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Abstract: Within this study the aim is to measure running workload and relevant running technique 
key points on varying cadence in recreational runners using a custom build sensor system ‘Nodes’. 
Seven participants ran on a treadmill at a self-chosen comfortable speed. Cadence was randomly 
guided by a metronome using 92%, 96%, 100%, 104%, and 108% of the preferred cadence in 2-min 
trials. Workload was measured by collecting the heart rate and the rating of perceived exertion (RPE 
1 to 10) scores. Heart rate data shows that the 100% cadence trial was most economical with a relative 
heart rate of 99.2%. The 108% cadence trial had the lowest relative RPE score with 96.2%. The sample 
rate of the Nodes system during this experiment was too low to analyze the key points. Three 
requirements are proposed for the further engineering of a wearable running system, (i) sampling 
frequency of minimal 50 Hz, (ii) step-by-step analysis, and (iii) collecting workload in the heart rate 
and RPE. 
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1. Introduction 

Many runners start running for the health benefits and ease of practice, making running a 
popular form of exercise [1,2]. More than eight out of ten runners use devices such as running related 
smartphone apps, sports watches, and/or smartwatches [3]. These devices are mainly used to monitor 
running performance. Running performance is determined by a large number of variables typically 
categorized by physiological (workload) and biomechanical (running technique) variables [4]. 
Workload and specific components of biomechanical variables relate to drop-out and injury in novice 
runners. Running-related wearable devices are widely used by novice runners and have the 
possibility to monitor workload and biomechanical variables of running [5–7]. In these wearable 
devices, heart rate is commonly used as a variable to collect the workload [3]. 

In a large number of studies, running technique measurements are done to identify one or a 
small number of running technique variables [8]. This type of research is mainly carried out with 
experienced runners focused on performance improvements. The runner or his coach can analyze 
and interpret the measurements to make adjustments and to provide instruction. Sensors and 
systems used in these research contexts often target only one specific aspect within the running 
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technique [8,9]. Although this is a logical choice in terms of reliability, it raises questions about the 
ecological validity of the current technical measurements. Both novice and experienced runners 
benefit from measuring more running technique variables within the real-life running context [9,10]. 
Developing a sensor system solution coping with these challenges needs a different approach than 
traditional [5]. Currently, running analysis is costly and often done using expensive (research 
focused) systems (e.g., Vicon and Xsens). However, there is a need for monitoring running technique 
in the real-life context, for both novice and experienced runners. In this study, therefore, we 
investigate the feasibility of measuring workload and running technique key points using a custom 
build wearable sensor system named ‘Nodes’ [11]. Along with this, we aim to identify the running 
key points that (i) can be measured with affordable, easy-to-wear sensors and (ii) are related to the 
actual and perceived workload. Step frequency, or cadence, is related to both physiological and 
biomechanical variables [12,13]. Due to this relationship between cadence and running technique 
changes, this variable was used to influence the running technique. 

Running Technique Key Points 

Previous research has identified a set of critical running technique key points that should be 
used to provide real-time feedback to the runner [5,10]. The running technique key points were 
identified by a literature review, observations of running coaches, and a focus group of running 
experts [10]. The present study is a crucial step within the future aim to design and validate a real-
time feedback system. This future system should be able to measure relevant running technique key 
points (Table 1) and provide relevant, meaningful, and understandable personalized feedback, 
instruction, and motivation for the runner based on the individuals’ measurements. 

Table 1. The running technique key points explained, Evidence related to running economy and/or 
injury risk and measurement solutions as used in the research or running context. 

Key Point Description Evidence for Running Measured with 

Cadence 
The number of 
steps per minute 

Higher cadence relates to a lower injury rate 
[12,13]. 

Wearable sensors 

Impact force 
direction 

Ground reaction 
force direction at 
impact 

For the leg to handle the impact the best, the 
shin angle should be aligned with the 
ground reaction force vector [14]. 

Force plate, or 
sensors on lower leg 

Body angle 
Lean of the torso 
related to the 
vertical vector 

Forward body lean seems to have beneficial 
effects on running economy and may induce 
other factors as well [10,15]. 

Wearable chest 
sensor 

Knee 
extension 

Angle between 
upper and lower leg 
measured at toe-off 

Smaller angle improves running 
performance and economy, the foot gets a 
better swing phase [16]. 

Two sensors, one on 
the lower and one 
on the upper leg 

Minimal 
impact G 

Impact force 

Lower peak medial–lateral force [17], lower 
anterior–posterior braking force [18], and 
higher anterior–posterior propulsive force 
[16] are more economical 

Wearable research 
prototypes. 

2. Materials and Methods 

2.1. Subjects 

Seven healthy subjects were recruited, all working at Fontys School of Sport Studies. The single 
inclusion criterium was that the participant was able to run 30 min consecutively on a self-selected 
running speed. The study was conducted in accordance with the Declaration of Helsinki, and the 
study protocol was approved by the Research Board of Fontys School of Sport studies. 

2.2. Technical Description of the Nodes System 

The Nodes system (Figure 1) was originally engineered for motion tracking in a revalidation 
context. The complete system can contain up to 5 chains of 4 nodes (or sensors), connected to the 
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central unit via micro-USB via wires between each other in a daisy-chain fashion. The central unit 
can be connected both wired or wireless to a smartphone or a laptop. Every sensor unit is equipped 
with a microcontroller and inertial magnetic units (IMUs) to provide the orientation of the sensors 
with minimum computational latency. The IMUs include a 3-axis accelerometer, a 3-axis gyroscope, 
and a 3-axis magnetometer. The accelerometer and gyroscope are calibrated during production, 
whereas the magnetometer needs to be calibrated in situ, prior to recording. The single sensors are 
kept as light and small as possible. The central unit has been equipped with a user-interface in which 
battery and Bluetooth status is displayed besides the sensor connection indication for the 
corresponding body segments. Different sampling frequencies are achievable, depending on the 
number of sensors connected: the daisy chain configuration and the communication protocol 
(Bluetooth or USB) are the bottleneck of the communication speed. 

IMUs represent the actual sensing component, whereas the translation of data from IMU to 
orientation can take place on the microcontroller or the laptop via a sensor fusion algorithm. When 
raw data is saved on a computer, it is possible to reconstruct the orientation of the limbs if a prior 
calibration procedure was recorded. The Nodes system interfaces with an 18-segment biomechanical 
model developed in Matlab (MathWorks, Inc. Natick, MA, USA) and Unity (Unity Technologies, San 
Francisco, CA, USA). When using the Matlab interface, it is necessary to perform a T-pose calibration 
in order to obtain initials sensor-to-segment orientation. The IMUs are attached to the body via elastic 
straps and custom rubber rings that hold the sensor case in position. Thighs and pelvis straps are 
kept in position via a connection to a waist strap that also hosts the main unit. 

(a) (b) (c) (d) (e) 

Figure 1. The Nodes sensor system with (a) the main unit, (b) the feet and shanks placed sensors and 
the iPad in the background, (c) the feet and shanks sensors from a lateral view, (d) the central unit 
attached to the runner, and (e) the runner during a trial. 

2.3. Experimental Protocol 

All subjects were equipped with the Nodes system. Two strings of four nodes each were used to 
collect both legs running motion. Data was streamed via USB connector to the laptop. Via prior 
calibration, a Matlab algorithm reconstructed the sensor position. This system was used to analyze 
the key points with sensors placed on both feet, shins, and thighs, one sensor was placed on the pelvis 
and one on the trunk. Subjects also had a chest-worn heart sensor (Wahoo TICKR) to measure the 
workload using heart rate. Running was performed on a treadmill (Lode Katana Sport, Groningen, 
Netherlands) and video recorded by iPad (Apple, Cupertino, CA, USA) from two perspectives 
(sagittal and backplane), from the feet up to the shoulder. A metronome app (Metronome, Gismart, 
London, UK) was used to set the cadence in the different trials. 

After informing the subject about the study and signing the informed consent, the body metrics, 
age, gender, body height (cm), and weight (kg) were recorded. The subject was equipped with the 
heart rate monitor and the Nodes system, calibrated with the subject standing on the treadmill. 
During the subject’s warm-up on the treadmill, a comfortable running speed was set for the running 
trials. The first running trial (T100%self) of 5 min was at a self-chosen cadence. We used this measured 
cadence in steps per minute (SPM) as a 100% mark. Within the following 2-min trials the cadence was 
set randomly at 92%, 96%, 100%, 104%, and 108% (Trials named T92%-T108%). Heart rate and 
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running technique were measured continuously. During the final 30 s of each trial, the rate of 
perceived exertion (RPE) was collected using a 1 to 10 RPE scale. After the final trial, a cool down 
was done using a self-chosen running speed, cadence, and time. 

2.4. Data Analyses 

Heart rate, RPE and running technique key points, were analyzed for every trial for the 
individual runner. Group data was analyzed and displayed in group average and normalized data. 
Normalization was based on the individuals’ average result taken as 100% on each variable, using 
only the randomly assigned trials (T92%-T108%). 

3. Results 

Of the seven subjects, five were female. Average age was 40.7 years old, the standard deviation 
was 8.7 years, one of the runners was 59 years of age. The average height was 170.6 (SD 9.6) cm, and 
the average weight was 68.4 (SD 7.6) kg. Running experience varied from one to nine years, while 
running was performed by the subjects 1–3 times per week. The estimated 10 k running performance 
time varied within the group between 45 and 80 min. 

The self-chosen running speed during the T100% set was on average 8.9 km/h (SD 1.5). The 
runners were able to match the set cadence with the metronome, average 165.2 SPM (SD 9.4), versus 
the measured cadence, average 164.7 SPM (SD 8.7, paired t-test p = 0.569) 

Visual observations using the video material of the key points suggest that impact direction, 
upper body angle, and knee extension changed between the trials. The set 25 Hz sample rate of the 
Nodes system resulted in sampling only at 13 Hz per string of sensors as attached to each leg. 
Running at a cadence of 160 steps per minute resulted in nine data samples per stride (running cycle 
of 1 leg). The time in between data samples was too long to reliably analyze the running key points. 

Heart rate results showed only little variation between the trials, with 99.2% (148 BPM) within  
T100% as the lowest average heart rate. The T100% self-trial was the first trial for every runner. The 
highest heart rate was measured in T108% with a normalized heart rate of 101% (151 BPM). The RPE 
scores showed a different result related to the trials. The 108% cadence trial had the lowest 
normalized RPE score with 96.2% (6.3). The highest RPE score was seen with the 92% cadence trial, 
107.8% (7.0). Table 2 displays the results in both absolute and normalized data. Table 2 shows all the 
normalized heart rate and RPE data with their variations. 

Table 2. Results of the trials including the self-chosen cadence trial. Measured cadence, heart rate, 
and RPE scores are displayed in absolute values and normalized (norm) values with the standard 
deviation in between brackets. 

Trial Cadence 
(SPM) 

Cadence 
(norm) 

Heart Rate 
(BPM) 

Heart Rate 
(norm) 

RPE RPE (norm) 

T100%self 165.1 (9.6) 100.3% (1.7) 142 (24) 95.5% (2.5) 5.6 (0.5) 85.6% (8.0) 
T92% 152.3 (8.6) 92.5% (0.9) 150 (27) 100.18% (2.2) 7.0 (0.8) 107.8% (13.4) 
T96% 158.3 (8.6) 96.2% (0.4) 149 (27) 99.9% (1.0) 6.6 (0.5) 101.0% (8.0) 
T100% 164.6 (8.7) 100.0 (0.4) 148 (26) 99.23% (0.9) 6.3 (0.5) 96.5% (4.0) 
T104% 170.4 (9.2) 103.6% (0.6) 149 (27) 99.7% (1.1) 6.4 (0.8) 98.5% (7.9) 
T108% 177.3 (8.3) 107.8% (1.0) 151 (26) 101.0% (1.6) 6.3 (1.0) 96.2% (10.4) 

4. Discussion 

The results of the collected cadence and heart rate seems to indicate that runners run most 
economically at their preferred cadence. This finding was in contrast to other findings that 
demonstrated that the optimal step frequency was higher than the self-chosen frequency [19]. The 
small differences found in this study could suggest that there is a bandwidth in which running 
economy is the lowest as suggested in other studies [8]. The subjectively perceived workload was, 
however, lowest while running with a higher cadence than the runners preferred cadence, 108% of 
this preferred cadence. 
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The perceived workload shows a different relationship to the cadence changes than the heart 
rate workload findings. The low perceived workload of the T108% trial could be explained by the 
lower force needed per step for the same running speed. These findings only relate to acute effects of 
changing the running technique, how running economy and perceived workload develops over a 
more extended period of running technique changes will be part of our future work. 

Running technique key points were not successfully measured in our experiment using the 
Nodes system with the chosen sampling rate and architecture. We needed eight sensors and two 
strings to be able to measure the suggested key points. The capacity of the system was 25 Hz in this 
architecture, which was good enough to analyze gait and slow running [11]. For running at higher 
running speed, the data sampling frequency should have a minimum of 50 Hz [20]. Then 20 data 
samples per stride can be achieved, which should be sufficient to study the running technique. This 
sampling rate is currently achieved using 1 string of sensors in the next iteration of the Nodes system. 
Further testing and validation in laboratory situation before transferring to the real-life running 
context is needed. 

5. Conclusions 

The results can be used to specify several system requirements for engineering a real-time 
feedback system for running. First, the sampling frequency should at least be 50 Hz, preferably 100 
Hz to measure running key points and reconstruct the running cycle reliably. Second, key points 
should be collected step-by-step to give insight into the running technique. Third, the workload 
should be taken into account using heart rate or a subjective scale (e.g., RPE or Borg-scale. Heart rate 
and running speed can be used to estimate the running economy in recreational runners [19]. 
Theoretically calculating running economy, in heartbeats per kilometer, can be used to identify the 
optimal individual bandwidth of the key points. Future research is, however, needed to back this 
claim. Measuring running technique key points with the proposed system requirements using easy-
to-wear sensors is challenging but needed for the real-life running context. These system 
requirements will be taken into account in the next iteration of the Nodes system. The architecture 
will be improved being able to measure step-by-step at a minimum sampling frequency of 50 Hz. 
Taking a step closer to our aim to design and validate an intelligent, easy to use feedback system able 
to provide relevant, meaningful, and understandable personalized feedback, instruction, and 
motivation for the runner based on the individuals’ measurements. 
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