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Abstract

In this graduation project, GreenTech Labs want to create a crop-
weed-removal robot-arm. However, they want to achieve this using 
modern tools, with a system that can help them automate and simplify
the process of training custom robot arms like this. The student who 
was assigned to this project had to research into the hows and whys 
of this situation, and propose and build a design that lets GTL train 
custom robot arms using Robot Operating System 2 and various 
simulation tools.

After much research, trial and error, a system was designed that 
works in a contained way – it requires the setting of a small amount of
hyper parameters and 1 robot-arm model, simulated in a program 
called Gazebo – and uses these things to create neural networks from 
the simulation that the real-life robot would use to perform its tasks, 
do path finding, etc. 

The project is only halfway finished, with the system being able to 
map out all the areas of movement that a robot can do without 
bumping into itself. There is more work to be done after handing off is
complete, but the project  itself serves as a solid proof of concept. 
Further real-life testing will still be carried out after this report, as it 
is still not fully done.
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Glossary

Gazebo - a 3-D simulation program that allows for the definition of 
joint objects and segment objects. It has settings for time-speed 
manipulation, physics simulation and so on. More on the topic here -
http://gazebosim.org/

ROS2 Foxy - the newest distribution of the Robot Operating System 2.
Used for robot programming and causing of headaches. More 
information here -https://docs.ros.org/en/foxy/#

Arudino board - a micro-controller board used for sending electrical 
signals via pins to hardware – like an electrical motor or lights.

SOM – Self Organizing Map. A neural network structure that 
organizes high-dimensional data to a low-dimensional field (generally 
2d). Has many different uses.

Solidworks – a program used for modeling/engineering in a 3d 
environment. Most often used with mechatronis engineering.
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1. Introduction

This document is meant to be the final culmination documentation that 
describes all of the work on this project. It will go over the context and 
setting, after which straight into all of the relevant work and conclusions 
done thus far. There will be 3 primary body chapters - 

• Research and Analysis will go over the beginning of the project, the 
establishment of the requirements and the research that needed to be
done into specific areas for the student responsible for this project to 
be able to competently make design and implementation decisions 
down the line.

• The Design chapter will go over the design choices and plans that 
were born in regards to what was learned during research and what is
demanded by the project itself as requirements. As well as a 
justification for why plausible alternatives were shot down during this 
phase in place of the final choices.

• Lastly, the implementation phase will detail all of the work put into 
facilitating the previous research and designs, as well as all of the 
newly gained information and conclusions from this period.

These chapters are followed by a conclusion chapter that gives and much 
more condensed once-over on the whole project.

1



2. Context

The organizer of this graduation project is an organization called 
GTL(GreenTech Lab) and it does so in partnership with Fontys HS. GTL is 
an organization that generally focuses on (but is not limited to) research 
into technology for the agricultural and sustainability sectors - things like 
devices that help with tracking of crop health, animal populations, drones 
that simplify agricultural work, advanced storage methods for agricultural 
resources and etc. It has a firm partnership with Fontys, which is where it 
sources students for internships and graduation projects. One of the 
primary areas of interest for GTL is the field of robotics. The field of 
robotics faces a significant set of hurdles, such as - complexity in 
programming an actuating robot, machine learning, accessible 
programming and development tools and extendable systems and 
operations. A new and ever-growing in popularity tool that combats all of 
these complexities is something called ROS(Robot Operating System). ROS 
provides a universal "environment" in which it simplifies and allows for all 
manner of complex and robust robotics work. ROS allows for simulation of 
robots, programmatic setup of control schemes, using machine learning to 
teach robots complex things such as image recognition and precise 
actuation, linking up complex networks of separate robotic systems and the 
list goes on. ROS also comes in primarily 2 primary distributions - ROS1 and
ROS2. For the sake of brevity, ROS2 is a more advanced and robust version 
of ROS1 that has recently become as accessible, usable and supported as 
ROS1, so we will disregard further mentioning ROS1 from now on. GTL has 
a vested interest in looking into ROS to see if it has practical application in 
its research and general-work, which is where this project comes in. 

2.1 Project Problem Description

GTL wants to create a custom robot arm that is capable of removing weeds 
from crops. This robot arm will be attached to a roving-type vehicle 
platform, which is expected to provide power, transportation and sensory 
input for the arm itself. The arm is yet to be fully defined, but it's expected 
to allow for the removal of weeds in one of 2 ways - either via cutting the 
weeds or by electrocuting them. It's expected to be comprised of single-axis 
rotating motor joints (1 or more), inter-joint connective segments (1 or 
more) and a simple appendage/tip. More information about what these 
things specifically mean can be found in the Software Specification 
Document (SRS).
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Added below are 2 images of what the final product could look like, as well 
as a proposed design for testing:

Figure 1: Example image of weed-removing robot application

Figure 2: Proposed Robot Arm 
Design For System Testing
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The goal of this project is to train the robot arm to function in a desired 
way. More specifically, the student responsible has to create a dynamic 
system that can allow the robot arm to teach itself how to work, based on 
hyperparameters/rules/data set by a human agent. The system has to be 
robust enough to work with a variety of custom robot arms (that follow a 
defined generic structure, outlined in the SRS) that GTL may wish to make 
down the line. The goal here is to create an infrastructure that can save 
GTL many man hours of manual control-scheme setup and programming, 
that can also be extended for more complex tasks past the point of the 
graduation project.
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3. Phase I - Research and Analysis

Phase I started out well – firstly with several meetings between the student, 
Jan Jacobs and Marcel Roosen. The scope and goal of the project were 
defined, requirements discussed and guidelines laid out.

3.1 Planning

As with any project, a plan going forward was needed. The project was 
separated into 3 main phases that would last set amounts of time.

3.1.1 – Phase I

The first phase would be the beginning of the project. This was where 
requirements are determined, goals are set, planning is made and any 
necessary research is performed. This is where the “what” and “why” are 
defined.

3.1.2 – Phase II

In this phase, all of the requirements and goals set from the previous phase,
as well as any research done, would be applied towards a design that fulfills
the goals of the project. This is where the “how” of the project is planned 
out.

3.1.3 – Phase III

This phase would constitute the application of the plans and designs from 
Phase II, as well as their modification should any changes arise due to the 
context.

5
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3.2 Project requirements/specifications

The project was defined to work within the following scope and under the 
following conditions:

• This project is only concerned with the robot arm itself, it does not 
take into account power requirements, moving the entire arm itself 
around or any kind of visual information being provided for the robot 
arm by itself. It treats the robot arm as being in a vacuum where all 
necessary things for functionality are provided.

• A robot arm, in the confines of this project, is defined as:

◦ Comprised only of single-axis rotating joints (without limitation to 
how many) – this means that ball joints, pistons and others are 
excluded from the scope.

◦ Comprised of rigid, inter-joint segments.

◦ Comprised of 1 last segment of the robot arm (its appendage) 
which would be counted as just a black-box type structure with a 
standard given area of effect relative to itself. This means an 
appendage that is simply turned off or on. This discounts any multi-
joint appendages or complex mechanisms that require additional 
machine learning to operate.

◦ Comprised of the following structure:

Base Joint→Segment→Joint→Segment→Last Joint→Appendage.

Any number of additional joints and segments can be added in, so 
long as any given joint that is NOT the Base Joint or Last Joint 
remains surrounded by segments.

• This project is required to use ROS2 for developing and testing itself. 
The project should prove the viability of ROS2 as a development tool 
for GTL.

• All code must be documented, as well as there must be documentation
for all relevant hand-off procedures at the end of this project.

• Regular meetings should be kept with Marcel Roosen and Jan Jacobs 
to notify them of progress and relevant decisions that need to be 
made.
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3.3 End-Goals and Deliverables

This is what was expected by the end, for this to be a fully complete project:

• A system that can train any type of robot-arm that fits within the 
defined structure standards of this project.

• A system that can train robots in a simulated environment to save on 
time, using ROS2 as the main training environment.

• A proof of concept that such a system can work.

• A robot-arm that has been trained to move and perform a task with 
the training system.

• A robot arm used for cutting/electrocuting weeds that has been 
trained with the developed system.

• Full documentation of code.

• Final report of the project.

• Full project documentation that allows for easy replication of final 
results.

3.4 Research

It was concluded, after collecting requirements and creating a complete 
SRS document(listed in the appendix), that the student's knowledge in 
machine learning was lacking. A research document was carried out and 
written to help the student better understand semi and unsupervised 
machine learning in the given context. This information was necessary so 
that it could be better understood how to design a system that would allow 
for the training of robot arms of varying types(which still maintain a 
specified, general mechanical structure). 

The following primary question needed answering:

"How to create an environment that can teach a variety of similar 
robot arms to teach themselves how to actuate and perform tasks ,with set 
parameters, from scratch?"
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In accordance with this primary question, there would be sub-questions, 
such as:

1. What is motor babbling?

2. What alternatives are there to it? Why should they be considered?

3. What variety/combinations of machine learning would give us the best
results for such a system.

1. Can this method be applied to a variety of robot arms?

2. Does this method allow for motor babbling?

3. Can this method allow for one robot to learn and copy from another
robot's neural network if they share similar features in design?

4. How long would such a method take a singular arm in a virtual 
environment? How would time consumption scale with degrees of 
freedom?

5. How would the chosen method of machine learning be applied to 
the ROS2 environment? Does it even need to interact with ROS2?

6. What parameters would be needed to set learning goals? What 
would be the most modular approach?

7. Are there preferable alternatives?

Here are the important conclusions from that research:

• Baby-babbling is an excellent natural human process of semi-
randomized establishment of the range of motion that a human 
actuation system can preform. Essentially, how the brain maps out a 
model of the body it is in for control purposes. This translates directly 
into motor-babbling - the same thing, just for robots.[3]

• Motor-babbling, by very definition, would not grant the desired 
amount of automation in this project. It can’t be used for skill 
learning, only for model-definition.

• There are multiple approaches to semi-supervised machine learning. 
And there are many methods of implementation. At their core, 
however, they can be seen as different flavors of optimization 
algorithms. A good example of this is Evolutionary Algorithms [11]. 
Evolutionary Algorithms is comprised of the general notion of having 
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a given "main" algorithm, mutating it into several variants, and 
testing out how each one performs. Then the best performing one 
becomes the "main" algorithm. However, this can be implemented to 
different effects - where one approach would yield the best singular 
and most efficient approach, another would yield the top few most 
optimal approaches, never pointing to one given final result. 

The most considered approach from EAs was evolutionary 
strategies[5], [6], [10], [13]. On account of several convincing 
applications in a robotics environment, it really did seem like a 
plausible candidate machine learning in this project. However, after 
discussion with the stakeholders, it was deemed unnecessary 
compared to its competitors, simply due to the fact that at current 
time, GTL has no interest in setting up the infrastructure for this 
approach to be profitable.

• While there are many approaches to algorithmically teaching a system
to perform given tasks, not too many are easily implementable within 
a ROS environment. Given the limited knowledge of the student, as 
well as practical and time constraints, it was determined that only 
accepted and practised in ROS machine learning algorithms would be 
used. 

• Reinforcement Learning was chosen as the most preferred means of 
training a robot arm to teach itself how to perform a given task in 
ROS. It has a lot of history in training robots and fulfills the 
requirements of this project. [8] [12]

• The concept of applying the neural network of one robot to another 
robot poses too many complex problems. While 2 absolutely identical 
robots(from a structural perspective) can share neural networks, 
robots with differing structure could not adapt the neural networks of 
other robots that have similar structures, but not identical ones. 
Unfortunately, this means that the idea of robots sharing information 
and learning from each other, in the scope of this project at least, is 
deemed impractical.

• During the research process, it was concluded that one method of 
machine training would be not enough to achieve the desired level of 
self-teaching that the system needed to do. Reinforcement Learning 
alone would require too much pre-work. Motor-babbling doesn't work 
for training complex behaviours, by very definition. Using concepts 
from biomimicry, the student devised the idea for a system that 
replicates how humans teach themselves how to use their arms, first 
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in a general sense ( via baby-babbling and the Motor Cortex [17] ) and
then in a specific, skill-based sense (manual learning of specific skills 
via the Cerebellum [18] ). Using motor-babbling, the robot would 
calculate all the movements it can do and generate a basic SOM 
neural network for these movements(as shown in reference [7], 
specifically chapter 3.4 of the book). This would require only basic 
hyper-parameters, such as the physical dimensions of the robot and 
its joint positions and angle restrictions. After that, Reinforcement 
Learning would pick up from there, and with a few rules and hyper-
parameters set again, it can teach the robot to teach itself how to 
perform simple or even very complex actuation tasks. 

The image below is meant to provide an overview of the theorized 
design/process for training robot arms, that resulted from Research. For the
full information, reference the research document itself.

Figure 4: Arm Training Cycle

With the research document completed, as well as all other documents from
Phase I, the student had a good, justified understanding of the theory 
behind what he needed to build and had a clear layout of what the system is
supposed to be and what it requires. The information gleamed during this 
phase was confirmed and peer-checked during multiple meetings with the 
company coach, so as to ensure maximum quality of information.
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4. Phase II – Design

This phase entails the designing of the self-teaching system using what was 
learned during Phase I. First, there was some experimentation.

4.1 Experimentation

When this Phase of work began, a lot of experimentation was done with 
various Self-Organizing Map packages and Reinforcement Learning 
Exercises to help the student more practically confirm the theory concluded
from research. There were plenty of problems found during this, such as 
existing ROS2 Reinforcement Learning packages not being supported by 
the newest, used by the project, release of ROS2.

This was the source of some difficulty, as the student had virtually no 
reinforcement learning experience up to this point, and without the 
dedicated ROS packages, was left directionless. Fortunately the task was 
simpler than initially conceived, and after going through -> 
https://www.learndatasci.com/tutorials/reinforcement-q-learning-scratch-
python-openai-gym/

it became much clearer how to approach the reinforcement learning 
process from scratch and apply it in various environments.

As far as the motor babbling was concerned, the student used a package 
called MiniSOM to organize and visualize some basic data. The concept 
seemed to work just as desired, the data was organized in the way that 
research theorized it can be used for navigation and thus work began on 
drawing up a system.

4.2 Calculation over Simulation

4.2.1 Calculation Approach

Version 1 of the system went with a “calculation over simulation” approach. 
What this means is that, there was a choice to be made – either the student 
could make the entire motor-babbling part work with just mathematical 
variables and very robust mathematical algorithms OR use a 3d model and 
physics simulation program with more minimal algorithmic requirements.

Initial attempts with using only the mathematical approach looked 
promising – they boasted absolute direct control over every “mathematical 
simulation” variable. However, the head of unnecessary complexity began 
to rear itself. 
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The image below was the student’s attempt annotating all of the necessary 
information that just one joint would need to keep track of in the 
“mathematical simulation”. Relative rotation values, XYZ positioning, 
collision space – all of these needed to be separately accounted for.

The same went for static inter-joint segments – they had to have their XYZ, 
collisions and physics accounted for as well. One of the most glaring 
problems for such a design would be how inhospitable it is for the end user. 
Most mechatronics engineers use programs such as Solidworks to do their 
modeling work. These are widely used and known programs that are 
designed to allow people to smoothly and efficiently engineer models. To 
ask them to learn an entirely custom new layout just to mathematically 
model a robot arm, with at least a few dozen variables would be a very 
jarring experience. There isn’t much doubt that they could, but it would 
simply be an inefficient usage of time and an introduction of unnecessary 
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steps that have already been automated with the previously mentioned 
Solidworks example.

Another flaw to this approach would be that, while it certainly can be done, 
the math is there – it would be, in a sense, re-inventing the wheel. There 
already exists simulation software that solves all the problems that this 
approach poses. And on top of that, the complexity would cost the student a 
lot of time, as he does not have the necessary mathematical knowledge to 
quickly tackle such a complex problem.

4.2.2 Simulation

On the other side of this argument, exists an application called Gazebo. 
Gazebo is a simulation software, that essentially allows for the simulation of
collision, gravity, motor turning resistances and many, many more 
variables. It automates and already does most of the work for us. The only 
real downsides to it are that it can be unstable at times and can be complex 
to learn initially. However, it does already have ROS2 integration anyway 
and it allows for the importing of Solidworks models, so by comparison, it 
doesn’t really have a significant enough downside to itself versus the 
alternative.

4.2.3 The Conclusion

To summarize, between the choice of manually setting up the entire 
simulation with math in (for instance, a jupyter notebook environment) or 
just using the pre-existing tools for such a task, while in theory the purely 
mathematical approach would boast ultimate efficiency, the practical 
hurdles to achieving this efficiency would be very considerable. And on top 
of that, such a mathematical infrastructure wouldn’t lend itself well to 
integrating with pre-existing engineering methodologies.
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Table 1: Comparison table for Simulation versus Calculation

 Comparison Criteria  Gazebo  Mathematical 
Simulation

Already Integrated with 
ROS2?

 YES  NO, would have to be 
built from ground up

Is complex to use?  Only initially  Always, on account on 
having very many 
variables

Integrated to work with 
Solidworks?

 YES  NO, would require 
remodeling of entire 
robot arm from scratch

Time Required to 
implement?

 Approx 2 weeks  Upwards of 1 month

Performance Speed  With time acceleration, 
only limited by 
hardware

 Theoretically superior, 
and certainly more 
efficient

In accordance with these criteria, the simulation approach with Gazebo was
chosen.
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4.3 Finalized Design

As mentioned above, the proposed design for the overall system 
architecture would be based on biomimicry. The system would be 
comprised of 2 main parts:

1 Part one would take a robot model, one made to be rendered in 
Gazebo*(Simulation Software), and using a combination of ROS2 and 
Gazebo packages, run a loop that has the robot perform every 
possible combination of movements that it can. Every single one of 
these position combinations would then get saved as a state object. 
This state object would have the X, Y and Z coordinates of the tip of 
the robot arm, as well as the turn value of every turning joint of the 
robot arm. This data would then be fed into a SOM, which after being 
properly trained, could be used for logical and basic path planning(for
more information on why, check research document).

 This would result in the Motor-Babbling-generated neural network for
the robot that would be used for part 2 of the system.

2 Next would be the reinforcement learning - using the data from 
before, and defining a rule set, the simulation would use its basic path
planning to teach itself how to achieve given goals. Once again - just 
Gazebo and ROS2 packages, with perhaps a python package to help 
with the reinforcement learning process. With the iterative training, a 
neural network would be produced that the robot could use to in 
conjunction with it's motor-babbling SOM for full mobility and task 
completion.

The whole system, once complete, would be used to take any custom robot 
arm(that still sticks to specifications, as mentioned before) and train it to do
basic movements first, and then complex sets of basic movements in specific
succession. Below are 2 sub-chapters to go into the farther design details of 
the 2 parts. Also is given the domain model of the overarching system, for 
viewing purposes, as well as a general overview/flow diagram to help 
visualize how the whole thing comes together.
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Figure 6: System Domain Model
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Figure 7: General Overview Diagram - just to aid with understanding 
how everything comes together.



4.3.1 Motor Babbling

Initially, the motor-babbling aspect of this project was meant to be done 
without simulation software and entirely done using mathematics. However,
with the fact that there would be robot arms that often likely work in 3 
dimensions and not 2 or 1, the complexity of this approach quickly sky-
rocketed. Due to practical constraints and a streamlining of the approach, it
was replaced with the model below:

Figure 8: Motor Babbler Structure Diagram
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This entire program would essentially be a ROS2 package. It would be 
written in python and consist of the following key features:

• There would be 2 "Listeners" - in ROS2 terms, listeners and 
publishers are sort of the main function of everything - sending ROS2 
messages all around. This will be explained in greater detail during 
the Implementation chapter. The point of these listeners would be to 
collect joint turn data and the robot appendage tip's XYZ positional 
data from the simulation.

• There would be 2 joint manipulator classes - the "Joint Position 
Manipulator" would be responsible for spawning joints in specific 
positions within the simulation – what is meant by spawning, is that a 
joint in a gazebo environment can be told to, instantaneously, have 
itself turned to a specific degree. So for example, if we have a wheel 
that turns only 90 degrees along one axis away from a defined central 
point, this wheel can suddenly turn from degree 40 to degree 90 
instantly. This is gone into in more detail during implementation.

The other class, "Joint Force Client Service", would move joints 
around via the application of simulated force upon them. This may 
seem redundant, however due to problems with lacking functionality 
in ROS2 and Gazebo, as of the time of this project, this was the most 
elegant solution. This will be delved into in greater detail, again, 
during the Implementation chapter, for now - the important thing is 
that these 2 packages would be used together to achieve the best 
possible simulation result.

• There would be 2 "Central" data structures, although there would be 
many more in-between. Motor Position Tree would be a nested type of
class, where 1 motor value from motor 0 could have 200 positions of 
motor 1 and so on. Positional Data Unit is simply the final data holder 
of all of the combined motor positions and resulting tip XYZ data - the 
object that would be used for the neural network training. More detail
in chapter III. 

• There would be the Gazebo simulation itself, which would have a 
robot model with joints and segments in between, and a bunch of 
ROS2 compatible packages that would allow it to communicate with 
the Gazebo environment. To be used for collision, physics and 
movement simulation.

• Lastly ,but not least, all of these elements combine in the Trainer 
class, which would use them to talk back and forth with the 
simulation. It would be intended to, with just a few set 
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hyperparameters, take on any simulated robot, that fits general 
specification, and make it do all of its movements. After that, it would 
take all the generated data, train a Self-Organizing Map and briefly 
test it to see if path finding makes sense.

All of this would come together to complete the motor-babbling aspect of 
the program and allow for the next big thing - the Reinforcement Learning.

4.3.2 Reinforcement Learning

As of writing this, the Reinforcement Learning part of this system would in 
many ways be simpler to implement than it's predecessor. The RL loop 
needs to deal with no uncertainties about the shape of the arm, where it can
move and where it can't, and since all of this information is saved in the 
SOM path finding - a lot less functionality is necessary. It is essentially a 
stripped down version of the Motor Babbler, with a different algorithm 
attached. So there is no need to re-explain what was already gone over 
before, to summarize it's work loop - it would take the SOM and, following a
set of rules for its reinforcement learning loop, it would keep moving the 
arm around and around in 3d space and recording the results, while 
constantly checking if the patterns established are favorable for the RL loop
or not. In simpler terms - it'll just be RL with a 3d model moving around. 

The simplest example work for this would be to define two 3d points in 
space, in a given succession, and telling the algorithm to find the shortest 
path to move between these 2. Or maybe giving an additional data point 
which highlights certain areas of 3d space that shouldn't be passed through 
under specific circumstances - this could simulate objects in the way, 
terrain elevations - really there is a lot that can be done from here.
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Figure 9: Reinforcement Learnier Structure Diagram

From this point onward, the system would have everything needed to have a
basic robot arm perform rudimentary or even some complex maneuvers. 
The neural networks would likely be put on a micro-processor board of 
some sort, or perhaps just a normal portable computer, from where there 
would need to be made a simple control scheme from the ROS2 
environment that matches the movements, ratios and trajectories of the 
simulation with their real-life robot counterpart. This would vary from case 
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by case, but it can be safely said that any experienced professional can 
knock out this kind of work in an afternoon.

In addition to the graphs and system plans, a Design Justification document 
was written - the purpose of which was to give commentary on all major 
design choices for the finalized system, so that anyone working on this 
project after the student is long gone can find easy answers on the most 
major topics as to the "Why?" of things.
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5. Phase III - Implementation

This part took up the largest portion of the project due to 2 primary 
categories of factors:

• Lack of experience with ROS2 Foxy, Gazebo, Python and robotics in 
general.

• A plethora of issues rooted entirely in the fact that ROS2 Foxy and its 
Gazebo counterpart packages are severely lacking, due to how new 
the distribution is.

As of writing this, the project has a nearly fully completed and functioning 
Motor-Babbling trainer and a yet to be live-tested robot. This chapter will 
go over all of the work and hurdles encountered during the Motor-Babbler 
implementation and the results and successes thus far.

5.1 Motor Babbling

After planning was squared away, practical work began. A ROS2 package 
would need to be made to work alongside the Gazebo simulation, first we 
will discuss the Gazebo side of things and then go on to how the ROS2 
package took shape.

5.1.1 Gazebo

As mentioned in the Terms chapter, Gazebo is a program used for the 
physics-based simulation of basic 3d objects. It primarily supports 2 kinds of
object:

• A raw joint that can be one of several defined gazebo joint types(static
joint that can’t turn, joint that turns along one or more axes, etc.) or 
just a custom one altogether. These joints can account for collision, 
they can simulate friction, weight, turn limitation, force dampening, 
total force limitation - the list goes on, but these are the important 
essentials. These joints are used to simulate our robot's joints

• Segments/Shapes/Static Physical Objects that are just that - a solid 
geometrical object that can have collisions, colours, physics, gravity, 
weight, frictions and so on.

In a Gazebo simulation, a robot would be designed or imported, that fits the 
structural specifications of the SRS. The robot would be an unrestricted 
amount of joints (small sidenote, 10 000 joints would actually be a limiter, 
because joints are explored via recursion in the training program, and 
Python can only support 10 000 layers of recursion before giving out – it’s 
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very unlikely to ever make a robot like that, but still worth mentioning), 
starting with a grounded joint 0, or Base Joint, at XYZ position 000(in the 
simulation). This joint would then follow a pattern of being connected to a 
segment, which in turn would connect to joint 1, and so on and so forth until
the final joint is defined. The segments in between can be of varying shapes 
and sizes, given that they don't defy the laws of physics. At the very final 
segment, at its tip, would be attached the appendage of the robot arm. This 
appendage, from a programmatic point of view, would consist of one XYZ 
point in 3d space, relative to the starting ground 0 of joint 0. It is important 
to note that every joint should only be able to turn along 1 axis, as the 
system was not designed for pistons or ball joints. Not to say that it's 
impossible to do this, but this was not the intended design for this system.

The image below is a simple example of a 2-jointed simple arm model, 
meant to simulate the design shown at the top of this document. It remains 
functionally identical to the one shown above - this is one of the advantages 
to Gazebo, there is no need to perfectly replicate a model, since we have so 
much control over the physics of everything. If this model perfectly 
replicates all of the movements of the real-life counter-part, then that's all 
the trainer needs to make a SOM.

Figure 10: Gazebo Example Model

With a robot arm in place in the simulation world, generally it would be set 
in the Gazebo world file(a large file that accounts for all the objects and 
settings of the simulation, in XML format) that time flows 20 or 30 times 
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normal speed. One of the great features of Gazebo are that it allows for the 
speeding up of world time without any detrimental physics side-effects on 
the simulation. The only limiting factor on how far this can scale, based on 
the student's personal experiences with the program, is how powerful the 
working PC is.

5.1.2 Gazebo Hurdles

The described information above should make for a simple approach to 
simulating, however this is where problems started popping up. Aside from 
an ample lack of almost any up to date documentation, we have the 
following:

• Gazebo joints have a tendency to clip badly outside of their physical 
limitations, if they are all not set to a specific weight.

• Gazebo doesn't currently allow for a way to programatically lock a 
joint, meaning they will always succumb to gravity and inertia.

There are more issues to describe, but the rest are more-so engaged to the 
ROS2 Foxy side of things than Gazebo itself. The workaround for these and 
the other issues is the following - set all joints to at least 1kg of weight, 
disable gravity and make it so that every single joint and segment are about
half as heavy as their predecessors. This last part has to be done to negate 
the effects of inertia. Since we have no way of locking a joint, much like a 
joint would naturally do in real life when not turning, we go around this by 
making each following joint to weak to be able to affect it's predecessor. 
Again, to emphasize the point – this is a workaround and by no means a 
perfect solution. Simply the best way to get around the problems created 
from working with under-developed software.

Next we discuss ROS2, how it interacts with Gazebo, the problems this 
spawns and the workarounds.

5.1.3 ROS2

The ROS2 program would be the "meat and potatoes" of the motor-babbler 
as it were - the package was meant to communicate back and forth with the 
simulation to gather joint and XYZ data, to put into a SOM that can be used 
for path planning either in the simulation or real life. To do anything, first 
we must discuss how ROS2 would communicate with the sim - 
gazebo_ros_api_plugin. This describes a family of packages, in this case 
designed to work with the newest release Foxy, that allow ROS to be able to
send messages from its environment to the simulation to achieve different 
goals:
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• gazebo_ros_state - this plugin would create a ROS2 service, which the 
ROS2 environment could use to get the pose and twist data of links 
and models.

• gazebo_ros_joint_state_publisher - a separate plugin for getting the 
pose and twist data of joints.

• gazebo_ros_joint_pose_trajectory - a package that allows ROS2 to 
immediately spawn a joint to be turned in a specific angle (as long as 
the angle isn't beyond the defined limit for that joint). This spawning 
ignores collisions and can cause errors.

• libgazebo_ros_force_system - this package is used to apply a variable 
force over a period of time on a ROS2 joint. It is not especially useful, 
because it is more akin to spinning a tire that is off the ground than 
telling a motor to turn a specific amount. You can define an amount of 
force to be applied, and the time for which it is applied and after that 
time is up, the joint won't stop turning, it'll simply stop applying that 
force. However, a useful feature of this plugin is that it accounts for 
collisions. So if a joint is swinging around with a link attached, it will 
stop and collide if an object is in the way(provided the link has 
collision enabled.)

5.1.3.1 Listeners

These 4 (poorly documented) plugins make up the core of the feature work 
for the Motor-Babbler, since they define how everything has to be 
structured. For example, initially it was planned to use one general purpose 
listener that gets all positional data from the simulation, however since that 
hasn't been made yet - 2 separate ones had to be made for links and joints 
respectively. The details of the listeners aren't very useful to describe, the 
short version is - you can have them run just for one "tick" or continuous 
line of "ticks" where the listener would collect ROS2 messages and extract 
useful data from them. For example :
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Figure 11: ROS2 Joint Message Structure Example

This is an example of a stream of joint messages - you can see that there are
only 2 important fields for this project "effort" and "position". When the joint
listener would be running, it would collect the data from the "position" field.
So if we have a double jointed robot in a certain position, we would take the
position of both joints, the XYZ of the appendage with our appendage 
listener, and we would have a complete state of the robot.
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5.1.3.2 Joint Manipulation

To move on to joints - they are incapable of stopping or locking on 
command, primarily due to the fact that gazebo_ros_pkgs still is in 
development and lacks a lot of features. As mentioned above, we only have 
2 options for movement - either we spawn joints in specific positions(which 
means we simply make the joint instantly turn to a specific degree on its 
defined turn-axis) and risk collision breakage, or we apply force over a 
period of time and completely lose the ability of any precise movement. 
Eventually ,there will be made packages that provide much better 
movement options, but for the purposes of this project, a workaround was 
devised - when the simulation starts, it systematically goes from joint 0 all 
the way down to the final joint using recursion. When the trainer first 
reaches a joint it hasn't seen before, it would spawn this joint towards its 
outermost possible turn angle (either in the positive or negative value, it 
doesn't matter a lot) and then apply a turn force for the joint to swing 
around until it reaches its natural limit or hits a collision.

All of the positions that the joint was in during its turning are recorded 
except for the last few positions before the stoppage. This data is saved and 
the algorithm goes on to the next joint. What it then does, is for every 
previously recorded position, it will spawn joint 0 there and do the same 
"reset and swing" routine for the next joint, in this case - joint 1. So on and 
so forth, until the system determines and records every possible movement 
that doesn't have a collision.

5.1.3.3 Recursion

One significant hurdle for the motor-babbler was dealing with a dynamic 
amount of joints. Part of the specification for this project is that a robot can 
have any number of joints. This would inevitably result in very messy and 
convoluted “if-statement” avalanche, so recursion was used instead. Below 
is given a code segment from the motor babbler. 

To summarize it succinctly, when this loop fires for the first time, it sees 
that there is absolutely no data about the robot model from the simulation. 
It then takes the Base Joint(the very first joint in the robot model) and tells 
it to rotate smoothly from its right-most extreme angle towards its left-most.
It is important to mention that whether it starts from the left or right isn’t 
especially important for any reason, this can be switched on the fly via 
hyper-parameters. 
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After the first joint has all of its rotation angles recorded (so, for example – 
all the positions between degree 90 and 180), the method terminates and 
fires again from the original for-loop that runs it. This time, it sees that the 
first joint has been calculated, so what it does is it starts a for-loop. From 
every recorded position of the Base Joint, the algorithm calls itself again 
and then sees if the next joint has had its data collected. If yes, the loop 
repeats and continues a layer deeper. If not – the joint in question has its 
movement calculated and the recursion terminates, before starting again 
and again, until all joints (listed in the hyper-parameters) are accounted for.
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5.1.4 SOM

A recap of what we've achieved so far:

• The ROS2 system is capable of tracking all(relevant) information in 
the simulation – joint turn values, segment XYZ positions, etc.

• The ROS2 system can interact with the joints in the simulation to 
make the robot arm move around.

• The ROS2 system has a hefty recursion-based algorithm which allows 
it to dynamically account for any amount of joints in a robot model, 
that is below 10 000 at least. 

• The Gazebo environment is running anywhere between 2 or 30 times 
faster than normal time (or even more, given a powerful enough 
computer).

• The Gazebo environment simulates collisions.

With all of this, our data generation part is completed. The simulation does 
all the possible movements it can and records and organizes the numbers 
into a giant array. Each array entry consists of all the joint values plus the 
XYZ of the arm appendage tip at that time. One of these entries is called a 
robot state. 

The ROS2 package then takes all that data, and feeds it into a SOM package
(in this case, Somoclu) for training and organization. The main goal is to 
organize the neurons of the SOM in a way such that, if we want our robot to
move from XYZ(1,1,1) to XYZ(1,4,1), it will simply jump from corresponding 
neuron to neuron between these 2 points, in the shortest way possible, to 
reach its goal. 

Figures 9 and 10 showcase all of the XYZ positions of the appendage. This 
highlights all of the space that the robot arm can move within. If you recall 
from Figure 7, the model mimics (not fully) in structure and turn capacity 
what the human arm can do. If you take your own arm, and limit it to only 
turning your shoulder from left to right and only extending and retracting 
your elbow from left to right, you will notice that you more or less recreate 
the same pattern of movement as shown below.
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Figure 13: Data Visualization from the top

Figure 10 mainly just shows us very minuscule elevation differences – this is
more-so just noise data. The model shown above is meant to only move 
along a 2d plane and not a 3d one, so the fact that these differences are so 
minute is a good thing – they can be attributed to jitters in the simulation or
a slightly misaligned axis.
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Figure 14: Data Visualization from the side

Lastly, in Figure 11, we can see a very condensed (for visual purposes) 
visualization of the neural network. The network of neurons is organized 
based on the XYZ and motor values of each neuron’s data, so a 3d point 
with given motor values would be a neuron next to another neuron with a 
very similar XYZ and set of motor values. The end goal is to spatially 
organize all of our robot state data in such a way that this can be used for 
basic path planning. As can be seen below, due to the nature of a SOM, if 
we know the starting position of a robot arm and its desired destination 
coordinate, we can use the neurons in this map to quite literally go from 
neuron to neuron, drawing a line. The whole point of this is so that the robot
arm can maneuver itself gradually and efficiently.

Again, this is a significantly condensed example. In this case, the actual 
amount of states the robot records is roughly 40 000. Generally there would
be a larger neuron count so as to avoid large gaps in between the 
movements. However, the core concept remains the same – organize all the 
data into neurons, splay out the neurons in a 2d map based on proximity 
and then use those neurons to calculate paths. XYZ(1,1,1) becomes 
XYZ(4,3,1) with just a few jumps via basic proximity path calculation.
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Figure 15: Path-finding example

It is worth mentioning that there were 2 other considerations for SOM 
packages, however they both had their issues and limitations. It was only 
upon the discovery and usage of Somoclu that good results were gained. 
Below is a small table to exemplify the findings:

Table 2: Criteria table for selecting a SOM package

Packages Retains training data 
after training?

Easy to use visualization tools/documentation?

MiniSOM No No

SimpleSOM No Yes

Somoclu Yes Yes

What is meant by “retains training data” is that after training, MiniSOM and
SimpleSOM don’t allow for looking up what states from the data set belong 
to what neurons(at least not quickly). This then makes a lot of problems and
necessary workarounds, which are avoided via Somoclu.
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5.1.5 Live Testing

Outside of all the Simulation work, there was some experimentation done 
with a practical, real-life built robot arm(the same as the one shown in the 
first image). It was intended to be the final test for the motor-babbler 
results, however - ROS2 Foxy once again fails to support rudimentary 
features. For this testing to happen, the ROS2 Foxy environment needs to 
be able to communicate with an Arduino(or some similar type) micro-
controller board. The micro-control board is simply an interface for sending 
electrical signals to the motors of the robot. However, ROS2 Foxy isn't 
supported in the package ros2arduino yet, and currently available 
workarounds are fairly unstable, so this live testing hasn't been a success.

A choice was made – due to time restrictions and the desire for the most 
important proof of concept, some simulation data would be manually 
collected, adapted and organized for a very rudimentary path-planning. This
would then be put directly onto the micro-controller of the robot-arm just to 
verify that path planning, even extremely simple path planning, when done 
with the simulation data, would work in practice. Fortunately, the results 
were successful and the robot managed to follow a very simple, but still 
consistent circular movement pattern. What this meant was that, the motor-
babbling system had been proven as a directly applicable concept.
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6. Conclusion and Results

To give a brief summary of this project as a whole – the goal was to make a 
system that can train a specific type of modular robot arm. The system had 
to be dynamic and capable of automating as much of the training process as
possible. After a lot of research and analysis, a design was planned out that 
separated the “brain” of a robot into 2 parts – 1 part that handles basic 
movement and one that actually learns/performs skills using the mapped 
out basic movement. 

During Phase II (Design) some decisions needed to be made between how 
the entire system would work. It was concluded that , instead of 
mathematically calculating most of the simulation, using pre-existing 
simulation tools would be much faster and more practical, if not ultimately 
most efficient. Despite issues, the ROS2 environment was developed 
according to planning, a simulation environment in Gazebo was setup 
according to planning and both were developed to the point where they 
produce the desired simulation data for training a real robot.

While incomplete, the produced data from the simulations was used to 
create proof of concept SOM maps, as well as used to maneuver the real-life
robotic model in a very minimal fashion. This was enough to solidly prove 
this project as a concept, and leads us to comparing what was ultimately 
achieved in this project.

6.1 Achieved Goals and Deliverables

To go over the goals of this project again, here is what was successfully 
completed:

• A system that can train any type of robot-arm that fits within the 
defined structure standards of this project. - DONE

• A system that can train robots in a simulated environment to save on 
time, using ROS2 as the main training environment. - DONE

• A proof of concept that such a system can work. - DONE

• A robot-arm that has been trained to move and perform a task with 
the training system. - NOT DONE

• A robot arm used for cutting/electrocuting weeds that has been 
trained with the developed system. - NOT DONE

• Full documentation of code. - DONE
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• Final report of the project. - DONE

• Full project documentation that allows for easy replication of final 
results. - DONE

Unfortunately due to practical constraints, the student was not capable of 
finishing the entire project. However, enough has been finished to prove 
that this system has considerable value to offer.

This system is intended to be used for much more practical application with 
the briefly mentioned weed-cutter robot, however this goes beyond the 
practical capacity of this graduation project, and will be handled later on by
GTL employees after handing off.

6.2 Recommendations

As closing recommendations for GTL, the student proposes the following:

• It would be wise to stick with the currently selected version of ROS2 
(Foxy) for the time to come. While it is still new and therefore suffers 
problems with under-development, these problems are actively being 
solved and often have solid workarounds for the time being. While 
there can be debate for whether it would be worth going back to an 
older release of ROS2, it is certainly recommended not to go as far 
back as switching to ROS1.

• It is advised to look into the model importing capabilities of Gazebo 
and to test out how this would combine with the current simulation 
system. If GTL can confirm an approach to exporting their, for 
example, Solidworks models into Gazebo for quick simulation 
purposes, this would be a considerable benefit.

• Should this system ever be fully finished and deployed in a working 
capacity, it’s advised to use as strong of a computer as available. 
Gazebo’s ability to speed up simulation time seems almost entirely 
limited to the current PC’s hardware, so this can be a significant time 
saver.

• GTL needs to look into bridging the final gap that plagues this project 
– connecting a ROS2 environment to a micro-control board. There is 
proof that this has and can be done, however it is (as of the time of 
writing this) not as simple and straightforward as ROS1. This issue 
will only become simpler to solve as development of ROS2 Foxy 
continues, but the sooner a dedicated solution is applied, the sooner 
this project can be fully realized and applied to a working 
environment.
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• Should GTL ever desire more complex second-phase learning of this 
learning system, it is entirely plausible to replace the Reinforcement 
Learning phase with something like Deep Q Learning. This will all boil
down to what the company wants from this system in the future.

• It is very important to be aware of the fact that this simulation-based 
system will fail if it is run on weak hardware. It is very, very important
to make sure that adequate hardware is being used for best and most 
stable results.

The most important conclusion that can be gained here is that ROS2 Foxy is
indeed a very robust, time-saving environment. While unfortunately very 
fresh and somewhat under-developed still, GTL’s investment into learning it
will only pay off with more and more value as time goes on. Should they 
finish this system and formally apply it to their work, they can expect a leap 
in finally not being reliant on “black-box” technology of other proprietary 
robot-arm manufacturers.
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Figure 17: Cutter Robot State DIagram
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Figure 18: Cutter Robot Use Case Diagram
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Figure 19: Proposed Robot Arm Learning Cycle from Researhc Document

Figure 20: Visualization of evolutionary algorithm.



Phase II Artefacts
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Figure 21: General Overview Diagram
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Figure 22: Motor Babbler Structure Diagram
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Figure 23: Motor Babbler State Diagram
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Figure 24: Reinforcement Learning Structure Diagram
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Figure 25: Reinforcement Learning State Diagram
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Figure 26: System Domain Model



Final Supplementary Documents

Beyond here can be found all supplementary documents for this project.
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Research Document - ROS-based machine-learning 
in ROS2

by Valentine Ezekiev, 29714291. 

1.Introduction

This document will serve several functions. It is for the graduation project 
"ROS-based self-teaching robot arm". The student needs to better 
understand the concepts behind machine learning, specifically the semi and
unsupervised, motor-babbling variety of machine learning (in a ROS2 
environment). Motor-babbling, specifically, is brought up because it’s been 
recommended as a soft requirement/strong suggestion for this project.  In 
this research document, research questions and context are outlined, then 
conclusions from various sources (research documents, YouTube videos, 
general research) are written down, in addition to any objections to said 
documents(if any) from the student. Once enough information has been 
gathered, this document will end with a conclusion/summary chapter. That 
chapter will act as a summation of all the important-to-the-project 
information that's been obtained.

2. Project Goal (Further Context)

The purpose of this project is to create an environment in which a robot arm
can learn to perform given commands. For instance, take a robot arm with 2
degrees of freedom (2 connective segments with 2 rotating motor joints) 
and a grabber at the end. In the machine-learning environment, this robot 
arm should be able to first learn every movement that it could make, given 
its physical capacities - meaning, just to learn all the ways it can move in 
relation to itself without collision with itself. After the arm has learned what
it can do in terms of the capabilities of its separate motor components, it 
then has to be able to put those fields of movement into skills. What this 
means is, if someone gives a learning objective to said arm to figure out how
to reach a distinct point in 3-d space and pinch, the robot arm has to use the
basic movement knowledge that it has to figure out how to do this.

This basic example scenario should be applicable to a variety of robot arms 
that generally share a modular structure to the one described above - 1 or 
more degrees of freedom and an appendage for a tip (for additional 
information on what exactly is considered an appendage in this project, 
please reference the Software Requirements Specification). The idea is to 
create some kind of system that can allow all of these basic robot arms to 
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figure themselves out and then figure out how to create skills out of their 
basic movement abilities, all while doing this in an unsupervised or semi-
supervised manner. The robots will have to have their learning objectives 
set. Conceptually, this should serve as the guidelines within which the 
robots will attempt to discover information on how to perform.

The need for this complex learning system is due to the strive of GTL to 
create custom robot arms in the long run. They want to have a robust and 
mostly automated system to cut down on the man hours necessary to 
manually program robot arms.

3. Main research question and sub-questions

The primary research question of this project is "How to create an 
environment that can teach a variety of similar robot arms* to teach 
themselves how to actuate and perform tasks ,with set parameters, from 
scratch?". This is a complex question, so there are a lot of blanks in between
that need to be filled in. Namely:

1 What is motor babbling? How far can it go, in terms of teaching a 
robot arm to perform a given complex task(id est picking something 
up)?

2 What other concrete varieties of semi/unsupervised machine-learning 
can be reasonably (meaning - avoiding technologies and concepts that
are currently too unstable and under-developed for practical use. To 
further clarify, technologies/concepts that lack a proof of concept and 
historically practical and successful application in a ROS robotics 
context, generally would not be considered.) researched and utilized 
in this project?

3 What variety and/or combinations of semi/unsupervised machine-
learning would best suit this project's goal?

3.1 Can this method be applied to a variety of robot arms?

3.2 Does this method allow for motor babbling?

3.3 Can this method allow for one robot to learn and copy from 
another robot's neural network if they share similar features in 
design? 

3.4 How long would such a method take a singular arm in a virtual 
environment? How would time consumption scale with degrees 
of freedom?
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3.5 How would the chosen method of machine learning be applied 
to the ROS2 environment? Does it even need to interact with 
ROS2?

3.6 What parameters would be needed to set learning goals? What 
would be the most modular approach?

3.7 Are there preferable alternatives?

4. Terms

Important Note - when referencing a "robot" or "robot arm", it is 
purposefully left vague. The concept of this project is that a wide variety of 
robot arms should be able to learn how to function. At best, a minimal 
standard definition that can be provided is 1 degree of freedom, affixed to a 
base of some sort and affixed with an appendage at the end of the robot arm
with a connective segment in between.

ROS2 - Robot Operating System 2. An environment for programming robots.

SOM - Self Organizing Map. A collection of data points with comparable 
data values that can be laid out onto a flat 2 or 3-dimensional field and 
represent the pieces of data in a logical spacial organization.

Motor-babbling - a form of machine learning that mimics baby-babbling. 
Essentially, the robot records every possible joint combination that it can 
actuate and then saves and organizes that data into some form of neural 
network.
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5. Research Conclusions

Answering Question 1 - Defining motor babbling and it's limitations.

*Relevant references – [3] [9] [19]

Motor-babbling, as a concept, is derived from a process called baby-
babbling. During their infancy, human babies can often be seen performing 
various combinations of random movements. This is described as them 
developing their own sensor-motor relationships - which can more simply be
described as babies figuring out how their bodies move and how it feels to 
perform the various movements, as well as determining the limits of their 
movements. Motor-babbling is the same thing[19], however, applied in the 
field of intelligent robotics, where a robot would map out all of its 
movements into some form of neural network for later use. In more 
practical terms, a system could calculate every conceivable combination of 
its own joints(depending on the degrees of freedom) and map it out into an 
organized neural network[3]. This neural network can then be used by the 
machine's controllers later on as a map on how to perform smooth, 
sweeping movements and adjustments. The reason this would be necessary 
is due to a very practical problem that robot arms face - to move from point 
A to point B, an arm needs to be able to know how to link those 2 points by 
performing all the movements in between. If the motor system of a machine 
doesn't know how to gradually position to a different point of itself, it would 
simply break.

While motor-babbling is an excellent tool for mapping out the motor 
functions of machines[9], it alone is not a method that allows for the 
development of complex skills and patterns, by very definition. As a soft 
requirement of this project, it will need to be used, but it will need to be 
used in conjunction with another machine-learning method that can use the 
information provided by motor babbling to develop skills.

Answering Question 2 - Listing plausible forms of semi and 
unsupervised machine learning to add to our motor babbling.

Since motor-babbling only solves a part of the robot-learning problem for 
this project, an additional learning method will be necessary to further 
develop "skills". In the context of this document, skills refer to complex 
sequences of basic movements with the aim to achieve objectives that go 
beyond the scope of merely "actuate to point B".
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Reinforcement Learning

*Relevant references - [2], [8] and [12]

Reinforcement Learning (RL) is a very popular method for training a neural 
network in the field of robotics(though not only here, it is prevalent in many
other disciplines due to its generality)[2][8]. It revolves around the concept of 
using a singular agent (id est the robot arm) who is given a goal in an 
environment. It is classified as a third separate paradigm of machine 
learning, apart from supervised and unsupervised learning, but it can 
simply be viewed as semi-supervised machine learning. After having been 
given a goal(set of hyper-parameters) from an external, generally human, 
input, the robot will proceed to experiment in its environment and attempt 
combinations of actions that give it varying reward and penalty scores. 
Should the robot perform actions, be they singular or sequence-based, that 
yield negative, penalty results, the neural network will note down to avoid 
repeating those movement combinations in the future(at least in the given 
environmental context at the time of recording). And vice versa - positive 
rewards are remembered by the neural network as something worth re-
actuating and optimizing. The point of this process is to maximize the notion
of cumulative reward.

Image below for illustrative purposes.

To give a brief, although in-depth, description of the working process of RL, 
a brief description of MDP (Markov Decision Process)[12] will be necessary. 
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MDP is a mathematical process used to deal with decisions made in known 
environments, the outcome to which is unknown. During a process, there 
are multiple time steps. For each time step, there are environment and 
agent states. An agent in the environment can choose to perform an action 
onto the current state. After that, the time step moves forward by one and 
the functions responds with a corresponding reward value for the imparted 
action and a change in states. An addition to MDP is partially observable 
MDPs. Very similar, however in this case, the agent can not observe the 
state of the environment it is interacting with. In a scenario like this, the 
agent assumes that the environment's dynamics are determined by an 
underlying MDP that it cannot observe. It must adapt its strategy to account
for the probable states of the environment based on observations and 
observation probabilities, as well as the input from an underlying MDP. 
More succinctly put - this is the model that is used in 
unobservable/distorted environments. It is used for calculating the best 
probable solutions in such environments.

As described above, the core concept of MDP translates into RL - the agent 
enacts actions upon the environment and observes the changes in state and 
the reward values that it receives. It then strives to optimize its action 
patterns in relation to its environment so that it can optimize those rewards.
With reinforcement learning come adjustable hyper-parameters that can, 
for example, direct whether the agent should prioritize short-term reward 
maximization or long-term reward maximization, as well as the ability to 
restrict and adjust what acceptable values of penalty the agent would 
consider worth risking. The work flow of RL is a balancing act of exploration
and exploitation. The model has to explore its environment in order to 
obtain patterns and understand how it can perform a given task. It then 
must exploit its knowledge to continue receiving guaranteed rewards. 
However, there are often cases in which an exploitable pattern can be 
explored in order to yield a temporarily lower reward, but in the long run, 
yield an ultimately more efficient pattern which yields a greater total 
reward. It comes down to the needs and wants of the given training 
scenario/project.

The explanation of the mathematical algorithms is being left out of this 
document, partly due to brevity and partly due to the fact that it is not 
integral to the purposes of this project and research. As can be summarized 
above, RL is an excellent and robust tool for training/optimizing neural 
networks. Given appropriate configuration, it can provide an excellent tool 
for training robot arms and even do so in relatively brief periods of time, 
given a virtual environment.
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Evolution Strategies

*Relevant references - [5], [6], [10], [11], [13]

Evolution Strategies (ES) is an optimization algorithm that is actually a sub-
class of a greater, general nature-inspired group of optimization and direct 
search methods, called Evolutionary Algorithms[10][11][13]. The general theme 
of these algorithms is the mimicry of natural evolutionary occurrences, such
as reproduction, mutation,recombination and selection. What this translates
to in general terms, is having multiple agents, all attempting to perform 
solutions, and then optimizing the algorithm according to the best 
performing agents, while discarding the poorly performing ones. This is 
simply a generalization, as the whole of Evolution Algorithms has a very 
large selection of singular algorithms and entire family sub-groups of 
algorithms. Some specialize in not giving a singular, most-optimal solution, 
but rather multiple viable solutions. Others focus on performing the same 
core task of mimicking populations and evolution, but also mimicking data 
attributes that would help with tracking things like social developments 
populations, knowledge sharing, individual and distributed fitness and so 
on. Many of these algorithms are ,theoretically, very applicable in the 
context of this project. However, due to the fact that almost all of them fail 
to have concrete and accessible uses in a robotics environment, especially a
ROS2-based one, this removes them from the consideration as optimization 
algorithms for teaching the robot arms in this project. While theoretically 
viable, it would require a great deal of research and experimentation - and 
this would fall out of the scope of the goals of this project, as well as the 
skill set of the software engineering student developing it. An honourable 
mention goes out Evolutionary Multimodal Optimization - a means of 
determining multiple most-optimal solutions to a given problem. This exists 
as a means of dealing with problems where the most efficient solution 
would not necessarily be affordable, given physical and resource limitations.
In theory, it would have been worth considering, as it could be an 
appropriate tool for teaching a robot arm multiple approaches to obtaining 
an objective, should it be unable of using the most optimal approach for due
to a given variable reason.
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Back to ES, they can be viewed as a somewhat opposite of RL - ES has 
multiple agents, anywhere up from a minimum of 2 - a parent and a 
mutation. Much like before, this works on a "reward score" system. If the 
mutation has a higher than or equal reward to the parent, it becomes the 
new parent and spawns a mutation of itself. This concept scales up to many 
agents being sent out towards a problem where they each attempt their 
own slightly different solution (mutation). Then the solution weight of all the
"positive" scores gets summed up and the average solution for the problem, 
where initially it may start at random, has now adapted (in the even that 
this average mutated score is higher than or equal to their collective parent 
score). This approach has some excellent benefits to itself - in general, it 
results in a simpler implementation of the algorithm. Additionally to this, it 
allows for parallelization. Due to the fact that each mutation can be ran as 
its own thread in a virtual environment, this allows for the testing of 
hundreds of optimization calculations at a time. In source [5], an example 
was given of teaching a humanoid figure how to walk, in a virtual 
environment, in merely 10 minutes, due to the fact that nearly 1500 
computer CPUs were utilized during that test.

Evolution strategies and the code shown across sources [5] and [6] make it a 
promising method for the secondary phase of training skills for a robot arm.
The ability to run virtual, parallelized instances of training offer the ability 
for considerable scalability and the general simplicity of this algorithm 
marks it as applicable in many scenarios in this project and generally a 
competitive alternative to RL. However, the lack of concurrent and 
streamlined implementations of this as a package, lacking any presence in a
ROS environment and lack of any solid usage in precision-based training all 
work against this method. It is also worth mentioning that, as mentioned in 
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[5], in singular machine instances, ES is known to be slower and less data-
efficient than RL.

Deep Reinforcement Learning

*Relevant references – [15], [16]

Deep learning comes from the same family of machine learning algorithms 
that RL comes from. This method of learning works off of the concept of 
having an indefinite "depth" of neural layers in a neural network, each 
having a fixed amount of neurons per layer. Generally used in image-
recognition based-tasks, the idea is that each layer of the neural network 
can break down features detected on an input further and further, until an 
optimal minimum unit of feature is achieved. While a good and popular tool 
for training neural networks for image and language processing, in terms of
robotics - it isn't designed to train a neural network to actuate, so it 
wouldn't find any use in this project. However, Deep Q-Learning (or Deep 
Reinforcement Learning) offer a combination of training both image and 
actuation neural networks. This setup often finds application in training 
robot arms where having a camera to guide the work of the robot would be 
a necessity. To summarize it a bit more succinctly, regular RL would teach a
robot to perform optimal maneuvers in a smaller work area with fewer 
variables or - where the environment in which it operates can be considered
more static and simple. A Deep Reinforcement Learning setup would allow 
a robot to, using complex external sensors and/or cameras, navigate and 
learn to determine optimal maneuvers in a much more complex and varied 
work space.

While Deep Reinforcement Learning offers more robustness and ability to 
handle complexity, it is, functionally speaking, RL with image processing 
attached. For the purposes of this project and its requirements, complex 
image and environment processing are not part of it, which would render 
this method of robot training an unnecessary addition in complexity.

Comparison Table - for visualization.

The table below is meant to give an overview of the primary pros and cons 
of the considered Second-Phase machine learning algorithms. Second-Phase
means that these are the algorithms that come after the motor-babbling.
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Answering Question 3 - Combining the information into a viable 
proposed system for training variable robot arms.

*Relevant references for the human brain analogy – [17], [18]

Having collected and summarized the information from questions 1 and 2, 
the student has the necessary tools to train a robot arm to teach itself how 
to perform a given task via sequence of actuation. Bearing in mind the 
applicable and non-applicable applicants, the follow up training method that
has been selected (for after Motor-Babbling) has been Reinforcement 
Learning, due to it's practical and well supported nature, being more usable
and established in ROS2 than Evolution Strategies and less unnecessarily 
complex than its Deep RL counterpart.[17][18]

The student has concluded on using biomimicry as inspiration for the design
of the training system, as biomimicry is often an excellent source of 
inspiration for systems design. In humans, the following has been observed -
at a young age, human babies are known to motor-babble, in a sense, 
training their motor cortex to become familiar with all of their joints and 
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muscles and their respective abilities to turn, flex and contract. The motor 
cortex is the part of the brain responsible for, generally speaking, basic, 
more crude motor control and motor command execution. Over the course 
of their lives, humans train another part of their brain, the cerebellum, 
which is generally deemed as responsible for more finite, balanced and 
precise movements, such as walking or learning to swing a bat to hit a ball. 
The cerebellum serves merely as a secondary motor control unit, and shares
no ability in sending signals for contraction directly to muscles in the body.

The image below denotes the the overall structure proposed to answer the 
primary question of this research document. Utilizing what has been 
learned, and copying from nature while optimising some things, the system 
below fulfills all requirements of this project and indeed allows for a robust 
general system that can train a robot from scratch. It is important to note 
that the suggested structure uses multiple neural networks. This is meant to
mimic how the human brain is not one entire whole neural network, but 
rather, many logically separated neural networks that work together in a 
coordinated fashion.

This structure seems to very closely follow and offer a solution to the 
problems faced by this project. With motor babbling, the system would be 
able to discover all of it's possible movements - essentially to map itself out. 
In terms of the project, here is where some external human input will be 
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expected, to set the expected twist and bend limitations of each joint, before
training can begin. Each possible combination of motor joints can be 
recorded as a piece of data, with the separate motor values being it's 
variables. This information can then be saved and fed into a self-organizing 
map (check reference [3]) neural network. Self-organizing Maps (SOMs), as 
shown in reference [7], specifically chapter 3.4 of the book, can serve as an 
excellent "motor cortex" of a robot. Once the map is organized, the machine
would have a step-by-step mapping of all the motor combinations it would 
need to perform to reach any and all of its physical actuation points 
smoothly and efficiently. An added bonus of this setup is that the "motor 
cortex" of 1 robot arm can be ported over to a robot with identical degrees 
of freedom and at least similar angles of joint bending. So long as the 
number of degrees of freedom remains the same, as well as the length and 
shape of the connective inter-joint segments remains identical, the SOM can
be scaled up to account for wider or thinner joint bend angles.

Past that point, using reinforcement learning, the machine can be taught to 
develop a second neural network (similar to the cerebellum) which would 
train it on how to perform complex sequences and combinations of the basic
"maneuver map" that it learned during the motor-babbling phase. With 
adequate programming and determining of the hyperparameters, very little 
external input would be necessary for a robot arm to establish its 
cerebellum control scheme. While RL will not be as fast as the parallel 
capacity that, theoretically, Evolution Strategies would allow, it is proposed 
that it should not take longer than 10-20 hours in a virtual environment for 
most general robot arm training scenarios. This expectation is only based 
on other available videos and simple robot arm projects, so it is to be taken 
with a grain of salt. 

In terms of motor-babbling, the ROS2 environment is not concerned, since 
the motor map can be calculated algorithmically, without the need of a 
virtual environment. As far as RL goes - ROS2 supports ros2learn and gym-
gazebo2 for simulating and training a model, packages dedicated to 
reinforcement learning in a virtual ROS2 environment. The overall structure
of this system would then fulfill all requirements posed by the project and 
research questions. It will inherently become a robust system, requiring 
only hyperparameter configuration to train a variety of physical robot arms 
(as long as they follow the defined standard of robot arm for this project). 
These hyperparameters will only concern the degrees of freedom, numbers 
and sizes of segments and bend angles of joints.

It will allow for at least partial neural network transference, due to the fact 
that if a robot arm shares identical degrees of freedom and limb segment 
length ratios with another robot arm, the mathematical changes in its joints 
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to reach various 3-dimensional spots will remain identical. While there may 
be viable alternatives to this system, given the fact that this is a very 
experimental project and that copying tried and tested structures from 
nature is an approved concept in the scientific community, the current 
structure leaves nothing additional to be desired, as of this being written. It 
is deemed to be sufficient for the requirements of the project.

6. Summary

There are many methodologies and approaches to machine learning. This 
makes for a field with no, necessarily, right or wrong answer to a question 
as robust as the primary question of this document. However, given the 
discoveries listed above and the requirements of this graduation 
assignment, putting together a feasible solution that fits becomes easy.

Using biomimicry, it's easy to copy tried and true learning methods from 
nature. The natural process of human brain development, as understood by 
this research, lends itself excellently to the exact issues faced by this 
project. Using biomimicry, just as human babies do, it is very practical and 
possible to map out all degrees of actuation in a robot arm and put them in 
an organized neural network thanks to motor-babbling. Then, continuing to 
mimic human brain structure, it makes sense to train a secondary neural 
network for motor-based skills (cerebellum). Using the popular robotics 
methodology of Reinforcement Learning, especially after having a full 
actuation map of a robot arm prepared, training a neural network to learn 
how to perform specific arm movements in a given environment becomes a 
compartmentalised and practically achievable task. With such a system in 
place, given appropriately robust hyper-parameter definition, it makes for a 
system that, in theory, would be capable of training a significant variety of 
robot arms that fit within a given category of structure.
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7. Appendix
1 Closed-loop acquisition of behaviour on the Sphero robot - Oswald 

Berthold∗ and Verena V. Hafner∗ 

 ∗Adaptive Systems Group, Dept. of Computer Science, Humboldt-
Universität zu Berlin{bertolos|hafner}@informatik.hu-berlin.de

2 https://blogs.nvidia.com/blog/2018/08/02/supervised-unsupervised-
learning/

3 Learning of Motor Control from Motor Babbling* - Tatsuya Aoki* 
Tomoaki Nakamura* Takayuki Nagai*  The university of Electro-
Communications, 1-5-1 Chofugaoka, Chofu-Shi, Tokyo 182-8585 Japan
(e-mail: aoki@apple.ee.uec.ac.jp)

4 https://www.youtube.com/watch?v=qCn8lkacJz0

5 https://openai.com/blog/evolution-strategies/ - and all of its mentioned 
sources

6 https://www.youtube.com/watch?v=C4MUTIc-NB8

7 Self-Organizing Maps - Teuvo Kohonen

8 https://www.youtube.com/watch?v=JgvyzIkgxF0 - An Introduction to 
Reinforcement Learning

9 https://www.delta.tudelft.nl/article/robot-leos-first-steps

10 https://en.wikipedia.org/wiki/Evolution_strategy

11 https://en.wikipedia.org/wiki/Evolutionary_algorithm

12 http://www.scholarpedia.org/article/Reinforcement_learning

13 http://www.scholarpedia.org/article/Evolution_strategies

14 https://ai.googleblog.com/2020/04/exploring-evolutionary-meta-
learning-in.html

15 https://en.wikipedia.org/wiki/Deepreinforcementlearning

16 http://www.scholarpedia.org/article/Deep_Learning

17 https://en.wikipedia.org/wiki/Motor_cortex

18 https://en.wikipedia.org/wiki/Cerebellum
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19 https://en.wikipedia.org/wiki/Motor_babbling

20 A Motor Control Model Based on Self-Organizing Feature Maps – 
Yinong Chen - https://drum.lib.umd.edu/handle/1903/908

21 Bio-inspired Intelligent System Design – Jan Jacobs
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 Self-Teaching Robot Arm - Software 
Requirements Specification

 by Valentine Ezekiev - 2971429

1 Introduction

 This document will outline the Software Requirements Specification 
for this project. Below is given context to explain the project and its 
problem in greater detail. If any unknown terms are encountered, 
refer to chapter 1.3 for clarification.

 1.1 Context

 The organization GTL generally has a focus on(but is not limited to) 
developing/researching the use of newer technologies and concepts 
for the fields of agriculture, mechanical engineering and informatics. 
That's where this project comes in - in partnership with Fontys HS 
Venlo, GTL has started a project, the purpose of which is to develop a 
self-taught (via machine learning and un/semi-supervised machine 
learning at that) robot arm with the given end-goal of weed removal 
from crops. The student responsible for this project also needs to 
achieve this on one of the current ROS releases(as of writing this, 
ROS2 Foxy distro is presumed the best option) as a proof of concept 
that ROS can be used to significantly speed up the process of in-house
created robotics software with next to no costs added. The purpose 
for that is because ROS has quickly become a very popular tool for 
robotics programming and is an open-source tool at that.

 In addition to the self-taught robot arm, the project also requires the 
development of a framework system, based around ROS2, that allows 
for the dynamic training of similar, modular robot arms. including the 
aforementioned arm. GTL desires the development of such a system 
as it allows them to create custom robot arms in-house and develop 
their motor skills with (ideally) relatively few man hours involved.

 Added below are 2 images of the latest proposed robot-arm design, 
for visual-aid. It should be stated that these images are works in 
progress and are subject to significant change :
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
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Figure
31: Early Proposed Arm Design

Figure 32: Early Proposed Arm Design



 1.2 Scope

 The scope of this project comparatively small - it regards only the 
robot arm, specifically the 3 general parts it will be comprised of - the 
segments, joints and appendage. Note - robot arms will not be limited 
just one of each of the 3 parts, save for the appendage. As of writing 
this, it is yet to be confirmed precisely what tool will be put on the end
of the arm for the removal of weeds. It is expected to be something 
that can cut out weeds as a primary function, with a secondary 
function of delivering measured electrical shocks. The arm itself is 
expected to be attached to a larger(still altogether small) roving-type 
vehicle, however any functionality of the vehicle, as well as of visual 
object detection falls squarely outside of the scope of this project.

 As far as the software scope goes, it is focused on 2 things:

 A universal control scheme that can accommodate a variety of robot 
arms.

 System of semi-supervised machine-learning to develop the 
controls/skills of individual robot arms with minimal human input.


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 1.3 Terms

 GTL - GreenTech Lab

 ROS - Robot Operating System

 ROS1 and ROS2 - Essentially 2 different releases of ROS, ROS2 being 
the newer, more robust one. Historically, ROS2 lacked a lot of 
features and support, but it has finally achieved a level of 
completeness that makes it usable for general robotics and even 
usable in place of ROS1, the more established variant.

 1.4 Goal

 The goal of this project is to deliver a robot arm that has learned how 
to use its arm and given appendage to the best of its own practical 
availability. It must not be hard-coded or externally taught in nearly 
any capacity. The robot arm must learn how to efficiently 
work(meaning, remove weeds from crops) through its own forms of 
learning and experimenting. The robot arm should be able to adapt to 
and learn to overcome new challenges over the course of its "life", in 
addition to "remembering" how to continue overcoming the issues it 
had already learned to overcome.

 All of the above listed has to be the result of some kind of complex 
unsupervised machine-learning setup. This setup should work with 
not just the 1 robot arm, but in-fact be modular.


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 2. Specification

 2.1 Operating Environment

 This robot arm is expected to be performing out in crop fields. 
Therefore the system will need to be able to account for mud, rain, 
wind, ground-level variation and temperature variation upon its given 
task of removing weeds.

 2.2 Assumptions and Dependencies
 It is assumed that the robot arm will be attached to an already 

functional roving-type vehicle which will provide power, visual input, 
stability and reach for the robot arm to perform its task(s). 

 It is assumed that direct sensory input will not be the job of the robot 
arm. Tasks such as object recognition fall outside of the spectrum of 
what the arm is supposed to learn.

 It is assumed that this vehicle will be capable of maneuvering 
successfully and will not be influenced by weather effects such as rain
water, mud, wind, variances in temperature or otherwise. 

 It is assumed that the robot arm will not need to deal with any 
unknown/mutated/highly specialized forms of weeds that would prove 
conventionally unsafe for removal.

 3. Requirements

 3.1 Hardware Requirements
 1 Actuating robot arm with at least 1 degrees of freedom. Robot arm 

components are limited to:

 1 or many connective inter-joint segments. These are not limited
to straight line structures.

 1 or many rotating motor joints.

 1 simple appendage - the appendage must be simple in nature, 
having only states of being turned on or off and respectively 
affecting a designated area while on. Due to the fact that an 
appendage could theoretically be a nearly infinite amount of 
possible structures, it is deemed impractical to construct a 
universal system that accounts for complex and varied 
appendages.
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 1 Robot arm weed removing appendage - currently unspecified, but it 
must be capable of removing weeds at the very least via physically 
removing them or destroying them where they lay. Primarily it should 
do this via rotatory slicing, however a secondary functionality that it 
should have should be the ability to deliver an electric shock to kill a 
given weed plant.

 The robot arm must only use single-axis rotating motors for its joints.

 3.2 Software Requirements
 A full control scheme for the robot arm and appendage based in 

ROS2. This means that ROS2 should be able to send actuation 
commands to each motor of the robot arm.

 It must be able to actuate individual joints.

 It must be able to activate and deactivate the appendage.

 The robot arm should be able to fully interpret and execute given 
ROS2 complex commands(excluding movements that would physically
block each other from happening or are simply outside the spectrum 
of movement for a given segment/joint)

 A system that allows for the programmatic definition of modular robot
arms.

 A system that allows for the semi/un-supervised training of a robot 
arm that follows the structural requirements of this project.

 Testing methods that verify the functionality of a robot arm, keeping 
in mind given requirements.

 Code that is written in an extendable and modular way, allowing for 
easy modification.

 A docker image of the final work environment, for easy replication 
later on.

 Documentation of the software.

 Design diagrams to provide an overview on the system and it's 
problem domains.

 3.3 Machine Learning Requirements
 The robot arm must be able to teach itself how to "correctly" move via

semi/un-supervised machine learning. Correctly, in this scenario, 
means:
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 The robot arm must be able to extend to and operate within its 
determined physical range limit.

 The robot arm must maneuver itself in a way that does not 
disturb or collide with anything on the rover around said robot 
arm.

 The robot arm should have general collision avoidance 
(meaning, must not collide with self).

 The robot arm must be capable of teaching itself how to move and 
how to do so in a desired way with minimal human input.

 The robot arm must be capable of learning new behaviours in addition
to existing ones, given a set of parameters and a learning objective.

 The robot arm must be capable of altering learned behaviours, to 
accommodate for dynamic change in the requirements for already 
established behaviours.

 The machine-learning setup must be dynamic. What this means is that
it should be capable of accommodating a variety of robot arms that 
share the defined structure from 3.1.

 3.4 Functionality Requirements
 The robot arm must be capable of removing a weed that would 

impede the growth of human-planted crops without harming or 
impeding the given crops.

 The robot arm must be capable of removing a weed physically via 
cutting. Currently cutting is deemed the best approach, as it is the 
most precise and least intrusive on the crop plants whilst also leaving 
the biological material of the weed in and on the ground. The roots 
will be able to rot this way and provide nutrition for the crop plants 
whilst the cut half can be used for mulch.

 The robot arm must be capable of electrocuting weeds to the point of 
biological death.

 The robot arm must not get stuck or awkwardly collide with the 
environment around it or the rover it is attached to.
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 Design Justification


 1.Intro


 This document will serve as a brief explanation of note-worthy design 
decisions, so that it can be easy to see the reasons for systems being 
the way they are.



 2.System Overview


 The overall system is designed on the principles of bio-mimicry. 



 - Mimicking the processes naturally found in human babies, the 
system replicates the following - an initial training loop of motor 
babbling, where the robot arm, once it has all of its hyperparameters 
inputted by a human operator, will attempt all possible movements 
that it can perform, save those movements and their results as data 
and organise the data into a Self Organized Map. This SOM can then 
be used for sequential combinations of singular movements in order to
perform broad, smooth motions with the arm. This replicates how 
babies train their motor-cortex at an early age by flailing their limbs 
about with reckless abandon. This teaches them how to move, walk, 
etc.

 - Continuing to mimick from humans, reinforcement learning - 
humans generally learn via reinforcement learning when they try to 
learn a specific skill. By repeating an action multiple times with a 
given goal and measuring the results each time, a human zeroes in on 
the best approach to performing a given task. In similar fashion, the 
robot arm, once again with hyperparameters set by a person, will 
learn to perform a given task with given rules. Via many cycles of 
determining which sequences of actions reap the best rewards and 
which - the worst, the robot learns new skills. This is saved in a 
separate neural network, mimicking again how humans generally 
store more specialised learned skill in their cerebellum, separate from
the motor cortex.

25





 3.Motor-Babbling design


 Important notes on the system:



• - The Appendage - the system is designed to work with any variety and
combination of robot arm that follows the following structure - a 
varying number of degrees of freedom, with defined joints with their 
turn angles and defined connective segments and their lengths. Each 
robot arm is expected to be tipped with a simple appendage that can 
either be activated or de-activated, having a defined cubit area or 
point of action. Things such as fingered grabbers or human hand 
analogues are not considered for this system, due to the fact that they
would significantly increase complexity. Making a universal robot 
trainer by an unqualified student is difficult enough, but making an 
appendage trainer system that can account for appendages of varying 
numbers of joints and segments would vastly complicate system 
design needlessly. But it is worth noting that in theory, it isn't 
anything new - it would still be just joints and connective segments. 
it's just that it would be very difficult to account for all the possible 
combinations of joints and segments that could make an appendage.

• - Only Works with single-axis ROTATING Motors - this system is only 
designed to work with rotating motors. While it could, for example, be
designed to account also for the possibility of pistons, this falls 
outside of the scope for this project. In addition, accounting for more 
and more modularity significantly increases the complexity of this 
project, which is undesirable. It is meant to train robot arms, and 
following the logic of biological arms - they are based off of a motor-
segment-motor-segment design and not pistons.

• - The simulation has to have gravity turned off - this is due to 
limitations of Gazebo in terms of providing joint objects that offer 
locking functionality like we would have in real life. This way, a joint 
can be placed any which way without succumbing to gravitational 
intertia, which, in terms of this simulation process, doesn't affect the 
end goal - the end goal being just calculating all the possible motor 
rotation value combinations and appendage positions relative to those
joint combinations. IT IS IMPORTANT to note that this is primarily 
done due to severely lacking functionality from Gazebo and ROS2 as 
of writing this. It is a WORKAROUND and does not present the 
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absolute best conceivable solution, merely the most practical current-
to-long term one given the circumstance.

• - Robot arms HAVE TO HAVE sequentially lessening weight for each 
consecutive motor and joint combo, starting from the base. So 
essentially - the first motor and segment of an arm will weigh 100 
kilos each, the joint+segment after them will be 50, then 25 after that 
and so on. This is done as a workaround to a problem encountered 
with inertia. Due to the fact that Gazebo does not offer very realistic 
depictions of joints, a joint currently only has one of 2 ways to be 
moved - either by spawning it in a given rotation, or by applying a 
kinetic force that spins it, like a bicycle wheel. The problem with this 
is that during simulation, joints that go farther and farther from the 
base joint, while they are doing their own movements and 
calculations, affect the position of each preceding joint with their 
generated inertia. This causes obvious problems for determining from 
where to where a joint can turn given set positions of its preceding 
joints, so using this workaround - we negate the problem. 

•   Once again, this IS A WORKAROUND due to the fact that, as of 
writing this, Gazebo and the current iteration of ROS2 suck a lot and 
are missing a bunch of stuff. For all our practical purposes, this works
just fine currently.

• - The simulation is set to run, essentially, as fast as systematically 
possible. This is done, obviously, so that time can be saved when 
running the simulation. As far as I can tell, this has no strange buggy 
effects on the physics of the simulation, and genuinely just increase 
the speed in a nice and useful way.

• - Using a combination of spawning motors in given positions and 
applying force - as mentioned previously, as of writing this, Gazebo 
and ROS2 are missing a lot of good features that allow for the 
straightforward simulation of joints. The current 2 primary ways of 
moving a joint suck for the following reasons:

•   - Applied force just essentially makes a single-axis joint just spin
like a free-flow bicycle wheel. It's great for simulating collision, but 
super imprecise otherwise.

•   - Spawning joints in a given orientation is super precise and 
doesn't let them move around all willy nilly - the problem being, it also
negates collision, and allows for the spawning of joint orientations 
that force objects inside of other objects.
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•   To deal with this, a compromise using both of the afore-mentioned 
systems was designed. First a joint is spawned at its farthest right 
possible angle and then a force is applied to it to turn to its left, until 
it either reaches its natural turning limit or collides with something. 
Then, this same joint is spawned in every previously recorded position
that did not have a collision, and the joint after it has the same first 2 
steps applied. This process cascades until all possible non-collision 
movement combinations are recorded. The reason spawning is used 
instead of just applying force on the first joint is because of previously
mentioned issues - imprecision and inertia make this impossible.

• - It is very important to have all segments and joints inside of a 
simulation with a minimal weight of 1 kilogram. I encountered some 
weird bugs otherwise, where joints would clip off into the distance.

• - The system uses recursion and nested cascading objects to record all
of its joint values in the simulation and save them to a file once they 
are fully processed. Experiments were done with arrays or even 
program-external files that recorded all the data, but all of these 
approaches ended up being messy, more code intensive and just way 
less succinct.

• - There are only 4 sets hyperparameters that need to be set for this 
entire motor-babbling system - names of the joints in the simulation, 
amount of force for each joint necessary to move in the simulation, the
name of the appendage in the simulation and the names of all the 
different topics/services that everything will be posted to, as defined 
in the simulation world itself. Other than that, everything else is 
pretty automated, so as to save as much effort as possible for the 
person using this package.






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