “Finish”. The installer will begin to download the plugin

	No
	4

	Install
	Installation Robotframework

	Steps
	· Install RobotFramework 2.6.3 64 bit

· Go to this link http://code.google.com/p/robotframework/
· To enable RobotFramework For 64 bit OS, you should install 64 bit python setup in same directory.Also the command prompt should be invoked through setting “Run As a Administrator”

· On windows and specially on windows v7. It is recommended to install python to all users and to run the installation as administrator

· Environment variable PYTHONCASEOK should be not set on Windows machines. RobotFramework will not work correctly if this variable exists.
· Running Robot framework on python using the pybot start-up script requires python to be executable in the system. This means you need to set up in correct path.

· Setting path on windows

· Computer >Rightclick>advancedSystemSettings >Environment variables, edit path,add path variable % C:\Pyhton27; %C:\Pyhton27\Scripts;

· Download and run python widget, wxpython go to this link http://www.wxpython.org/download.php
· To verify the Instalation open new command prompt and type “pybot –version” and show output “RobotFramework 2.6.3 <Pyhton 2.7.2 on win32>

· More Information : installation Robotframework http://code.google.com/p/robotframework/wiki/Installation

	No
	5

	Install
	Installation AutoItLibrary

	Steps
	· Download AutoIT Library http://code.google.com/p/robotframework-autoitlibrary/
Since the AutoITlibray is support for win32 we need to do additional step for win64 bit with python64 bit

· typed in command prompt (cd C:\Program Files (x86)\AutoIt3\AutoItX\)

· regsvr32.exe AutoItX3.dll
· regsvr32.exe AutoItX3_x64.dll

· we need to go http://starship.python.net/crew/mhammond/win32/ http://sourceforge.net/projects/pywin32/files/pywin32/Build%20217/ and choose pywin32-217.win.amd64-py2.7 exe (download and run the exe file)

· Install your setup.py in command prompt , cd “your auto it library directory” and then setup.py

	No
	6

	Install
	Installation Robomachine

	Steps
	Download https://github.com/mkorpela/RoboMachine
cd “your robomachine directory” setup.py (to setup the installation)

if you couldn’t import parsing method in python ,

download python argparse and install it ,go to this link http://pypi.python.org/pypi/argparse

	No
	7

	Install
	Installation TemaTool

	Steps
	Reuqirement before installation TemaTool

1.python 2.7 64 bit

2 Jython 2.50 (need to install jython and java)

3.Eclipse

4.Robotframework 2.6.3

5 Selenium Library ,Swing library

6 TEMA toolset 3-2.1

7.TEMA adapter lib https://github.com/hessuvi/tema-adapterlib

	No
	8

	Install
	Installation Selenium library

	Steps
	1.download selenium library http://code.google.com/p/robotframework-seleniumlibrary/
2. Run and install selenium library

More information : http://code.google.com/p/robotframework-seleniumlibrary/wiki/InstallationInstructions

Appendix A7. Question and Answer

1. What is the difference between framework and library?

Library itself is collection of function, methods, and variable, we can use those things I another application for example in python language (“import exampelib”). It basically is a file containing reusable code that we can use to share among multiple applications and we don’t need to write the code again and again. Framework is just like a skeleton where the application defines the “meat” of the operation filling out the skeleton. Framework is module call your code

2. What is different between error, failure, and defect?

Look at glossary
3. Where the expected result can be located?

The expected result is will be included in Test Case generator.
4. What will happen if there isn’t any expected result?

Verdict component will handle it by strategy. Strategy will give some information if the actual result is correct.
5. The end of the result is log file and report provide by RobotFramework.

Is it the end of result do you want?

How about verdict oracle? Which format?

Do I need to save log file and report in one directory?

Answer: Yes, We can use robot framework logger to logging our test result. That’s why you need to be more familiar with RobotFramework. So you will know how the RobotFramework works

6. Which test case do you want to test?

If there are 100 test cases, do I need to create 100 test cases in python?

Answer: The Test case generator is generating test case, it doesn’t matter in which format. But it more preferable generated in tabular separated format (.TSV).
This test case generator, it should be able to generate test case doesn’t matter which test case is tested.

Because the algorithm, it will be the plug-in for the test case.

7. In new excel sheet user input what are those for such as (Algorithm, NumberOfTestCase, NumberOfRepetition)?

For Algorithm: we can choose algorithm we want to, to generate test case .

For NumberOfTestCase: Actually Number of Test Case can be Infinite. In here you give number how many test case you want to generate

For Number of repetition: it doing same thing like repetition before. This repetition is for evaluating the result. So after one repetition is finish evaluation will be done there.

8. What is Oracle or Verdict?

 It determined and gives verdict whether a test has passed or failed. It used by comparing actual result from SUT and expected result.

Appendix A8. Known Problem Document

Known Problem Document

1. Introduction

This document describes numbers of problem and solution. It describes in tables below. Most of the problem is the installation problem.

	No
	1

	Description
	The problem is with TEMA tool, The question is made and theTEMA tool creator answered this question

	Problem
	Question(Daniel)

My environment is Windows 7 64 bit.

What I have done:

I read the article “Model Based Testing with General Purpose Keyword Driven Test Automation Framework”

I downloaded

1. 1.Python 2.7 64 bit

2. 2. Jython2.50

3. 3. Eclipse

4. 4. Robotframework 2.6.3

a. Selenium library, Swing Library, AutoIt Library

5. 5.TEMA Toolset-3.2.1

6. 6. TEMA Adapter Lib

I succeed install Tema-onlinerobot-adapter-3.2

In my path: C:/Python27/script ,(there are tema.actionlist.py,temaanalysator.py,tema.testengine.py ,etc) ,

C:\Python27\Lib\site-packages (there are folders adapterlib,olinelibrary,tema ,etc)

Test online robot adapter : in “examples” folder Onlineswing, I got fail message from Robotframework.

Problem:

1. Test online robot adapter (onlineSwing) ,(I edited with RIDE) because of in online.txt test case

In setting (Online library localhost |5000) , It didn’t recognize ‘’run online”,

But if only (Online Library). It recognized “run online” but run online required argument.

So I can’t test onlinetest.txt which show “Pass” result . i want to get pass result

jybot examples/OnlineSwing/online.txt

| LaunchApp | [Arguments] | ${app_name} |
| | Start Application | ${app_name} |
which application that will be launched ?
b. Run adapter:

tema.onlinerobot-adapter sut1 [options]

it doesn't work , when i typed in CMD ,i dont know how to use it

2 .I tried to install test engine tema-tg-3.2 setup.py build or install but got following error:

C:\Daniel W\5march\TEMA-Toolset-3.2.1\tema-tg-3.2>setup.py install

Traceback (most recent call last):

 File "C:\Daniel W\5march\TEMA-Toolset-3.2.1\tema-tg-3.2\setup.py", line 139, i

n <module> scripts_list = get_scripts()

File "C:\Daniel W\5march\TEMA-Toolset-3.2.1\tema-tg-3.2\setup.py", line 113, i

n get_scripts modelutils.remove("TemaLib/tema/modelutils/__init__.py")

ValueError: list.remove(x): x not in list

	
	

	Solution
	Answer(Heikki)
My first guess for tema-tg installation problem is conflict between
directory separator (/ vs \). Native environment for TEMA is Unix
(Linux). At least, you should use Cygwin as advised in
http://tema.cs.tut.fi/downloads.html. I tested installation in Ubuntu
11.10 (Python 2.7.2) and command
 'python setup.py install --prefix=<writable directory>'
worked nicely.

I have not used Robot framework before and did not managed to install it
properly. But as far as I see, it should work without modifications.
SwingLibrary connects to Java environment and OnlineLibrary makes Robot
framework to listen socket for keywords. Are you sure that Robot framework
finds both of these libraries and file
examples/OnlineSwing/TemaResource.txt when command
 jybot examples/OnlineSwing/online.txt
is executed?

By the way, the above command should not terminate, I think, and you
need a separate window to run tema.onlinerobot-adapter. You may test the
connection by running tema.onlinerobot-adapter in interactive mode
(tema.onlinerobot-adapter -i).

The modelled Swing application is jEdit (Java_Models.zip). It should
start up when "LaunchApp#org.gjt.sp.jedit.jEdit" is written to the
prompt of tema.onlinerobot-adapter -i. When you get this far (have
installed tema-tg and Robot framework rocks with
tema.onlinerobot-adapter command), it is time to experiment with
tema.runmodelpackage command, but it is the story of its own.

Answers(Mikka)

If you use Windows and are not able to make TEMA work, my advice is to
switch to Ubuntu Linux. Since our resources were limited while
developing TEMA, the most effort was put to the Ubuntu installation.

	No
	2

	Description
	The problem is with RoboMachine tool, The question is made and the RoboMachine tool creator answered this question

	Problem
	Robomachine problem

I want to create test data generator and execute
automatically the testdata using robotframework.
I found robo machine,maybe could help me.
I already succeed install robomachine.
1.You said robo machine is The tool can be used for generating a
number of Robot Framework test
 cases from a set of input values.
 a.May i know where and who is the set of input values? is it the
data from infinite.robomachine ?
 b.can we use the set of input from Clever Algorithm(example random
algorithm,hillclimbing).
 and automatically generate testdata into txt file?
 C.did you create the infinite.robomachine by typing it manually?? can
robomachine write data into .robomachine file automatically?
2. I could change infinite.robomachine to infinite.txt using
robomachine.bat
 but get error doesn't execute the pybot automatically
get following error:
Traceback (most recent call last):
 File "runpy.py", line 162, in _run_module_as_main
 "__main__", fname, loader, pkg_name)
 File "runpy.py", line 72, in _run_code
 exec code in run_globals
 File "C:\RoboMachine-0.4\robomachine\runner.py", line 70, in <
odule>
 main()
 File "C:\RoboMachine-0.4\robomachine\runner.py", line 66, in m
in
 retcode = subprocess.call(['pybot', output])
 File "subprocess.py", line 493, in call
 return Popen(*popenargs, **kwargs).wait()
 File "subprocess.py", line 679, in __init__
 errread, errwrite)
 File "subprocess.py", line 893, in _execute_child
 startupinfo)
WindowsError: [Error 2] The system cannot find the file specified
do you know how to solve this? i already include
pybot,runpy.py,subprocess.py.
3.i want to know why is creating 1000 test case in infinite.txt with
variable argument only A?
i tried to give command robomachine --tests-max 10 --actions-max 20 --
to-state 'Welcome Page' --generation-algorithm random
[infinite.robomachine]
but it's not working
4. In "test" folder i found generation_test.py ,strategies.py and etc.
what is it for? i tried to run it but i didn't get it.
 can you tell me about it?

	Solution
	First of all if your still trying robomachine, please upgrade (pip
install robotmachine --upgrade --no-dependencies) as the tool is
still very experimental and there were some ugly whitespace related
parsing errors in the 0.4 version.
You can also contact me directly about any issues or comments about the tool.
1)
 a) Input values are the variables defined like this:
${VARIABLE} any of value1 value2 value3
${ANOTHER VARIABLE} any of some1 other1 third1
In the real test cases robomachine will select a pair of concrete
values to be used (or depending on the options it will generate many
cases..) for ${VARIABLE} and ${ANOTHER VARIABLE} .
 b) Currently I've implemented two algorithms for data generation:
Random (that will randomly select inputs and actions) and
Depth-First-Search (that will systematically go through every action)
 c) This file I typed manually, but it can generate infinite number
of tests (txt-files) - that won't (can't) be typed manually.
2) I need some more data about this issue if it is still happening
robomachine generates a .txt file from a .robomachine file containing
the executable robot test cases. After this it will (by default) use
pybot to execute the generated test cases.
3) By default robomachine uses the depth-first-search (DFS) algorithm
for data generation -- first 1000 test cases will have most values as
same
 The infinite.robomachine (example robomachine) has no end state
called 'Welcome Page' (this one is in the selenium_demo_*.robomachine)
You can generate 1000 random tests (with each making 100 actions) from
the machine by doing the following:
robomachine --do-not-execute --tests-max 1000 --generation-algorithm
random infinite.robomachine
4) These are unit tests for robomachine it self.

	No
	3

	Description
	Auto it libray problem., library for test GUI windows

	Problem
	I already installed python 64 bit, my environment is 64 bit windows, robotframework 2.6.3 64 bit,

But auto it library doesn’t support python 64 bit. How can I solve this problem??

 ERROR] Invalid syntax in file
> > 'c:\robotframework\extensions \autoitlibrary\tes
> > ts\Calculator_Test_Cases.html' in table 'Setting': Creating an
> > instance of the t est library 'AutoItLibrary' with arguments
> > 'c:\robotframework \extensions\autoitl ibrary\tests\results', '10'
> > and 'True' failed: com_error:
> > (-2147221164, 'Class n
> > ot registered', None, None)
> > Traceback (most recent call last):
> > File
> > "C:\Python27\lib\site-packages\robot\running\testlibraries.py",
> > line 155,
> > in _get_instance
> > return self._libcode(*self.positional_args, **self.named_args)
> > File

	Solution
	Answer(Taylor)

The setup.py for AutoItLibrary does the following:

#
Install and register AutoItX
#
instDir = os.path.normpath(os.path.join(get_python_lib(), "AutoItLibrary/lib"))
if not os.path.isdir(instDir) :
 os.makedirs(instDir)
instFile = os.path.normpath(os.path.join(instDir, "AutoItX3.dll"))
shutil.copyfile("3rdPartyTools/AutoIt/AutoItX3.dll", instFile)
#
Register the AutoItX COM object
and make its methods known to Python
#
cmd = os.path.abspath(os.path.join(os.getenv("SYSTEMROOT"), "system32/regsvr32.exe"))
print "Running '%s /S %s' to register AutoItX3.dll" % (cmd, instFile)
Elevate.RunCommandAsAdminAndWait(60, cmd, "/S "+instFile)
#
Make sure we have win32com installed
#
makepy = os.path.normpath(os.path.join(get_python_lib(), "win32com/client/makepy.py"))
if not os.path.isfile(makepy) :
 print "AutoItLibrary requires win32com. See http://starship.python.net/crew/mhammond/win32/."
 sys.exit(2)

cmd = "python %s %s" % (makepy, instFile)
print "Running '%s' to make Python aware of AutoItX3.dll" % cmd
subprocess.check_call(cmd)

I have no idea if any of this will work with 64-bit Python, since I don't use it. The AutoItX3.dll is built for 32-bit Windows, the win32com library is obviously 32-bit and I'm not sure if makepy.py exists in 64-bit Python. All of this works on 64-bit Windows as 32-bit apps but I have no idea what happens if the apps (i.e. Python) is 64-bit. I would suggest you start by looking at this URL http://starship.python.net/crew/mhammond/win32/ to see if the win32com library has any chance of working with 64-bit Python.
My Solution

The step that i made is

1. I typed regsvr32.exe AutoItX3.dll
 regsvr32.exe AutoItX3_x64.dll

in cmd (cd cd C:\Program Files (x86)\AutoIt3\AutoItX\)

2. I tried the link that you gave http://starship.python.net/crew/mhammond/win32/

 but we need to go http://sourceforge.net/projects/pywin32/files/pywin32/Build%20217/ and choose pywin32-217.win.amd64-py2.7 exe (download and run the exe file)

3. i succeed install your setup.py

I have three classes file , Writetest.py , Algorithm.py ,RandomStrategy.py

	No
	4

	Description
	Unit test problem in importing folder name

	Problem
	Python can’t import folder name testcasegene.RandomNameStrategy.

	Solution
	We can include code in the __init__.py (for instance initialization code that a few different classes need) or leave it blank. But it must be there.

Appendix A9. Implementation
Class NameStrategy

Represented as Interface for algorithm

Name Strategy is Parent class of algorithm

class NameStrategy(object):

 def __init__(self, function_list,minNum,maxNum):

 self.function_list = function_list

 self.minNum = minNum

 self.maxNum = maxNum

 @staticmethod

 def getName(self):

 raise NotImplementedError()

 def getFunction(self):

 raise NotImplementedError()

 def getParameter(self):

 raise NotImplementedError()

 def getoutput(self):

 raise NotImplementedError()

Class StrategyFactory

This Class responsible to return algorithm class name

from AlgorithmStartegy import *

class StrategyFactory():

 @staticmethod

 def getStrategyName(algorithmname):

 # The class name of the strategy is defined as the name of the FunctionStrategy class prefixed by the algorithm name

 className = algorithmname + NameStrategy.__name__

 print className

 return className

Class ConstantNameStrategy

ConstantNameStrategy class inheritance form Parent class Name Strategy

import random

import math

from random import choice

from AlgorithmStartegy import *

class ConstantNameStrategy(NameStrategy):

 #Get Name check if the Strategy is Constant

 @staticmethod

 def getName(self):

 return "Constant"

 #Return one name function from function list,

 def getFunction(self):

 functionlist =["Addition","Subtraction" ,"Multiplication" ,"Power","Squareroot",'Division']

 mychoice =functionlist[0] # it take first list because constant

 return mychoice

 #Return parameters within range,The number keep in random.

 def getParameter(self):

 Param1 =random.randrange(0,9)

 Param2 =random.randrange(10,15)

 return Param1,Param2

 # get expected result checking function name and parameter numbers

 def getExpectedResult(self,NameFunction,Param1,Param2):

 if(NameFunction == 'Addition'):

 expectedResult= Param1 + Param2

 elif(NameFunction == 'Multiplication'):

 expectedResult= Param1 * Param2

 elif(NameFunction == 'Subtraction'):

 expectedResult= Param1 - Param2

 elif(NameFunction == 'Division'):

 if (Param2 == 0):

 expectedResult= "ErrorDivideByZero"

 else:

 expectedResult= Param1 / Param2

 elif(NameFunction == 'Power'):

 expectedResult= Param1 * Param1

 elif(NameFunction == 'Squareroot'):

 expectedResult= math.sqrt(Param1)

 return expectedResult

 # This function is what kind of output that you wanted to write into file

 def getOutput(self):

 obj =ConstantNameStrategy(0,0,0)

 myFunction =obj.getFunction()

 Parameter1,Parameter2 = obj.getParameter()

 ExpectedResult =obj.getExpectedResult(myFunction,Parameter1,Parameter2)

 if myFunction == 'Addition'or myFunction == 'Multiplication' or myFunction == 'Subtraction' or myFunction == 'Division' :

 output =myFunction + ' ' + str(Parameter1) +' ' + str(Parameter2) +' ' + str(ExpectedResult)

 elif myFunction == 'Squareroot' or myFunction == 'Power':

 output =myFunction + ' ' + str(Parameter1) +' ' + str(ExpectedResult)

 else :

 output =myFunction

 return output

class GeneticAlgorithmNameStrategy (Taken from outside resource)
The Clever Algorithms Project: http://www.CleverAlgorithms.com

(c) Copyright 2010 Jason Brownlee. Some Rights Reserved.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.5 Australia License.

import random

from AlgorithmStartegy import NameStrategy

NUM_GENERATIONS = 100

NUM_BOUTS = 3

POP_SIZE = 100

NUM_BITS = 64

P_CROSSOVER = 0.98

P_MUTATION = 1.0/NUM_BITS

HALF = 0.5

class GeneticAlgorithmNameStrategy(NameStrategy):

 def onemax(self,bitstring):

 sum = 0

 for c in bitstring:

 if(c=='1'):

 sum += 1

 return sum

 def tournament(self,population):

 best = None

 for i in range(NUM_BOUTS):

 other = population[random.randint(0, len(population)-1)]

 if best==None or other['fitness']>best['fitness']:

 best = other

 return best

 def mutation(self,bitstring):

 string = ''

 for c in bitstring:

 if random.random()<P_MUTATION:

 if c=='1':

 string += '0'

 else:

 string += '1'

 else:

 string += c

 return string

 def crossover(self,parent1, parent2):

 if random.random() < P_CROSSOVER:

 cut = random.randint(1, NUM_BITS-1)

 return parent1['bitstring'][0:cut]+parent2['bitstring'][cut:NUM_BITS], parent2['bitstring'][0:cut]+parent1['bitstring'][cut:NUM_BITS]

 return ''+parent1['bitstring'], ''+parent2['bitstring']

 def random_bitstring(self):

 s = ''

 for x in range(NUM_BITS):

 if random.random() < HALF:

 s += '0'

 else:

 s += '1'

 return s

 def getOutput(self):

 obj =GeneticAlgorithmNameStrategy(0,0,0)

 population = []

 for x in range(POP_SIZE):

 population.append({'bitstring':obj.random_bitstring(), 'fitness':0})

 for candidate in population:

 candidate['fitness'] = obj.onemax(candidate['bitstring'])

 population.sort(lambda x, y: x['fitness']-y['fitness'])

 gen, best = 0, population[POP_SIZE-1]

 while best['fitness']!=NUM_BITS and gen<NUM_GENERATIONS:

 children = []

 while len(children) < POP_SIZE:

 s1, s2 = obj.crossover(obj.tournament(population), obj.tournament(population))

 children.append({'bitstring':obj.mutation(s1), 'fitness':0})

 if len(children) < POP_SIZE:

 children.append({'bitstring':obj.mutation(s2), 'fitness':0})

 for candidate in children:

 candidate['fitness'] = obj.onemax(candidate['bitstring'])

 children.sort(lambda x, y: x['fitness']-y['fitness'])

 if children[POP_SIZE-1]['fitness'] > best['fitness']:

 best = children[POP_SIZE-1]

 population = children

 gen += 1

 print " > gen %d, best: %d, %s" % (gen, best['fitness'], best['bitstring'])

 return best

Class RandomNameStrategy

RandomNameStrategy class inheritance form Parent class Name Strategy

import random

import math

from random import choice

from AlgorithmStartegy import *

class RandomNameStrategy(NameStrategy):

 @staticmethod

 #Get Name check if the Strategy is Random

 def getName():

 return "Random"

 #Return one name function from function list

 def getFunction(self):

 functionlist =["Addition","Subtraction" ,"Multiplication" ,"Power","Squareroot",'Division']

 mychoice =choice(functionlist)

 return mychoice

 #Return parameters within range

 def getParameter(self):

 Param1 =random.randrange(0,9)

 Param2 =random.randrange(10,15)

 return Param1,Param2

 # get expected result checking function name and parameter numbers

 def getExpectedResult(self,NameFunction,Param1,Param2):

 if(NameFunction == 'Addition'):

 expectedResult= Param1 + Param2

 elif(NameFunction == 'Multiplication'):

 expectedResult= Param1 * Param2

 elif(NameFunction == 'Subtraction'):

 expectedResult= Param1 - Param2

 elif(NameFunction == 'Division'):

 if (Param2 == 0):

 expectedResult= "ErrorDivideByZero"

 else:

 expectedResult= Param1 / Param2

 elif(NameFunction == 'Power'):

 expectedResult= Param1 * Param1

 elif(NameFunction == 'Squareroot'):

 expectedResult= math.sqrt(Param1)

 return expectedResult

 # This function is what kind of output that you wanted to write into file

 def getOutput(self):

 obj =RandomNameStrategy(0,0,0)

 myFunction =obj.getFunction()

 Parameter1,Parameter2 = obj.getParameter()

 ExpectedResult =obj.getExpectedResult(myFunction,Parameter1,Parameter2)

 if myFunction == 'Addition'or myFunction == 'Multiplication' or myFunction == 'Subtraction' or myFunction == 'Division' :

 output =myFunction + ' ' + str(Parameter1) +' ' + str(Parameter2) +' ' + str(ExpectedResult)

 elif myFunction == 'Squareroot' or myFunction == 'Power':

 output =myFunction + ' ' + str(Parameter1) +' ' + str(ExpectedResult)

 else :

 output =myFunction

 return output

Class TestCaseGenerator
this class responsible to get output from strategy class and write the output .TSV file

from FunctionParameterGenerator import *

from AlgorithmStartegy import *

from StrategyFactory import StrategyFactory

import sys

import csv #For Create CSV or TSV format

#import the algorithm class to get module name from its class

from RandomNameStrategy import RandomNameStrategy

from ConstantNameStrategy import ConstantNameStrategy

from GeneticAlgorithmNameStrategy import GeneticAlgorithmNameStrategy

this function responsible to writing to tsv file.

def GetSpamWriter(open_File):

 spamWriter = csv.writer(open_File, delimiter='\t',

 quotechar='"', quoting =csv.QUOTE_MINIMAL ,doublequote = 1,

 skipinitialspace = 0 ,lineterminator = '\r\n', escapechar = None) # Setting up the Format

 return spamWriter

#Get strategy name from StrategyFactory.py and return Strategy Class Name.

def myclass(Mystrategy):

 myclass = getattr(sys.modules[__name__], Mystrategy) # convert string into class name

 return myclass

this function tell what and where data want to write.

def writeTotsv():

 open_file= open('C:/Daniel W/Daniel Wahyudi/Implementation/Test Case Generator/version 2/TestcaseFiledd.tsv', 'w')

 FunctionParameter = FunctionParameterGenerators('C:/Daniel W/Daniel Wahyudi/Implementation/Test Case Generator/version 2/userstory.xls','Sheet1')

 spamWriter = GetSpamWriter(open_file)

 # get the header name "Algorithm" and get value below the header

 AlgorithmName = FunctionParameter.getValuedownAfterheadingName("Algorithm")

print AlgorithmName

 # Get Strategy name and use for input

 Mystrategy = StrategyFactory.getStrategyName(AlgorithmName)

 print Mystrategy

 myclasss = myclass(Mystrategy)

 # get the header name "NumberOfTestcase" and get value below the header

 NumberOfTestCase = FunctionParameter.getValuedownAfterheadingName("NumberOfTestcase")

 NumberOfTestCases = int(NumberOfTestCase)

 # get the header name "NumberOfRepeats" and get value below the header

 NumberOfRepeats = FunctionParameter.getValuedownAfterheadingName("NumberOfRepeats")

 NumberOfRepeat = int(NumberOfRepeats)

 print NumberOfTestCases

 print NumberOfRepeat

 y=0

 obj= myclasss(0,0,0)

 while y < NumberOfRepeat:

 for i in xrange(NumberOfTestCases):

 output = obj.getOutput() # get oupt from algorithm

 print output

 spamWriter.writerow([' ', output]) #write to tsv

 #evaluation = obj.getEvaluation()

 #spamWriter.writerow([' do evaluation here', evaluation]) #write to tsv

 #print evaluation

 y+=1

writeTotsv()

Class FunctionParameterGenerators

this class is responsible to get the user input from excel sheet.

import xlrd

class FunctionParameterGenerators():

 functionlistname = []

 ParameterListname =[]

 def __init__(self, filename, sheetname):

 workbook = xlrd.open_workbook(filename)

 self.worksheet = workbook.sheet_by_name(sheetname)

#This function get value from excel sheet.

 def getValuedownAfterheadingName(self ,MyheadingName):

 excelrownumber=0

 excelcolnumber=0

 num_rows = self.worksheet.nrows

 num_cells = self.worksheet.ncols

 UnicodeHeadingName =MyheadingName.encode('utf-8')

 noFound = False

 while excelrownumber<num_rows:

 while excelcolnumber<num_cells:

 row = self.worksheet.row(excelrownumber)

 if row[excelcolnumber].value == UnicodeHeadingName:

 Functioncolumn = excelcolnumber

 functionrow = excelrownumber

 excelrownumber = num_rows

 excelcolnumber = num_cells

 noFound = False

 break

 else:

 excelcolnumber +=1

 if (excelcolnumber== num_cells): # in case there is no heading name will break

 excelrownumber +=1

 excelcolnumber =0

 noFound = True

 if (noFound == False) :

 MyName= (self.worksheet.cell(int(functionrow +1), int(Functioncolumn)).value)

 if (type(MyName) is float): # if you put number in excel, xlrd will read float value

 ValueName=MyName

 else:

 # if you put string in excel, xlrd will read unicode value ,so change from unicode to string

 ValueName= (self.worksheet.cell(int(functionrow +1), int(Functioncolumn)).value).encode('utf-8') else:

 ValueName=""

 # print "No found heading name " +" ("+ UnicodeHeadingName +") "

 excelrownumber+=1

 excelcolnumber =0

 return ValueName

Calculations.txt

*** Settings ***

Resource calculator_keywords.txt

*** Keywords ***

Multiplication

 [Arguments] ${value1} ${value2} ${resulttotal}

 Click Buttons ${value1} * ${value2} =

 Win Wait Calculator ${resulttotal}

 ${Ans}= Get Answer

 Should Be Equal As Numbers ${Ans} ${resulttotal}

Addition

 [Arguments] ${value1} ${value2} ${resulttotal}

 Click Buttons ${value1} + ${value2} =

 Win Wait Calculator ${resulttotal}

 ${Ans}= Get Answer

 Should Be Equal As Numbers ${Ans} ${resulttotal}

Division

 [Arguments] ${value1} ${value2} ${resulttotal}

 Click Buttons ${value1} / ${value2} =

 Win Wait Calculator ${resulttotal}

 ${Ans}= Get Answer

 Should Be Equal As Numbers ${Ans} ${resulttotal}

Substraction

 [Arguments] ${value1} ${value2} ${resulttotal}

 Click Buttons ${value1} - ${value2} =

 Win Wait Calculator ${resulttotal}

 ${Ans}= Get Answer

Should Be Equal As Numbers ${Ans} ${resulttotal}

calculator_keywords.txt (Taken from AutoIt library package)
*** Settings ***

Library AutoItLibrary

Library String

Library Collections

Variables CalculatorGUIMap.py

*** Keyword ***

Clear Calculator

 [Documentation] Click the Clear button in the Windows Calculator

 Win Activate Calculator

 Click Button Clear

Start Calculator

 [Documentation] Start the Windows Calculator application and set the default settings that the rest of the tests expect.

 Run calc.exe

 Get Calculator Version

 Wait For Active Window Calculator

 Select Calculator Menu Item View Scientific

 Wait For Active Window Calculator Degrees

 Comment We want "Digit Grouping" off but there's no way to examine the check beside the menu item. So we need to try recognizing some displayed digits to see if its on or off and then change it if necessary.

 Send 12345

 ${Result} ${ErrMsg} = Run Keyword And Ignore Error Win Wait Calculator 12345 3

 Run Keyword If "${Result}" == "FAIL" Select Calculator Menu Item View Digit grouping

 Win Wait Calculator 12345

 Click Button Clear

Stop Calculator

 [Documentation] Shut down the Windows Calculator application.

 Win Activate Calculator

 Select Calculator Menu Item Exit

Click Button

 [Arguments] ${ButtonText}

 [Documentation] Click a button by its text name, using the Calculator GUI Map.

 ${ButtonName} = Get From Dictionary ${GUIMAP} ${ButtonText}

 Control Click Calculator ${EMPTY} ${ButtonName}

Click Buttons

 [Arguments] ${ButtonNames}

 [Documentation] Click a sequence of buttons by their text names, using the Calculator GUI Map.\n Button text names should be separated by white space.

 @{Buttons} = Split String ${ButtonNames}

 : FOR ${ButtonName} IN @{Buttons}

 \ Click Button ${ButtonName}

Select Calculator Menu Item

 [Arguments] ${MenuItem}

 ${AltKeys} = Get From Dictionary ${MENUMAP} ${MenuItem}

 Send {ALTDOWN}

 Sleep 1

 Send ${AltKeys}

 Send {ALTUP}

Get Calculator Version

 [Documentation] Get the version of the Windows Calculator. Version 5.1 is WinXP, Version 6.1 is Win7.\n Set the suite variables to match the found version.

 Send {ALTDOWN}

 Sleep 1

 Send ha

 Send {ALTUP}

 Win Wait Active About Calculator Version

 ${WinText} = Control Get Text About Calculator Version Static3

 ${WinText2} = Run Keyword If "Version" not in "${WinText}" Control Get Text About Calculator Version Static4

 ${WinText} = Set Variable If "Version" in "${WinText2}" ${WinText2} ${WinText}

 Run Keyword If "Version" not in "${WinText}" Fail Cannot find Calculator version

 ${GUIMAP} = Set Variable If "5.1" in "${WinText}" ${GUIMAP_51}

 ${GUIMAP} = Set Variable If "6.0" in "${WinText}" ${GUIMAP_60} ${GUIMAP}

 ${GUIMAP} = Set Variable If "6.1" in "${WinText}" ${GUIMAP_61} ${GUIMAP}

 Run Keyword If ${GUIMAP} == None Fail Calculator version not supported: ${WinText}

 Set Suite Variable ${GUIMAP}

 ${MENUMAP} = Set Variable If "5.1" in "${WinText}" ${MENUMAP_51}

 ${MENUMAP} = Set Variable If "6.0" in "${WinText}" ${MENUMAP_60} ${MENUMAP}

 ${MENUMAP} = Set Variable If "6.1" in "${WinText}" ${MENUMAP_61} ${MENUMAP}

 Set Suite Variable ${MENUMAP}

 Control Click About Calculator Version Button1

Set Hex Mode

 [Documentation] Put the calculator in Hex arithmetic Dword mode.

 Select Calculator Menu Item View Hex

 Click Buttons Hex Dword

 Sleep 1 sec

Get Answer

 [Documentation] Get the answer via the clipboard, since the control is not accessible in the 6.1 version (it used to be "Edit1" in the 5.1 version).

 Select Calculator Menu Item Edit Copy

 ${Answer} = Clip Get

 [Return] ${Answer}

TestcaseFile.txt

setting

Suite Setup
Start Calculator

Suite Teardown
Stop Calculator

Test Setup
Clear Calculator

Resource
calculator_keywords.txt

Resource
Calculations.txt

Test Case

Calculations

Addition
8
1
9

Multiplication
2
3
6

Addition
5
2
7

Multiplication
2
8
16

Substraction
4
0
4

Addition
8
8
16

Substraction
1
4
-3

Addition
8
3
11

Multiplication
6
3
18

Addition
3
2
5

40
75

