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Summary
Axon Digital Design develops modular systems and equipment for audio and video
signal processing and monitoring, mainly aimed at the broadcasting industry.
The recent successes of 3D film productions have pushed the consumer TV market
into a new era: 3D television in the living room. One fundamental problem however
is the lack of 3D-enabled content. Producing native stereoscopic 3D video is time
consuming and costly. It requires broadcasters to invest in new expensive equipment
like stereo cameras and stereo rigs and to hire specially trained stereographers. Re-
altime 2D-to-3D conversion is a cheaper option since it requires additional hardware
only. Unfortunately this is an extremely difficult task for which no optimal generally
applicable solution exists.
At Axon Digital Design, an efficient method for the conversion of shallow depth-
of-field material has been developed. This method is based on the focal blur cue
and it reconstructs the scene depth based on different blur values in the image.
Unfortunately, this approach fails for material with a deep depth-of-field in which
(nearly) all objects are in focus. Therefore the conversion system needed to be
expanded, allowing it to leverage other depth cues as well.
An additional depth estimation algorithm based on linear perspective was developed.
It leverages dominant lines in the image to find a vanishing point. The detected
location is used to reconstruct the scene depth, by generating a depth map with
increasing depth towards the vanishing point. Viewer perception tests have shown
that this method yields a natural and more realistic depth experience compared to
the gravity model. In the gravity model, depth is determined by the vertical position
in the image only.
The fusion of these algorithms is based on an estimation of their confidence. For the
focal blur method, the standard deviation of blur values is estimated. The confidence
of the linear perspective method is determined by the spatial drift of vanishing point
locations across time. Due to the nature of the current depth estimation algorithms,
the depth cues they depend on are hardly ever concurrently available. Therefore the
fusion module will simply select the best fitting algorithm rather than combining
multiple methods simultaneously.
If the focal blur method is considered a confident option, it will always prevail
over other methods. Else, if the detected vanishing points are temporally stable,
the linear perspective method will be considered the best fitting algorithm. In the
special case where neither method returns satisfactory results, the gravity model is
applied as a fallback.
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Nomenclature
Cortex Configuration, Control and Monitoring software for the Synapse

platform.

depth cue Image features providing depth information. Monocular (or
pictorial) cues can be seen with one eye, while binocular cues
can only be perceived when viewing a scene with both eyes.

depth of field The distance between the nearest and farthest sharp objects
in an image.

disparity Difference in horizontal position of an object in the images of
two different viewpoints

DOF Depth of field

focal blur Monocular depth cue based on the difference in blur of objects
in the image.

HVS Human Visual System

linear perspective Monocular depth cue based on real-world parallel lines that
seem to converge in a single vanishing point.

motion parallax Monocular depth cue based on the difference in motion vectors
of objects in an image.

PHT Probabilistic Hough Transform

stereoscopy Stereoscopy is the illusion of depth that is perceived when
viewing a slightly different image with each eye.

Synapse Synapse Modular Interfacing and Conversion system. Modu-
lar audio and video format conversion system by Axon Digital
Design.

temporal consistency Characterization of algorithm behavior in the time domain.

TRACS Transmission Recording and Compliance System. Recording
and inventory system for broadcast content.

vanishing point One of possibly multiple points in which parallel lines in a 3D
scene seem to converge when represented as a 2D image.
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1. Introduction

Producing native stereoscopic 3D video for live broadcast is still time consuming
and costly. It requires broadcasters to invest in new expensive equipment like stereo
cameras and stereo rigs and to hire specially trained stereographers. Real time
2D-to-3D conversion is a cheaper option since it requires additional hardware only.
Unfortunately 2D-to-3D conversion is an extremely difficult task for which no opti-
mal generally applicable solution exists.
Axon Digital Design has developed an efficient conversion method based on the focal
blur cue. Blur values in low depth of field material are estimated and can be used to
reconstruct the scene depth. Based on these depth estimations, a 3D image renderer
is able to create a left and right eye view of the scene. This approach unfortunately
fails for material in which the focal blur cue is not available (i.e. deep depth of field).
This project focuses on improving the conversion system by combining multiple
depth cues. This requires the development of at least one additional depth estima-
tion algorithm.
Chapter 2 will provide a short introduction to Axon Digital Design. In Chapter 3,
a full overview of the project details will be given. Chapter 4 provides a short in-
troduction to 3D video. Chapter 5 describes how to automatically extract depth
from linear perspective. Chapter 6 will focus on combining multiple depth estima-
tion algorithms. Finally, in Chapter 7 we propose a method for enforcing temporal
stability in our 2D-to-3D conversion system.
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2. Company information
Since its establishment in 1987, Axon Digital Design has been developing modu-
lar systems and equipment for audio and video signal processing and monitoring.
Their products and services are used by companies in the broadcasting industry,
like broadcasters, service providers and video professionals.

2.1. Products

There are two main product branches in the Axon portfolio. On the one hand there
is the Synapse Modular Interfacing and Conversion system. The system consists of
a 19-inch frame with passive connector panels and a vast spectrum of active hot
swappable interface cards. Its flexibility and extensibility allow an easy conversion
between a range of audio and video formats, for both digital and analog platforms.
The Synapse system is supported by the Cortex Configuration, Control and Mon-
itoring software. This software is designed to easily create and manage multiple
audio and video signal paths using a wide range of Synapse products.
Another major product branch is formed by the TRACS (Transmission Record-
ing and Compliance System) products. Many countries have defined regulations
for television programmes, like for example time restrictions regarding content less
suitable for juvenile viewers. Often, broadcasters are considered guilty unless they
prove otherwise. The TRACS product line facilitates live recording and inventory
of broadcast material, allowing broadcasters to address such issues more efficiently.

Figure 2.1.: Axon product lines (left-to-right: Synapse, Cortex and TRACS)
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2.2 Organization Company information

2.2. Organization

The organizational structure of Axon Digital Design is shown in Fig. 2.2. There are
five major departments:
• Operations (ICT, Purchasing & Logistics, Quality)
• Finance (Finance, Human Resources)
• Marketing & Sales
• Product Management
• Research & Development

This graduation project is situated at the Research & Development department of
the Axon head office in Gilze, The Netherlands. Other company sites are located
across the globe: there are sales offices in China, the United Arab Emirates, Russia,
Singapore and the USA. Additionally, there is an office in the United Kingdom where
the Cortex software is developed. All other operations are performed at the head
office.
A typical R&D project structure for the development of a multidisciplinary system
is shown in Fig. 2.3.

16



Company information 2.2 Organization
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3. Graduation project

3.1. Background

In state of the art automatic 2D-to-3D conversion both motion based and picto-
rial cue based methods can be distinguished. In motion based algorithms camera
and object motion are used to estimate depth from motion parallax. Pictorial cue
based methods use depth cues like focal-blur, perspective, texture-density, occlusion,
relative height, etc. Many techniques have been proposed to estimate depth from
individual cues, and an excellent overview can be found in [1].
However, the human visual system (HVS) integrates multiple depth cues rather than
perceiving depth from a single cue.[2] Even in monocular video depth is perceived
which is determined from a composition of cues, where the individual cue contribu-
tion can vary from shot to shot. Therefore, a key challenge in obtaining realistic
depth for 2D-to-3D conversion lies in integrating various depth cues into the system.

3.2. Initial situation

Axon Digital Design has developed a 2D-to-3D conversion system based on the
focal blur cue.[3][4] It exploits different blur levels in a shallow depth of field (DOF)
video to reconstruct the scene depth. Based on these depth estimations, a 3D image
renderer is able to create a stereoscopic image pair. Then a scaler encapsulates these
images into several formats for display on a 3D television set.
Unfortunately this approach fails for video with a deep DOF in which (nearly) all
objects are in focus. Therefore, an additional depth estimator based on another
reliable depth cue is required, and the conversion system has to be extended to
support it. Hence we need a content based fusion module that automatically decides
- based on the monocular depth cues in an image - which depth estimator to apply.

3.3. Goals

The main goal of this project is to extend the Axon 2D-to-3D conversion system
and thereby improve the viewer’s 3D experience. To get a more reliable conversion
at least one additional depth estimation algorithm needs to be included. Linear

19



3.4 Approach Graduation project

perspective is chosen because it is an important cue to the HVS[5] and it is readily
available in still images and video sequences.
Another aspect of the project will cover the integration and combination of indi-
vidual depth cues. The fusion of depth maps is a relatively underexposed topic in
literature. The topic however is invaluable for a successful conversion system.
Due to the complexity of the proposed system, extensive research is needed. The
central question that needs to be answered during this research is:

How can an automatic 2D-to-3D conversion system be improved by com-
bining multiple depth cues to let users experience a significantly better
depth perception?

3.4. Approach

The complexity of the project called for a flexible approach, in which research re-
ceived the main focus. Implementation is involved in the project, but merely as an
instrument to indicate the feasibility and accuracy of the researched algorithm. A
simplified version of the W-model is chosen as main structure. (Fig. 3.1)
The W-model is similar to the V-model, except for the development phase of the
project.[6] Detailed research, prototype implementation and testing are all embedded
in a cyclic and iterative process. This allows step-by-step applied research, directly
coupled with the development of a prototype.

3.4.1. Project definition

The project definition phase consisted of writing the attached Project Initiation
Document (Appendix A). This document defines the project in detail and served as
a basis for project management and assessment.

3.4.2. Initial research

During the initial research phase, the main objective was getting familiar with exist-
ing approaches to 2D-to-3D conversion and image processing in general. A library
of technical papers (including [1], [7], [8] and [9]) provided by Axon served as a
starting point from which further investigation started.

3.4.3. Development

The development phase of the project consists of three sub-phases, each concerning
one of the desired modules. During the planning phase of the project, these modules

20



Graduation project 3.4 Approach
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seemed to be loosely dependent: the depth map fusion module required an additional
depth estimator, but for example the scene change detection algorithm could be
developed without other modules in place.
Therefore, the order in which the sub-phases would be developed allowed a relatively
large degree of freedom. Because of earlier described dependencies the depth from
perspective module was scheduled at the start. Depth map fusion would be the next
topic of research, finally followed by the scene change detection module.

3.4.3.1. Depth from perspective

Phase 1 comprises of the research and development of an additional depth estimation
algorithm based on linear perspective cues in a still image.
In its simplest form perspective can be simulated by applying a general gravity depth
map in which the depth increases from the bottom to the top of the image. De-
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3.4 Approach Graduation project

termining whether the proposed linear perspective map improves the 3D experience
compared to the simple gravity map will be an important step in this phase.
If the viewer perception tests point out that there is no significant improvement from
the gravity map to the linear perspective map, a depth estimation algorithm based
on an alternative depth cue will be developed. If there is sufficient improvement the
linear perspective algorithm will be further optimized for use with video sequences.
This phase requires the following questions to be answered:
• How can a computer vision algorithm automatically generate a depth map

from linear perspective cues in a still image?
• What is the difference in depth perception between a simple gravity depth

map and an enhanced map based on linear perspective?
• How can the depth-from-perspective algorithm be optimized to detect tempo-

rally consistent vanishing points in video sequences?

3.4.3.2. Depth map fusion

To decide for which images we have to apply depth from focal blur and for which
depth from perspective, a depth map fusion module has to be designed.
This phase requires the following questions to be answered:
• Is hard switching between depth cues sufficient or would a mixture/weighted

average of depth cues be more appropriate?
• Would spatially variant mixture weights improve the overall depth perception?

3.4.3.3. Scene change detection

Applying depth estimation algorithms to video sequences poses several new chal-
lenges: the estimated depth of an object could fluctuate across time as a result of
estimation inaccuracies. Previous research at Axon has shown that this disturbs the
viewer’s depth perception significantly. In order to maintain temporal consistency
for generated depth maps a temporal depth filtering algorithm has been developed
for the depth from focal blur estimator.
With the added functionality of the depth map fusion module comes an additional
challenge: it is not desirable to constantly change the (mixture of) depth estimator(s)
within the same scene. This would distort the temporal depth consistency and has
a negative impact on depth perception and video quality.
A better method would be to only alter the fusion weights at scene changes. A
scene change detection algorithm would help in solving this problem. Flagging scene
changes allows the conversion system to reset its temporal depth filters and switch
to a (mixture of) depth cue(s) that is more suitable for the new scene’s content.
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Graduation project 3.5 Revisions

Furthermore, individual depth estimation algorithms may benefit from these flags
for their internal filtering.
This phase requires the following questions to be answered:
• How can scene changes in a video sequence be identified automatically?
• What can be done to allow individual depth estimation algorithms to benefit

from scene change detection?

3.5. Revisions

The order of module development in the research & development phase (Sec. 3.4.3)
was slightly changed during the project execution. The depth map fusion module
requires a metric of confidence for each available depth estimator. The depth from
perspective module however, would only be able to return such a metric based on
the temporal stability of the detected vanishing point.
Including support for scene change detections was a relatively simple step and greatly
simplified implementation and testing of the fusion module. Therefore, these two
modules were developed in reverse order making depth map fusion the final topic of
research rather than scene change detection.
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4. Introduction to 3D video

4.1. Stereopsis

Our two eyes are positioned in different locations on the head, causing their views
of a 3D scene to slightly differ. Our brain uses this information to form a 3D rep-
resentation of the world. Looking carefully at Fig. 4.1a reveals that certain objects
have shifted horizontally compared to Fig. 4.1b.

(a) Left image (b) Right image

Figure 4.1.: Stereopsis in a real-life scene[10]

This horizontal shift is called disparity and its amount is directly related to the
object’s depth. Defining xleft and xright as the horizontal position of a point in
the left and the corresponding point in the right image respectively, the horizontal
disparity d for that point is defined as:

d = xright − xleft (4.1)

The observed effect can be explained using Fig. 4.2, which is a top-down view of a
stereo camera system. The cameras in this setup are analog to the both eyes and the
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4.2 Depth maps Introduction to 3D video

dotted line is formed by the points on which the disparity is equal to zero. The circle
is located before this line, while the rectangle is positioned behind it. According to
Eq. 4.1 the circle has a negative disparity, while the rectangle’s disparity is positive.

Left image Right imagezero disparity

positive

negative

distant object

nearby object

Figure 4.2.: Geometry of stereo vision setup [11]

The HVS would account for these different disparities by tensioning or relaxing
the extraocular muscles, effectively aiming the eyes at the object of interest. This
information combined with the disparity is finally used by the brain to reconstruct
a 3D representation of the scene.

In 3D video systems the points at which the disparity is equal to zero are located ’on-
screen’. Research has shown that negative disparity values (i.e. objects appearing in
front of the screen) can cause discomfort and visual fatigue.[12] Therefore, we will
limit ourselves to positive disparity values (i.e. objects appearing behind the screen)
in this project.

4.2. Depth maps

The 3D rendering system makes use of a disparity image, containing a disparity value
for each pixel in the input image. The preprocessors in the 2D-to-3D conversion
system however use a slightly different approach to describe the location of 3D
objects: depth maps.

Depth maps can be considered grayscale images that define a depth value for each
image pixel, ranging from white (closeby) to black (far away). Algorithms aiming
at reconstruction of depth based on one or more input images are called depth
estimators, of which one is described in Chapter 5.
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Introduction to 3D video 4.3 Display techniques

The generated depth maps are then converted into disparity maps, so that the 3D
rendering algorithm can generate a set of stereoscopic images. A linear conver-
sion from depth to disparity would be a simple approach to do so. Internal testing
revealed that this method introduces some geometrical distortions. Instead, the
approach in [13] is used to convert depth Z to disparity d. This function (Eq. 4.2)
describes a non-linear inverse relation, which eventually clips at a maximum dispar-
ity dmax, where dmax is a user defined parameter. In this report we define dmax as
3% of the input image width.

d = min


dmax

Z
− dmax

dmax

(4.2)

Figure 4.3.: Depth map for the scene in Fig. 4.1[10]

4.3. Display techniques

A multitude of stereoscopic display techniques exists, all having one feature in com-
mon: they leverage stereopsis for depth perception by exposing a different image to
the left and right eye. A short overview of the most common techniques that are
currently available are described in Sec. 4.3.1 through Sec. 4.3.3.

4.3.1. Anaglyph

The anaglyph display technique has been around since its invention in 1852 by
Wilhelm Rollmann.[14] It is based on different (often chromatically opposite) color
filtering for the left and right eye. Modern anaglyph material typically uses a red
filter for the left eye and a cyan filter for the right eye.

27



4.3 Display techniques Introduction to 3D video

A major drawback to this technique is the loss of color information. It is therefore
best used with grayscale material. Additionally, the display must be calibrated to
match the filter’s colors to minimize crosstalk.

4.3.2. Polarization

Polarization is the orientation of oscillations of a wave in the perpendicular field.
For the purpose of 3D displays, this is typically a linear polarization system (using
horizontal and vertical waves) or a circular polarization (using clockwise and counter-
clockwise waves).
An advantage of this technique is formed by the low cost of the glasses. Circularly
polarized glasses add the benefit of the audience being able to tilt their heads without
seeing the effects of crosstalk.
Polarized displays and projectors are generally more expensive than other systems.
Combined with the low cost glasses this technique is especially suitable for applica-
tion in cinemas.

4.3.3. Active shutter

The active shutter system uses active battery operated glasses which physically
blocks the sight of one of the two eyes by using shutters. These shutters each
contain a liquid crystal screen which darkens when a certain voltage is applied to
it. Synchronizing these shutters to alternating left and right frames on a (typically
high frame rate) display effectively splits the views for both eyes.
The fact that the glasses are relatively complicated devices significantly increases
their cost. Additionally, they require batteries to operate which might not be as
convenient compared to other techniques.
Displays are however generally less expensive compared to other systems, which
makes this technique an excellent option for the consumer living room.

(a) Anaglyph (b) Polarization (c) Active shutter

Figure 4.4.: 3D display glasses
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5. Depth from linear perspective

Linear perspective is an important cue to the HVS for depth estimation and per-
ception. Its effect is clearly visible when looking at railroad tracks: the tracks seem
to converge as distance increases, eventually converging in a distant point on the
horizon. This is due to objects appearing smaller as they are farther removed from
the viewer. The point in which the lines converge is called a vanishing point.
The depth from perspective module’s primary task will be to extract depth infor-
mation based on the convergence effect from an input image. However generating
depth from perspective is not a trivial task.

Figure 5.1.: Convergence effect illustrated using railroad tracks with the vanishing
point marked in red

5.1. Depth map generation

How can a computer vision algorithm automatically generate a depth
map from linear perspective cues in a still image?

Several approaches to this problem exist in literature. [15] describes an approach
using a cascaded Hough transform, exploiting the mathematical relations of points
in different image spaces. [16] and [17] present a method based on machine learning
algorithms such as Expectation Maximization. [18] rather uses a geometric approach
using circle intersections. All these papers present promising theories on automatic
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5.1 Depth map generation Depth from linear perspective

vanishing point detection for the 2D-to-3D conversion system. Implementing these
algorithms would however prove difficult; either because of their computational com-
plexity or simply due to a lack of details in the papers.

A more viable approach is presented in [19], where candidate perspective lines are
identified using the Hough transform. A possible extension of this approach is shown
by [20]. This method leverages a combination of the Hough transform, Sobel gradient
direction and a modified Hough transform to improve detection accuracy. Due to
the limited time available for this project, our scope is limited to the approach in
[19].

5.1.1. Overview

A common starting point for all vanishing point estimation techniques is edge de-
tection. The next step comprises of the identification of vanishing lines in the edge
image. The vanishing point location is derived from the (most) common intersection
point of these lines. After generating a depth map with increasing depth toward the
vanishing point, another algorithm renders the stereoscopic image pair. These steps
are described in more detail in Sec. 5.1.2 through Sec. 5.1.5.

Fig. 5.2 gives an overview of the steps in the proposed algorithm. Additionally, an
anaglyph output frame is rendered to give an impression of the achieved depth effect.

5.1.2. Edge detection

In order to successfully detect dominant lines in an image, some preprocessing is
required. The first step in this stage is to retrieve the image’s derivative. The first
order derivative is, simply put, the difference in intensity between subsequent pixels
in an image. Assigning higher values for larger changes yields a gradient image in
which the edges of the original image are highlighted. Hence, this procedure is called
edge detection.

A multitude of algorithms exists for this purpose with varying performance and
accuracy figures.[21] For the linear perspective module it is sufficient to detect dom-
inant lines only. Thus, an accurate edge detector like Canny is not likely to improve
vanishing point detection. Instead, the Sobel edge detector is used with a somewhat
higher threshold value to minimize noise in the gradient image.

30



Depth from linear perspective 5.1 Depth map generation

(a) Input frame (b) Binarized edge detection

(c) Lines detected by Hough transform with
VP marked in red

(d) Generated depth map

(e) Anaglyph output frame

Figure 5.2.: Results of the depth-from-perspective algorithm on a frame of the
Inception[22] movie trailer

The Sobel edge detector calculates the gradient of the image intensity of each par-
ticular position. It uses two convolution kernels; one for the horizontal gradient
and one for the vertical gradient. We define A as the source image and Gx and Gy

as its gradient images in respectively horizontal and vertical direction. In order to
obtain Gx and Gy a simple convolution kernel is applied (Eq. 5.1 and, in its trans-
posed form, Eq. 5.2). As the directions of Gx and Gy are orthogonal to each other,
a combined gradient image G can be obtained by taking the Pythagoras sum of the
two components (Eq. 5.3). The direction θ of the gradient is calculated as shown in
Eq. 5.4 and Eq. 5.5. This information may be used in a later stage to improve the
detection of dominant lines in the image.
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5.1 Depth map generation Depth from linear perspective

Gx =

 −1 0 1
−2 0 2
−1 0 1

 ∗ A (5.1)

Gy =

 −1 −2 −1
0 0 0
1 2 1

 ∗ A (5.2)

G =
√
G2

x +G2
y (5.3)

θ = atan2(Gy,Gx) (5.4)

=
 2 arctan Gy√

G2
x+G2

y+Gx
Gx 6= 0 ∨Gy 6= 0

0 Gx = 0 ∧Gy = 0

 (5.5)

After the edge detection algorithm has finished, the gradient magnitude will be
thresholded to obtain a binary image mask that is 0 at non-edge positions and 255
at edge positions. Fig. 5.2b shows an example of the binarized gradient image.

5.1.3. Vanishing point estimation

We determined earlier that real-world parallel lines seem to intersect in a vanishing
point when the scene is projected on a 2D image. The Hough transform is used to
determine the parameters of these lines:
Every edge point in the gradient image has a set of lines crossing through it. Each
of these lines can be represented in the form of a slope-intercept equation (Eq. 5.6).
Rewriting the equation so that b is a function of a with x and y being constants,
yields Eq. 5.7.

y = ax+ b (5.6)
b = −xa+ y (5.7)

The problem with this formulation is that for a vertical line the slope would become
infinite, and a near-vertical line would give a very large value for a. In computation
systems this will lead to issues like data type saturation or, even worse, overflows.
This problem can be solved by using a polar representation as defined in Eq. 5.9.

y =
(
−cos θ

sin θ

)
x+

(
ρ

sin θ

)
(5.8)

ρ = x cos θ + y sin θ (5.9)
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In Hough space, the parameters ρ and θ are represented as Cartesian coordinates.
Each point in Hough space defines a line in the image space. A point in image
space corresponds to a sine wave in Hough space, defining the parameters for all
lines passing through the point. If we take two random points in image space, a set
of two sine waves is observed in Hough space. The intersection point of these sine
waves in Hough space defines the line passing through both of the points in image
space.
In the Axon 2D-to-3D conversion system, we will use a slightly modified version of
the algorithm above: the Probabilistic Hough Transform (PHT). [23] The difference
is that rather than using all edge pixels in the image, only a random subset is used.
This allows for a performance increase by minimizing the input dataset.
If we apply this mechanism to a gradient image obtained from Sec. 5.1.2, a large
set of sine waves is returned. The dominant vanishing lines can be identified by a
multitude of sine waves intersecting in the same point. These intersection points are
represented as peaks in Hough space.
From the parameters returned by the PHT, a set of dominant lines can be plotted
in image space (Fig. 5.2c). The point(s) in which a large set of these lines intersect
are probable vanishing points in the image.

5.1.4. Depth map generation

Based on the acquired vanishing point a rough depth map can be generated. The
initial setup will be to fit a radial depth gradient with the vanishing point as center
and the farthest image corner as radius (Fig. 5.2d).

5.1.5. Depth image based rendering

The rendering of stereoscopic image pairs is outside the scope of this project. Thus,
an existing algorithm (written by Luc Vosters) will be used. It is capable of generat-
ing anaglyph, top-down and side-by-side material from a source image and its depth
map. An example of a rendered anaglyph output image is included in Fig. 5.2e.

5.2. Quality comparison

What is the difference in depth perception between a simple gravity
depth map and an enhanced map based on linear perspective?

The qualitative performance of the depth from perspective module is assessed using
five test images (Fig. 5.3) featuring strong linear perspective cues. For each image
two pairs of stereoscopic images were rendered: one using the gravity depth map
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5.2 Quality comparison Depth from linear perspective

and one using the proposed linear perspective depth map. Eleven participants were
asked to rank the perceived depth and global image quality in a paired comparison
[24] between both approaches.

(a) inception1 (b) inception2

(c) skyfall1 (d) skyfall2 (e) skyfall3

Figure 5.3.: Test images from the Inception[22] and Skyfall[25] movie trailers

In each comparison the participants answered the following question:

Which image provides a more comfortable and natural 3D experience?

The stereoscopic image pairs were displayed sequentially on a 50-inch Panasonic
VT20 3D plasma television with active shutter glasses. Test participants could
switch between the two algorithms at the press of a key.

Fig. 5.4a and Fig. 5.4b show the results of respectively the paired comparison per
image and for all images combined. We are not interested in the absolute perceptual
scores of the two methods, merely the difference between them indicates which is
better. Therefore, the perceptual scores of the gravity-based renders are set to 0.
The 95% confidence intervals are calculated using the formula in [24].

As defined by [24], overlapping error bars indicate that the difference between two
methods is not statistically significantly better. Non-overlapping intervals prove the
opposite.

From these figures we can conclude that the linear perspective algorithm yields
a statistically significantly better depth perception in images inception2, skyfall2
and skyfall3. However, for skyfall1 the gravity approach achieves a statistically
significantly better result. This is probably due to a coincidental match between
the gravity map and the 3D scene structure. For inception1 there is no difference
in performance. Overall, the linear perspective proves to give a significantly better
result as can be seen in Fig. 5.4b.
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Figure 5.4.: Paired comparison results for depth perception of gravity and linear
perspective approach

5.3. Temporal consistency

How can the depth-from-perspective algorithm be optimized to detect
temporally consistent vanishing points in video sequences?

Vanishing points typically lie at the horizon. Due to the great distance between the
viewer and these points, changes in camera position (panning or tilting excluded)
are not likely to alter their locations.
The information retrieved from video sequences can also be used to rule out false
positives in the estimation process. Vanishing points do not appear or disappear
from one frame to another, which means that inconsequently detected vanishing
points are not likely to be valid. Therefore large fluctuations in vanishing point
location indicate that the generated depth maps are probably unreliable.

5.3.1. Filtering

The detected vanishing point can be stabilized by applying a weighted median filter
to its location parameters. A weighted median filter uses different filter weights for
each element.[26] In this case, the elements are historic vanishing point locations. A
Gaussian pulse response is used for the filter weights, as defined by Eq. 5.10.

w(x) = e− 2x2
N2 (5.10)

This effectively neutralizes occasional outliers, but it does not account for small
drifts in the vanishing point location caused by inaccurate line detection. To correct
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this behavior the filtered vanishing point locations of the current and previous frames
are averaged.
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Figure 5.5.: Normalized Gaussian filter weights for a 24-frame history

5.3.2. Scene changes

Of course the above does not hold while going through scene changes in a video
sequence. A change of scene (and thus typically a change of subject or environment)
introduces a whole new set of dominant vanishing lines and points. Therefore, the
depth-from-perspective module is configured to reset its vanishing point location
history when a scene change is detected. The conversion system has been extended
with a scene change detector as described in Chapter 7.
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6. Depth map fusion

A variety of monocular depth cues has been explored for efficient 2D-to-3D video
conversion. The fusion of multiple depth maps has however received little attention
in the image processing literature.

6.1. Fusion strategy

Is hard switching between depth cues sufficient or would a mixture/weighted
average of depth cues be more appropriate?

The depth map fusion strategy highly depends on the available depth cues in the
input image. Both [27] and [28] describe a fusion strategy in which motion-based
depth estimation plays an important role. However, [2] introduces a fairly new
approach inspired by our knowledge of processes in the human brain. A fusion
system is proposed which promotes or demotes individual depth cues based on their
presumed reliability.

Our limited set of available depth estimation algorithms poses another problem
though. An analysis of the testing material revealed that hardly any images con-
tained both the focal blur cue and the linear perspective cue. With the currently
available algorithms it is therefore more meaningful to select one depth estimator
per shot. This selection is based on the image content in the shot.

At the start of each scene, all depth estimation algorithms are executed in parallel.
Each module returns a per-frame boolean whether or not it is confident about the
generated depth map, as described in Sec. 6.1.1 and Sec. 6.1.2. The selection of the
best fitting depth estimation algorithm is finally based on a tally of these confidence
figures for each algorithm.

Notice that this step needs a few frames to base its algorithm election on, and
therefore it introduces a certain latency to the system.

6.1.1. Detecting shallow depth of field material

The depth from focus module has the advantage of segmenting objects based on their
estimated blur value. Internal testing revealed that the different depths assigned to
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6.2 Results Depth map fusion

different objects in the image let the viewer perceive a highly realistic depth effect.
Therefore, this module is the preferred method if its cue is available.
Detection of focal blur in images is done by estimating the standard deviation of
blur values. If the deviation is greater than a certain threshold the image is marked
as shallow DOF material.

6.1.2. Detecting linear perspective

The depth from perspective module derives its confidence from its temporal behav-
ior. As stated in Sec. 5.3, large fluctuations in vanishing point location indicate an
inaccurate depth estimation. The detected raw vanishing point location is com-
pared to the temporally filtered location. If the change in location is below a certain
threshold, the detection is marked as confident.

6.1.3. Fallback: gravity

If both the focal blur and linear perspective cues are not available, the gravity depth
map is used as fallback method. Because the module is not dependent on any image
features it will always consider its depth map accurate. It will however never be
preferred over other methods provided that their confidence is large enough.

6.2. Results

Testing the depth map fusion module was done by comparing the automatic selection
results to a set of manually identified scenes. During the manual identification, the
same order of preference is applied as mentioned in Sec. 6.1.
Tab. 6.1 shows a tally of identified scene types in the Inception[22] movie trailer.
In Tab. 6.2, the frequency distribution of the elected depth estimator for each scene
type is shown. From the quoted results we can learn that the proposed system
features an average correct detection rate of 82% (i.e. 28 out of 34 scenes).
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Identified
Focal blur 17

Linear perspective 11
Neither 6

Table 6.1.: Manually identified depth cues

Automatic
Focal blur Linear perspective Gravity

M
an

ua
l Focal blur 14 (82%) 1 (6%) 2 (12%)

Linear perspective 0 (0%) 9 (82%) 2 (18%)
Gravity 0 (0%) 1 (17%) 5 (83%)

Table 6.2.: Frequency distribution of manual identifications vs. automatic election
results
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7. Scene change detection

Temporal filtering of depth maps and vanishing points greatly improves depth sta-
bility. The filter history however is only valid during a single coherent scene and
should be reset on every scene change. Therefore, scene change detection is a viable
factor in temporally stabilizing depth maps.

7.1. Detection algorithm

How can scene changes in a video sequence be identified automatically?

There are numerous ways of detecting scene changes. [29] describes an advanced
algorithm making use of object segmentation and tracking, while [30] takes a more
simplistic approach by measuring inter-frame differences. The latter requires less
computation cost and is sufficient for the 2D-to-3D conversion system.

The paper covers two different scene change types: abrupt and gradual scene changes
such as fade-in/out. For our purpose, only the abrupt scene transitions are impor-
tant. After all there would be no fully correct approach to handling a gradual
transition from one scene to another with respect to depth estimation. This allows
for a further simplification of the described algorithm.

The first step in the proposed algorithm splits the input frame in a grid of equally
sized bins. Each bin is averaged per-channel, and compared to the corresponding
value in the previous frame. The sum of absolute differences in all bins yields the
total inter-frame difference. A plot of this value is shown in Fig. 7.1b.

While it would be possible to flag a scene change at each and every frame difference
value greater than a certain threshold, this would not be a very robust approach. For
example a translating camera motion could cause a relatively great change between
frames.

In order to tell motion and scene changes apart, a different approach is used. The
total frame difference metrics are stored in a historic buffer for the last N frames.
A scene change is flagged only if the two highest values in the history have a certain
minimum discrepancy factor. A plot of this top value difference factor is shown in
Fig. 7.1b. When a scene change has been detected, the frame difference history is
cleared.
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7.2. Enhancing individual depth cues

What can be done to allow individual depth estimation algorithms to
benefit from scene change detection?

The depth from focus algorithm uses a temporal filtering strategy similar to the
depth from perspective module. Future depth estimation algorithms will probably
also incorporate temporal filtering of detected features or even entire depth maps.
The history used for these filtering methods is only valid during a single scene and
should be reset upon scene change.
The developed prototype implements this functionality by exposing an event to both
depth estimation modules.

7.3. Results

Our implementation of the scene change detector described in [30] has been tested
by manually annotating the locations of scene changes in a video sequence. The
sequence used for the test is the Inception[22] movie trailer. Tab. 7.1 shows a tally
of manually identified abrupt and gradual1 scene changes. The correct, missed and
false detections by the automatic detector are shown in Tab. 7.2. The false positive
detection is caused by an unusually large amount of camera motion in one particular
shot.
The performance of the scene change detector is measured in terms of recall and
precision. Recall (Eq. 7.1) is defined as the percentage of correct detections out of
the total number of opportunities. The precision (Eq. 7.2) describes the fraction of
detected scene changes that are valid.

Recall = Ncorrect

Ncorrect +Nmiss

∗ 100% (7.1)

Precision = Ncorrect

Ncorrect +Nfalse

∗ 100% (7.2)

1The scene change detector is not optimized for detection of gradual scene changes. These metrics
are merely included for completeness.
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Identified
Abrupt 30
Gradual 4

Table 7.1.: Manually identified scene changes

Correctly identified Missed False positive Recall Precision
Abrupt 26 4 1 87% 96%
Gradual 1 3 0 25% 100%

Table 7.2.: Automatically identified scene changes
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Figure 7.1.: Frame difference graphs for the first 250 frames of the Inception[22]
movie trailer
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8. Conclusion

The main goal of this project was answering our central question:
How can an automatic 2D-to-3D conversion system be improved by com-
bining multiple depth cues to let users experience a significantly better
depth perception?

Answering this question required extensive research and the implementation of a
prototype conversion system. A successful attempt has been made to develop an
algorithm that automatically interprets linear perspective cues in a scene. This
information is used to detect the location of the vanishing point and finally recon-
struct the scene depth. Viewer perception tests have shown that this method yields
a natural and more realistic depth perception compared to the gravity model.
The fusion of depth maps based on multiple cues proved to be a difficult task.
With the current set of algorithms - focal blur, linear perspective and gravity - we
choose a classification system which selects the most accurate depth cue based on
its confidence metric. In this setup there is a defined order of preference for all
algorithms, as the cues they depend on are hardly ever concurrently available. If
however in the future more diverse algorithms are developed this might not be the
best approach. In that case, a re-assessment of fusion strategies is recommended.
The temporal stability of the entire system has been improved by developing a scene
change detection module. When a scene change has been detected, a new best-fitting
depth estimation algorithm is selected. This event is also available for other modules
in the system, allowing them to clear their temporal filters.
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Evaluation

My first day at Axon Digital Design was in late September 2012. After a tour around
the office and an introduction with some of the employees, work could actually start.
The first step during this graduation project was formed by simply diving into lit-
erature, searching for clues on how an automatic 2D-to-3D video conversion system
could possibly work. Already after a few weeks, the first linear perspective proto-
type started to take shape. This combination of theoretical research and practical
prototyping suited me well.
I experienced a great advantage of working in the image processing field: the vis-
ibility of one’s work. Whether it was a small optimization or the introduction of
a completely new module, I could always see a rewarding change in the conversion
results.
My strongest points in this project were acting on my own initiative and working
independently. Because I had the luxury of sharing an office with my intern super-
visor, we often had a quick exchange of thoughts after which we could both continue
our work.
Something I struggled with was selecting the best options in literature for a specific
problem. Often there are numerous approaches to solving the same problem and it
is simply not feasible to test them all out in a prototype. I have spent a consider-
able amount of time trying to comprehend each approach before taking a decision.
Looking back, I could have made these same decisions more quickly.
Overall I think I can be glad with the achieved results.
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1. Introduction

1.1. Goal of this document

This document has been prepared to provide all relevant information and basic
principles for the proposed project. Its goal is to define the project, serving as a
basis for project management and assessment.
This Project Initiation Document covers the following fundamental aspects of the
project:

• What are we trying to achieve?
• Why is it important to achieve these goals?
• Who are involved in managing the project and what are their roles and re-

sponsibilities?
• How and when will the measures described in this document be realized?

The document will be used to:
• Ensure that the project has a sound basis before the stakeholders are asked to

commit to the project.
• Serve as a basis for the stakeholders and project manager to assess progress,

changes and validity of the project implementation.

1.2. Structure of this document

The document has been split in two sections: a static and a dynamic part. The static
part will not receive any updates after approval of the document. The dynamic
part however tends to contain planning related information and will be updated if
necessary.
The static part comprises of:

• Project definition (chapter 2)
• Project organisation (chapter 3)
• Project control (chapter 4)

The dynamic part contains:
• Project planning (Appendix A)
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2. Project definition

2.1. Background

Producing native stereoscopic 3D video for live broadcast is still time consuming
and costly. It requires broadcasters to invest in new expensive equipment like stereo
camera’s and stereo rigs and to hire specially trained stereographers. Real time
2D-to-3D conversion is a cheaper option since it requires additional hardware only.
Unfortunately 2D-to-3D conversion is an extremely difficult task for which no opti-
mal generally applicable solution exists.
In state-of-the-art automatic 2D-to-3D conversion both motion based and picto-
rial cue based methods can be distinguished. In motion based algorithms camera
and object motion are used to estimate depth from motion parallax. Pictorial cue
based methods use depth cues like focal-blur, perspective, texture-density, occlu-
sion, saliency, relative height, etc. Many techniques have been proposed to estimate
depth from individual cues, and an excellent overview can be found in [1].
However, the human visual system (HVS) integrates multiple depth cues rather
than perceiving depth from a single cue. Even in monocular video depth is per-
ceived which is determined from a composition of cues, where the individual cue
contribution can vary from shot to shot. Therefore, a key challenge in obtaining
realistic depth for 2D-to-3D conversion lies in integrating various depth cues into a
single depth map.

2.2. Goals

The main goal of this project is to enhance the Axon 2D-to-3D conversion system
and thereby improve the viewer’s 3D experience. Currently, an efficient method for
2D-to-3D conversion of low-depth-of-field video has been developed based on the
focal blur cue. Unfortunately, this approach fails for other types of video.
To get a more reliable 2D-to-3D conversion at least an additional depth estimation
algorithm needs to be included. Linear perspective seems a good choice, as it is a
strong cue to the HVS[2] and it is available in many still images and video sequences.
Due to the complexity of the proposed system, extensive research is needed. The
central question that needs to be answered during this research is:
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Chapter 2 Project definition

How can an automatic 2D-to-3D conversion system be improved by com-
bining multiple depth cues to let users experience a significantly better
depth perception?

2.3. Approach

2.3.1. Phase 1: Depth from perspective

Phase 1 will comprise of the research and development of an additional depth esti-
mation algorithm based on linear perspective cues in a still image. An example of
such a depth map can be found in Fig. 2.1b.
Currently, perspective is simulated by applying a general gravity depth map (Fig. 2.1a),
ranging from the bottom of the image (closeby) to the top of the image (farther
away). Determining whether the proposed linear perspective map improves the 3D
experience compared to the simple gravity map will be an important step in this
phase.
If the viewer perception tests point out that there is no significant improvement from
the gravity map to the linear perspective map, a depth estimation algorithm based
on an alternative depth cue will be developed. If there is sufficient improvement the
linear perspective algorithm will be further optimized for use with video sequences.
This phase requires the following questions to be answered:

• How can a computer vision algorithm automatically generate a depth map
from linear perspective cues in a still image?

• What is the difference in depth perception between a simple gravity depth
map and an enhanced map based on linear perspective?

• How can the depth-from-perspective algorithm be optimized to detect tempo-
rally consistent vanishing points in video sequences?

(a) Gravity (b) Linear perspective with a single vanishing
point to the left of the image[3]

Figure 2.1.: Depth map examples
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2.4 Deliverables

2.3.2. Phase 2: Depth map fusion

After implementing an additional depth estimation algorithm work will be started
on the topic of depth map fusion. At first testing will only take place using still
images. During phase 3 support for video sequences will be added (sec. 2.3.3).
This phase requires the following questions to be answered:

• Is hard switching between depth cues sufficient or would a mixture/weighted
average of depth cues be more appropriate?

• Would spatially variant mixture weights improve the overall depth perception?

2.3.3. Phase 3: Scene change detection

Applying depth estimation algorithms to video sequences poses several new chal-
lenges: the estimated depth of an object would fluctuate across time as a result of
algorithm inaccuracies. Previous research at Axon has shown that this disturbs the
viewer’s depth perception significantly. In order to mainain temporal consistency
for generated depth maps a temporal depth filtering algorithm has been developed.
With the added functionality of the depth map fusion module comes an additional
challenge: it is not desired to constantly change the (mixture of) depth cue(s) within
the same scene. A scene change detection algorithm would help in solving this
problem. Flagging scene changes allows the conversion system to reset its temporal
depth filters and switch to a (mixture of) depth cue(s) that is more suitable for
the new scene’s content. Furthermore, individual depth estimation algorithms may
benefit from these flags for their internal filtering.
This phase requires the following questions to be answered:

• How can scene changes in a video sequence be identified automatically?
• What can be done to allow individual depth estimation algorithms to benefit

from scene change detection?

2.4. Deliverables

The following products and documents must be delivered:
• Project Initiation Document (PID)
• Depth from perspective module1

• Depth map fusion module
• Scene change detection module

1A different depth estimation algorithm may be used as described in sec. 2.3.1
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Chapter 2 Project definition

• Gradutation thesis

• Graduation presentation

The three modules will each comprise of the following sub-products:

• Research & design document

• C++/OpenCV implementation

• Viewer perception tests & results

2.5. Exclusions

The proposed algorithms will be implemented as a prototype on a general purpose
PC workstation using C++ and the OpenCV library. Implementation on other
hardware, such as an FPGA, is outside the scope of this project. The algorithms
will, wherever possible, be implemented with real-time performance in mind.

2.6. Limitations

Available working time Available resources Delivery date Turnaround

736 hours
Workstation

18 January 2013 19 weeksTechnical support
3DTV testing environment

Table 2.1.: Project limitations

2.7. Preconditions

• A 2D-plus-depth (2D+D) to stereo 3D renderer suitable for the 3DTV test
environment is available

• An implementation of a depth estimation algorithm based on focal blur is
available
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2.8 Risks

2.8. Risks

Risk Pr
ob

ab
ili
ty

(1
-3
)

Im
pa

ct
(1
-3
)

Sc
or
e

Mitigation
Lack of knowledge/expertise 2 2 4 Sufficient reading on the subject

Graduation thesis deadline not met 2 3 6 Start early, provide early draft
Data loss / computer crash 1 3 3 Online version control system

Difficulty finding sufficient test participants 1 1 1 Early invitations (RSVP)
Conflicting educational/commercial interests 1 2 2 Commit to agreements in PID

Table 2.2.: Qualitative risk register
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3. Project organisation

Rafael Peset Llopis
Product owner

Luc Vosters
Intern supervisor

Wouter van Rooy
Intern

Ben Schreur
First assessor

Figure 3.1.: Organisation chart

3.1. Product owner

Rafael Peset Llopis is the product owner and has commisioned to execute the project.
He represents the requesting party and is responsible for transferring wishes and
requirements of the deliverables.

3.2. Intern supervisor

Luc Vosters serves as intern supervisor in this project. He is the primary contact
for the intern and may be requested to advise on technical subjects. For progress
updates and non-critical issues he also takes the role of delegate product owner.
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Chapter 3 Project organisation

3.3. First assessor

The role of first assessor is fulfilled by Ben Schreur. He monitors the project from
an educational point of view and may be requested to advise on process related
subjects.

3.4. Intern

Wouter van Rooy has been contracted as an intern and will execute the project.
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4. Project control

4.1. Reporting

(a) Reports

Report Product owner Intern supervisor First assessor Intern
PID Ap Ap Ap Ad C Ap D
Research & design documents N Ap Ad N C Ap D
Viewer perception tests & results N Ap Ad N C Ap D
Implementations N Ap Ad N C Ap D
Graduation thesis & presentation N N Ad Ap Ad C Ap D

(b) Legend

C Ad N Ap D
Create Advise Be notified Approve Distribute

Table 4.1.: Reporting matrix

4.2. Progress monitoring

(a) Consultations

Consultation Attendees Frequency Time Remarks
Progress update A I Fortnightly Fridays around 16:00 By e-mail
Progress update PO IS I Monthly To be determined -
Company visit PO IS A I - To be determined -
Project meeting IS I Weekly Mondays around 10:00 -

(b) Legend

PO IS A I
Product owner Intern supervisor First assessor Intern

Table 4.2.: Consultation matrix
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Chapter 4 Project control

4.3. Issue management

If problems arise during the execution of the project, an extra meeting will be
arranged with the intern supervisor and, if necessary, the product owner. Together
an adequate countermeasure will be planned to solve the problem.
When the stakeholders remain in conflict after executing the procedure above, the
first assessor may be consulted as an additional resort.

4.4. Deviation and escalation procedure

In case of product deviations an extra meeting will be arranged with the intern su-
pervisor and product owner. In this meeting the deviation will either be approved or
rejected. Rejection might cause the projects planning or the products functionality
to be altered if no suitable solution can be found.
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A. Project planning

Delivery date Product
3 October 2012 Project Initiation Document (draft)
10 October 2012 Project Inititation Document (final)
19 October 2012 Depth from perspective: Research & design document
2 November 2012 Depth from perspective: C++/OpenCV implementation
2 November 2012 Depth from perspective: Viewer perception tests & results
16 November 2012 Depth map fusion: Research & design document
30 November 2012 Depth map fusion: C++/OpenCV implementation
30 November 2012 Depth map fusion: Viewer perception tests & results
14 December 2012 Scene change detection: Research & design document
21 December 2012 Graduation thesis (draft)
4 January 2013 Scene change detection: C++/OpenCV implementation
4 January 2013 Scene change detection: Viewer perception tests & results
10 January 2013 Graduation thesis (final)
15 January 2013 Graduation presentation (draft)
18 January 2013 Graduation presentation (final)

Table A.1.: Global product planning

NB: The contract between the intern and Axon Digital Design BV expires in mid-
February 2013. The last few weeks are reserved for project transfer.
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Nomenclature

2D+D 2D plus depth

FPGA Field Programmable Gate Array

HVS Human Visual System

PID Project Initiation Document
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