
Wearables in Logistics - Demo Facility

Final report of bachelor thesis

Submitted by Lukas Rolle

In fulfilment of the requirements for the degree
Bachelor of Science in Informatics

To be awarded by the
Fontys Hogeschool Techniek en Logistiek

Venlo, July 13, 2017

ii

Information Page

Student Information

Name: Lukas Rolle
Date of Birth: 23 March 1994
Place of Birth: Moers, Germany
Student Number: 2310309
Study Course: Informatics: Software Engineering

Thesis Information

Time frame: 01. February - 30. June 2017
Date of Delivery: 28 March 2017

Company Information

Name: Fontys Hogeschool Techniek en Logistiek
Address: Tegelseweg 255
Postal code: 5912 BG
City: Venlo
Country: Netherlands

Educational Institution

Name: Fontys Hogeschool Techniek en Logistiek
Address: Tegelseweg 255
Postal code: 5912 BG
City: Venlo
Country: Netherlands

Examination Committee

Company Supervisor: Stefan Sobek
Supervising Lecturer: Thijs Dorssers
Examinator: Ferd van Odenhoven
External Representative: J. Janssen

iii

Statement of authenticity

I hereby solemnly declare for this submitted work, that:

• I myself wrote this internship report, without the assistance of any third party,

• I did not cut and paste any information (text, figures, diagrams, tables,..) from others without appropriate
use of quotation marks and direct reference to their work,

• I did not re-word the ideas of others without proper and clear acknowledgement,

• I did not make use of ideas or suggestions that originated from others and claim these as my own,

• I did not include words from other’s work without permission.

I am fully aware that any violation of the above will be declared fraud and may result in disadvantageous
consequences for me (for example withdrawal of study credits and, in case of a repeated violation, withdrawal
of complete study units). If fraud can be proved, I will be required to bear the costs of investigation into and
sourcing of the original document.

Name: Lukas Rolle

Place / Date: Venlo, July 13, 2017

Signature:

iv

Abstract

Many small- and medium sized enterprises have difficulties in trying out new technologies, as they often just
do not have the needed resources to spend on the newest technology. The LOGwear project aims to give these
companies the possibility to stay competitive in that area, it tries to take generalized logistics processes and
combines these with wearables and make the results available to everyone.

This thesis is about the creation of a generalized reference model, that allows everyone a head start on creating
their own application with a wearable in the area of logistics. Furthermore a demo facility is planned to be
created to allow everyone that is interested in adopting the wearable technology to get hands-on experience.
This demo facility is a physical area, where interested can come to visit and get a demonstration of how a
process could be improved with the help of wearables. The environment for the demo facility is trying to
mock a real world logistics company as closely as possible, using processes from logistics companies as a
base.

This should allow companies, that are interested in adopting new technology, to inform themselves about
these technologies easily, find technologies they think are interesting for their way of working, see how the
technology actually works in a hands-on environment and then make an educated decision if the adoption of
a wearable is something that could help improve their own processes.

Kleine- und Mittelständische Unternehmen haben oft Probleme damit neue Technologien auszuprobieren, da
die dazu nötigen Ressourcen oft nicht vorhanden sind um die neuesten Technologien auszuprobieren. Das
LOGwear Projekt versucht diesen Unternehmen die Möglichkeit zu geben in dieser Umgebung trotzdem wet-
tbewerbsfähig zu bleiben. Es versucht standardisierte logistische Prozesse zu nehmen und Sie mit Wearables
zu verbinden und stellt die Ergebnisse frei zur Verfügung.

Diese Abschlussarbeit beschäftigt sich mit der Erstellung eines standardisierten Referenzmodells, das eine
schnellere Erstellung einer eigenen Anwendung mit wearables erlaubt. Weiterhin ist eine Testeinrichtung ge-
plant die kleinen- und mittelständischen Unternehmen die daran interessiert sind, die Möglichkeit gibt Wear-
ables selbst auszuprobieren. Die Testeinrichtung ist eine Umgebung zu der interessierte gehen können, um
selbst sehen oder ausprobieren können ob ein bestimmtes wearable etwas für ihre Unternehmensstruktur ist.
Es wird versucht mit der Testeinrichtung die tatsächliche Umgebung eines Logistikunternehmens nachzuah-
men, in dem man wirkliche logistische Prozesse als Basis für die Testeinrichtung nimmt.

Damit sollte interesierten Unternehmen erlaubt werden, sich auf einfache Art und Weise über neue Technolo-
gien zu informieren, Technologien zu finden die in die Unternehmensprozesse passen könnten, zu sehen wie
diese Technologien tatsächlich funktionieren und daraufhin eine informierte Entscheidung zu treffen, ob diese
Technologie tatsächlich etwas ist, was Ihre Unternehmensprozesse verbessern könnte.

v

Contents

Statement of authenticity iii

Abstract iv

List of Figures vii

List of Tables viii

List of Listings ix

Glossary x

List of Abbreviations xii

1 Introduction 1

2 Context and Scope 2
2.1 LOGwear . 2
2.2 Stakeholder . 3

2.2.1 Internal Stakeholders . 4
2.2.2 External Stakeholders . 4

2.3 Risks . 5
2.4 Quality Management . 7
2.5 Definition of Done . 7
2.6 Planning . 8

2.6.1 Initial Logistics Processes and Wearables Research 8
2.6.2 Reference Model . 8
2.6.3 Research Demo Facility . 9
2.6.4 Setting up Infrastructure for Demo Facility . 9
2.6.5 Design and Implementation Demo Facility Application 9
2.6.6 Setting up physical Demo Environment . 9
2.6.7 Preparing for Handover . 9

3 Initial Analysis 10
3.1 Requirements towards Wearables . 10
3.2 Wearables . 11

4 Research 12
4.1 Processes . 12
4.2 Wearables . 12

4.2.1 Criteria . 13
4.2.2 Devices . 13
4.2.3 Decision . 14

4.3 CASE Tools . 16

vi

5 Reference Model 17
5.1 Definition . 17
5.2 Requirements . 17

5.2.1 Functional Requirements . 18
5.2.2 Non-Functional Requirements . 18

5.3 Design . 19
5.3.1 Wearable . 19
5.3.2 Communication . 20
5.3.3 System . 20

5.4 Variations . 20
5.4.1 No Communication Layer . 20
5.4.2 Push Messages . 21
5.4.3 Web Application . 21

5.5 Problems . 22

6 Demo Facility 23
6.1 Infrastructure . 23
6.2 Demo Scenario . 23
6.3 Design . 25

6.3.1 WMS . 26
6.3.2 Wearable . 28
6.3.3 Web Application . 28

6.4 Implementation . 28
6.4.1 Implementation Details . 28
6.4.2 Quality Management . 31

7 Conclusion 32
7.1 Recommendations . 32
7.2 Further Planning . 32

Appendices 35
A.1 Order Picking Process . 37
A.2 Use Cases Reference Model . 41
A.3 Web Application Mockups . 42
A.4 Implementation Details . 46

vii

List of Figures

2.1 Stakeholder Graph . 3
2.2 Risk Graph . 6
2.3 Schedule . 8

5.1 Reference Model LOGwear . 17
5.2 Use Case: Order Confirmation . 18
5.3 Reference Model - No Communication Layer . 20
5.4 Reference Model - Push Messages . 21
5.5 Reference Model - Web Application . 22

6.1 Activity Diagram Demo Scenario . 24
6.2 Package Diagram Demo Facility . 26
6.3 Relational Schema Warehouse Database . 27
6.4 Class Diagram Web App Model Package . 30

A.1 Order Picking Process Diagram (Logwear, 2017) . 37
A.2 Use Case: Get Order(Voice) . 41
A.3 Use Case: Order Control . 42
A.4 Mockup Worker Login . 43
A.5 Mockup No Order Started . 43
A.6 Mockup Start Order . 44
A.7 Mockup Confirm Order Line . 44
A.8 Mockup Confirm Order . 45

viii

List of Tables

2.1 Stakeholder Register . 3
2.2 Risk Register . 5

4.1 Weighted Decision Wearables . 14
4.2 CASE tools . 16

ix

List of Listings

6.1 C# Object Serialization . 29
6.2 Received JSON format . 29
6.3 Expected JSON format . 29
6.4 Java Code to Transform JSON . 29
A.1 Java Code to Receive JSON from REST service . 46

x Glossary

Glossary

battery pack a device used to store a bigger amount of power, generally able to charge a phone or similar
devices multiple times.

cloud computing a technique that provides computing resources in a virtual server environment. Giving
customers more or less computing resources depending on the demand of each specific user.

deserialize the reverse process of serialization, i.e. creating the state of an object from some format that has
been stored in some way.

fat client a computer or program that is calculating everything on its own. A terminal computer, that is not
relying on a server or cloud for any calculation is a fat client.

getter a method used to get the value of a variable, for purposes of encapsulation.

haptic feedback feedback given to a user via touch, most of the time being vibrations. Differences in haptic
feedback can be the amount, place or intensity of the vibrations.

hot swap is the action of swapping a part of a device for a replacement, while the device is still powered on.
For a phone it could be swapping the battery for another one, without turning the phone off, the phone
has to support this feature.

package in software engineering terms, a package is a collection of classes that are in general grouped by the
responsibilities they have.

parcel a package in the logistics sense, a physical package that is a part of an order.

push message a push message is a message that is send to a device without an initiating request from the
target device. In general a message from a server was always only send to a device on request of that
device, but push messages are send to a device on demand of a service running on a server.

reference architecture a template solution in a domain that gives multiple models, sets of functions and
classes to describe in detail how something is supposed to work.

reference model an abstract model used to describe the general design of an application in a specific envi-
ronment. A reference model is in general technology-agnostic and can be extended to ones wishes.

ring scanner a scanner that is worn on one or multiple fingers similar to a ring. This allows workers to lay
the scanning device down when needing both hands for work.

sandbox an environment where something can be tested without having an influence on anything else. In
software engineering, an environment where an application can be tested without damaging the live
version.

serialize the process of serialization in computer science describes the translation of the state of an object
into a format that can be stored.

Glossary xi

setter a method used to set the value of a variable, for purposes of encapsulation.

smartglasses a set of glasses falling under the category of wearable technology, generally able to project
something on the glasses to output information to the user.

smartwatch a watch falling under the category of wearable technology, generally able to communicate with
a phone to have information directly available on the wrist.

thin client a computer or program that is relying on a server application to do computation for it.

wearable a piece of technology that can be worn on the body.

xii List of Abbreviations

List of Abbreviations

API Application Programming Interface.

CASE Computer-Aided Software Engineering.

DB Database.

EF Entity Framework.

EU European Union.

FHTenL Fontys Hogeschool Techniek en Logistek.

HPU Holographic Processing Unit.

HSNR Hochschule Niederrhein.

ID Identifier.

IDE Integrated Development Environment.

JEE Java Platform, Enterprise Edition.

JSF JavaServer Faces.

JSON JavaScript Object Notation.

MSSQL Microsoft Structured Query Language.

MVC Model View Controller.

MVP Model View Presenter.

MVVM Model View ViewModel.

MWEIMH NRW Ministerium für Wirtschaft, Energie, Industrie, Mittelstand und Handwerk des Landes
Nordrhein-Westfalen.

OMG Object Management Group.

QR Quick Response.

REST Representational State Transfer.

RFID Radio-Frequency Identification.

SDK Software Development Kit.

List of Abbreviations xiii

SME Small and Medium-sized Enterprises.

SOA Service-Oriented Architecture.

UML Unified Modeling Language.

VCS Version Control System.

WLAN Wireless Local Area Network.

WMS Warehouse Management System.

WP Work Package.

xiv List of Abbreviations

Introduction 1

1 Introduction

This thesis is written as the completion of the study course software engineering at the Fontys Hogeschool
Techniek en Logistiek in Venlo, Netherlands. The graduation project is conducted at the LOGwear research
project, the research project itself will be explained in section 2.1. The thesis is written over the course of five
months and is documenting the thought and creation process of the project, of creating a demo facility for the
usage of a wearable in a logistics process.

As this thesis was written on a software engineering topic, pieces of code will occur throughout the thesis,
single words, like variables, or classes will be written in a mono-spaced-font.

Furthermore the word package in this report is always meant as a software package and never as the package
that is used in the logistics sector, the word parcel is used in this context.

Overview

The following chapters in this report will contain these topics:

Context and Scope
In chapter 2 the context of the project will be elaborated, naming the involved parties and what the
research project is about. Furthermore the scope of the thesis will be defined, including demarcation.
The general information, including project management details are explained.

Initial Analysis
In chapter 3 the analysis part of this project will be explained. Especially how the initial wearable
information was acquired.

Research
In chapter 4 the general research part that was done during the thesis will be explained. The results of
the research will be named and the chosen Computer-Aided Software Engineering (CASE) tools listed.

Reference Model
Chapter 5 contains the design process and the problems connected with the reference model.

Demo Facility
Chapter 6 will contain the infrastructure, design and implementation of the demo facility that is to be
created to showcase the possibilities of wearables in the area of logistics.

Conclusion
Chapter 7 will contain the conclusion, recommendations and a look into the future, showing how the
project is planned to develop.

2 Context and Scope

2 Context and Scope

This chapter contains the context of the project, including an explanation of the research project LOGwear
in section 2.1 and the parties involved in it. Furthermore the general project management strategies will be
explained in the following sections: section 2.2 explains the stakeholders of the thesis, section 2.3 goes over
the risks, section 2.4 explains the quality management for the project and section 2.5 describes the definition
of done. Finally, section 2.6 is about the time planning and scheduling done for the given project.

2.1 LOGwear

LOGwear is a research project that aims to bring wearables to the area of logistics, especially to Small and
Medium-sized Enterprises (SME). It is a German-Dutch research project were multiple parties are cooperating
to create results. Involved in this are two Universities of applied sciences, Fontys Hogeschool Techniek
en Logistek (FHTenL) in Venlo, Netherlands as the lead partner and Hochschule Niederrhein (HSNR) in
Germany.

Further on there are also multiple partner companies involved in the project, namely KLG Europe bv, Helmut
Beyers GmbH and imat-uve GmbH. These partner companies are there to give the knowledge about logistics
processes, as well as to verify and test the results.

The project is backed within the scope of the INTERREG Deutschland-Nederland initiative. It is backed by the
European Union (EU), Ministerium für Wirtschaft, Energie, Industrie, Mittelstand und Handwerk des Landes
Nordrhein-Westfalen (MWEIMH NRW) and the Provincie Limburg as well. The official kickoff meeting for
logwear was in september 2016 and the project will run until march 2018.

The logwear project is consisting of three main Work Package (WP)s. (Logwear.eu, 2017)

Knowledge Base (WP1)
The knowledge base is a platform that allows to exchange information between logistics companies
which wearable can be used for which process. (Sander, 2017) (Canders, 2017)

Reference Architecture / Reference Model (WP2)
The expected result for WP 2 used to be a reference architecture, this has internally changed to a
reference model, the differences about these two and what is expected from the reference model can be
found in chapter 5.

Demo Facility (WP3)
The demo facility is the creation of a physical demo that allows SME to see the benefits of wearables
for a demo process. The difference between the demo facility created during this thesis and WP 3 is,
that the WP 3 is the implementation of a wearable solution at a pilot company, while the demo facility
created during this thesis is in an enclosed environment that does not need to follow all constraints of
deploying something at a company. Further details for the demo facility are described in chapter 6.

Context and Scope 3

2.2 Stakeholder

Stakeholder Management involves identifying parties that are involved in the project. This ranges from people
that are actively part of the development of the project or companies that might be interested in the end result.
In the table 2.1 the most important stakeholders can be found. The stakeholders will themselves will be further
explained in sections 2.2.1, which will explain the internal stakeholders, and 2.2.2 will explain the external
stakeholders involved in the project.

Nr Stakeholder Company /
Institution

Internal /
External

Level of
Interest

Level of
Influ-
ence

Potential man-
agement strate-
gies

1 Employer (Em) FHTenL Internal Medium High Keep Satisfied

2 Student Workers (SW) FHTenL Internal Medium Low Keep Informed

3 Graduation Student
(GS)

FHTenL Internal High High Key Player

4 Project Manager (PM) FHTenL Internal High High Key Player

5 Company Supervisor
(CS)

FHTenL Internal High High Key Player

6 Project Team (PT) FHTenL Internal High High Key Player

7 Partner University (PU) HSNR External Medium Low Keep Informed

8 Pilot Company (PC) KLG External High High Key Player

9 Examiner (Ex) FHTenL External Low High Keep Satisfied

10 Supervising Lecturer
(SL)

FHTenL External Medium Low Keep Informed

Table 2.1: Stakeholder Register

Figure 2.1 can be used to visualize the importance of the stakeholders. The color is used to emphasize the
importance that this stakeholder is properly managed. The color is moving from blue to red over a yellowish
green, the less blue and the more red a color has determines again the fact how important this stakeholder
is.

low high

low

high

Em

SW

PC

Ex

SL

GSPM
CS

PT

PU

Level of Interest

L
ev

el
of

In
flu

en
ce

Figure 2.1: Stakeholder Graph

4 Context and Scope

2.2.1 Internal Stakeholders

Internal Stakeholders are parties that are a part of the team that is working directly on the project in one
way or the other. In this section, the internal stakeholders mentioned in table 2.1 will be listed again and
explained.

Employer

The employer in this project is an institution and not a single person. This does not change the fact, that
the employer is interested in the project, as he is financing the project. Also the employer could change
the outcome, if he is not accepting the proposed plans. It is important, that this party is kept satisfied as
more work could be created when the plan has to change.

Student Workers

Student Workers are employed to help in the LOGwear project in general. While they currently are not
involved with the process of the creation of the demo facility that might change in the future, therefore
they should be kept informed.

Graduation Student

The graduation student is the person mainly responsible for the development of the demo facility and
therefore has a lot of responsibility and interest towards the project.

Project Manager

The project manager is responsible for the general planning of the project. Planning meetings with the
different parties and coordinating them.

Company Supervisor

The company supervisor is looking over the progress of the graduation student and is giving advice if
needed.

Project Team

The project team are the members of the team actively developing the application prototype and are
involved in building the demo facility afterwards.

2.2.2 External Stakeholders

External Stakeholders are parties that are involved in the project, but are not a part of the team actively
developing the project. In this section, the external stakeholders mentioned in table 2.1 will be listed again
and explained.

Partner University

The partner university is also working on the LOGwear project, but on a different aspect. They might
be interested in project of creating a demo facility, but probably will not interfere with it.

Pilot Company

The pilot company involved is the logistics company KLG. They bring in the highest amount of domain
knowledge and are interested in the project to improve their own processes. They could influence the
project easily by not approving the planned demo facility due to problems with how the logistics process
is modelled.

Context and Scope 5

Examiner

While the examiner is not involved in the project itself, the examiner will finally assesses the perfor-
mance of the graduation student.

Supervising Lecturer

The supervising lecturer is there to answer questions and support the student from a software engi-
neering standpoint. While not having a lot of influence on the project itself, the supervising lecturer is
interested in what the student is doing and especially how he is doing it.

2.3 Risks

Risk management is about identifying risks and finding solutions to problems before they can occur. The list
of risks can be found in table 2.2. The identified risks will increase as the project moves forward. Especially
when a decision is made for the wearable and the process.

Nr Risk Name Description Prob-
ability

Impact Root Cause Potential
Responses

Risk Owner

1 Wearable
unavailable
(W)

The wearable desired to
be used in the demo
facility is unavailable.

Low Medium The desired product
is a prototype or
similar.

Choosing a
different
wearable that is
already readily
available.

Graduation
Student

2 Demo Area
(D)

A demo area is in mind
that could potentially be
rented, but that could not
be possible.

Medium Medium The owner of the
place does not rent
the area.

Researching
possible places
where the demo
facility could be
created.

Graduation
Student

3 Unusable
wearable (U)

A wearable is chosen that
does not have the
capabilities to fulfill the
things that were planned
with the demo facility.

Low High Too little research
done on the
wearables, or the
researched material
was wrong.

Altering the
demo scenario to
accommodate
the problems
with the
wearable.

Graduation
Student

4 Vocabulary
unclear (V)

The vocabulary used in
the logistics branch,
especially abbreviations
and acronyms might cause
problems in
communication.

High Low The graduation
student has too
little knowledge of
the logistics
branch, at the
beginning of the
project.

Asking questions
if a word’s or
sentence’s
meaning is not
clear.

Graduation
Student

5 Communi-
cation
Problems
(C)

When explaining a task, a
phrase or word is
understood differently
from different parties.

High Medium The proper
definition is not
known to everyone
and are expecting a
different meaning
from a given phrase
or word.

When the misun-
derstanding is
discovered the
different parties
talk out what is
expected from
that term and
come to a
common
understanding.

Project Team

Table 2.2: Risk Register

6 Context and Scope

low high

low

high

W D

U

V

C

Probability

Im
pa

ct

Figure 2.2: Risk Graph

In figure 2.2 the risks can be seen in a graph that shows their Probability and Impact again. The color em-
phasizes the amount of attention a risk should get, in order for the project to continue smoothly. The color is
moving from blue to red over a yellowish green, the less blue and the more red a color has determines again
the fact how important it is to handle this risk. The figure also shows more fine grained the probability and
impact of the risks than just low, medium and high.

Context and Scope 7

2.4 Quality Management

Metrics used to determine the quality of the project:

Code Coverage
Code coverage is a useful metric showing the amount of code covered by unit tests. While they should
not be the only way of testing an application of this size, they are still useful to see if a single components
works on their own. Due to time constraints code coverage of 100% is most likely not achievable and a
coverage of about 80% to 90% is aimed towards.

Language Conventions
Programming languages usually have conventions on how the semantics of the code should look like
to be considered code. These conventions will most likely be followed, and if there are any changes to
that they will be listed here.

Documentation
Documentation of a method will include the parameters involved, the return result, usage and general
how something works. Furthermore documentation explaining the class and package will be created in
a similar fashion. Furthermore created diagrams will be made available and also documented.

Performance Testing
The wearable part of the application might need to be performance tested, as wearables tend to be less
powerful than most computing devices normally used. This will be decided when the application is
creating problems regarding to performance.

2.5 Definition of Done

A part of the software project is done, when it is fully designed, implemented, documented and tested. When
that part of the application is passing all of these criteria it is added to a repository where the result is build.
When that build is successful that part of the application is done, for the moment. When that part needs to be
changed in the future the same procedure will be used again.

8 Context and Scope

2.6 Planning

The schedule for the project can be seen in figure 2.3. The project will be executed in a scrum-like way.

01.Feb - 17.Feb • Initial Logistics Processes and
Wearables Research

02.Mar • Project Plan
20.Feb - 24.Mar • Reference Model

28.Mar • Mid-Term Report
27.Mar - 31.Mar • Research Demo Facility

11.Apr • Mid-Term Presentation
3.Apr - 14.Apr • Setting up Infrastructure for

Demo Facility
13.Jun • Final Report

17.Apr - 17.Jun • Design and Implementation
Demo Facility Application

19.Jun - 23.Jun • Setting up physical Demo
Environment

27.Jun • Final Presentation
26.Jun - 30.Jun • Preparing for Handover

Figure 2.3: Schedule

The schedule is divided in work packages that are to be executed and milestones that are a part of the project.
It is to be noted, that each work package could be split into multiple sprints in the future. The milestones
are the entries in the schedule that are just having a single date and not a range of dates. In the following
subsections the work packages will be explained.

2.6.1 Initial Logistics Processes and Wearables Research

This work package includes research about the given processes and wearables in general, as well as already
choosing potential wearables that could be used to improve the process. The end result for this should be
a decision on a process and a wearable. The result for this could potentially take longer than this task is
scheduled, the reason for this is that some wearables are ordered as part of the process, and a decision can
then just be made when those wearables are delivered. The wearables should be ranked after getting hands-on
experience on them, therefore some of them have to be ordered first.

2.6.2 Reference Model

A reference architecture should be created for a sample wearable application. What this work package contains
is, the creation of diagrams which show the communication from a wearable to the Warehouse Management
System (WMS) or a similar system. What should not be created is a full reference architecture for a process
that is implemented with a concrete wearable.

It is about creating the always needed layers when using a wearable in a way that supports most wearable
solutions.

Context and Scope 9

2.6.3 Research Demo Facility

This task includes researching what physical objects and what systems would be needed to create a demo
facility that could showcase a single process with a single wearable. This also includes the gathering of
knowledge of where the demo facility should be created and where to get the needed objects.

2.6.4 Setting up Infrastructure for Demo Facility

The infrastructure for the demo facility includes multiple things, like setting up a server to run a database for
the demo facility and creating an interface to connect to it.

2.6.5 Design and Implementation Demo Facility Application

The work package includes the creation of the software design and implementation for the wearable and
further aspects that are needed to fully showcase a process.

2.6.6 Setting up physical Demo Environment

This task includes the physical creation of the demo facility. This means setting up shelves with parcels to
scan and put on a hand pallet truck. Setting up barcodes on the packages to scan. Setting up an environment
that can showcase what is happening better to an audience.

2.6.7 Preparing for Handover

Since this project is part of the bigger logwear research project, the results that were created during this project
will be used in the future, therefore all the resources will be made available to a future developer. Furthermore
additional documentation and a handover document are part of this work package.

10 Initial Analysis

3 Initial Analysis

The first questions asked in this project were, what logistics processes are existing and which wearables
can be used for them. At the beginning of the project not a lot of information was available. The only
information that was available from the start, were the logistics processes that have already been researched
beforehand. The processes themselves will be discussed in section 4.1. This chapter will discuss the initial
list of wearables that could be considered and which requirements are existing for these wearables and why
these requirements.

3.1 Requirements towards Wearables

Before talking about wearables themselves, the base requirements needed to be set to start looking for wear-
ables. One of the processes can be seen in the appendix, figure A.1. With the aid of this process the require-
ments a wearable needed to be able to fulfil can be set. Following will be short descriptions of requirements
and how they are existing in the process. For further information the whole process itself can be looked at, but
the parts that are interesting for the wearables will be listed here. First the functionality the wearable needs to
have will be named, then the proof from the process why it needs to have that functionality and furthermore
what this means for the wearable concretely.

The wearables needs to be able to:

• scan some kind of barcodes. This functionality is needed due to the multitude of areas that involve scan-
ning in the given processes. Since the new wearable should replace the hand scanner that is currently
used, it needs to be able to scan barcodes. For a wearable this means there needs to be some kind of
visual input, this could mean just a simple camera included or a dedicated barcode scanner included in
the wearable.

• provide the user with information. This functionality is needed to support the database connections
displayed in the processes that should show some kind of data to the user afterwards. What this means
for a wearable is, that it should have some kind of way to provide the user with information. This could
be a screen, a speaker, haptic feedback or some other method of providing someone with information.

• send confirmations to the WMS. This is often done in the processes and every worker needs to do it
multiple times during each process. The wearable should therefore have the functionality to connect to
an outside computer system with a wireless connection.

These requirements were talked about with the company supervisor and accepted as main requirements to-
wards wearables that absolutely need to be fulfilled. One more requirement was added at this point after the
agreement on the already mentioned requirements. The ability to use the wearable hands-free for most of
the time, meaning that hands should not be needed for operating the device at most times. For example the
scanning process itself should leave the worker without the need to occupy his hands. But when just walking
through the warehouse the wearable could be operated using the hands and it would not be something that
immediately disqualifies a wearable.

Initial Analysis 11

3.2 Wearables

The initial search for wearables started with wearables that have already been used in projects similar to this.
One of the projects that was looked at for this was the pick-by-vision project conducted by Schwerdtfeger
(Schwerdtfeger, 2009). That is focusing on the application of smart glasses for the order picking process. A
case study by DHL shows the usage of the Vuzix M100 and the Google Glasses and is resulting in improved
times per task in the picking process (DHL, 2015).

The results of these previous researches led to the inclusion of a lot of general purpose smartglasses. A lot of
the smartglasses mentioned were just part of a short internet research, checking the general functionality of
the devices and if it would be able to fit the things needed for the processes given in section 3.1. The initial
list of smartglasses will be listed below:

• Vuzix M100

• Vuzix M300

• Vuzix Blade 3000

• Daqri Smart Glasses

• Epson Moverio BT-300

• Epson Moverio BT-200

• Microsoft HoloLens

• ODG R7 AR

• Sony SmartEyeGlass

• Google Glass

Apart from smartglasses one other type of wearables has been mainly searched and that being a combination of
a ring scanner and a wrist-mounted computer. This complies to the hands-free requirements mentioned earlier
by only needing interaction with the wrist-mounted computer, after a part of the process has successfully been
executed and therefore leaving the worker with empty hands anyway. But if that is still not enough, since
some processes might need more interactions than the ones planned for here, a headset can be added to the
combination, allowing for voice commands when needed. Wearables in this category are:

• Zebra WT6000 + RS6000

• Honeywell Dolphin 75e + 8620 Wearable Ring Scanner

Furthermore there are not a lot more wearables that do fit the given requirements. Wearables like smartwatches
or various fitness trackers are existing, but do not fit the given requirements at all. A smartwatch could be used
to replace the wrist-mounted computer, but for the given ringscanners above, the connection to the wrist-
mounted computer is proprietary and therefore can not be used with any current smartwatches.

12 Research

4 Research

This chapter includes the general research that has been done for the project, which includes the research about
some given processes and wearables that could be appropriate for the processes. The CASE Tools chosen at
the current state of the project will also be discussed and what they are used for.

4.1 Processes

There were process already modelled and made available in the LOGwear project. They were created by
working students at the FHTenL and revised through customer meetings. The naming of the processes was
also done by the working students. The processes existing at the time of this report were:

• Order Picking High Rack

• Goods Receipt and Put away

• Order Picking W3-5

The decision for a single process was quickly made in cooperation with the company supervisor. The processes
will just be briefly explained here, as it is not as important to fully understand the processes that were not
chosen.

Order Picking High Rack is a process where either a special vehicle is used to reach especially high racks or
the rack itself is mechanized and the items needed for the order picking process is moving to oneself. This
process has been discarded due to the nature of what should be created. A simulation that should model a
real environment. Modelling a High Rack and usage of that would be too hard and would take too much
time.

Goods Receipt and Put away was another process to be considered. The process itself is about getting an order
from a customer, waiting for it to arrive and then afterwards putting the incoming goods away in a spot that was
dedicated for it beforehand. This process was discarded as well. The modelling of it would be problematic
due to the time delays in the tasks. Furthermore the process showed less potential for improvements with
wearables.

Order Picking W3-5 was the process chosen to improve with wearables as multiple possibilities to improve the
process were discovered. Also the processes seemed rather easy to model with a demo facility by setting up
one or two racks and placing multiple parcels on there. This process was selected together with the company
supervisor. This process can be seen in the appendix, in figure A.1 but the demo scenario will also be further
explained in section 6.2.

4.2 Wearables

Researching wearables was a more problematic task, as the amount of wearables that could be used potentially
is a lot higher than the amount of given processes. Some criteria were set in place for a wearable to be
considered in the first place.

Research 13

4.2.1 Criteria

Further criteria are more specific towards the chosen process. The criteria were divided into requirements and
quantifiable criteria. The requirements towards a wearable, or a combination of wearables, are the follow-
ing:

Scan ID
The ability to scan an Identifier (ID), could be a barcode, Radio-Frequency Identification (RFID) code,
Quick Response (QR) code or something different.

Informing User
The ability to give information to the user, this can be done by audio, visual or haptic feedback.

Send Confirmations
The ability to send confirmations to the WMS, that part of the process has been completed.

Hands-free
The ability to operate the wearable without the need to take a device and put it back all the time.
Operations should not need user hand input while parcels are being handled or the hands are otherwise
occupied.

On top of these criteria that the quantifiable requirements were:

Performance
The performance of a device is important as some wearables considered are not necessarily intended
for the tasks in a warehouse and therefore some tasks like scanning different kinds of barcodes might
be more problematic and need a lot of time if the device is not performant.

Cost
The cost is a factor to consider when the company possibly needs to order a large amount of these
wearables.

Battery Life
A wearable should be able to sustain a whole day of working without the need to exchange batteries or
swap wearables during a break. Worst case scenario would be to have the need to change the wearable
device multiple times each day due to an empty battery.

Durability
The warehouse is not an environment where devices can be used that could break if a parcel graces or
hits it.

Most of the quantifiable criteria were hard to actually quantify without having hands-on-experience with these
devices. The reason behind this is, that most of the devices are either just released to the public or niche prod-
ucts leading to a small amount of information available besides information published by the manufacturers
of the devices, which is generally not a good source of unbiased information.

4.2.2 Devices

Smartglasses seem to be the most promising type of wearable for the task, due to the possibilities it does give
its user. The possibility for indoor navigation, scanning, exactly displaying the item location, constant display
of information and further possible features that could be implemented using an always-on camera that is
implemented in most devices (Schwerdtfeger, 2009).

The smartglasses most interesting for this topic are:

14 Research

• Epson-Moverio BT-300

• Microsoft HoloLens

• Vuzix M100

They are the newest publicly available glasses from some of the biggest manufacturers of smartglasses, that
are currently publicly available. This list has been created by using the initial list of smartglasses given in
chapter 3 and then removing the ones that were either no longer available to the public, or were not released
to the public at the start of the project.

The combination of a wrist mounted-computer and a ring scanner does fulfil the requirements and both items
listed in chapter 3 are also available at the time this project was executed. Therefore the list here is the same
as given already, being the following wearables:

• Zebra WT6000 + RS6000

• Honeywell Dolphin 75e + 8620 Wearable Ring Scanner

4.2.3 Decision

The wearables that were tested hands-on have been:

• Microsoft HoloLens

• Vuzix M100

• Honeywell Dolhin 75e + 8620 Wearable Ring Scanner

The other named wearables were also intended to be tested, but were not able to be delivered in a time that
was considered acceptable to continue the project. Therefore the final weighted decision will only take these
three wearables in consideration. The combination of Honeywell Dolphin 75e and the 8620 Wearable Ring
Scanner will be counted as a single wearable for this comparison as they are intended to be used together. The
general weighted decision for these wearables can be found in table 4.1.

The weights are distributed to sum together to the value of ten. The weights themselves were decided together
with the company supervisor and were accepted. The value for a wearable is given from a scale from one to
ten and the weighted value is the original value multiplied with the weight given for a criteria. For the criteria
performance, battery life and durability, the higher the value of a wearable, the higher the performance, battery
life and durability of the wearable are. For the cost of a wearable it is reversed, the higher the cost of a wearable
the less points the wearable is getting in that criteria.

HoloLens Vuzix M100 Honeywell

Criteria Weight Value Weighted Value Weighted Value Weighted
Performance 4 6 24 2 8 8 32
Cost 2 2 4 5 10 3 6
Battery Life 2 4 8 5 10 9 18
Durability 2 3 6 3 6 8 16

10 42 34 72

Table 4.1: Weighted Decision Wearables

The wearables were given a value between one and ten depending on how well they performed in the hands-on
test and the information available beforehand.

Research 15

From the weighted decision we can see that the Honeywell combination comes out on top, which is not as
surprising, as it is a device that was specifically designed for this and similar purposes. The performance of
the Honeywell combination is rated as highly, because the ring scanner is handling the scanning, which can
be a more expensive task for ordinary computing devices. The HoloLens is in front of the Vuzix M100 mainly
because of the integrated Holographic Processing Unit (HPU) that is handling the mapping of the environment
and most of the data that is incoming from the different cameras. This allows the other components of the
HoloLens to do different tasks with higher priority. Another factor here is that the HoloLens in general is
using newer components that have a higher performance by themselves. The cost or price of the device is just
the price of the devices.

The battery life between the HoloLens and the M100 is relatively similar, but the Vuzix solution has an
included battery pack to increase usage time, which is also something that could be done with the HoloLens,
but charging and using a device at the same time is not the nicest solution. Therefore the score is pretty low
for both. When using a battery pack, both devices might get through a workday, but without both need to be
recharged multiple times a day. The Honeywell combination is able to sustain through a day of work, and
if needed, the battery here can be hot swapped. The durability of both smartglasses is similar in points, as
both were not necessarily designed in the warehouse. While the HoloLens might break a bit faster than the
Vuzix M100, at least from how rugged both look and feel, the M100 just needs a small push to no longer
be in the right position to view the monitor. The Honeywell combination is by far the most rugged and also
can not disposition as easily, the biggest problem might be the connection between the ring scanner and the
wrist-mounted computer. While not likely that could tear or be plugged out.

But that might not be the only things that could lead to a decision, an aspect that is not explored here is
possibilities. But the possibilities that a wearable has, are not that easily measured and therefore are ignored
for the wearable comparison at this point in time. Therefore the Honeywell Dolphin 75e + 8620 Wearable
Ring Scanner has been chosen as a wearable to implement the demo scenario explained in section 6.2.

16 Research

4.3 CASE Tools

The CASE tools are used to implement parts of the project and have been decided on with the company
supervisor.

Program Usage
Azure Cloud A cloud computing environment by Microsoft. In this project used

to deploy the database for the mock WMS, the database connec-
tor and the Representational State Transfer (REST) interface to
connect to it.

Bitbucket Bitbucket is a tool developed by Atlassian. It is a Version Control
System (VCS) solution that uses git as an underlying system and
is aiming to give companies a secure and private git repository to
use for proprietary projects. During the thesis Bitbucket is used as
a VCS for the different parts of the project.

JIRA JIRA is a tool developed by Atlassian. It is an issue tracking and
project management tool. During the thesis it is used as a tool to
plan sprints and track bugs and issues, as well as having a backlog
of features that should still be implemented.

Mobility Software
Development Kit
(SDK) for Android

A SDK used to develop for the Honeywell Dolphin 75e. This is
provided by Honeywell to allow usage of the unique components
in their devices.

Netbeans Integrated
Development Envi-
ronment (IDE)

Is an IDE developed by the oracle corporation for Java develop-
ment. Netbeans is also extensible by third party developers. In
this project it is used to implement a web application using the
JavaServer Faces (JSF) framework.

UMLet UMLet is a free, open-source Unified Modeling Language (UML)
tool. It is used to create UML diagrams and is extensible by user
created, custom elements. (Umlet.com, 2017) It was used to cre-
ate the diagrams that were created during the thesis.

Visual Studio IDE developed by Microsoft for programming languages man-
aged by them. For this project used to implement the database
connection and the REST Application Programming Interface
(API).

Table 4.2: CASE tools

Reference Model 17

5 Reference Model

The reference model of the logwear project is a model that shows how the communication from a wearable
to the WMS or some other system might work. This does not mean that every communication necessarily
needs to be implemented like displayed in the reference model, but that in general every wearable is able
to communicate with an underlying system in the way it is displayed. The model can be seen in figure 5.1.

Communication
Interface

BusinessLogicInputInterfaces

OutputInterfaces

API SystemConnector Wearable
Communicator

CommunicationSystem

Wearable

Figure 5.1: Reference Model LOGwear

5.1 Definition

A reference model is an abstract design used to help others understand the general concept and the relation-
ships between existing entities of a specified environment. Furthermore a reference model, in general, does
not model anything with a specific technology in mind and rather models everything as general as possible.
This is done so that when creating an architecture around the reference model. The reference model can be
used as a template to start working with. Not as a constraint, that holds the architects back. When implement-
ing the reference model with a specific technology, it is needed to change existing parts or add new parts to fit
the given constraints. A reference model as is, is not directly implementable due to the abstract nature.

The aim for a reference model is to standardize the way how developers in the future implements an application
in the given domain, regardless of the used technologies.(Oasis-open.org, 2017)

5.2 Requirements

The reference model is an abstract construct, therefore the functional requirements towards it are taken as
example to prove the validity of the model. The functional requirements are listed in the form of use cases
The non-functional requirements are towards the model itself and not towards an implementation of it.

18 Reference Model

5.2.1 Functional Requirements

The functional requirements represents example cases that should be possible to implement with the reference
model. The cases that will be given do not need to be fulfilled all at once, but all of them should be possible
with the reference model. Given in the following is a single use case in figure 5.2, furthermore a short list
of descriptions for further use cases, while the other full use cases themselves can be seen in the appendix,
section A.2. The example cases given here are based on the demo scenario chosen, but more use cases can be
defined for different scenarios.

Use Case Order Confirmation
Code UC-W2
Package Wearable

Actors Picking Worker

Description A picking worker equipped with a wearable is using an input interface to
confirm an order.

Precondition(s)
The order picker has finished picking the order and wants to confirm that
everything is correct.

Scenario

1. The order picker uses an input interface on the wearable to confirm
the order.

2. The wearable is processing the request.
3. The wearable is sending the confirmation to the WMS.
4. The WMS sends, that the confirmation was successfully received.
5. The wearable displays the user, that the confirmation was received

by the WMS.

Extensions 1.1 The wearable is able to check if the confirmation is allowed to be
send. See UC-W3.

Exceptions

3.1 The wearable got an error when processing the request. The order
picker is informed about the cause of the error and can try to fix it.

4.1 The WMS does not answer. The order picker is informed about that
and can try contacting the IT.

Result The order picker has confirmed his order.
Version 1.1 Author LUR

Figure 5.2: Use Case: Order Confirmation

Get Order
An order document is fetched and in some way displayed to the worker.

Order Control
When an order is being picked, the wearable is supporting the worker in counting the right number of
parcels and picking the correct article in the first place.

5.2.2 Non-Functional Requirements

The non-functional requirements towards the reference model are the most important details that were taken
in consideration when the reference model was designed. They can be seen in the following list:

Documentation
The reference model needs to be properly documented. The advantages and disadvantages of the design

Reference Model 19

need to be properly explained to a person that potentially wants to implement a system based on it.

Extensibility
The reference model needs to be extensible since some companies might have some more requirements
towards their system than is intended for a general case. Adding functionality to the reference model
should be possible.

Modifiability
The existing ideas of the reference model should be modifiable. Companies are going to use different
wearables and infrastructure, and the reference model should be adjustable to fit a lot of possibilities
without the need to create a completely new system architecture.

5.3 Design

As can be seen in figure 5.1 the reference model is divided into three different packages that all fulfil dif-
ferent responsibilities. First it will be described what this reference model can help to create. Therefore
the general thought behind the whole model will be explained and afterwards the three packages system,
communication and wearable will be explained on their own.

The concept is simple, a wearable is connected to a communication layer, that then again connects to a system,
that could be anything, as long as it has an API. The arrows are not indicating an information flow but rather an
instruction flow. The box that the arrow leaves does invoke an instruction in the box that the arrow points to.
The sources of information are generally the InputInterfaces, and the incoming information is spread
from there. Depending on the incoming information, actions are invoked.

The reference model is purposely minimalistically designed, to allow most infrastructures and wearables, to
apply the model, with as few changes as possible. If for example a new WMS was used the only component
that needs to be changed is the SystemConnector in the communication package. In that case, the
wearable that are in use, can also continue to work, just like they normally would, without the need for a new
version to be deployed on all of them.

5.3.1 Wearable

The wearable package is representing the actual physical wearable, or a set of wearables, that a worker is
using. This could be either smartglasses, smartwatches, a ring-scanner or some other wearable. It could also
be a combination of wearables that is used in order to fulfil a certain task. In such cases it is still possible to
stick to the reference model either by changing the existing model, with multiple BusinessLogic classes
in the different wearables and a manager that could handle that. Or it could be, that even when using multiple
wearables at once, a single wearable is handling the business logic of all wearables. Then the other wearables
could be addressed by just their input- and output- interfaces.

Further on the wearable package is again held as simple as possible. The InputInterfaces are there
to get information from the outside world and the OutputInterfaces are there to somehow represent
information to the outside world. The BusinessLogic is there to process the incoming data and invoke
the appropriate actions, that could be either displaying some information to the user or making a call to the
underlying system through the CommunicationInterface.

The CommuncationInterface is the means of communication with an outside computer source, this
could be radio, bluetooth, REST via Wireless Local Area Network (WLAN) or some other way of communi-
cation. The WearableCommunicator in the Communication package just needs to be able to receive
and understand the messages.

20 Reference Model

5.3.2 Communication

The communication package is existing due to the different technologies used from wearables to connect
to other computing devices. The communication layer might also be the only place, where information can be
fully controlled by the developer, this is especially interesting when the system is controlled by a third-party.
Also needed actions can be taken, if the incoming data has to be transformed into a different format, before
either the API or the wearable can interpret it.

The communication package could potentially be removed, if the wearable has the needed technology
in place to directly connect to the API of the given system. But this is in general not recommended, as the
communication layer allows the developer to create a more standardized flow of information.

5.3.3 System

The system package here can be something like a WMS of the company, a system that is mostly a black box
with an API and a database. Most of the time, the system cannot be changed by the developer, therefore the
developer needs to use the possible ways to connect to the given API.

5.4 Variations

Multiple variations can be made to the reference model and some of the most likely variations of the reference
model will be listed in this section.

5.4.1 No Communication Layer

As already mentioned in subsection 5.3.2 about the communication layer, the communication layer might be
skipped in situations where the wearable is able to directly connect to the WMS. How the model changes in
such situations can be seen in figure 5.3.

Communication
Interface

BusinessLogicInputInterfaces

OutputInterfaces

API

System

Wearable

Figure 5.3: Reference Model - No Communication Layer

Reference Model 21

Apart from the removal of the communication layer the reference model still works exactly the same. This
change is rather likely since a lot of newer wearables are able to connect to a rest interface or something
similar.

5.4.2 Push Messages

The possibility to send push messages is also a very likely addition to the existing reference model. An
example case for the usefulness of this is, an urgent order is coming in and a coordinator wants to see which
person might be the most responsible for that order. Afterwards the coordinator can just contact the worker
through his wearable and give him the new order directly through a push message. A possible configuration
for this can be seen in figure 5.4.

AdminPortal

Communication
Interface

BusinessLogicInputInterfaces

OutputInterfaces

API SystemConnector Wearable
Communicator

CommunicationSystem

Wearable

Figure 5.4: Reference Model - Push Messages

Like in the normal reference model, the normal arrows show an instruction flow that is originating from the
worker. The arrows with the filled arrow head are the instruction flow from the coordinator and therefore
the push messages. The AdminPortal is added here as a possibility for a coordinator to check on the state of
current orders and what workers are currently most occupied. This helps the coordinator choose a worker that
is available and used to the customer that ordered something with a higher priority.

5.4.3 Web Application

Another likely variation of the reference model is a scenario in which a web application is replacing the
communication layer. This reduces the load on the wearable and allows a more uniform handling of multiple
wearables. This variation of the reference model can be seen in figure 5.5.

22 Reference Model

BusinessLogic

WebApp
Communication

Interface

InputInterfacesOutputInterfaces

API SystemConnector

WebAppSystem Wearable

Figure 5.5: Reference Model - Web Application

The WebApp package here is just held as simple here, since the way to implement a web application can
vary a lot. If a web application is implemented using the Model View ViewModel (MVVM) pattern, Model
View Controller (MVC) pattern, Model View Presenter (MVP) pattern or some other pattern to implement
web applications, is not relevant for the model and is therefore ignored here. The other parts of the reference
model are mostly similar, the business logic is moved from the wearable to the web application. This is done
to reduce the load on the wearable, which might be a problem for some wearables.

5.5 Problems

The main problem that occurred during the creation of the reference model was a problem in communication,
regarding the names of reference model and reference architecture. The initial task was understood to create
a general-purpose reference architecture, that would connect a wearable to some kind of system. During the
process of creating the different diagrams for the reference architecture and trying to validate them using code.
The problem became obvious that trying to go deeper than the now given reference model, as seen in figure
5.1, was impossible to do for a general-purpose implementation.

This is the case because of the nature of the given problem. Being able to use any wearable with any system,
for any task. Given that two wearables might have completely different sets of input- and outputinterfaces
those could not be defined. The communication interface could be different, which leads to being unable to
define a communication standard, while the possibility of any task gives no single action that will always be
the same.

Demo Facility 23

6 Demo Facility

Physical creation of the demo facility that showcases the possibilities of the chosen wearable in the process
of order picking in a warehouse. This chapter will therefore focus on the planned infrastructure, the existing
design and what is planned for the demo facility in the future. As the implementation would mostly just
be a repetition of what is discussed in the design section, there is no particular focus on the implementation
details.

There is also a major difference between the demo facility task that will be explained in this report and the
task given in the logwear website. (Logwear.eu, 2017) The task that will be executed here will be creating a
demo facility in a physical sandbox environment and the task explained in the work package on the logwear
homepage is about implementing the improved process, using a wearable, at a pilot company and observing
the results.

6.1 Infrastructure

The infrastructure of the demo facility is divided into multiple areas:

Mock WMS
A mock WMS that allows to store different orders and edit them to have a more realistic demo. While
not all functionality has to be given, the data has to be persistent and easily resettable to allow showcas-
ing a demo case multiple times. The mock WMS is deployed on an azure server and is using a Microsoft
Structured Query Language (MSSQL) database.

Rest API
A REST API that is used to connect to the mock WMS from an outside perspective, in this case from
the communication layer, see subsection 5.3.2.

Communication Layer
The communication layer will be deployed on a server with a connection to the Database (DB) API and
a connection to the wearable.

Wearable
The wearable will need to connect to the communication layer and process input and output.

The mock WMS and the REST API are insignificant parts of the implementation, therefore not a lot of thought
was put into the decision on choosing these technologies was done out of curiosity for these technologies or
being the most comfortable with them respectively.

6.2 Demo Scenario

The demo scenario explains the process that will be executed during the demo facility. Therefore describing
the actions taken in detail, but ignoring how they will be executed, e.g. with or without a wearable. The
original process can be seen in the appendix, figure A.1. For the actual scenario used for the demo facility an
activity diagram was created, that can be seen in figure 6.1.

24 Demo Facility

Start next order

Coordinator defines
following steps

Confirm pallet
empty for WMS

Move cart to
shipping
location

Confirm
order

Check quantities
again

Incorporate
customer wishes

Confirm
order line

Put parcel on
cart

Scan parcel

Walk to
parcel

Show location of
parcel for order line

Show next
order line

Get next order

Scan
worker card

Demo Scenario

Worker starts
in the morning

[not enough boxes
for order]

[enough boxes for order]

[pallet empty]

[more orders left]

[end of day / demo]

[last order line]

[not last order line]

[right amount on cart
and pallet not empty]

[not the needed
amount of parcels
and pallet not empty]

ParcelParcelParcelParcelParcelParcelParcelParcelParcelParcelParcelParcelParcelParcelParcelParcel

Worker CardWorker CardWorker CardWorker CardWorker CardWorker CardWorker CardWorker CardWorker CardWorker CardWorker CardWorker CardWorker CardWorker CardWorker CardWorker Card

Figure 6.1: Activity Diagram Demo Scenario

Demo Facility 25

The model shows the original process in a simplified form. It also shows a complete work day and not just the
process of picking a single parcel. The worker arrives in the morning and scans their worker card, this is done
to log in the worker into the system and be able to get the orders that are allocated to that worker. The next
thing is to get the order document, this is currently done on paper, but the intent for this is, that in the end this
can be displayed on the wearable. The worker can then at first look at the order document and then continues
to start working on that order.

The order is split up into multiple order lines. An order line contains a single article, location, quantity and a
number to identify the order line. The worker identifies the location and starts moving to the article location.
At the article location the parcel is scanned and afterwards put on the handcart of the worker. This is repeated
until the quantity listed in the order line is met. When the quantity of the order line is met, the order line is
confirmed, but there are multiple things that might happen during this process:

right amount on cart and pallet not empty
The process is working as explained above and the order line is confirmed without a problem.

right amount on cart and pallet empty
The pallet is confirmed empty for the WMS, but otherwise the process is working as explained above
and the order line is confirmed.

too little amount of parcels on cart and pallet empty
The pallet is confirmed empty for the WMS, afterwards a coordinator is contacted to define the following
steps, the process as planned is ending at this point and the steps as defined by the coordinator are
executed.

When the order line is successfully confirmed the next order line can be worked on, if the current order line
was not the last one of the order. When the order line was the last order line the customer wishes can be
incorporated. The quantities for the order will then be checked again and afterwards the order is confirmed.
The handcart is then moved to the shipping location. When the order is delivered to the shipping location the
next order can be started. If this is the end of the working day for the worker, the process ends.

This diagram was created for multiple reasons:

Readability
The scale of the original process diagram made it hard to process. One goal was to create a more
compact diagram. This was realized by designing it with the UML 2.5 notation as specified by the
Object Management Group (OMG). (OMG, 2015)

Purpose
The original diagram had a different purpose, it was supposed to model the process of one of the pilot
companies in its entirety. The purpose of the activity diagram is to model a demo case, that does not
need to show every single detail of the process in the first place.

Focus point
The demo scenario focuses on the general tasks an order picking worker is doing, but is just focussing
on the main points for this. The original diagram also includes the connections to the database and also
includes tasks outside of the actual order picking.

6.3 Design

The general design for the demo facility application is based on the reference model described in chapter 5.
The more concrete model for the demo facility can be seen in figure 6.2.

26 Demo Facility

OutputInterfaces

Communication
Interface

InputInterfaces

Wearable

RestAPI

Controller View

Model

WebApp

DBC

RestService

IRestService
Model

Connector

WMS

SimpleClassSimpleClassSimpleClassSimpleClassSimpleClassSimpleClassSimpleClassSimpleClass
SimpleClassSimpleClassSimpleClassSimpleClassSimpleClassSimpleClassSimpleClassSimpleClassSimpleClass

Figure 6.2: Package Diagram Demo Facility

The package diagram displayed is a high level view on the demo facility. The biggest difference to the
reference model is the wearable, which in this case uses a thin client to connect to a web application that
is doing most of the work for the wearable. The web application then in turn connects to the WMS and is
replacing the communication layer that is existing in the reference model.

The normal lines represent function calls and the dashed lines represents returned information in the diagram.
The following sections will go into detail for each of the displayed packages and the demo facility design will
be elaborated further.

6.3.1 WMS

The Warehouse Management System consists of two parts, the database that is going to contain the data for
the demo facility and the database connector. This also defines the interface, with which to connect to the
WMS.

Database

Figure 6.3 shows the relations and fields in the database. It can be seen that the database just contains a
small amount of information, due to being a demo, an actual WMS would contain a lot more data. The most
important item in the model is the order, as that is the key piece, where most relations lead together. An order
has a number that is connecting it to one or multiple workers that are working on them. Furthermore an order
consists of multiple OrderLines. An OrderLine is describing the different lines that would appear on

Demo Facility 27

an order, that specify the item and the amount for an order. For a warehouse it is also important to add the
pallet where to find the item and if the current line is already acknowledged or not. A pallet has a location in
the warehouse and how much of an article stored on the pallet is still available in the warehouse. The article
corresponds to a name for the article number. Finally an order is ordered by a customer, a customer might
have additional wishes for their orders and an address where that customer wants things delivered to.

OrderLineNumber

Article
ArticleNameArticleNumber

PalletNumber
Pallet

QuantityArticleNumberStorageLocation

OrderLine
OrderNumber AcknowledgementQuantityPalletNumber

Address
Customer

AdditionalWishesCustomerNumber

Worker
WorkerNumber

WorkerNumberOrderNumber
OrderWorker

OrderNumber OrderPackedCustomerNumber
Order

Figure 6.3: Relational Schema Warehouse Database

For an actual warehouse the customers attributes would change completely, as companies might have multiple
addresses, therefore that might change for every order of that customer, making it easier to add an address field
to the order and not the customer. Also a customer might want to add additional wishes just to a specific order
or dependent on what might be ordered, therefore the additional wishes might also be moved to the order, but
for a demo case, that is not executed at a pilot company, the model is sufficient.

Interface

The interface, that is exposed by the WMS, is a REST interface. The options available through the REST
interface are the following:

GET Order
Returns the order with the id that is given as an argument. Takes an ID as an argument.

NextOrder
Returns the order with the smallest number for a specific worker. Takes an ID as an argument.

POST ConfirmOrderLine
Confirms that an order line in an order has successfully been picked. Takes an order ID and an
orderline ID as arguments.

ConfirmOrder
Confirms that a complete order has been picked. Takes an ID as an Argument.

PUT ResetDatabse
A function that exists purely to have an existing and repeatable demo case. This resets the database
to a state it was in at the beginning, before the demo was executed. Takes no arguments.

28 Demo Facility

6.3.2 Wearable

The wearable is implemented with a thin client. This has multiple advantages, especially for such a demo case
where potentially multiple wearables are supposed to be tested. One advantage is, because wearables tend to
be less powerful devices just due to their size, the thin client allows to ease the load that would normally be
computed on the wearable. But the bigger advantage is, that this allows to employ multiple wearables more
easily. A thin client is implemented faster and easier than a fat client, therefore multiple demos for multiple
wearables are more easily implemented. This allows to deploy multiple demos a lot easier. At the same
time this allows a company a smoother upgrade process, meaning if they ever want to replace their existing
wearables to another set of wearables, the transition could be realized a lot cheaper and faster.

Therefore apart from the usage of the input and output information to get information from the user and return
information to the user only a communication interface is used to

6.3.3 Web Application

The web application is split into multiple web pages that leads a worker through the day. The first window
shown is a page, where the worker is prompted to log in by scanning their worker id. Then the next order for
that worker can be started. Then order lines are displayed in more detail and can be confirmed. If every order
line is confirmed the order can be confirmed and the next order can be started. The mockups for these web
pages can be found in the appendix in section A.3.

From a technical perspective, the web application will be implemented using Java and the JSF framework.
JSF is a part of the Java Platform, Enterprise Edition (JEE) platform and is the current standard to implement
web applications with Java. Furthermore JSF is a framework that is using the MVC pattern to deploy web
applications.

This was chosen as the framework to implement the web application due to familiarity with the technology
and it being a framework that allows rather easily to implement multiple web pages and connect that to a
controller in the back end.

6.4 Implementation

This section will not discuss everything that is a part of the implementation, but will focus on points of the
implementation that did not necessarily went as expected or are additions on top of the initial design due to
problems that occurred later on. Also further information on the quality management will be discussed in later
parts of this section.

6.4.1 Implementation Details

Most of the implementation is working as planned and is allowing the worker to go through his workday. The
most interesting parts here are currently the connection between the web application and the database in the
backend. As the database connector and the rest service there are implemented in C# and the web application
is implemented using Java. When order information is to be send to the web application, the database backend
is first creating an order model object. This model has been created using the Entity Framework (EF) provided
by microsoft that is automatically creating the classes for the model from the given database information. This
is creating the classes according to the official microsoft C# language specifications. (Microsoft, 2017)

Demo Facility 29

The classes are afterwards serialized using the JavaScriptSerializer to serialize an order object into
the JavaScript Object Notation (JSON) format. The JSON message is then send to the client that asked for the
order information. The simple implementation for this can be found in listing 6.1.

v a r s e r i a l i z e r = new J a v a S c r i p t S e r i a l i z e r () ;
v a r o r d e r = Connec to r . Ge tOrder (v a l u e) ;
H t t p C o n t e x t . C u r r e n t . Response . Conten tType = " t e x t /HTML" ;
H t t p C o n t e x t . C u r r e n t . Response . Wr i t e (s e r i a l i z e r . S e r i a l i z e (o r d e r)) ;

Listing 6.1: C# Object Serialization

The client is then implemented in Java in the web application and trying to deserialize the JSON received
from the backend. In Java the jackson library has been used to create the state of the order object from the
received message (FasterXML, 2017). The first problem here is that the JSON that is expected from jackson
is different, than the JavaScriptSerializer is creating. Therefore some transforming needs to be done
to the JSON, otherwise the objects state can not be reproduced. Class and variable names that jackson expects
need to be in camel case, otherwise it does not accept them, a method needs to be created that is automatically
transforming those to camel case. When receiving a JSON message it is in the format displayed in listing 6.2
and the expected format can be seen in listing 6.3. The message displayed in these listings has been simplified
and is just there to show the different formats.

{
" Customer " : {

" CustomerNumber " : 1
}

}

Listing 6.2: Received JSON format

{
" c u s t o m e r " : {

" customerNumber " : 1
}

}

Listing 6.3: Expected JSON format

The method used to transform the JSON message is quite simple and could be improved in the future to
increase performance, but for the testing purposes it is enough. Code for this can be seen in listing 6.4. For
further information about what the method does the included javadoc can be read.

/ * *
* Th i s method i s t a k i n g t h e i n p u t s t r i n g and i s c o n v e r t i n g t h e b e g i n n i n g o f
* e v e r y s t r i n g i n s i d e o f t h e j s o n i n t o a lower c a s e l e t t e r . Th i s
* e f f e c t i v e l y i s t r a n s f o r m i n g e v e r y a t t r i b u t e and o b j e c t i n t o camel c a s e .
* What t h i s a l s o does i s making e v e r y s t r i n g a t t r i b u t e , t h a t i s r e p r e s e n t i n g
* t h e s t a t e o f an o b j e c t , s t a r t w i th a lower c a s e l e t t e r , which might n o t
* be wanted by t h e u s e r .
* @param i n p u t The i n i t i a l j s o n s t r i n g t h a t s h o u l d be t r a n s f o r m e d .
* @return R e t u r n s t h e i n p u t j s o n wi th e v e r y a t t r i b u t e i n camel c a s e .
* /

p u b l i c S t r i n g jsonToCamelCase (S t r i n g i n p u t) {
S t r i n g B u i l d e r s t r i n g B u i l d e r = new S t r i n g B u i l d e r (i n p u t) ;
f o r (i n t i = 0 ; i < (i n p u t . l e n g t h () − 1) ; i ++) {

c h a r c = i n p u t . ch a rA t (i) ;
i f (c == ’ " ’) {

c h a r n e x t C h a r = i n p u t . ch a rA t (i + 1) ;
i f (n e x t C h a r >= 65 && n e x t C h a r <= 90) {

30 Demo Facility

s t r i n g B u i l d e r . s e t C h a r A t (i + 1 , (c h a r) (n e x t C h a r + 32)) ;
}

}
}
r e t u r n s t r i n g B u i l d e r . t o S t r i n g () ;

}

Listing 6.4: Java Code to Transform JSON

A few further things need to be changed in the json format, but that can be seen in listing A.1. That cod could
also be improved a lot especially in regards to modifiability, but it is sufficient for a simple test case that should
be created here.

For other cases it is just executing the commands exposed by the rest interface, that is detailed in section 6.3.
The other implementation details needed are mostly simple web pages and setters and getters which should
not need further explanation. The most interesting other design choice that was made for the model in the web
application part was to implement a huge class Order that is containing multiple inner classes for each of the
components. This can be seen in figure 6.4. This has been done since the jackson library is only available to
deserialize an object if all of the nested classes are inner classes of the wrapping class.

Worker

- workerNumber : int
- order : List<Order>

Article

- articleNumber : int
- articleName : string

Pallet

- palletNumber : int
- storageLocation : string
- article : Article
- quantity : int

OrderLine

- orderLineNumber : int
- quantity : int
- pallet : Pallet
- acknowledgement : bool
- pallet : Pallet

Customer

- customerNumber : int
- customerAddress : string
- additionalWishes : string

Order

- orderNumber : int
- customer : Customer
- orderLines : List<OrderLine>
- workers : List<Worker>
- orderPacked : bool

Figure 6.4: Class Diagram Web App Model Package

Demo Facility 31

6.4.2 Quality Management

The quality management aspects have been described in section 2.4 and following this it will be explained
how the different aspects have been looked at during the implementation.

Code Coverage

The code coverage percentage that has been aimed for during the project has been around 80% to 90%. The
problem with code coverage is, that for java the coverage plugin is creating an error that could not be resolved
during the time of the project. But every method is being called multiple times during the tests and therefore
the coverage should be relatively high.

Language Conventions

The language conventions have been checked at their respective sources, in this case Microsoft for C# (Mi-
crosoft, 2017), and Oracle for Java (Oracle, 2017). Furthermore they have been followed in all parts of the
application.

Documentation

The documentation for methods can already be seen in the listings 6.4 and A.1, furthermore the documentation
has been created in similar fashion for all methods.

Performance Testing

Since the web application has already been created to reduce the load on the wearable there will most likely not
be any problems of the performance of the wearables. Therefore this aspect of the quality management has not
been conducted, as already explained in the description in section 2.4. Performance testing would have only
been done if an issue would be likely or there would be some problems existing in regards to performance,
but none of that has revealed itself during the implementation phase.

32 Conclusion

7 Conclusion

Up to this point, the reference model has been fully designed and is documented with multiple variations for
different situations. The database for the demo has been deployed on an azure cloud service. The REST
interface to that database is deployed on the same azure instance. The web application is still being developed
at this point, as well as the connection from the wearable to this web application. The facility area has also
not been rented and filled at this point.

Concluding the whole tasks that are to be finished at the end of this project is, that the research process for
the available wearables is finished, but more wearables are going to be available in the future for the logwear
project. Those wearables will be tested and compared in the future, but that will most likely not be a part
of this project anymore. The requirements analysis and design phase for the reference model and the demo
facility are also completely finished at this point. The infrastructure surrounding the demo facility is fully
implemented as well. The two parts that are not fully implemented at this point are the web application and
the wearable application itself. While there are still tasks to complete when that is finished as well, these are
the main tasks that are a part of this project.

7.1 Recommendations

The recommendations are towards possibilities of the project in the future when the initial project of creating
a demo facility is done.

There is still work to be done in the area of the demo facility after the initial one is done. There might be an
internship or a bachelor thesis that is concerned with creating demos for each of the wearables available to the
logwear project. The focus here could be for the research part on the possibilities of the different wearables
for the same task. The information gained from the different demos can be used to compare the different
wearables more effectively and on a level that was not possible beforehand. The design part could go more
into detail on how the different wearables and environments are requiring different design patterns and ideas.
The implementation is rather interesting again due to the multitude of environments and technologies used in
each wearable. This type of project could be especially interesting for SME so that they get the ability to test
a lot of different wearables out themselves.

Another interesting project for an internship or bachelor student could be the implementation of a process
improved by wearables at a pilot company. The emphasis there could be on the differences between a sand-
box style demo and a demo that has all the constraints that are imposed by the environment of the pilot
company.

7.2 Further Planning

Apart from the recommendations given in section 7.1, this project still has a few tasks left, that will be handled.
Further functionalities that might still be added to the web application:

• Dividing a room in multiple sectors to help new picking workers to more smoothly get used to their
work. And help a worker to find the most optimal route through the warehouse.

• Implementing a mechanism that is helping the picking worker to confirm the quantity.

Conclusion 33

Apart from different functionalities that can still be added to the demo facility, there is still other tasks to
be done. Further documentation for a handover and a document on how to set up the existing system on
other systems. The area for the demo environment needs to be prepared before the demo can actually be
showcased.

When all that is done, the demo can still be actually showcased to interested SME, to show the advantages of
wearables in the order picking process.

34 Bibliography

Bibliography

Canders, Sascha (2017). “Development of a web application backend in a volatile environment”. Bachelor
Thesis. Fontys Hogeschool Techniek en Logistiek.

DHL (2015). DHL successfully tests Augmented Reality application in warehouse. [online] Available at:
http://www.dhl.com/en/press/releases/releases_2015/logistics/dhl_
successfully_tests_augmented_reality_application_in_warehouse.html. [Ac-
cessed 25 March 2017].

FasterXML (2017). Jackson Project. [online] Available at: https://github.com/FasterXML/
jackson. [Accessed 3 July].

Logwear (2017). Order Picking Process Diagram. [online internal].
Logwear.eu (2017). LOGwear Arbeitspakete / Werkpakkete. [online] Available at: http://logwear.eu/.

[Accessed 25 March 2017].
Microsoft (2017). C# Language Specification. [online] Available at: https://msdn.microsoft.com/
en-us/library/ms228593(v=vs.80).aspx. [Accessed 22 March 2017].

Oasis-open.org (2017). OASIS SOA Reference Model. [online] Available at: https://www.oasis-
open.org/committees/soa-rm/faq.php. [Accessed 22 March 2017].

OMG (2015). Object Management Group (OMG) Unified Modeling Language Version 2.5, 371ff.
Oracle (2017). Code Conventions for the Java TM Programming Language. [online] Available at: http:
//www.oracle.com/technetwork/java/codeconvtoc-136057.html. [Accessed 3 July].

Sander, Oliver (2017). “Development of a web application in a volatile environment”. Bachelor Thesis. Fontys
Hogeschool Techniek en Logistiek.

Schwerdtfeger, Björn (2009). “Pick-by-Vision: Bringing HMD-based Augmented Reality into the Warehouse”.
PhD thesis. Technische Universität München.

Umlet.com (2017). UMLet Website. [online] Available at: http://www.umlet.com/. [Accessed 25
March 2017].

http://www.dhl.com/en/press/releases/releases_2015/logistics/dhl_successfully_tests_augmented_reality_application_in_warehouse.html
http://www.dhl.com/en/press/releases/releases_2015/logistics/dhl_successfully_tests_augmented_reality_application_in_warehouse.html
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
http://logwear.eu/
https://msdn.microsoft.com/en-us/library/ms228593(v=vs.80).aspx
https://msdn.microsoft.com/en-us/library/ms228593(v=vs.80).aspx
https://www.oasis-open.org/committees/soa-rm/faq.php
https://www.oasis-open.org/committees/soa-rm/faq.php
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html
http://www.umlet.com/

35

Appendices

36

Order Picking Process 37

A.1 Order Picking Process

Figure A.1: Order Picking Process Diagram (Logwear, 2017)

38 Order Picking Process

Figure A.1: Order Picking Process Diagram (Logwear, 2017)

Order Picking Process 39

Figure A.1: Order Picking Process Diagram (Logwear, 2017)

40 Order Picking Process

Figure A.1: Order Picking Process Diagram (Logwear, 2017)

Use Cases Reference Model 41

A.2 Use Cases Reference Model

Use Case Get Order (Voice)
Code UC-W1
Package Wearable

Actors Picking Worker

Description
A picking worker equipped with a wearable is using a voice command to
get the next order displayed.

Precondition(s)
The wearable has to be equipped with an Input Interface accepting voice
and and an Output Interface that is able to return information to the user.

Scenario

1. The Picking worker gives the voice command "Next Order".
2. The Wearable asks the WMS for the next order for the specific

worker.
3. The WMS sends the Data to the Wearable
4. The Wearable displays the Data to the order picker.

Extensions -

Exceptions

1.1 The Voice command could not be properly understood. The Wear-
able does nothing.

1.2 The Order Picker is already on an Order and that one is unfinished,
the command is ignored.

1.3 Another Voice command is understood, that one is executed.
3.1 The WMS did not find a next order. The order picker is informed

about that.
4.1 There is an error in the format that was received. The data that

could be understood is still displayed and the order picker is in-
formed, that there might be an error with the order.

Result The Order Picker has received the next order.
Version 1.0 Author LUR

Figure A.2: Use Case: Get Order(Voice)

42 Web Application Mockups

Use Case Order Control
Code UC-W3
Package Wearable

Actors Picking Worker
Description A picking worker is in the process of picking his order.

Precondition(s)

The wearable has a vision interface or is in another way able to control
what the order picker is doing. Furthermore the order picker is currently
in the process of picking an order and is picking a specific item of that
order.

Scenario

1. The order picker scans an item.
2. The wearable checks what is being packed.
3. The order picker is putting the item on his hand pallet truck.
4. The wearable is counting the amount of items put onto the hand

pallet truck.
5. The order picker scans a new item.
6. The wearable detects a new item and ends the counting process

for the last item.
7. The wearable informs the order picker that everything went correctly

with the last item.

Extensions
6.1 When the order has no next item, the worker tries to confirm the

order and the wearable can then proceed to check if the amount of
picked parcels was correct.

Exceptions

7.1 The order picker could have counted wrongly and the wearable is
informing him about it. After the order picker has checked the quan-
tity on the Truck, go back to 1. with the item started with.

7.2 The wearable could have counted wrongly and the wearable is in-
forming the order picker as if he counted wrong. The order picker
can check the hand pallet truck for the item and confirm the right
quantity.

7.3 The order picker could have picked the wrong quantity and the
wearable could have counted wrong, resulting in the wearable say-
ing the order picker has picked the right amount. An error is made.

Result The Order Picker completed a part of the order and the wearable con-
firmed the quantity of that part.

Version 1.1 Author LUR

Figure A.3: Use Case: Order Control

A.3 Web Application Mockups

Web Application Mockups 43

Figure A.4: Mockup Worker Login

Figure A.5: Mockup No Order Started

44 Web Application Mockups

Figure A.6: Mockup Start Order

Figure A.7: Mockup Confirm Order Line

Web Application Mockups 45

Figure A.8: Mockup Confirm Order

46 Implementation Details

A.4 Implementation Details

/ * *
* I s c r e a t i n g a c o n n e c t i o n t o t h e r e s t s e r v i c e and i s g e t t i n g t h e n e x t
* o r d e r t h a t t h e c u r r e n t worker s h o u l d work on .
* @return The n e x t o r d e r f o r t h e c u r r e n t worker .
* /

p u b l i c Order g e t C u r r e n t O r d e r () {
HttpURLConnect ion c o n n e c t i o n = n u l l ;
URL r e s t U r l ;
S t r i n g o r d e r J s o n = " " ;
t r y {

r e s t U r l = new URL(b a s e U r l . t o S t r i n g () + " NextOrder / ? i d =" + workerID) ;

c o n n e c t i o n = (HttpURLConnect ion) r e s t U r l . openConnec t ion () ;
c o n n e c t i o n . s e t R e q u e s t M e t h o d ("GET") ;

/ / Get Response
I n p u t S t r e a m i s = c o n n e c t i o n . g e t I n p u t S t r e a m () ;
B u f f e r e d R e a d e r rd = new B u f f e r e d R e a d e r (new I n p u t S t r e a m R e a d e r (i s)) ;
S t r i n g B u i l d e r r e s p o n s e = new S t r i n g B u i l d e r () ;
S t r i n g l i n e ;
w h i l e ((l i n e = rd . r e a d L i n e ()) != n u l l) {

r e s p o n s e . append (l i n e) ;
r e s p o n s e . append (’ \ r ’) ;

}
rd . c l o s e () ;
o r d e r J s o n = r e s p o n s e . t o S t r i n g () ;
o r d e r J s o n = jsonToCamelCase (o r d e r J s o n) ;
o r d e r J s o n = " { \ " Order \ " : " + o r d e r J s o n + " } " ;

} c a t c h (J sonMapp ingExcep t ion ex) {
Logger . g e t L o g g e r (WorkerBean . c l a s s . getName ()) . l o g (Leve l . SEVERE , n u l l , ex) ;

} c a t c h (IOExcep t ion ex) {
Logger . g e t L o g g e r (WorkerBean . c l a s s . getName ()) . l o g (Leve l . SEVERE , n u l l , ex) ;

} f i n a l l y {
i f (c o n n e c t i o n != n u l l) {

c o n n e c t i o n . d i s c o n n e c t () ;
}

}

i f (! o r d e r J s o n . e q u a l s (" ")) {
Objec tMapper mapper = new Objec tMapper () ;
mapper . c o n f i g u r e (D e s e r i a l i z a t i o n F e a t u r e .UNWRAP_ROOT_VALUE, t r u e) ;

t r y {
c u r r e n t O r d e r = mapper . r e a d V a l u e (o r d e r J s o n , Order . c l a s s) ;

} c a t c h (J sonMapp ingExcep t ion ex) {
Logger . g e t L o g g e r (WorkerBean . c l a s s . getName ()) . l o g (Leve l . SEVERE , n u l l , ex)

;
} c a t c h (IOExcep t ion ex) {

Logger . g e t L o g g e r (WorkerBean . c l a s s . getName ()) . l o g (Leve l . SEVERE , n u l l , ex)
;

}
}
r e t u r n c u r r e n t O r d e r ;

}

Listing A.1: Java Code to Receive JSON from REST service

	Statement of authenticity
	Abstract
	List of Figures
	List of Tables
	List of Listings
	Glossary
	List of Abbreviations
	Introduction
	Context and Scope
	LOGwear
	Stakeholder
	Internal Stakeholders
	External Stakeholders

	Risks
	Quality Management
	Definition of Done
	Planning
	Initial Logistics Processes and Wearables Research
	Reference Model
	Research Demo Facility
	Setting up Infrastructure for Demo Facility
	Design and Implementation Demo Facility Application
	Setting up physical Demo Environment
	Preparing for Handover

	Initial Analysis
	Requirements towards Wearables
	Wearables

	Research
	Processes
	Wearables
	Criteria
	Devices
	Decision

	CASE Tools

	Reference Model
	Definition
	Requirements
	Functional Requirements
	Non-Functional Requirements

	Design
	Wearable
	Communication
	System

	Variations
	No Communication Layer
	Push Messages
	Web Application

	Problems

	Demo Facility
	Infrastructure
	Demo Scenario
	Design
	WMS
	Wearable
	Web Application

	Implementation
	Implementation Details
	Quality Management

	Conclusion
	Recommendations
	Further Planning

	Appendices
	Order Picking Process
	Use Cases Reference Model
	Web Application Mockups
	Implementation Details

