
ROS-based self-teaching robot arm

Bachelor Thesis

Submitted by Valentine Ezekiev

In fulfillment of the requirements of the degree

Bachelor of Science and Informatics

To be awarded by the

Fontys Hogeschool Techniek en Logistiek

Venlo, 16-06-2021

Information Page

Fontys University of Applied Sciences.

Postbus 141, 5900 AC Venlo

Graduation Report

Student Name: Valentine Ezekiev

Student number: 2971429

Study: Informatics – Software Engineering

Period: February 2021 – June 2021

Company Name: GreenTech Labs (GTL)

Address: Tegelseweg 255

Postal Code + City: 5912 BG Venlo

Country: Netherlands

Telephone: 08850 78422

Company Supervisor: Jan Jacobs

Supervising Lecturer: Pieter van den Hombergh

Non-disclosure agreement: No

Amount of words used: 9,791

I

Abstract

In this graduation project, GreenTech Labs want to create a crop-
weed-removal robot-arm. However, they want to achieve this using
modern tools, with a system that can help them automate and simplify
the process of training custom robot arms like this. The student who
was assigned to this project had to research into the hows and whys
of this situation, and propose and build a design that lets GTL train
custom robot arms using Robot Operating System 2 and various
simulation tools.

After much research, trial and error, a system was designed that
works in a contained way – it requires the setting of a small amount of
hyper parameters and 1 robot-arm model, simulated in a program
called Gazebo – and uses these things to create neural networks from
the simulation that the real-life robot would use to perform its tasks,
do path finding, etc.

The project is only halfway finished, with the system being able to
map out all the areas of movement that a robot can do without
bumping into itself. There is more work to be done after handing off is
complete, but the project itself serves as a solid proof of concept.
Further real-life testing will still be carried out after this report, as it
is still not fully done.

II

STATEMENT OF AUTHENTICITY
Issued by the FHTenL Examination Board, September 2017

I, the undersigned, hereby certify that I have compiled and written
this document and the underlying work / pieces of work without
assistance from anyone except the specifically assigned academic
supervisor. This work is solely my own, and I am solely responsible for
the content, organization, and making of this document and the
underlying work / pieces of work.

I hereby acknowledge that I have read the instructions for preparation
and submission of documents / pieces of work provided by my course /
my academic institution, and I understand that this document and the
underlying pieces of work will not be accepted for evaluation or for
the award of academic credits if it is determined that they have not
been prepared in compliance with those instructions and this
statement of authenticity.

I further certify that I did not commit plagiarism, did neither take over
nor paraphrase (digital or printed, translated or original) material
(e.g. ideas, data, pieces of text, figures, diagrams, tables, recordings,
videos, code, ...) produced by others without correct and complete
citation and correct and complete reference of the source(s). I
understand that this document and the underlying work / pieces of
work will not be accepted for evaluation or for the award of academic
credits if it is determined that they embody plagiarism.

Name (in capital letters) VALENTINE EZEKIEV

student number: 2971429

Place / Date: Venlo, Netherlands - 14-06-202I

III

Glossary

Gazebo - a 3-D simulation program that allows for the definition of
joint objects and segment objects. It has settings for time-speed
manipulation, physics simulation and so on. More on the topic here -
http://gazebosim.org/

ROS2 Foxy - the newest distribution of the Robot Operating System 2.
Used for robot programming and causing of headaches. More
information here -https://docs.ros.org/en/foxy/#

Arudino board - a micro-controller board used for sending electrical
signals via pins to hardware – like an electrical motor or lights.

SOM – Self Organizing Map. A neural network structure that
organizes high-dimensional data to a low-dimensional field (generally
2d). Has many different uses.

Solidworks – a program used for modeling/engineering in a 3d
environment. Most often used with mechatronis engineering.

IV

Table of Contents
Information Page..I

Abstract...II

STATEMENT OF AUTHENTICITY...III

Glossary..IV

1. Introduction...1

2. Context...2

2.1 Project Problem Description..2

3. Phase I - Research and Analysis..5

3.1 Planning..5

3.1.1 – Phase I...5

3.1.2 – Phase II...5

3.1.3 – Phase III..5

3.2 Project requirements/specifications...6

3.3 End-Goals and Deliverables...7

3.4 Research...7

4. Phase II – Design..11

4.1 Experimentation...11

4.2 Calculation over Simulation...11

4.2.1 Calculation Approach..11

4.2.2 Simulation..13

4.2.3 The Conclusion..13

4.3 Finalized Design...15

4.3.1 Motor Babbling..17

V

4.3.2 Reinforcement Learning..19

5. Phase III - Implementation...22

5.1 Motor Babbling...22

5.1.1 Gazebo...22

5.1.2 Gazebo Hurdles...24

5.1.3 ROS2..24

5.1.3.1 Listeners...25

5.1.3.2 Joint Manipulation..27

5.1.3.3 Recursion..27

5.1.4 SOM...29

5.1.5 Live Testing...33

6. Conclusion and Results..34

6.1 Achieved Goals and Deliverables...34

6.2 Recommendations..35

Appendix..37

Bibliography...37

Phase I Artefacts..38

Phase II Artefacts...42

Final Supplementary Documents...48

VI

Table of Figures
Figure 1: Example image of weed-removing robot application.............3

Figure 2: Proposed Robot Arm Design For System Testing..................3

Figure 3: Project Phase Layout Planning..5

Figure 4: Arm Training Cycle..10

Figure 5: Attempt at mathematically annotating a 3-dimensional joint
in a purely mathematical environment..12

Figure 6: System Domain Model...16

Figure 7: General Overview Diagram - just to aid with understanding
how everything comes together..16

Figure 8: Motor Babbler Structure Diagram.......................................17

Figure 9: Reinforcement Learnier Structure Diagram........................20

Figure 10: Gazebo Example Model..23

Figure 11: ROS2 Joint Message Structure Example...........................26

Figure 12: Code segment from motor-babbler, an example of
recursion used to simplify a complex task...28

Figure 13: Data Visualization from the top...30

Figure 14: Data Visualization from the side..31

Figure 15: Path-finding example...32

Figure 16: Picture of the robot arm during proof-of-concept testing..33

Figure 17: Cutter Robot State DIagram..39

Figure 18: Cutter Robot Use Case Diagram..40

Figure 19: Proposed Robot Arm Learning Cycle from Researhc
Document...41

Figure 20: Visualization of evolutionary algorithm.............................41

Figure 21: General Overview Diagram..42

VII

Figure 22: Motor Babbler Structure Diagram.....................................43

Figure 23: Motor Babbler State Diagram..44

Figure 24: Reinforcement Learning Structure Diagram.....................45

Figure 25: Reinforcement Learning State Diagram............................46

Figure 26: System Domain Model...47

Index of Tables
Table 1: Comparison table for Simulation versus Calculation............14

Table 2: Criteria table for selecting a SOM package..........................32

VIII

1. Introduction

This document is meant to be the final culmination documentation that
describes all of the work on this project. It will go over the context and
setting, after which straight into all of the relevant work and conclusions
done thus far. There will be 3 primary body chapters -

• Research and Analysis will go over the beginning of the project, the
establishment of the requirements and the research that needed to be
done into specific areas for the student responsible for this project to
be able to competently make design and implementation decisions
down the line.

• The Design chapter will go over the design choices and plans that
were born in regards to what was learned during research and what is
demanded by the project itself as requirements. As well as a
justification for why plausible alternatives were shot down during this
phase in place of the final choices.

• Lastly, the implementation phase will detail all of the work put into
facilitating the previous research and designs, as well as all of the
newly gained information and conclusions from this period.

These chapters are followed by a conclusion chapter that gives and much
more condensed once-over on the whole project.

1

2. Context

The organizer of this graduation project is an organization called
GTL(GreenTech Lab) and it does so in partnership with Fontys HS. GTL is
an organization that generally focuses on (but is not limited to) research
into technology for the agricultural and sustainability sectors - things like
devices that help with tracking of crop health, animal populations, drones
that simplify agricultural work, advanced storage methods for agricultural
resources and etc. It has a firm partnership with Fontys, which is where it
sources students for internships and graduation projects. One of the
primary areas of interest for GTL is the field of robotics. The field of
robotics faces a significant set of hurdles, such as - complexity in
programming an actuating robot, machine learning, accessible
programming and development tools and extendable systems and
operations. A new and ever-growing in popularity tool that combats all of
these complexities is something called ROS(Robot Operating System). ROS
provides a universal "environment" in which it simplifies and allows for all
manner of complex and robust robotics work. ROS allows for simulation of
robots, programmatic setup of control schemes, using machine learning to
teach robots complex things such as image recognition and precise
actuation, linking up complex networks of separate robotic systems and the
list goes on. ROS also comes in primarily 2 primary distributions - ROS1 and
ROS2. For the sake of brevity, ROS2 is a more advanced and robust version
of ROS1 that has recently become as accessible, usable and supported as
ROS1, so we will disregard further mentioning ROS1 from now on. GTL has
a vested interest in looking into ROS to see if it has practical application in
its research and general-work, which is where this project comes in.

2.1 Project Problem Description

GTL wants to create a custom robot arm that is capable of removing weeds
from crops. This robot arm will be attached to a roving-type vehicle
platform, which is expected to provide power, transportation and sensory
input for the arm itself. The arm is yet to be fully defined, but it's expected
to allow for the removal of weeds in one of 2 ways - either via cutting the
weeds or by electrocuting them. It's expected to be comprised of single-axis
rotating motor joints (1 or more), inter-joint connective segments (1 or
more) and a simple appendage/tip. More information about what these
things specifically mean can be found in the Software Specification
Document (SRS).

2

Added below are 2 images of what the final product could look like, as well
as a proposed design for testing:

Figure 1: Example image of weed-removing robot application

Figure 2: Proposed Robot Arm
Design For System Testing

3

The goal of this project is to train the robot arm to function in a desired
way. More specifically, the student responsible has to create a dynamic
system that can allow the robot arm to teach itself how to work, based on
hyperparameters/rules/data set by a human agent. The system has to be
robust enough to work with a variety of custom robot arms (that follow a
defined generic structure, outlined in the SRS) that GTL may wish to make
down the line. The goal here is to create an infrastructure that can save
GTL many man hours of manual control-scheme setup and programming,
that can also be extended for more complex tasks past the point of the
graduation project.

4

3. Phase I - Research and Analysis

Phase I started out well – firstly with several meetings between the student,
Jan Jacobs and Marcel Roosen. The scope and goal of the project were
defined, requirements discussed and guidelines laid out.

3.1 Planning

As with any project, a plan going forward was needed. The project was
separated into 3 main phases that would last set amounts of time.

3.1.1 – Phase I

The first phase would be the beginning of the project. This was where
requirements are determined, goals are set, planning is made and any
necessary research is performed. This is where the “what” and “why” are
defined.

3.1.2 – Phase II

In this phase, all of the requirements and goals set from the previous phase,
as well as any research done, would be applied towards a design that fulfills
the goals of the project. This is where the “how” of the project is planned
out.

3.1.3 – Phase III

This phase would constitute the application of the plans and designs from
Phase II, as well as their modification should any changes arise due to the
context.

5

Figure 3: Project Phase Layout Planning

3.2 Project requirements/specifications

The project was defined to work within the following scope and under the
following conditions:

• This project is only concerned with the robot arm itself, it does not
take into account power requirements, moving the entire arm itself
around or any kind of visual information being provided for the robot
arm by itself. It treats the robot arm as being in a vacuum where all
necessary things for functionality are provided.

• A robot arm, in the confines of this project, is defined as:

◦ Comprised only of single-axis rotating joints (without limitation to
how many) – this means that ball joints, pistons and others are
excluded from the scope.

◦ Comprised of rigid, inter-joint segments.

◦ Comprised of 1 last segment of the robot arm (its appendage)
which would be counted as just a black-box type structure with a
standard given area of effect relative to itself. This means an
appendage that is simply turned off or on. This discounts any multi-
joint appendages or complex mechanisms that require additional
machine learning to operate.

◦ Comprised of the following structure:

Base Joint→Segment→Joint→Segment→Last Joint→Appendage.

Any number of additional joints and segments can be added in, so
long as any given joint that is NOT the Base Joint or Last Joint
remains surrounded by segments.

• This project is required to use ROS2 for developing and testing itself.
The project should prove the viability of ROS2 as a development tool
for GTL.

• All code must be documented, as well as there must be documentation
for all relevant hand-off procedures at the end of this project.

• Regular meetings should be kept with Marcel Roosen and Jan Jacobs
to notify them of progress and relevant decisions that need to be
made.

6

3.3 End-Goals and Deliverables

This is what was expected by the end, for this to be a fully complete project:

• A system that can train any type of robot-arm that fits within the
defined structure standards of this project.

• A system that can train robots in a simulated environment to save on
time, using ROS2 as the main training environment.

• A proof of concept that such a system can work.

• A robot-arm that has been trained to move and perform a task with
the training system.

• A robot arm used for cutting/electrocuting weeds that has been
trained with the developed system.

• Full documentation of code.

• Final report of the project.

• Full project documentation that allows for easy replication of final
results.

3.4 Research

It was concluded, after collecting requirements and creating a complete
SRS document(listed in the appendix), that the student's knowledge in
machine learning was lacking. A research document was carried out and
written to help the student better understand semi and unsupervised
machine learning in the given context. This information was necessary so
that it could be better understood how to design a system that would allow
for the training of robot arms of varying types(which still maintain a
specified, general mechanical structure).

The following primary question needed answering:

"How to create an environment that can teach a variety of similar
robot arms to teach themselves how to actuate and perform tasks ,with set
parameters, from scratch?"

7

In accordance with this primary question, there would be sub-questions,
such as:

1. What is motor babbling?

2. What alternatives are there to it? Why should they be considered?

3. What variety/combinations of machine learning would give us the best
results for such a system.

1. Can this method be applied to a variety of robot arms?

2. Does this method allow for motor babbling?

3. Can this method allow for one robot to learn and copy from another
robot's neural network if they share similar features in design?

4. How long would such a method take a singular arm in a virtual
environment? How would time consumption scale with degrees of
freedom?

5. How would the chosen method of machine learning be applied to
the ROS2 environment? Does it even need to interact with ROS2?

6. What parameters would be needed to set learning goals? What
would be the most modular approach?

7. Are there preferable alternatives?

Here are the important conclusions from that research:

• Baby-babbling is an excellent natural human process of semi-
randomized establishment of the range of motion that a human
actuation system can preform. Essentially, how the brain maps out a
model of the body it is in for control purposes. This translates directly
into motor-babbling - the same thing, just for robots.[3]

• Motor-babbling, by very definition, would not grant the desired
amount of automation in this project. It can’t be used for skill
learning, only for model-definition.

• There are multiple approaches to semi-supervised machine learning.
And there are many methods of implementation. At their core,
however, they can be seen as different flavors of optimization
algorithms. A good example of this is Evolutionary Algorithms [11].
Evolutionary Algorithms is comprised of the general notion of having

8

https://www.sciencedirect.com/science/article/pii/S2405896316320687
https://en.wikipedia.org/wiki/Evolutionary_algorithm
https://en.wikipedia.org/wiki/Evolutionary_algorithm

a given "main" algorithm, mutating it into several variants, and
testing out how each one performs. Then the best performing one
becomes the "main" algorithm. However, this can be implemented to
different effects - where one approach would yield the best singular
and most efficient approach, another would yield the top few most
optimal approaches, never pointing to one given final result.

The most considered approach from EAs was evolutionary
strategies[5], [6], [10], [13]. On account of several convincing
applications in a robotics environment, it really did seem like a
plausible candidate machine learning in this project. However, after
discussion with the stakeholders, it was deemed unnecessary
compared to its competitors, simply due to the fact that at current
time, GTL has no interest in setting up the infrastructure for this
approach to be profitable.

• While there are many approaches to algorithmically teaching a system
to perform given tasks, not too many are easily implementable within
a ROS environment. Given the limited knowledge of the student, as
well as practical and time constraints, it was determined that only
accepted and practised in ROS machine learning algorithms would be
used.

• Reinforcement Learning was chosen as the most preferred means of
training a robot arm to teach itself how to perform a given task in
ROS. It has a lot of history in training robots and fulfills the
requirements of this project. [8] [12]

• The concept of applying the neural network of one robot to another
robot poses too many complex problems. While 2 absolutely identical
robots(from a structural perspective) can share neural networks,
robots with differing structure could not adapt the neural networks of
other robots that have similar structures, but not identical ones.
Unfortunately, this means that the idea of robots sharing information
and learning from each other, in the scope of this project at least, is
deemed impractical.

• During the research process, it was concluded that one method of
machine training would be not enough to achieve the desired level of
self-teaching that the system needed to do. Reinforcement Learning
alone would require too much pre-work. Motor-babbling doesn't work
for training complex behaviours, by very definition. Using concepts
from biomimicry, the student devised the idea for a system that
replicates how humans teach themselves how to use their arms, first

9

http://www.scholarpedia.org/article/Reinforcement_learning
https://www.youtube.com/watch?v=JgvyzIkgxF0
http://www.scholarpedia.org/article/Evolution_strategies
https://en.wikipedia.org/wiki/Evolution_strategy
https://www.youtube.com/watch?v=C4MUTIc-NB8
https://openai.com/blog/evolution-strategies/

in a general sense (via baby-babbling and the Motor Cortex [17]) and
then in a specific, skill-based sense (manual learning of specific skills
via the Cerebellum [18]). Using motor-babbling, the robot would
calculate all the movements it can do and generate a basic SOM
neural network for these movements(as shown in reference [7],
specifically chapter 3.4 of the book). This would require only basic
hyper-parameters, such as the physical dimensions of the robot and
its joint positions and angle restrictions. After that, Reinforcement
Learning would pick up from there, and with a few rules and hyper-
parameters set again, it can teach the robot to teach itself how to
perform simple or even very complex actuation tasks.

The image below is meant to provide an overview of the theorized
design/process for training robot arms, that resulted from Research. For the
full information, reference the research document itself.

Figure 4: Arm Training Cycle

With the research document completed, as well as all other documents from
Phase I, the student had a good, justified understanding of the theory
behind what he needed to build and had a clear layout of what the system is
supposed to be and what it requires. The information gleamed during this
phase was confirmed and peer-checked during multiple meetings with the
company coach, so as to ensure maximum quality of information.

10

https://en.wikipedia.org/wiki/Cerebellum
https://en.wikipedia.org/wiki/Motor_cortex

4. Phase II – Design

This phase entails the designing of the self-teaching system using what was
learned during Phase I. First, there was some experimentation.

4.1 Experimentation

When this Phase of work began, a lot of experimentation was done with
various Self-Organizing Map packages and Reinforcement Learning
Exercises to help the student more practically confirm the theory concluded
from research. There were plenty of problems found during this, such as
existing ROS2 Reinforcement Learning packages not being supported by
the newest, used by the project, release of ROS2.

This was the source of some difficulty, as the student had virtually no
reinforcement learning experience up to this point, and without the
dedicated ROS packages, was left directionless. Fortunately the task was
simpler than initially conceived, and after going through ->
https://www.learndatasci.com/tutorials/reinforcement-q-learning-scratch-
python-openai-gym/

it became much clearer how to approach the reinforcement learning
process from scratch and apply it in various environments.

As far as the motor babbling was concerned, the student used a package
called MiniSOM to organize and visualize some basic data. The concept
seemed to work just as desired, the data was organized in the way that
research theorized it can be used for navigation and thus work began on
drawing up a system.

4.2 Calculation over Simulation

4.2.1 Calculation Approach

Version 1 of the system went with a “calculation over simulation” approach.
What this means is that, there was a choice to be made – either the student
could make the entire motor-babbling part work with just mathematical
variables and very robust mathematical algorithms OR use a 3d model and
physics simulation program with more minimal algorithmic requirements.

Initial attempts with using only the mathematical approach looked
promising – they boasted absolute direct control over every “mathematical
simulation” variable. However, the head of unnecessary complexity began
to rear itself.

11

https://www.learndatasci.com/tutorials/reinforcement-q-learning-scratch-python-openai-gym/
https://www.learndatasci.com/tutorials/reinforcement-q-learning-scratch-python-openai-gym/

The image below was the student’s attempt annotating all of the necessary
information that just one joint would need to keep track of in the
“mathematical simulation”. Relative rotation values, XYZ positioning,
collision space – all of these needed to be separately accounted for.

The same went for static inter-joint segments – they had to have their XYZ,
collisions and physics accounted for as well. One of the most glaring
problems for such a design would be how inhospitable it is for the end user.
Most mechatronics engineers use programs such as Solidworks to do their
modeling work. These are widely used and known programs that are
designed to allow people to smoothly and efficiently engineer models. To
ask them to learn an entirely custom new layout just to mathematically
model a robot arm, with at least a few dozen variables would be a very
jarring experience. There isn’t much doubt that they could, but it would
simply be an inefficient usage of time and an introduction of unnecessary

12

Figure 5: Attempt at mathematically annotating a 3-dimensional joint in a
purely mathematical environment.

steps that have already been automated with the previously mentioned
Solidworks example.

Another flaw to this approach would be that, while it certainly can be done,
the math is there – it would be, in a sense, re-inventing the wheel. There
already exists simulation software that solves all the problems that this
approach poses. And on top of that, the complexity would cost the student a
lot of time, as he does not have the necessary mathematical knowledge to
quickly tackle such a complex problem.

4.2.2 Simulation

On the other side of this argument, exists an application called Gazebo.
Gazebo is a simulation software, that essentially allows for the simulation of
collision, gravity, motor turning resistances and many, many more
variables. It automates and already does most of the work for us. The only
real downsides to it are that it can be unstable at times and can be complex
to learn initially. However, it does already have ROS2 integration anyway
and it allows for the importing of Solidworks models, so by comparison, it
doesn’t really have a significant enough downside to itself versus the
alternative.

4.2.3 The Conclusion

To summarize, between the choice of manually setting up the entire
simulation with math in (for instance, a jupyter notebook environment) or
just using the pre-existing tools for such a task, while in theory the purely
mathematical approach would boast ultimate efficiency, the practical
hurdles to achieving this efficiency would be very considerable. And on top
of that, such a mathematical infrastructure wouldn’t lend itself well to
integrating with pre-existing engineering methodologies.

13

Table 1: Comparison table for Simulation versus Calculation

 Comparison Criteria Gazebo Mathematical
Simulation

Already Integrated with
ROS2?

 YES NO, would have to be
built from ground up

Is complex to use? Only initially Always, on account on
having very many
variables

Integrated to work with
Solidworks?

 YES NO, would require
remodeling of entire
robot arm from scratch

Time Required to
implement?

 Approx 2 weeks Upwards of 1 month

Performance Speed With time acceleration,
only limited by
hardware

 Theoretically superior,
and certainly more
efficient

In accordance with these criteria, the simulation approach with Gazebo was
chosen.

14

4.3 Finalized Design

As mentioned above, the proposed design for the overall system
architecture would be based on biomimicry. The system would be
comprised of 2 main parts:

1 Part one would take a robot model, one made to be rendered in
Gazebo*(Simulation Software), and using a combination of ROS2 and
Gazebo packages, run a loop that has the robot perform every
possible combination of movements that it can. Every single one of
these position combinations would then get saved as a state object.
This state object would have the X, Y and Z coordinates of the tip of
the robot arm, as well as the turn value of every turning joint of the
robot arm. This data would then be fed into a SOM, which after being
properly trained, could be used for logical and basic path planning(for
more information on why, check research document).

 This would result in the Motor-Babbling-generated neural network for
the robot that would be used for part 2 of the system.

2 Next would be the reinforcement learning - using the data from
before, and defining a rule set, the simulation would use its basic path
planning to teach itself how to achieve given goals. Once again - just
Gazebo and ROS2 packages, with perhaps a python package to help
with the reinforcement learning process. With the iterative training, a
neural network would be produced that the robot could use to in
conjunction with it's motor-babbling SOM for full mobility and task
completion.

The whole system, once complete, would be used to take any custom robot
arm(that still sticks to specifications, as mentioned before) and train it to do
basic movements first, and then complex sets of basic movements in specific
succession. Below are 2 sub-chapters to go into the farther design details of
the 2 parts. Also is given the domain model of the overarching system, for
viewing purposes, as well as a general overview/flow diagram to help
visualize how the whole thing comes together.

15

Figure 6: System Domain Model

16

Figure 7: General Overview Diagram - just to aid with understanding
how everything comes together.

4.3.1 Motor Babbling

Initially, the motor-babbling aspect of this project was meant to be done
without simulation software and entirely done using mathematics. However,
with the fact that there would be robot arms that often likely work in 3
dimensions and not 2 or 1, the complexity of this approach quickly sky-
rocketed. Due to practical constraints and a streamlining of the approach, it
was replaced with the model below:

Figure 8: Motor Babbler Structure Diagram

17

This entire program would essentially be a ROS2 package. It would be
written in python and consist of the following key features:

• There would be 2 "Listeners" - in ROS2 terms, listeners and
publishers are sort of the main function of everything - sending ROS2
messages all around. This will be explained in greater detail during
the Implementation chapter. The point of these listeners would be to
collect joint turn data and the robot appendage tip's XYZ positional
data from the simulation.

• There would be 2 joint manipulator classes - the "Joint Position
Manipulator" would be responsible for spawning joints in specific
positions within the simulation – what is meant by spawning, is that a
joint in a gazebo environment can be told to, instantaneously, have
itself turned to a specific degree. So for example, if we have a wheel
that turns only 90 degrees along one axis away from a defined central
point, this wheel can suddenly turn from degree 40 to degree 90
instantly. This is gone into in more detail during implementation.

The other class, "Joint Force Client Service", would move joints
around via the application of simulated force upon them. This may
seem redundant, however due to problems with lacking functionality
in ROS2 and Gazebo, as of the time of this project, this was the most
elegant solution. This will be delved into in greater detail, again,
during the Implementation chapter, for now - the important thing is
that these 2 packages would be used together to achieve the best
possible simulation result.

• There would be 2 "Central" data structures, although there would be
many more in-between. Motor Position Tree would be a nested type of
class, where 1 motor value from motor 0 could have 200 positions of
motor 1 and so on. Positional Data Unit is simply the final data holder
of all of the combined motor positions and resulting tip XYZ data - the
object that would be used for the neural network training. More detail
in chapter III.

• There would be the Gazebo simulation itself, which would have a
robot model with joints and segments in between, and a bunch of
ROS2 compatible packages that would allow it to communicate with
the Gazebo environment. To be used for collision, physics and
movement simulation.

• Lastly ,but not least, all of these elements combine in the Trainer
class, which would use them to talk back and forth with the
simulation. It would be intended to, with just a few set

18

hyperparameters, take on any simulated robot, that fits general
specification, and make it do all of its movements. After that, it would
take all the generated data, train a Self-Organizing Map and briefly
test it to see if path finding makes sense.

All of this would come together to complete the motor-babbling aspect of
the program and allow for the next big thing - the Reinforcement Learning.

4.3.2 Reinforcement Learning

As of writing this, the Reinforcement Learning part of this system would in
many ways be simpler to implement than it's predecessor. The RL loop
needs to deal with no uncertainties about the shape of the arm, where it can
move and where it can't, and since all of this information is saved in the
SOM path finding - a lot less functionality is necessary. It is essentially a
stripped down version of the Motor Babbler, with a different algorithm
attached. So there is no need to re-explain what was already gone over
before, to summarize it's work loop - it would take the SOM and, following a
set of rules for its reinforcement learning loop, it would keep moving the
arm around and around in 3d space and recording the results, while
constantly checking if the patterns established are favorable for the RL loop
or not. In simpler terms - it'll just be RL with a 3d model moving around.

The simplest example work for this would be to define two 3d points in
space, in a given succession, and telling the algorithm to find the shortest
path to move between these 2. Or maybe giving an additional data point
which highlights certain areas of 3d space that shouldn't be passed through
under specific circumstances - this could simulate objects in the way,
terrain elevations - really there is a lot that can be done from here.

19

Figure 9: Reinforcement Learnier Structure Diagram

From this point onward, the system would have everything needed to have a
basic robot arm perform rudimentary or even some complex maneuvers.
The neural networks would likely be put on a micro-processor board of
some sort, or perhaps just a normal portable computer, from where there
would need to be made a simple control scheme from the ROS2
environment that matches the movements, ratios and trajectories of the
simulation with their real-life robot counterpart. This would vary from case

20

by case, but it can be safely said that any experienced professional can
knock out this kind of work in an afternoon.

In addition to the graphs and system plans, a Design Justification document
was written - the purpose of which was to give commentary on all major
design choices for the finalized system, so that anyone working on this
project after the student is long gone can find easy answers on the most
major topics as to the "Why?" of things.

21

5. Phase III - Implementation

This part took up the largest portion of the project due to 2 primary
categories of factors:

• Lack of experience with ROS2 Foxy, Gazebo, Python and robotics in
general.

• A plethora of issues rooted entirely in the fact that ROS2 Foxy and its
Gazebo counterpart packages are severely lacking, due to how new
the distribution is.

As of writing this, the project has a nearly fully completed and functioning
Motor-Babbling trainer and a yet to be live-tested robot. This chapter will
go over all of the work and hurdles encountered during the Motor-Babbler
implementation and the results and successes thus far.

5.1 Motor Babbling

After planning was squared away, practical work began. A ROS2 package
would need to be made to work alongside the Gazebo simulation, first we
will discuss the Gazebo side of things and then go on to how the ROS2
package took shape.

5.1.1 Gazebo

As mentioned in the Terms chapter, Gazebo is a program used for the
physics-based simulation of basic 3d objects. It primarily supports 2 kinds of
object:

• A raw joint that can be one of several defined gazebo joint types(static
joint that can’t turn, joint that turns along one or more axes, etc.) or
just a custom one altogether. These joints can account for collision,
they can simulate friction, weight, turn limitation, force dampening,
total force limitation - the list goes on, but these are the important
essentials. These joints are used to simulate our robot's joints

• Segments/Shapes/Static Physical Objects that are just that - a solid
geometrical object that can have collisions, colours, physics, gravity,
weight, frictions and so on.

In a Gazebo simulation, a robot would be designed or imported, that fits the
structural specifications of the SRS. The robot would be an unrestricted
amount of joints (small sidenote, 10 000 joints would actually be a limiter,
because joints are explored via recursion in the training program, and
Python can only support 10 000 layers of recursion before giving out – it’s

22

very unlikely to ever make a robot like that, but still worth mentioning),
starting with a grounded joint 0, or Base Joint, at XYZ position 000(in the
simulation). This joint would then follow a pattern of being connected to a
segment, which in turn would connect to joint 1, and so on and so forth until
the final joint is defined. The segments in between can be of varying shapes
and sizes, given that they don't defy the laws of physics. At the very final
segment, at its tip, would be attached the appendage of the robot arm. This
appendage, from a programmatic point of view, would consist of one XYZ
point in 3d space, relative to the starting ground 0 of joint 0. It is important
to note that every joint should only be able to turn along 1 axis, as the
system was not designed for pistons or ball joints. Not to say that it's
impossible to do this, but this was not the intended design for this system.

The image below is a simple example of a 2-jointed simple arm model,
meant to simulate the design shown at the top of this document. It remains
functionally identical to the one shown above - this is one of the advantages
to Gazebo, there is no need to perfectly replicate a model, since we have so
much control over the physics of everything. If this model perfectly
replicates all of the movements of the real-life counter-part, then that's all
the trainer needs to make a SOM.

Figure 10: Gazebo Example Model

With a robot arm in place in the simulation world, generally it would be set
in the Gazebo world file(a large file that accounts for all the objects and
settings of the simulation, in XML format) that time flows 20 or 30 times

23

normal speed. One of the great features of Gazebo are that it allows for the
speeding up of world time without any detrimental physics side-effects on
the simulation. The only limiting factor on how far this can scale, based on
the student's personal experiences with the program, is how powerful the
working PC is.

5.1.2 Gazebo Hurdles

The described information above should make for a simple approach to
simulating, however this is where problems started popping up. Aside from
an ample lack of almost any up to date documentation, we have the
following:

• Gazebo joints have a tendency to clip badly outside of their physical
limitations, if they are all not set to a specific weight.

• Gazebo doesn't currently allow for a way to programatically lock a
joint, meaning they will always succumb to gravity and inertia.

There are more issues to describe, but the rest are more-so engaged to the
ROS2 Foxy side of things than Gazebo itself. The workaround for these and
the other issues is the following - set all joints to at least 1kg of weight,
disable gravity and make it so that every single joint and segment are about
half as heavy as their predecessors. This last part has to be done to negate
the effects of inertia. Since we have no way of locking a joint, much like a
joint would naturally do in real life when not turning, we go around this by
making each following joint to weak to be able to affect it's predecessor.
Again, to emphasize the point – this is a workaround and by no means a
perfect solution. Simply the best way to get around the problems created
from working with under-developed software.

Next we discuss ROS2, how it interacts with Gazebo, the problems this
spawns and the workarounds.

5.1.3 ROS2

The ROS2 program would be the "meat and potatoes" of the motor-babbler
as it were - the package was meant to communicate back and forth with the
simulation to gather joint and XYZ data, to put into a SOM that can be used
for path planning either in the simulation or real life. To do anything, first
we must discuss how ROS2 would communicate with the sim -
gazebo_ros_api_plugin. This describes a family of packages, in this case
designed to work with the newest release Foxy, that allow ROS to be able to
send messages from its environment to the simulation to achieve different
goals:

24

• gazebo_ros_state - this plugin would create a ROS2 service, which the
ROS2 environment could use to get the pose and twist data of links
and models.

• gazebo_ros_joint_state_publisher - a separate plugin for getting the
pose and twist data of joints.

• gazebo_ros_joint_pose_trajectory - a package that allows ROS2 to
immediately spawn a joint to be turned in a specific angle (as long as
the angle isn't beyond the defined limit for that joint). This spawning
ignores collisions and can cause errors.

• libgazebo_ros_force_system - this package is used to apply a variable
force over a period of time on a ROS2 joint. It is not especially useful,
because it is more akin to spinning a tire that is off the ground than
telling a motor to turn a specific amount. You can define an amount of
force to be applied, and the time for which it is applied and after that
time is up, the joint won't stop turning, it'll simply stop applying that
force. However, a useful feature of this plugin is that it accounts for
collisions. So if a joint is swinging around with a link attached, it will
stop and collide if an object is in the way(provided the link has
collision enabled.)

5.1.3.1 Listeners

These 4 (poorly documented) plugins make up the core of the feature work
for the Motor-Babbler, since they define how everything has to be
structured. For example, initially it was planned to use one general purpose
listener that gets all positional data from the simulation, however since that
hasn't been made yet - 2 separate ones had to be made for links and joints
respectively. The details of the listeners aren't very useful to describe, the
short version is - you can have them run just for one "tick" or continuous
line of "ticks" where the listener would collect ROS2 messages and extract
useful data from them. For example :

25

Figure 11: ROS2 Joint Message Structure Example

This is an example of a stream of joint messages - you can see that there are
only 2 important fields for this project "effort" and "position". When the joint
listener would be running, it would collect the data from the "position" field.
So if we have a double jointed robot in a certain position, we would take the
position of both joints, the XYZ of the appendage with our appendage
listener, and we would have a complete state of the robot.

26

5.1.3.2 Joint Manipulation

To move on to joints - they are incapable of stopping or locking on
command, primarily due to the fact that gazebo_ros_pkgs still is in
development and lacks a lot of features. As mentioned above, we only have
2 options for movement - either we spawn joints in specific positions(which
means we simply make the joint instantly turn to a specific degree on its
defined turn-axis) and risk collision breakage, or we apply force over a
period of time and completely lose the ability of any precise movement.
Eventually ,there will be made packages that provide much better
movement options, but for the purposes of this project, a workaround was
devised - when the simulation starts, it systematically goes from joint 0 all
the way down to the final joint using recursion. When the trainer first
reaches a joint it hasn't seen before, it would spawn this joint towards its
outermost possible turn angle (either in the positive or negative value, it
doesn't matter a lot) and then apply a turn force for the joint to swing
around until it reaches its natural limit or hits a collision.

All of the positions that the joint was in during its turning are recorded
except for the last few positions before the stoppage. This data is saved and
the algorithm goes on to the next joint. What it then does, is for every
previously recorded position, it will spawn joint 0 there and do the same
"reset and swing" routine for the next joint, in this case - joint 1. So on and
so forth, until the system determines and records every possible movement
that doesn't have a collision.

5.1.3.3 Recursion

One significant hurdle for the motor-babbler was dealing with a dynamic
amount of joints. Part of the specification for this project is that a robot can
have any number of joints. This would inevitably result in very messy and
convoluted “if-statement” avalanche, so recursion was used instead. Below
is given a code segment from the motor babbler.

To summarize it succinctly, when this loop fires for the first time, it sees
that there is absolutely no data about the robot model from the simulation.
It then takes the Base Joint(the very first joint in the robot model) and tells
it to rotate smoothly from its right-most extreme angle towards its left-most.
It is important to mention that whether it starts from the left or right isn’t
especially important for any reason, this can be switched on the fly via
hyper-parameters.

27

After the first joint has all of its rotation angles recorded (so, for example –
all the positions between degree 90 and 180), the method terminates and
fires again from the original for-loop that runs it. This time, it sees that the
first joint has been calculated, so what it does is it starts a for-loop. From
every recorded position of the Base Joint, the algorithm calls itself again
and then sees if the next joint has had its data collected. If yes, the loop
repeats and continues a layer deeper. If not – the joint in question has its
movement calculated and the recursion terminates, before starting again
and again, until all joints (listed in the hyper-parameters) are accounted for.

28

Figure 12: Code segment from motor-babbler, an example of recursion
used to simplify a complex task

5.1.4 SOM

A recap of what we've achieved so far:

• The ROS2 system is capable of tracking all(relevant) information in
the simulation – joint turn values, segment XYZ positions, etc.

• The ROS2 system can interact with the joints in the simulation to
make the robot arm move around.

• The ROS2 system has a hefty recursion-based algorithm which allows
it to dynamically account for any amount of joints in a robot model,
that is below 10 000 at least.

• The Gazebo environment is running anywhere between 2 or 30 times
faster than normal time (or even more, given a powerful enough
computer).

• The Gazebo environment simulates collisions.

With all of this, our data generation part is completed. The simulation does
all the possible movements it can and records and organizes the numbers
into a giant array. Each array entry consists of all the joint values plus the
XYZ of the arm appendage tip at that time. One of these entries is called a
robot state.

The ROS2 package then takes all that data, and feeds it into a SOM package
(in this case, Somoclu) for training and organization. The main goal is to
organize the neurons of the SOM in a way such that, if we want our robot to
move from XYZ(1,1,1) to XYZ(1,4,1), it will simply jump from corresponding
neuron to neuron between these 2 points, in the shortest way possible, to
reach its goal.

Figures 9 and 10 showcase all of the XYZ positions of the appendage. This
highlights all of the space that the robot arm can move within. If you recall
from Figure 7, the model mimics (not fully) in structure and turn capacity
what the human arm can do. If you take your own arm, and limit it to only
turning your shoulder from left to right and only extending and retracting
your elbow from left to right, you will notice that you more or less recreate
the same pattern of movement as shown below.

29

Figure 13: Data Visualization from the top

Figure 10 mainly just shows us very minuscule elevation differences – this is
more-so just noise data. The model shown above is meant to only move
along a 2d plane and not a 3d one, so the fact that these differences are so
minute is a good thing – they can be attributed to jitters in the simulation or
a slightly misaligned axis.

30

Figure 14: Data Visualization from the side

Lastly, in Figure 11, we can see a very condensed (for visual purposes)
visualization of the neural network. The network of neurons is organized
based on the XYZ and motor values of each neuron’s data, so a 3d point
with given motor values would be a neuron next to another neuron with a
very similar XYZ and set of motor values. The end goal is to spatially
organize all of our robot state data in such a way that this can be used for
basic path planning. As can be seen below, due to the nature of a SOM, if
we know the starting position of a robot arm and its desired destination
coordinate, we can use the neurons in this map to quite literally go from
neuron to neuron, drawing a line. The whole point of this is so that the robot
arm can maneuver itself gradually and efficiently.

Again, this is a significantly condensed example. In this case, the actual
amount of states the robot records is roughly 40 000. Generally there would
be a larger neuron count so as to avoid large gaps in between the
movements. However, the core concept remains the same – organize all the
data into neurons, splay out the neurons in a 2d map based on proximity
and then use those neurons to calculate paths. XYZ(1,1,1) becomes
XYZ(4,3,1) with just a few jumps via basic proximity path calculation.

31

Figure 15: Path-finding example

It is worth mentioning that there were 2 other considerations for SOM
packages, however they both had their issues and limitations. It was only
upon the discovery and usage of Somoclu that good results were gained.
Below is a small table to exemplify the findings:

Table 2: Criteria table for selecting a SOM package

Packages Retains training data
after training?

Easy to use visualization tools/documentation?

MiniSOM No No

SimpleSOM No Yes

Somoclu Yes Yes

What is meant by “retains training data” is that after training, MiniSOM and
SimpleSOM don’t allow for looking up what states from the data set belong
to what neurons(at least not quickly). This then makes a lot of problems and
necessary workarounds, which are avoided via Somoclu.

32

5.1.5 Live Testing

Outside of all the Simulation work, there was some experimentation done
with a practical, real-life built robot arm(the same as the one shown in the
first image). It was intended to be the final test for the motor-babbler
results, however - ROS2 Foxy once again fails to support rudimentary
features. For this testing to happen, the ROS2 Foxy environment needs to
be able to communicate with an Arduino(or some similar type) micro-
controller board. The micro-control board is simply an interface for sending
electrical signals to the motors of the robot. However, ROS2 Foxy isn't
supported in the package ros2arduino yet, and currently available
workarounds are fairly unstable, so this live testing hasn't been a success.

A choice was made – due to time restrictions and the desire for the most
important proof of concept, some simulation data would be manually
collected, adapted and organized for a very rudimentary path-planning. This
would then be put directly onto the micro-controller of the robot-arm just to
verify that path planning, even extremely simple path planning, when done
with the simulation data, would work in practice. Fortunately, the results
were successful and the robot managed to follow a very simple, but still
consistent circular movement pattern. What this meant was that, the motor-
babbling system had been proven as a directly applicable concept.

33

Figure 16: Picture of
the robot arm during
proof-of-concept
testing.

6. Conclusion and Results

To give a brief summary of this project as a whole – the goal was to make a
system that can train a specific type of modular robot arm. The system had
to be dynamic and capable of automating as much of the training process as
possible. After a lot of research and analysis, a design was planned out that
separated the “brain” of a robot into 2 parts – 1 part that handles basic
movement and one that actually learns/performs skills using the mapped
out basic movement.

During Phase II (Design) some decisions needed to be made between how
the entire system would work. It was concluded that , instead of
mathematically calculating most of the simulation, using pre-existing
simulation tools would be much faster and more practical, if not ultimately
most efficient. Despite issues, the ROS2 environment was developed
according to planning, a simulation environment in Gazebo was setup
according to planning and both were developed to the point where they
produce the desired simulation data for training a real robot.

While incomplete, the produced data from the simulations was used to
create proof of concept SOM maps, as well as used to maneuver the real-life
robotic model in a very minimal fashion. This was enough to solidly prove
this project as a concept, and leads us to comparing what was ultimately
achieved in this project.

6.1 Achieved Goals and Deliverables

To go over the goals of this project again, here is what was successfully
completed:

• A system that can train any type of robot-arm that fits within the
defined structure standards of this project. - DONE

• A system that can train robots in a simulated environment to save on
time, using ROS2 as the main training environment. - DONE

• A proof of concept that such a system can work. - DONE

• A robot-arm that has been trained to move and perform a task with
the training system. - NOT DONE

• A robot arm used for cutting/electrocuting weeds that has been
trained with the developed system. - NOT DONE

• Full documentation of code. - DONE

34

• Final report of the project. - DONE

• Full project documentation that allows for easy replication of final
results. - DONE

Unfortunately due to practical constraints, the student was not capable of
finishing the entire project. However, enough has been finished to prove
that this system has considerable value to offer.

This system is intended to be used for much more practical application with
the briefly mentioned weed-cutter robot, however this goes beyond the
practical capacity of this graduation project, and will be handled later on by
GTL employees after handing off.

6.2 Recommendations

As closing recommendations for GTL, the student proposes the following:

• It would be wise to stick with the currently selected version of ROS2
(Foxy) for the time to come. While it is still new and therefore suffers
problems with under-development, these problems are actively being
solved and often have solid workarounds for the time being. While
there can be debate for whether it would be worth going back to an
older release of ROS2, it is certainly recommended not to go as far
back as switching to ROS1.

• It is advised to look into the model importing capabilities of Gazebo
and to test out how this would combine with the current simulation
system. If GTL can confirm an approach to exporting their, for
example, Solidworks models into Gazebo for quick simulation
purposes, this would be a considerable benefit.

• Should this system ever be fully finished and deployed in a working
capacity, it’s advised to use as strong of a computer as available.
Gazebo’s ability to speed up simulation time seems almost entirely
limited to the current PC’s hardware, so this can be a significant time
saver.

• GTL needs to look into bridging the final gap that plagues this project
– connecting a ROS2 environment to a micro-control board. There is
proof that this has and can be done, however it is (as of the time of
writing this) not as simple and straightforward as ROS1. This issue
will only become simpler to solve as development of ROS2 Foxy
continues, but the sooner a dedicated solution is applied, the sooner
this project can be fully realized and applied to a working
environment.

35

• Should GTL ever desire more complex second-phase learning of this
learning system, it is entirely plausible to replace the Reinforcement
Learning phase with something like Deep Q Learning. This will all boil
down to what the company wants from this system in the future.

• It is very important to be aware of the fact that this simulation-based
system will fail if it is run on weak hardware. It is very, very important
to make sure that adequate hardware is being used for best and most
stable results.

The most important conclusion that can be gained here is that ROS2 Foxy is
indeed a very robust, time-saving environment. While unfortunately very
fresh and somewhat under-developed still, GTL’s investment into learning it
will only pay off with more and more value as time goes on. Should they
finish this system and formally apply it to their work, they can expect a leap
in finally not being reliant on “black-box” technology of other proprietary
robot-arm manufacturers.

36

Appendix

Bibliography

 1. Closed-loop acquisition of behaviour on the Sphero robot - Oswald
Berthold∗ and Verena V. Hafner∗

 ∗Adaptive Systems Group, Dept. of Computer Science, Humboldt-
Universität zu Berlin{bertolos|hafner}@informatik.hu-berlin.de

 2. https://blogs.nvidia.com/blog/2018/08/02/supervised-unsupervised-
learning/

 3. Learning of Motor Control from Motor Babbling* - Tatsuya Aoki*
Tomoaki Nakamura* Takayuki Nagai* The university of Electro-
Communications, 1-5-1 Chofugaoka, Chofu-Shi, Tokyo 182-8585 Japan (e-
mail: aoki@apple.ee.uec.ac.jp)

 4. https://www.youtube.com/watch?v=qCn8lkacJz0

 5. https://openai.com/blog/evolution-strategies/ - and all of its mentioned
sources

 6. https://www.youtube.com/watch?v=C4MUTIc-NB8

 7. Self-Organizing Maps - Teuvo Kohonen

 8. https://www.youtube.com/watch?v=JgvyzIkgxF0 - An Introduction to
Reinforcement Learning

 9. https://www.delta.tudelft.nl/article/robot-leos-first-steps

 10. https://en.wikipedia.org/wiki/Evolution_strategy

 11. https://en.wikipedia.org/wiki/Evolutionary_algorithm

 12. http://www.scholarpedia.org/article/Reinforcement_learning

 13. http://www.scholarpedia.org/article/Evolution_strategies

 14. https://ai.googleblog.com/2020/04/exploring-evolutionary-meta-
learning-in.html

 15. https://en.wikipedia.org/wiki/Deepreinforcementlearning

 16. http://www.scholarpedia.org/article/Deep_Learning

 17. https://en.wikipedia.org/wiki/Motor_cortex

37

 18. https://en.wikipedia.org/wiki/Cerebellum

 19. https://en.wikipedia.org/wiki/Motor_babbling

 20. A Motor Control Model Based on Self-Organizing Feature Maps –
Yinong Chen - https://drum.lib.umd.edu/handle/1903/908

21. Bio-inspired Intelligent System Design – Jan Jacobs

Phase I Artefacts

38

39

Figure 17: Cutter Robot State DIagram

40

Figure 18: Cutter Robot Use Case Diagram

41

Figure 19: Proposed Robot Arm Learning Cycle from Researhc Document

Figure 20: Visualization of evolutionary algorithm.

Phase II Artefacts

42

Figure 21: General Overview Diagram

43

Figure 22: Motor Babbler Structure Diagram

44

Figure 23: Motor Babbler State Diagram

45

Figure 24: Reinforcement Learning Structure Diagram

46

Figure 25: Reinforcement Learning State Diagram

47

Figure 26: System Domain Model

Final Supplementary Documents

Beyond here can be found all supplementary documents for this project.

48

Table of Contents
Research Document - ROS-based machine-learning in ROS2........................3

1.Introduction..3

2. Project Goal (Further Context)..3

3. Main research question and sub-questions...4

4. Terms...5

5. Research Conclusions..6

Answering Question 1 - Defining motor babbling and it's limitations.....6

Answering Question 2 - Listing plausible forms of semi and
unsupervised machine learning to add to our motor babbling...............6

Reinforcement Learning..7

Evolution Strategies...9

Deep Reinforcement Learning...11

Comparison Table - for visualization..11

Answering Question 3 - Combining the information into a viable
proposed system for training variable robot arms................................12

6. Summary..15

7. Appendix..16

Self-Teaching Robot Arm - Software Requirements Specification................18

1 Introduction..18

1.1 Context...18

1.2 Scope...20

1.3 Terms...21

1.4 Goal..21

2. Specification..22

1

2.1 Operating Environment...22

2.2 Assumptions and Dependencies..22

3. Requirements..22

3.1 Hardware Requirements..22

3.2 Software Requirements...23

3.3 Machine Learning Requirements..23

3.4 Functionality Requirements..24

Design Justification...25

1.Intro..25

2.System Overview..25

3.Motor-Babbling design...26

2

Research Document - ROS-based machine-learning
in ROS2

by Valentine Ezekiev, 29714291.

1.Introduction

This document will serve several functions. It is for the graduation project
"ROS-based self-teaching robot arm". The student needs to better
understand the concepts behind machine learning, specifically the semi and
unsupervised, motor-babbling variety of machine learning (in a ROS2
environment). Motor-babbling, specifically, is brought up because it’s been
recommended as a soft requirement/strong suggestion for this project. In
this research document, research questions and context are outlined, then
conclusions from various sources (research documents, YouTube videos,
general research) are written down, in addition to any objections to said
documents(if any) from the student. Once enough information has been
gathered, this document will end with a conclusion/summary chapter. That
chapter will act as a summation of all the important-to-the-project
information that's been obtained.

2. Project Goal (Further Context)

The purpose of this project is to create an environment in which a robot arm
can learn to perform given commands. For instance, take a robot arm with 2
degrees of freedom (2 connective segments with 2 rotating motor joints)
and a grabber at the end. In the machine-learning environment, this robot
arm should be able to first learn every movement that it could make, given
its physical capacities - meaning, just to learn all the ways it can move in
relation to itself without collision with itself. After the arm has learned what
it can do in terms of the capabilities of its separate motor components, it
then has to be able to put those fields of movement into skills. What this
means is, if someone gives a learning objective to said arm to figure out how
to reach a distinct point in 3-d space and pinch, the robot arm has to use the
basic movement knowledge that it has to figure out how to do this.

This basic example scenario should be applicable to a variety of robot arms
that generally share a modular structure to the one described above - 1 or
more degrees of freedom and an appendage for a tip (for additional
information on what exactly is considered an appendage in this project,
please reference the Software Requirements Specification). The idea is to
create some kind of system that can allow all of these basic robot arms to

3

figure themselves out and then figure out how to create skills out of their
basic movement abilities, all while doing this in an unsupervised or semi-
supervised manner. The robots will have to have their learning objectives
set. Conceptually, this should serve as the guidelines within which the
robots will attempt to discover information on how to perform.

The need for this complex learning system is due to the strive of GTL to
create custom robot arms in the long run. They want to have a robust and
mostly automated system to cut down on the man hours necessary to
manually program robot arms.

3. Main research question and sub-questions

The primary research question of this project is "How to create an
environment that can teach a variety of similar robot arms* to teach
themselves how to actuate and perform tasks ,with set parameters, from
scratch?". This is a complex question, so there are a lot of blanks in between
that need to be filled in. Namely:

1 What is motor babbling? How far can it go, in terms of teaching a
robot arm to perform a given complex task(id est picking something
up)?

2 What other concrete varieties of semi/unsupervised machine-learning
can be reasonably (meaning - avoiding technologies and concepts that
are currently too unstable and under-developed for practical use. To
further clarify, technologies/concepts that lack a proof of concept and
historically practical and successful application in a ROS robotics
context, generally would not be considered.) researched and utilized
in this project?

3 What variety and/or combinations of semi/unsupervised machine-
learning would best suit this project's goal?

3.1 Can this method be applied to a variety of robot arms?

3.2 Does this method allow for motor babbling?

3.3 Can this method allow for one robot to learn and copy from
another robot's neural network if they share similar features in
design?

3.4 How long would such a method take a singular arm in a virtual
environment? How would time consumption scale with degrees
of freedom?

4

3.5 How would the chosen method of machine learning be applied
to the ROS2 environment? Does it even need to interact with
ROS2?

3.6 What parameters would be needed to set learning goals? What
would be the most modular approach?

3.7 Are there preferable alternatives?

4. Terms

Important Note - when referencing a "robot" or "robot arm", it is
purposefully left vague. The concept of this project is that a wide variety of
robot arms should be able to learn how to function. At best, a minimal
standard definition that can be provided is 1 degree of freedom, affixed to a
base of some sort and affixed with an appendage at the end of the robot arm
with a connective segment in between.

ROS2 - Robot Operating System 2. An environment for programming robots.

SOM - Self Organizing Map. A collection of data points with comparable
data values that can be laid out onto a flat 2 or 3-dimensional field and
represent the pieces of data in a logical spacial organization.

Motor-babbling - a form of machine learning that mimics baby-babbling.
Essentially, the robot records every possible joint combination that it can
actuate and then saves and organizes that data into some form of neural
network.

5

5. Research Conclusions

Answering Question 1 - Defining motor babbling and it's limitations.

*Relevant references – [3] [9] [19]

Motor-babbling, as a concept, is derived from a process called baby-
babbling. During their infancy, human babies can often be seen performing
various combinations of random movements. This is described as them
developing their own sensor-motor relationships - which can more simply be
described as babies figuring out how their bodies move and how it feels to
perform the various movements, as well as determining the limits of their
movements. Motor-babbling is the same thing[19], however, applied in the
field of intelligent robotics, where a robot would map out all of its
movements into some form of neural network for later use. In more
practical terms, a system could calculate every conceivable combination of
its own joints(depending on the degrees of freedom) and map it out into an
organized neural network[3]. This neural network can then be used by the
machine's controllers later on as a map on how to perform smooth,
sweeping movements and adjustments. The reason this would be necessary
is due to a very practical problem that robot arms face - to move from point
A to point B, an arm needs to be able to know how to link those 2 points by
performing all the movements in between. If the motor system of a machine
doesn't know how to gradually position to a different point of itself, it would
simply break.

While motor-babbling is an excellent tool for mapping out the motor
functions of machines[9], it alone is not a method that allows for the
development of complex skills and patterns, by very definition. As a soft
requirement of this project, it will need to be used, but it will need to be
used in conjunction with another machine-learning method that can use the
information provided by motor babbling to develop skills.

Answering Question 2 - Listing plausible forms of semi and
unsupervised machine learning to add to our motor babbling.

Since motor-babbling only solves a part of the robot-learning problem for
this project, an additional learning method will be necessary to further
develop "skills". In the context of this document, skills refer to complex
sequences of basic movements with the aim to achieve objectives that go
beyond the scope of merely "actuate to point B".

6

https://www.delta.tudelft.nl/article/robot-leos-first-steps
https://www.sciencedirect.com/science/article/pii/S2405896316320687
https://en.wikipedia.org/wiki/Motor_babbling
https://en.wikipedia.org/wiki/Motor_babbling
https://www.delta.tudelft.nl/article/robot-leos-first-steps
https://www.sciencedirect.com/science/article/pii/S2405896316320687

Reinforcement Learning

*Relevant references - [2], [8] and [12]

Reinforcement Learning (RL) is a very popular method for training a neural
network in the field of robotics(though not only here, it is prevalent in many
other disciplines due to its generality)[2][8]. It revolves around the concept of
using a singular agent (id est the robot arm) who is given a goal in an
environment. It is classified as a third separate paradigm of machine
learning, apart from supervised and unsupervised learning, but it can
simply be viewed as semi-supervised machine learning. After having been
given a goal(set of hyper-parameters) from an external, generally human,
input, the robot will proceed to experiment in its environment and attempt
combinations of actions that give it varying reward and penalty scores.
Should the robot perform actions, be they singular or sequence-based, that
yield negative, penalty results, the neural network will note down to avoid
repeating those movement combinations in the future(at least in the given
environmental context at the time of recording). And vice versa - positive
rewards are remembered by the neural network as something worth re-
actuating and optimizing. The point of this process is to maximize the notion
of cumulative reward.

Image below for illustrative purposes.

To give a brief, although in-depth, description of the working process of RL,
a brief description of MDP (Markov Decision Process)[12] will be necessary.

7

Figure 27: Basic Reinforcement Learning Loop

http://www.scholarpedia.org/article/Reinforcement_learning
https://www.youtube.com/watch?v=JgvyzIkgxF0
https://blogs.nvidia.com/blog/2018/08/02/supervised-unsupervised-learning/
http://www.scholarpedia.org/article/Reinforcement_learning
https://www.youtube.com/watch?v=JgvyzIkgxF0
https://blogs.nvidia.com/blog/2018/08/02/supervised-unsupervised-learning/

MDP is a mathematical process used to deal with decisions made in known
environments, the outcome to which is unknown. During a process, there
are multiple time steps. For each time step, there are environment and
agent states. An agent in the environment can choose to perform an action
onto the current state. After that, the time step moves forward by one and
the functions responds with a corresponding reward value for the imparted
action and a change in states. An addition to MDP is partially observable
MDPs. Very similar, however in this case, the agent can not observe the
state of the environment it is interacting with. In a scenario like this, the
agent assumes that the environment's dynamics are determined by an
underlying MDP that it cannot observe. It must adapt its strategy to account
for the probable states of the environment based on observations and
observation probabilities, as well as the input from an underlying MDP.
More succinctly put - this is the model that is used in
unobservable/distorted environments. It is used for calculating the best
probable solutions in such environments.

As described above, the core concept of MDP translates into RL - the agent
enacts actions upon the environment and observes the changes in state and
the reward values that it receives. It then strives to optimize its action
patterns in relation to its environment so that it can optimize those rewards.
With reinforcement learning come adjustable hyper-parameters that can,
for example, direct whether the agent should prioritize short-term reward
maximization or long-term reward maximization, as well as the ability to
restrict and adjust what acceptable values of penalty the agent would
consider worth risking. The work flow of RL is a balancing act of exploration
and exploitation. The model has to explore its environment in order to
obtain patterns and understand how it can perform a given task. It then
must exploit its knowledge to continue receiving guaranteed rewards.
However, there are often cases in which an exploitable pattern can be
explored in order to yield a temporarily lower reward, but in the long run,
yield an ultimately more efficient pattern which yields a greater total
reward. It comes down to the needs and wants of the given training
scenario/project.

The explanation of the mathematical algorithms is being left out of this
document, partly due to brevity and partly due to the fact that it is not
integral to the purposes of this project and research. As can be summarized
above, RL is an excellent and robust tool for training/optimizing neural
networks. Given appropriate configuration, it can provide an excellent tool
for training robot arms and even do so in relatively brief periods of time,
given a virtual environment.

8

Evolution Strategies

*Relevant references - [5], [6], [10], [11], [13]

Evolution Strategies (ES) is an optimization algorithm that is actually a sub-
class of a greater, general nature-inspired group of optimization and direct
search methods, called Evolutionary Algorithms[10][11][13]. The general theme
of these algorithms is the mimicry of natural evolutionary occurrences, such
as reproduction, mutation,recombination and selection. What this translates
to in general terms, is having multiple agents, all attempting to perform
solutions, and then optimizing the algorithm according to the best
performing agents, while discarding the poorly performing ones. This is
simply a generalization, as the whole of Evolution Algorithms has a very
large selection of singular algorithms and entire family sub-groups of
algorithms. Some specialize in not giving a singular, most-optimal solution,
but rather multiple viable solutions. Others focus on performing the same
core task of mimicking populations and evolution, but also mimicking data
attributes that would help with tracking things like social developments
populations, knowledge sharing, individual and distributed fitness and so
on. Many of these algorithms are ,theoretically, very applicable in the
context of this project. However, due to the fact that almost all of them fail
to have concrete and accessible uses in a robotics environment, especially a
ROS2-based one, this removes them from the consideration as optimization
algorithms for teaching the robot arms in this project. While theoretically
viable, it would require a great deal of research and experimentation - and
this would fall out of the scope of the goals of this project, as well as the
skill set of the software engineering student developing it. An honourable
mention goes out Evolutionary Multimodal Optimization - a means of
determining multiple most-optimal solutions to a given problem. This exists
as a means of dealing with problems where the most efficient solution
would not necessarily be affordable, given physical and resource limitations.
In theory, it would have been worth considering, as it could be an
appropriate tool for teaching a robot arm multiple approaches to obtaining
an objective, should it be unable of using the most optimal approach for due
to a given variable reason.

9

http://www.scholarpedia.org/article/Evolution_strategies
https://en.wikipedia.org/wiki/Evolutionary_algorithm
https://en.wikipedia.org/wiki/Evolution_strategy
http://www.scholarpedia.org/article/Evolution_strategies
https://en.wikipedia.org/wiki/Evolutionary_algorithm
https://en.wikipedia.org/wiki/Evolution_strategy
https://www.youtube.com/watch?v=C4MUTIc-NB8
https://openai.com/blog/evolution-strategies/

Back to ES, they can be viewed as a somewhat opposite of RL - ES has
multiple agents, anywhere up from a minimum of 2 - a parent and a
mutation. Much like before, this works on a "reward score" system. If the
mutation has a higher than or equal reward to the parent, it becomes the
new parent and spawns a mutation of itself. This concept scales up to many
agents being sent out towards a problem where they each attempt their
own slightly different solution (mutation). Then the solution weight of all the
"positive" scores gets summed up and the average solution for the problem,
where initially it may start at random, has now adapted (in the even that
this average mutated score is higher than or equal to their collective parent
score). This approach has some excellent benefits to itself - in general, it
results in a simpler implementation of the algorithm. Additionally to this, it
allows for parallelization. Due to the fact that each mutation can be ran as
its own thread in a virtual environment, this allows for the testing of
hundreds of optimization calculations at a time. In source [5], an example
was given of teaching a humanoid figure how to walk, in a virtual
environment, in merely 10 minutes, due to the fact that nearly 1500
computer CPUs were utilized during that test.

Evolution strategies and the code shown across sources [5] and [6] make it a
promising method for the secondary phase of training skills for a robot arm.
The ability to run virtual, parallelized instances of training offer the ability
for considerable scalability and the general simplicity of this algorithm
marks it as applicable in many scenarios in this project and generally a
competitive alternative to RL. However, the lack of concurrent and
streamlined implementations of this as a package, lacking any presence in a
ROS environment and lack of any solid usage in precision-based training all
work against this method. It is also worth mentioning that, as mentioned in

10

Figure 28: Basic Evolution Strategy Loop

https://openai.com/blog/evolution-strategies/
https://openai.com/blog/evolution-strategies/

[5], in singular machine instances, ES is known to be slower and less data-
efficient than RL.

Deep Reinforcement Learning

*Relevant references – [15], [16]

Deep learning comes from the same family of machine learning algorithms
that RL comes from. This method of learning works off of the concept of
having an indefinite "depth" of neural layers in a neural network, each
having a fixed amount of neurons per layer. Generally used in image-
recognition based-tasks, the idea is that each layer of the neural network
can break down features detected on an input further and further, until an
optimal minimum unit of feature is achieved. While a good and popular tool
for training neural networks for image and language processing, in terms of
robotics - it isn't designed to train a neural network to actuate, so it
wouldn't find any use in this project. However, Deep Q-Learning (or Deep
Reinforcement Learning) offer a combination of training both image and
actuation neural networks. This setup often finds application in training
robot arms where having a camera to guide the work of the robot would be
a necessity. To summarize it a bit more succinctly, regular RL would teach a
robot to perform optimal maneuvers in a smaller work area with fewer
variables or - where the environment in which it operates can be considered
more static and simple. A Deep Reinforcement Learning setup would allow
a robot to, using complex external sensors and/or cameras, navigate and
learn to determine optimal maneuvers in a much more complex and varied
work space.

While Deep Reinforcement Learning offers more robustness and ability to
handle complexity, it is, functionally speaking, RL with image processing
attached. For the purposes of this project and its requirements, complex
image and environment processing are not part of it, which would render
this method of robot training an unnecessary addition in complexity.

Comparison Table - for visualization.

The table below is meant to give an overview of the primary pros and cons
of the considered Second-Phase machine learning algorithms. Second-Phase
means that these are the algorithms that come after the motor-babbling.

11

http://www.scholarpedia.org/article/Deep_Learning
https://en.wikipedia.org/wiki/Deepreinforcementlearning
https://openai.com/blog/evolution-strategies/

Answering Question 3 - Combining the information into a viable
proposed system for training variable robot arms.

*Relevant references for the human brain analogy – [17], [18]

Having collected and summarized the information from questions 1 and 2,
the student has the necessary tools to train a robot arm to teach itself how
to perform a given task via sequence of actuation. Bearing in mind the
applicable and non-applicable applicants, the follow up training method that
has been selected (for after Motor-Babbling) has been Reinforcement
Learning, due to it's practical and well supported nature, being more usable
and established in ROS2 than Evolution Strategies and less unnecessarily
complex than its Deep RL counterpart.[17][18]

The student has concluded on using biomimicry as inspiration for the design
of the training system, as biomimicry is often an excellent source of
inspiration for systems design. In humans, the following has been observed -
at a young age, human babies are known to motor-babble, in a sense,
training their motor cortex to become familiar with all of their joints and

12

Figure 29: Summary Comparison Table

https://en.wikipedia.org/wiki/Cerebellum
https://en.wikipedia.org/wiki/Motor_cortex
https://en.wikipedia.org/wiki/Cerebellum
https://en.wikipedia.org/wiki/Motor_cortex

muscles and their respective abilities to turn, flex and contract. The motor
cortex is the part of the brain responsible for, generally speaking, basic,
more crude motor control and motor command execution. Over the course
of their lives, humans train another part of their brain, the cerebellum,
which is generally deemed as responsible for more finite, balanced and
precise movements, such as walking or learning to swing a bat to hit a ball.
The cerebellum serves merely as a secondary motor control unit, and shares
no ability in sending signals for contraction directly to muscles in the body.

The image below denotes the the overall structure proposed to answer the
primary question of this research document. Utilizing what has been
learned, and copying from nature while optimising some things, the system
below fulfills all requirements of this project and indeed allows for a robust
general system that can train a robot from scratch. It is important to note
that the suggested structure uses multiple neural networks. This is meant to
mimic how the human brain is not one entire whole neural network, but
rather, many logically separated neural networks that work together in a
coordinated fashion.

This structure seems to very closely follow and offer a solution to the
problems faced by this project. With motor babbling, the system would be
able to discover all of it's possible movements - essentially to map itself out.
In terms of the project, here is where some external human input will be

13

Figure 30: Final proposed system structure and work cycle.

expected, to set the expected twist and bend limitations of each joint, before
training can begin. Each possible combination of motor joints can be
recorded as a piece of data, with the separate motor values being it's
variables. This information can then be saved and fed into a self-organizing
map (check reference [3]) neural network. Self-organizing Maps (SOMs), as
shown in reference [7], specifically chapter 3.4 of the book, can serve as an
excellent "motor cortex" of a robot. Once the map is organized, the machine
would have a step-by-step mapping of all the motor combinations it would
need to perform to reach any and all of its physical actuation points
smoothly and efficiently. An added bonus of this setup is that the "motor
cortex" of 1 robot arm can be ported over to a robot with identical degrees
of freedom and at least similar angles of joint bending. So long as the
number of degrees of freedom remains the same, as well as the length and
shape of the connective inter-joint segments remains identical, the SOM can
be scaled up to account for wider or thinner joint bend angles.

Past that point, using reinforcement learning, the machine can be taught to
develop a second neural network (similar to the cerebellum) which would
train it on how to perform complex sequences and combinations of the basic
"maneuver map" that it learned during the motor-babbling phase. With
adequate programming and determining of the hyperparameters, very little
external input would be necessary for a robot arm to establish its
cerebellum control scheme. While RL will not be as fast as the parallel
capacity that, theoretically, Evolution Strategies would allow, it is proposed
that it should not take longer than 10-20 hours in a virtual environment for
most general robot arm training scenarios. This expectation is only based
on other available videos and simple robot arm projects, so it is to be taken
with a grain of salt.

In terms of motor-babbling, the ROS2 environment is not concerned, since
the motor map can be calculated algorithmically, without the need of a
virtual environment. As far as RL goes - ROS2 supports ros2learn and gym-
gazebo2 for simulating and training a model, packages dedicated to
reinforcement learning in a virtual ROS2 environment. The overall structure
of this system would then fulfill all requirements posed by the project and
research questions. It will inherently become a robust system, requiring
only hyperparameter configuration to train a variety of physical robot arms
(as long as they follow the defined standard of robot arm for this project).
These hyperparameters will only concern the degrees of freedom, numbers
and sizes of segments and bend angles of joints.

It will allow for at least partial neural network transference, due to the fact
that if a robot arm shares identical degrees of freedom and limb segment
length ratios with another robot arm, the mathematical changes in its joints

14

https://www.sciencedirect.com/science/article/pii/S2405896316320687

to reach various 3-dimensional spots will remain identical. While there may
be viable alternatives to this system, given the fact that this is a very
experimental project and that copying tried and tested structures from
nature is an approved concept in the scientific community, the current
structure leaves nothing additional to be desired, as of this being written. It
is deemed to be sufficient for the requirements of the project.

6. Summary

There are many methodologies and approaches to machine learning. This
makes for a field with no, necessarily, right or wrong answer to a question
as robust as the primary question of this document. However, given the
discoveries listed above and the requirements of this graduation
assignment, putting together a feasible solution that fits becomes easy.

Using biomimicry, it's easy to copy tried and true learning methods from
nature. The natural process of human brain development, as understood by
this research, lends itself excellently to the exact issues faced by this
project. Using biomimicry, just as human babies do, it is very practical and
possible to map out all degrees of actuation in a robot arm and put them in
an organized neural network thanks to motor-babbling. Then, continuing to
mimic human brain structure, it makes sense to train a secondary neural
network for motor-based skills (cerebellum). Using the popular robotics
methodology of Reinforcement Learning, especially after having a full
actuation map of a robot arm prepared, training a neural network to learn
how to perform specific arm movements in a given environment becomes a
compartmentalised and practically achievable task. With such a system in
place, given appropriately robust hyper-parameter definition, it makes for a
system that, in theory, would be capable of training a significant variety of
robot arms that fit within a given category of structure.

15

7. Appendix
1 Closed-loop acquisition of behaviour on the Sphero robot - Oswald

Berthold∗ and Verena V. Hafner∗

 ∗Adaptive Systems Group, Dept. of Computer Science, Humboldt-
Universität zu Berlin{bertolos|hafner}@informatik.hu-berlin.de

2 https://blogs.nvidia.com/blog/2018/08/02/supervised-unsupervised-
learning/

3 Learning of Motor Control from Motor Babbling* - Tatsuya Aoki*
Tomoaki Nakamura* Takayuki Nagai* The university of Electro-
Communications, 1-5-1 Chofugaoka, Chofu-Shi, Tokyo 182-8585 Japan
(e-mail: aoki@apple.ee.uec.ac.jp)

4 https://www.youtube.com/watch?v=qCn8lkacJz0

5 https://openai.com/blog/evolution-strategies/ - and all of its mentioned
sources

6 https://www.youtube.com/watch?v=C4MUTIc-NB8

7 Self-Organizing Maps - Teuvo Kohonen

8 https://www.youtube.com/watch?v=JgvyzIkgxF0 - An Introduction to
Reinforcement Learning

9 https://www.delta.tudelft.nl/article/robot-leos-first-steps

10 https://en.wikipedia.org/wiki/Evolution_strategy

11 https://en.wikipedia.org/wiki/Evolutionary_algorithm

12 http://www.scholarpedia.org/article/Reinforcement_learning

13 http://www.scholarpedia.org/article/Evolution_strategies

14 https://ai.googleblog.com/2020/04/exploring-evolutionary-meta-
learning-in.html

15 https://en.wikipedia.org/wiki/Deepreinforcementlearning

16 http://www.scholarpedia.org/article/Deep_Learning

17 https://en.wikipedia.org/wiki/Motor_cortex

18 https://en.wikipedia.org/wiki/Cerebellum

16

mailto:aoki@apple.ee.uec.ac.jp

19 https://en.wikipedia.org/wiki/Motor_babbling

20 A Motor Control Model Based on Self-Organizing Feature Maps –
Yinong Chen - https://drum.lib.umd.edu/handle/1903/908

21 Bio-inspired Intelligent System Design – Jan Jacobs

17

 Self-Teaching Robot Arm - Software
Requirements Specification

 by Valentine Ezekiev - 2971429

1 Introduction

 This document will outline the Software Requirements Specification
for this project. Below is given context to explain the project and its
problem in greater detail. If any unknown terms are encountered,
refer to chapter 1.3 for clarification.

 1.1 Context

 The organization GTL generally has a focus on(but is not limited to)
developing/researching the use of newer technologies and concepts
for the fields of agriculture, mechanical engineering and informatics.
That's where this project comes in - in partnership with Fontys HS
Venlo, GTL has started a project, the purpose of which is to develop a
self-taught (via machine learning and un/semi-supervised machine
learning at that) robot arm with the given end-goal of weed removal
from crops. The student responsible for this project also needs to
achieve this on one of the current ROS releases(as of writing this,
ROS2 Foxy distro is presumed the best option) as a proof of concept
that ROS can be used to significantly speed up the process of in-house
created robotics software with next to no costs added. The purpose
for that is because ROS has quickly become a very popular tool for
robotics programming and is an open-source tool at that.

 In addition to the self-taught robot arm, the project also requires the
development of a framework system, based around ROS2, that allows
for the dynamic training of similar, modular robot arms. including the
aforementioned arm. GTL desires the development of such a system
as it allows them to create custom robot arms in-house and develop
their motor skills with (ideally) relatively few man hours involved.

 Added below are 2 images of the latest proposed robot-arm design,
for visual-aid. It should be stated that these images are works in
progress and are subject to significant change :

18





19

Figure
31: Early Proposed Arm Design

Figure 32: Early Proposed Arm Design

 1.2 Scope

 The scope of this project comparatively small - it regards only the
robot arm, specifically the 3 general parts it will be comprised of - the
segments, joints and appendage. Note - robot arms will not be limited
just one of each of the 3 parts, save for the appendage. As of writing
this, it is yet to be confirmed precisely what tool will be put on the end
of the arm for the removal of weeds. It is expected to be something
that can cut out weeds as a primary function, with a secondary
function of delivering measured electrical shocks. The arm itself is
expected to be attached to a larger(still altogether small) roving-type
vehicle, however any functionality of the vehicle, as well as of visual
object detection falls squarely outside of the scope of this project.

 As far as the software scope goes, it is focused on 2 things:

 A universal control scheme that can accommodate a variety of robot
arms.

 System of semi-supervised machine-learning to develop the
controls/skills of individual robot arms with minimal human input.



20

 1.3 Terms

 GTL - GreenTech Lab

 ROS - Robot Operating System

 ROS1 and ROS2 - Essentially 2 different releases of ROS, ROS2 being
the newer, more robust one. Historically, ROS2 lacked a lot of
features and support, but it has finally achieved a level of
completeness that makes it usable for general robotics and even
usable in place of ROS1, the more established variant.

 1.4 Goal

 The goal of this project is to deliver a robot arm that has learned how
to use its arm and given appendage to the best of its own practical
availability. It must not be hard-coded or externally taught in nearly
any capacity. The robot arm must learn how to efficiently
work(meaning, remove weeds from crops) through its own forms of
learning and experimenting. The robot arm should be able to adapt to
and learn to overcome new challenges over the course of its "life", in
addition to "remembering" how to continue overcoming the issues it
had already learned to overcome.

 All of the above listed has to be the result of some kind of complex
unsupervised machine-learning setup. This setup should work with
not just the 1 robot arm, but in-fact be modular.



21

 2. Specification

 2.1 Operating Environment

 This robot arm is expected to be performing out in crop fields.
Therefore the system will need to be able to account for mud, rain,
wind, ground-level variation and temperature variation upon its given
task of removing weeds.

 2.2 Assumptions and Dependencies
 It is assumed that the robot arm will be attached to an already

functional roving-type vehicle which will provide power, visual input,
stability and reach for the robot arm to perform its task(s).

 It is assumed that direct sensory input will not be the job of the robot
arm. Tasks such as object recognition fall outside of the spectrum of
what the arm is supposed to learn.

 It is assumed that this vehicle will be capable of maneuvering
successfully and will not be influenced by weather effects such as rain
water, mud, wind, variances in temperature or otherwise.

 It is assumed that the robot arm will not need to deal with any
unknown/mutated/highly specialized forms of weeds that would prove
conventionally unsafe for removal.

 3. Requirements

 3.1 Hardware Requirements
 1 Actuating robot arm with at least 1 degrees of freedom. Robot arm

components are limited to:

 1 or many connective inter-joint segments. These are not limited
to straight line structures.

 1 or many rotating motor joints.

 1 simple appendage - the appendage must be simple in nature,
having only states of being turned on or off and respectively
affecting a designated area while on. Due to the fact that an
appendage could theoretically be a nearly infinite amount of
possible structures, it is deemed impractical to construct a
universal system that accounts for complex and varied
appendages.

22

 1 Robot arm weed removing appendage - currently unspecified, but it
must be capable of removing weeds at the very least via physically
removing them or destroying them where they lay. Primarily it should
do this via rotatory slicing, however a secondary functionality that it
should have should be the ability to deliver an electric shock to kill a
given weed plant.

 The robot arm must only use single-axis rotating motors for its joints.

 3.2 Software Requirements
 A full control scheme for the robot arm and appendage based in

ROS2. This means that ROS2 should be able to send actuation
commands to each motor of the robot arm.

 It must be able to actuate individual joints.

 It must be able to activate and deactivate the appendage.

 The robot arm should be able to fully interpret and execute given
ROS2 complex commands(excluding movements that would physically
block each other from happening or are simply outside the spectrum
of movement for a given segment/joint)

 A system that allows for the programmatic definition of modular robot
arms.

 A system that allows for the semi/un-supervised training of a robot
arm that follows the structural requirements of this project.

 Testing methods that verify the functionality of a robot arm, keeping
in mind given requirements.

 Code that is written in an extendable and modular way, allowing for
easy modification.

 A docker image of the final work environment, for easy replication
later on.

 Documentation of the software.

 Design diagrams to provide an overview on the system and it's
problem domains.

 3.3 Machine Learning Requirements
 The robot arm must be able to teach itself how to "correctly" move via

semi/un-supervised machine learning. Correctly, in this scenario,
means:

23

 The robot arm must be able to extend to and operate within its
determined physical range limit.

 The robot arm must maneuver itself in a way that does not
disturb or collide with anything on the rover around said robot
arm.

 The robot arm should have general collision avoidance
(meaning, must not collide with self).

 The robot arm must be capable of teaching itself how to move and
how to do so in a desired way with minimal human input.

 The robot arm must be capable of learning new behaviours in addition
to existing ones, given a set of parameters and a learning objective.

 The robot arm must be capable of altering learned behaviours, to
accommodate for dynamic change in the requirements for already
established behaviours.

 The machine-learning setup must be dynamic. What this means is that
it should be capable of accommodating a variety of robot arms that
share the defined structure from 3.1.

 3.4 Functionality Requirements
 The robot arm must be capable of removing a weed that would

impede the growth of human-planted crops without harming or
impeding the given crops.

 The robot arm must be capable of removing a weed physically via
cutting. Currently cutting is deemed the best approach, as it is the
most precise and least intrusive on the crop plants whilst also leaving
the biological material of the weed in and on the ground. The roots
will be able to rot this way and provide nutrition for the crop plants
whilst the cut half can be used for mulch.

 The robot arm must be capable of electrocuting weeds to the point of
biological death.

 The robot arm must not get stuck or awkwardly collide with the
environment around it or the rover it is attached to.

24

 Design Justification


 1.Intro


 This document will serve as a brief explanation of note-worthy design
decisions, so that it can be easy to see the reasons for systems being
the way they are.



 2.System Overview


 The overall system is designed on the principles of bio-mimicry.



 - Mimicking the processes naturally found in human babies, the
system replicates the following - an initial training loop of motor
babbling, where the robot arm, once it has all of its hyperparameters
inputted by a human operator, will attempt all possible movements
that it can perform, save those movements and their results as data
and organise the data into a Self Organized Map. This SOM can then
be used for sequential combinations of singular movements in order to
perform broad, smooth motions with the arm. This replicates how
babies train their motor-cortex at an early age by flailing their limbs
about with reckless abandon. This teaches them how to move, walk,
etc.

 - Continuing to mimick from humans, reinforcement learning -
humans generally learn via reinforcement learning when they try to
learn a specific skill. By repeating an action multiple times with a
given goal and measuring the results each time, a human zeroes in on
the best approach to performing a given task. In similar fashion, the
robot arm, once again with hyperparameters set by a person, will
learn to perform a given task with given rules. Via many cycles of
determining which sequences of actions reap the best rewards and
which - the worst, the robot learns new skills. This is saved in a
separate neural network, mimicking again how humans generally
store more specialised learned skill in their cerebellum, separate from
the motor cortex.

25



 3.Motor-Babbling design


 Important notes on the system:



• - The Appendage - the system is designed to work with any variety and
combination of robot arm that follows the following structure - a
varying number of degrees of freedom, with defined joints with their
turn angles and defined connective segments and their lengths. Each
robot arm is expected to be tipped with a simple appendage that can
either be activated or de-activated, having a defined cubit area or
point of action. Things such as fingered grabbers or human hand
analogues are not considered for this system, due to the fact that they
would significantly increase complexity. Making a universal robot
trainer by an unqualified student is difficult enough, but making an
appendage trainer system that can account for appendages of varying
numbers of joints and segments would vastly complicate system
design needlessly. But it is worth noting that in theory, it isn't
anything new - it would still be just joints and connective segments.
it's just that it would be very difficult to account for all the possible
combinations of joints and segments that could make an appendage.

• - Only Works with single-axis ROTATING Motors - this system is only
designed to work with rotating motors. While it could, for example, be
designed to account also for the possibility of pistons, this falls
outside of the scope for this project. In addition, accounting for more
and more modularity significantly increases the complexity of this
project, which is undesirable. It is meant to train robot arms, and
following the logic of biological arms - they are based off of a motor-
segment-motor-segment design and not pistons.

• - The simulation has to have gravity turned off - this is due to
limitations of Gazebo in terms of providing joint objects that offer
locking functionality like we would have in real life. This way, a joint
can be placed any which way without succumbing to gravitational
intertia, which, in terms of this simulation process, doesn't affect the
end goal - the end goal being just calculating all the possible motor
rotation value combinations and appendage positions relative to those
joint combinations. IT IS IMPORTANT to note that this is primarily
done due to severely lacking functionality from Gazebo and ROS2 as
of writing this. It is a WORKAROUND and does not present the

26

absolute best conceivable solution, merely the most practical current-
to-long term one given the circumstance.

• - Robot arms HAVE TO HAVE sequentially lessening weight for each
consecutive motor and joint combo, starting from the base. So
essentially - the first motor and segment of an arm will weigh 100
kilos each, the joint+segment after them will be 50, then 25 after that
and so on. This is done as a workaround to a problem encountered
with inertia. Due to the fact that Gazebo does not offer very realistic
depictions of joints, a joint currently only has one of 2 ways to be
moved - either by spawning it in a given rotation, or by applying a
kinetic force that spins it, like a bicycle wheel. The problem with this
is that during simulation, joints that go farther and farther from the
base joint, while they are doing their own movements and
calculations, affect the position of each preceding joint with their
generated inertia. This causes obvious problems for determining from
where to where a joint can turn given set positions of its preceding
joints, so using this workaround - we negate the problem.

• Once again, this IS A WORKAROUND due to the fact that, as of
writing this, Gazebo and the current iteration of ROS2 suck a lot and
are missing a bunch of stuff. For all our practical purposes, this works
just fine currently.

• - The simulation is set to run, essentially, as fast as systematically
possible. This is done, obviously, so that time can be saved when
running the simulation. As far as I can tell, this has no strange buggy
effects on the physics of the simulation, and genuinely just increase
the speed in a nice and useful way.

• - Using a combination of spawning motors in given positions and
applying force - as mentioned previously, as of writing this, Gazebo
and ROS2 are missing a lot of good features that allow for the
straightforward simulation of joints. The current 2 primary ways of
moving a joint suck for the following reasons:

• - Applied force just essentially makes a single-axis joint just spin
like a free-flow bicycle wheel. It's great for simulating collision, but
super imprecise otherwise.

• - Spawning joints in a given orientation is super precise and
doesn't let them move around all willy nilly - the problem being, it also
negates collision, and allows for the spawning of joint orientations
that force objects inside of other objects.

27

• To deal with this, a compromise using both of the afore-mentioned
systems was designed. First a joint is spawned at its farthest right
possible angle and then a force is applied to it to turn to its left, until
it either reaches its natural turning limit or collides with something.
Then, this same joint is spawned in every previously recorded position
that did not have a collision, and the joint after it has the same first 2
steps applied. This process cascades until all possible non-collision
movement combinations are recorded. The reason spawning is used
instead of just applying force on the first joint is because of previously
mentioned issues - imprecision and inertia make this impossible.

• - It is very important to have all segments and joints inside of a
simulation with a minimal weight of 1 kilogram. I encountered some
weird bugs otherwise, where joints would clip off into the distance.

• - The system uses recursion and nested cascading objects to record all
of its joint values in the simulation and save them to a file once they
are fully processed. Experiments were done with arrays or even
program-external files that recorded all the data, but all of these
approaches ended up being messy, more code intensive and just way
less succinct.

• - There are only 4 sets hyperparameters that need to be set for this
entire motor-babbling system - names of the joints in the simulation,
amount of force for each joint necessary to move in the simulation, the
name of the appendage in the simulation and the names of all the
different topics/services that everything will be posted to, as defined
in the simulation world itself. Other than that, everything else is
pretty automated, so as to save as much effort as possible for the
person using this package.







28

	Information Page
	Abstract
	STATEMENT OF AUTHENTICITY
	Glossary
	1. Introduction
	2. Context
	2.1 Project Problem Description

	3. Phase I - Research and Analysis
	3.1 Planning
	3.1.1 – Phase I
	3.1.2 – Phase II
	3.1.3 – Phase III

	3.2 Project requirements/specifications
	3.3 End-Goals and Deliverables
	3.4 Research

	4. Phase II – Design
	4.1 Experimentation
	4.2 Calculation over Simulation
	4.2.1 Calculation Approach
	4.2.2 Simulation
	4.2.3 The Conclusion

	4.3 Finalized Design
	4.3.1 Motor Babbling
	4.3.2 Reinforcement Learning

	5. Phase III - Implementation
	5.1 Motor Babbling
	5.1.1 Gazebo
	5.1.2 Gazebo Hurdles
	5.1.3 ROS2
	5.1.3.1 Listeners
	5.1.3.2 Joint Manipulation
	5.1.3.3 Recursion

	5.1.4 SOM
	5.1.5 Live Testing

	6. Conclusion and Results
	6.1 Achieved Goals and Deliverables
	6.2 Recommendations

	Appendix
	Bibliography
	Phase I Artefacts
	Phase II Artefacts

	Final Supplementary Documents
	Research Document - ROS-based machine-learning in ROS2
	1.Introduction
	2. Project Goal (Further Context)
	3. Main research question and sub-questions
	4. Terms
	5. Research Conclusions
	Answering Question 1 - Defining motor babbling and it's limitations.
	Answering Question 2 - Listing plausible forms of semi and unsupervised machine learning to add to our motor babbling.
	Reinforcement Learning
	Evolution Strategies
	Deep Reinforcement Learning
	Comparison Table - for visualization.

	Answering Question 3 - Combining the information into a viable proposed system for training variable robot arms.

	6. Summary
	7. Appendix

	Self-Teaching Robot Arm - Software Requirements Specification
	1 Introduction
	1.1 Context
	1.2 Scope
	1.3 Terms
	1.4 Goal

	2. Specification
	2.1 Operating Environment
	2.2 Assumptions and Dependencies

	3. Requirements
	3.1 Hardware Requirements
	3.2 Software Requirements
	3.3 Machine Learning Requirements
	3.4 Functionality Requirements

	Design Justification
	1.Intro
	2.System Overview
	3.Motor-Babbling design

